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Abstract

We study a class of quantum channels describing a quantum system, split into the direct

sum of an excited and a ground sector, undergoing a one-way transfer of population from

the former to the latter; this construction, which provides a generalization of the amplitude-

damping qubit channel, can be regarded as a way to upgrade a trace non-increasing quantum

operation, defined on the excited sector, to a possibly trace preserving operation on a larger

Hilbert space. We provide necessary and sufficient conditions for the complete positivity of

such channels, and we also show that complete positivity is equivalent to simple positivity

whenever the ground sector is one-dimensional. Finally, we examine the time-dependent

scenario and characterize all CP-divisible channels and Markovian semigroups belonging to

this class.

1 Introduction

Quantum channels, represented by completely positive and trace preserving (CPTP) linear maps,

are nowadays key objects in modern quantum information theory [1]. They represent physically

legitimate state transformations which are consistent with the structure of composite quantum

systems, that is, the tensor product of two channels ΦA and ΦB operating separately on the

systems “A” and “B” defines a quantum channel ΦA ⊗ ΦB operating on the composite “AB”

system. This property is in general violated by maps which are only positive but not completely

positive: in such a case, even if ΦA and ΦB safely transform states of systems “A” and “B”, the

tensor product needs not be positive and hence, in general, fails to properly transform entangled

states of the “AB” system.

A quantum channel provides a powerful generalization of a unitary map ρ→ U(ρ) = UρU †,

and hence it allows one to properly represent a quantum evolution beyond the Schrödinger

unitary scenario. Any physically legitimate evolution of an open quantum system [2,3] may be

represented by a dynamical map, i.e. a family of quantum channels {Λt}t≥0; in particular, a

Markovian semigroup is represented by Λt = etL, where L stands for the Gorini–Kossakowski–

Lindblad–Sudarshan (GKLS) generator [4,5] (cf. [6] for a detailed exposition and [7] for historical

remarks). Recently, the evolution of open systems beyond the Markovian semigroup scenario

has been attracting considerable attention both from a theoretical and experimental point of
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view (cf. [8–10] and [11, 12]); in particular, various inequivalent concepts and measures of non-

Markovianity have been proposed. The whole hierarchy of different approaches was recently

analyzed in great detail in [13] (see also the recent tutorial [14]).

In this paper we discuss a class of quantum channels which provides a generalization of the

well-known amplitude-damping qubit channel as well as its multilevel version studied in [15].

We will denote such channels as excitation-damping quantum channels. The essential ingredient

of the construction is a splitting of the Hilbert space H of the system as the direct sum of an

“excited” sector He and a “ground” sector Hg, i.e. H = He ⊕Hg. Excitation-damping channels

will be defined in such a way to involve a one-way population transfer from the excited sector to

the ground one, thus justifying our notation, as well as a modulation of the coherence between

the two sectors.

Importantly, as we will show, such a construction may also be considered as a way to upgrade

a trace non-increasing quantum operation φ : B(He) → B(He) to a possibly trace preserving

operation Φ, that is, a true quantum channel, on a larger Hilbert space H obtained from He by

adding additional degrees of freedom—a ground sector. This procedure is well-known when one

deals with decaying unstable systems and enlarges the original Hilbert space by states which

represent the decay products of unstable states [16–20]. The construction we propose provides

a substantial generalization of this approach.

The paper is organized as follows:

• In Section 2 we study the mathematical properties of excitation-damping maps and, in

particular, completely positive and trace preserving excitation-damping maps (excitation-

damping quantum channels) [21,22]. After studying the invertibility of such maps (Propo-

sition 2.1), we find necessary and sufficient conditions for their complete positivity (The-

orem 2.1); besides, in the case of a one-dimensional ground state, we also find necessary

and sufficient conditions for positivity (Proposition 2.2), which turns out to be equivalent

to complete positivity.

• In Section 3 we employ the results in the previous section to analyze dynamical maps cor-

responding to time-dependent excitation-damping quantum channels; in this framework,

we characterize all possible dynamical semigroups (Theorem 3.1) as well as invertible

CP-divisible maps (Theorem 3.2) in this class, fully characterizing the corresponding gen-

erators.

Final considerations are outlined in Section 4.

2 Properties of excitation-damping maps

2.1 Generalities

Let He, Hg two Hilbert spaces with dimensions de, dg <∞, and H = He⊕Hg. The most general

element X ∈ B(H) can be thus partitioned as

X =

[

Xee Xeg

Xge Xgg

]

, Xss′ ∈ B(Hs′ ,Hs), s, s′ ∈ {e, g}. (1)

Given two maps φ : B(He) → B(He), ω : B(He) → B(Hg), an operator B ∈ B(He), and γ ≥ 0,

we consider the map Φ : B(H) → B(H) acting on all X ∈ B(H), partitioned as in Eq. (1), via

Φ(X) =

[

φ(Xee) BXeg

XgeB
† γXgg + ω(Xee)

]

. (2)
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We will refer to such maps as excitation-damping maps. As pointed out in the introduction, they

involve a one-way exchange of population from the excited sector to the ground one. Clearly,

such maps are trace preserving if and only if

γ = 1 and Trφ(Xee) + Trω(Xee) = TrXee for all Xee ∈ B(He). (3)

While we are largely interested in the case γ = 1, for the purposes of next section it will be

convenient to let γ be arbitrary.

Example 2.1. We shall often consider a subclass of manifestly trace preserving excitation-

damping maps. Take γ = 1 and, given a state Ω ∈ B(Hg) with TrΩ = 1, let ω : B(He) → B(Hg)

defined as such:

Xee ∈ B(He) 7→ ω(Xee) = Tr [Xee − φ(Xee)] Ω, (4)

so that

Φ(X) =

[

φ(Xee) BXeg

XgeB
† Xgg +Tr [Xee − φ(Xee)] Ω

]

. (5)

Clearly, this map is trace preserving independently of the particular choice of φ and B; such a

construction is therefore a simple way to create a trace preserving map on B(H) starting from

a generally trace non-preserving map on B(He).

This family of excitation-damping maps includes some examples commonly found in the

literature. For example, in the qubit case (de = dg = 1), it includes the following maps:

Φ(X) =

[ |a|2xee bxeg
b∗xge xgg +

(

1− |a|2
)

xee

]

, (6)

with a, b ∈ C; for b = a this channel corresponds to an amplitude-damping channel, while for

|a| = 1 it reduces to a phase-damping channel. More generally, if dg = 1 and φ(Xee) = AXeeA
†,

with A ∈ B(He), we get

Φ(X) =

[

AXeeA
† BXeg

XgeB
† xgg +Tr[(1le −A†A)Xee]

]

, (7)

which, for B = A, reduces to the multilevel generalization of the amplitude-damping channel

studied in [15]. All such models emerge naturally when taking into account the reduced dynamics

induced by atom-field interactions.

Interestingly, excitation-damping maps are invertible under minimal assumptions:

Proposition 2.1. The map Φ : B(H) → B(H) as in Eq. (2) is invertible if and only if γ 6= 0

and both φ,B are invertible. In such a case, for all X ∈ B(H)

Φ
−1(X) =

[

φ−1(Xee) B−1Xeg

XgeB
†−1 γ−1

(

Xgg − ωφ−1(Xee)
)

]

. (8)

Proof. If γ 6= 0 and φ−1, B−1 exist, then an immediate computation shows that the map in

Eq. (8) is the inverse of Φ. If any of said conditions fail, one can immediately construct coun-

terexamples; for instance, if φ is not invertible, i.e. there exist two distinct Xee,X
′
ee ∈ B(He)

such that φ(Xee) = φ(X ′
ee), then

Φ

[

Xee 0

0 0

]

=

[

φ(Xee) 0

0 0

]

=

[

φ(X ′
ee) 0

0 0

]

= Φ

[

X ′
ee 0

0 0

]

, (9)

and analogously in the other cases.
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2.2 Complete positivity, general case

A natural question is whether the excitation-damping construction, under suitable assumptions,

renders Φ completely positive (and, in particular, CPTP) when φ is completely positive. As we

will see, a complete characterization of all choices of φ and B yielding a completely positive map

can be indeed reached.

Theorem 2.1. Let φ : B(He) → B(He), ω : B(He) → B(Hg), B ∈ B(He) and γ ≥ 0; let Φ as in

Eq. (2). The following statements are equivalent:

(i) Φ is completely positive;

(ii) the map ω is completely positive, and one of the following conditions hold:

• γ = 0 and B = 0;

• γ > 0, and the map φ− 1
γB(·)B† is completely positive;

(iii) the map ω is completely positive, and there exist {Aµ}µ=1,...,r ⊂ B(He) and {βµ}µ=1,...,r ⊂
C, with r ≤ d2e , such that

φ =
r
∑

µ=1

Aµ(·)A†
µ, B =

r
∑

µ=1

βµAµ with
r
∑

µ=1

|βµ|2 ≤ γ. (10)

Finally, the map is trace preserving if and only if Eq. (3) holds.

Theorem 2.1 clarifies precisely the conditions under which φ, ω and B must be chosen so that

Φ is a CPTP map. Necessarily, φ and ω themselves must be completely positive; furthermore,

the operator B governing the off-diagonal part of X must be “sufficiently small” with respect to

φ, in the sense that φ − γ−1B(·)B† is still completely positive; as it turns out, this happens if

and only if B belongs to the set

Bφ,γ =







B =
r
∑

µ=1

βµAµ ∈ B(He),
r
∑

µ=1

|βµ|2 ≤ γ







, (11)

that is, the (complex) ball of radius
√
γ spanned by the Kraus operators associated with φ.

In this sense, for a fixed φ with Kraus rank r, Theorem 2.1 guarantees the existence of a r-

dimensional “ball of completely positive maps”, whose radius coincides with the square root

of γ. Notice that, since the Kraus operators associated with φ are unique up to a unitary

transformation, said ball is indeed independent of the particular choice of Kraus operators.

Remark 2.1. Recall that a positive map φ : B(He) → B(He) is said to be trace non-increasing

if, for all Xee � 0, the inequality Trφ(Xee) ≤ TrXee holds. It is easy to see that such a property

holds if and only if, given any orthonormal basis {|ej〉}j=1,...,de ⊂ He, the matrix with (j, ℓ)th

element

δjℓ − Trφ (|ej〉〈eℓ|) , j, ℓ = 1, . . . , de (12)

is positive semidefinite. Furthermore, φ is completely positive and trace non-increasing if and

only if it admits a Kraus representation

φ =

r
∑

µ=1

Aµ(·)A†
µ with

r
∑

µ=1

A†
µAµ � 1le. (13)

4



Clearly, Eq. (3) implies that, in order an excitation-damping map Φ to be trace preserving,

φ must necessarily be trace non-increasing. Consequently, as anticipated, constructing an

excitation-damping channel Φ may be regarded as a way to “promote” the trace non-increasing

map φ to a legitimate quantum channel.

We remark that such a simple characterization of all choices of φ and B rendering the corre-

sponding excitation-damping map Φ completely positive does not have, in general, a counterpart

for positive maps; an important exception, which will be examined later on, is the case dg = 1

(cf. Subsection 2.3).

The remainder of this section will be devoted to proving Theorem 2.1, and to discuss par-

ticular cases.

Lemma 2.1. Let φ : B(He) → B(He) and B ∈ B(He). The following properties are equivalent:

(i) the map φ−B(·)B† is completely positive;

(ii) there exist {Aµ}µ=1,...,r ⊂ B(He) and {βµ}µ=1,...,r ⊂ C, with r ≤ d2e , such that

φ =
r
∑

µ=1

Aµ(·)A†
µ (14)

and

B =
r
∑

µ=1

βµAµ, with
r
∑

µ=1

|βµ|2 ≤ 1. (15)

Proof. (i) =⇒ (ii) Let φ−B(·)B† be completely positive: since B(·)B† is completely positive by

construction, φ is completely positive as well. Therefore, there exist two families {Aµ}µ=1,...,r

and {A′
ν}µ=1,...,s, with r, s ≤ d2e , such that

φ =

r
∑

µ=1

Aµ(·)A†
µ; (16)

φ−B(·)B† =

s
∑

ν=1

A′
ν(·)A

′†
ν ; (17)

which implies
r
∑

µ=1

Aµ(·)A†
µ =

s
∑

ν=1

A′
ν(·)A

′†
ν +B(·)B†. (18)

Therefore, {Aµ}µ=1,...,r and {B}∪ {A′
ν}ν=1,...,r′ are two families of Kraus operators representing

the same map φ. Consequently, by appending zeros to the smaller set of operators, there exists

a unitary matrix (uµν)µ,ν=1,...,m, with m = max{r, s + 1}, which transforms one set into the

other. In particular, in all cases

B =

r
∑

µ=1

u1µAµ, (19)

since either r = m or the remaining terms in the sum above are zero. Since the rows of an unitary

matrix have unit norm, in the first case
∑

µ |u1µ|2 = 1, while in the second case
∑

µ |u1µ|2 ≤ 1.

(ii) =⇒ (i) Let φ and B as in Eqs. (14)–(15). Then

φ−B(·)B† =

r
∑

µ,ν=1

[δµν − βµβ
∗
ν ]Aµ(·)A†

ν , (20)
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implying that φ−B(·)B is completely positive if and only if the matrix (δµν − βµβν) is positive

semidefinite, which happens if and only if
∑

µ |βµ|2 ≤ 1.

Proof of Theorem 2.1. The case γ = 0 is obvious, so take γ > 0. Let {|ej〉}j=1,...,de ⊂ He,

{|ga〉}a=1,...,dg ⊂ Hg two orthonormal bases, and define the (unnormalized) maximally entangled

vector

|Ψ〉 =
de
∑

j=1

|ej , ej〉+
dg
∑

a=1

|ga, ga〉 ∈ H ⊗H, (21)

where we use the shorthand |u, v〉 ≡ |u〉 ⊗ |v〉. Choi’s theorem on completely positive maps [23]

ensures that Φ is completely positive if and only if the operator

CΦ = (Φ⊗ id) (|Ψ〉〈Ψ|) ∈ B(H)⊗ B(H) ≃ B(H⊗H) (22)

is positive semidefinite; similarly, defining

|Ψe〉 =
de
∑

j=1

|ej , ej〉 ∈ He ⊗He, |Ψg〉 =
dg
∑

a=1

|ga, ga〉 ∈ Hg ⊗Hg, (23)

then φ and ω are completely positive if and only if the operators

Cφ = (φ⊗ id) (|Ψe〉〈Ψe|) ∈ B(He)⊗ B(He) ≃ B(He ⊗He); (24)

Cω = (ω ⊗ id) (|Ψe〉〈Ψe|) ∈ B(Hg)⊗ B(He) ≃ B(Hg ⊗He), (25)

are, respectively, positive semidefinite. Now, by Eq. (22) and the definition of Φ, a simple

calculation yields

CΦ =











Cφ · · (B ⊗ 1le)|Ψe〉〈Ψg|
· · · ·
· · Cω ·

|Ψg〉〈Ψe|(B ⊗ 1le)
† · · γ|Ψg〉〈Ψg|











, (26)

where the partition

B(H⊗H) ≃
⊕

r,r′,s,s′=e,g

B(Hs ⊗Hs′,Hr ⊗Hr′) (27)

has been employed.

The positive semidefiniteness of CΦ can be characterized by means of the Schur comple-

ment [24, 25]. For γ > 0 the operator γ|Ψg〉〈Ψg| admits a positive semidefinite generalized

inverse (1/γd2g)|Ψg〉〈Ψg|; a direct application of the Schur complement then shows that CΦ is

positive semidefinite if and only if






Cφ − 1
γ (B ⊗ 1le) |Ψe〉〈Ψe| (B ⊗ 1le)

† · ·
· · ·
· · Cω






� 0, (28)

which clearly happens if and only if

Cφ − 1

γ
(B ⊗ 1le) |Ψe〉〈Ψe| (B ⊗ 1le)

† � 0 and Cω � 0. (29)

The latter condition is equivalent to the complete positivity of ω, while the former condition is

equivalent to the complete positivity of φ − 1
γB(·)B†, since the first term in Eq. (29) is indeed

the Choi state of said map.
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Remark 2.2. We can also find an explicit Kraus representation for Φ (which, incidentally, pro-

vides an alternative proof of the implication (iii) =⇒ (i) of Theorem 2.1). Let φ : B(He) → B(He)

and ω : B(He) → B(Hg) completely positive; then they admit Kraus representations

φ =

r
∑

µ=1

Aµ(·)A†
µ, {Aµ}µ=1,...,r ⊂ B(He); (30)

ω =

s
∑

ν=1

Qν(·)Q†
ν , {Qν}ν=1,...,s ⊂ B (He,Hg) . (31)

TakeB =
∑r

µ=1 βµAµ for some {βµ}µ=1,...,r with
∑r

µ=1 |βµ|2 ≤ γ. We define a family of operators

{Aµ}µ=0,1,...,r+s by

A0 =

[

0 0

0 (γ −
∑

µ |βµ|2)1/2 1lg

]

; (32)

Aµ =

[

Aµ 0

0 β∗µ1lg

]

, µ = 1, . . . , r; (33)

Ar+ν =

[

0 0

Qν 0

]

, ν = 1, . . . , s; (34)

then an immediate computation shows that

Φ =

r+s
∑

µ=0

Aµ(·)A†
µ. (35)

We conclude this subsection by stating Theorem 2.1 for the subclass of manifestly trace

preserving maps given in Example 2.1, cf. Eq. (5).

Corollary 2.1. Let φ : B(He) → B(He) and B ∈ B(He); let Φ as in Example 2.1. The following

statements are equivalent:

(i) Φ is completely positive and trace preserving;

(ii) the map φ−B(·)B† is completely positive, and φ is trace non-increasing;

(iii) there exist {Aµ}µ=1,...,r ⊂ B(He) and {βµ}µ=1,...,r ⊂ C, with r ≤ d2e , such that

φ =

r
∑

µ=1

Aµ(·)A†
µ,

r
∑

µ=1

A†
µAµ � 1le (36)

and

B =

r
∑

µ=1

βµAµ, with

r
∑

µ=1

|βµ|2 ≤ 1. (37)

Proof. The map Φ is trace preserving by construction. Besides, it readily follows from Theo-

rem 2.1 with

ω(Xee) = Tr [Xee − φ(Xee)] Ω (38)

that the latter map is completely positive if and only if the form

Xee ∈ B(He) 7→ Tr [Xee − φ(Xee)] ∈ C (39)

is positive; but this condition is clearly equivalent to φ being a trace non-increasing map.

7



2.3 Case dg = 1

We have provided a complete characterization of all completely positive excitation-damping

maps for arbitrary values of the dimensions de, dg of both sectors of the Hilbert space H.

As previously remarked, an analogous characterization of positive maps in the general case is

generally much more difficult.

We will now particularize our discussion to the “minimal” case dg = 1, that is, the case of a

one-dimensional ground sector to He. Choosing any |g〉 ∈ Hg with unit norm, the most general

X ∈ B(H) can be thus written as

X =

[

Xee |ξe〉〈g|
|g〉〈ξe| xgg|g〉〈g|

]

≃
[

Xee |ξe〉
〈ξe| xgg

]

(40)

for some |ξe〉 ∈ He and xgg ∈ C, where we have applied the obvious isomorphism Hg ≃ C

which will be let understood hereafter. With this representation, given φ : B(He) → B(He) and

B ∈ B(He), the map Φ in Eq. (2) acts as

Φ(X) =

[

φ(Xee) B |ξe〉
〈ξe|B† γxgg + ω(Xee)

]

, (41)

where now ω : He → C is a linear functional. By Theorem 2.1, this map is completely positive

if and only if ω is a positive functional and φ − γ−1B(·)B† is completely positive, the latter

condition being, in turn, equivalent to B belonging to the ball Bφ,γ associated with φ as defined

in Eq. (11). As a particular feature of the case dg = 1, we are indeed able to characterize all

choices of φ and B rendering Φ positive:

Proposition 2.2. Let φ : B(He) → B(He), ω : B(He) → C, B ∈ B(He), and γ ≥ 0; let Φ as in

Eq. (41). The following statements are equivalent:

(i) Φ is positive;

(ii) the map ω is positive, and one of the following conditions hold:

• γ = 0 and B = 0;

• γ > 0, and the map φ− 1
γB(·)B† is positive.

Proof. The case γ = 0 is again obvious, so fix γ > 0. First of all notice that, by convex linearity,

Φ is positive if and only if

∀ |ξ〉 ∈ He, ∀c ∈ C : Φ

[ |ξ〉〈ξ| c |ξ〉
〈ξ| c∗ |c|2

]

=

[

φ(|ξ〉〈ξ|) cB |ξ〉
〈ξ| c∗B† γ|c|2 + ω(|ξ〉〈ξ|)

]

� 0. (42)

(i) =⇒ (ii): by Eq. (42) for c = 0, necessarily φ and ω must both be positive maps. Besides, for

c 6= 0, Eq. (42) is equivalent to

∀ |ξ〉 ∈ He, ∀0 6= c ∈ C : φ(|ξ〉〈ξ|) − |c|2
γ|c|2 + ω(|ξ〉〈ξ|)B|ξ〉〈ξ|B† � 0, (43)

the denominator being nonzero since γ > 0 and ω is a positive map. This must hold for all c; in

particular, taking the limit |c| → ∞ and recalling that the strong limit of positive semidefinite

operators is positive semidefinite, we end up with the condition

∀ |ξ〉 ∈ He : φ(|ξ〉〈ξ|) − 1

γ
B|ξ〉〈ξ|B† � 0, (44)

8



which, again by convex linearity, is equivalent to the positivity of φ− 1
γB(·)B†.

(ii) =⇒ (i): by assumption, Eq. (44) holds, which clearly implies Eq. (43), and thus Eq. (42),

for all c 6= 0; finally, Eq. (42) for c = 0 follows from the positivity of φ (which is an immediate

consequence of the positivity of φ− γ−1B(·)B†) and ω.

Proposition 2.2, together with Theorem 2.1, allows us to conclude that, as long as we choose

beforehand B as a combination of the Kraus operators associated with φ, then complete posi-

tivity and positivity are equivalent properties. Such a property, which was already observed for

the (multilevel) amplitude-damping and phase-damping channels [15, 26], is therefore a much

more general feature.

Corollary 2.2. Let φ : B(He) → B(He) with Kraus representation φ =
∑r

µ=1Aµ(·)A†
µ, ω :

B(He) → B(Hg), γ ≥ 0, and B ∈ Span {A1, . . . , Ar}; let Φ as in Eq. (41). The following

statements are equivalent:

(i) Φ is completely positive;

(ii) Φ is positive.

Proof. Clearly (i) =⇒ (ii). To prove the converse implication, suppose that Φ is not completely

positive; by Theorem 2.1, this happens if and only if either ω is not a positive functional or,

expressing B as
∑r

µ=1 βµAµ for some β1, . . . , βr ∈ C, we have
∑r

µ=1 |βµ|2 > γ. In the first case,

there is 0 � Xee ∈ B(He) such that ω(Xee) < 0, and then

Φ

[

Xee 0

0 0

]

=

[

φ(Xee) 0

0 ω(Xee)

]

, (45)

so that Φ transforms a positive semidefinite operator into an operator with a negative eigenvalue;

therefore, Φ is positive. In the second case, we have

φ− 1

γ
B(·)B† =

r
∑

µ,ν=1

[

δµν −
βµβ

∗
ν

γ

]

Aµ(·)A†
ν (46)

and it is easy to show that the map above is positive if and only if
∑r

µ=1 |βµ|2 ≤ γ, which is

false by assumption.

In particular, the equivalence between positivity and complete positivity always holds when-

ever φ has maximal Kraus rank r = d2e , since in such a case Span{A1, . . . , Ar} = B(He).

Finally, we point out that the equivalence between positivity and complete positivity fails

in the case dg > 1, as can be immediately shown by taking into account the trivial case φ =

B = 0: any positive ω which is not completely positive will render Φ positive but, likewise,

not completely positive. This counterexample does not apply if dg = 1 since, in such a case,

positivity and complete positivity coincide.

2.4 Case de = dg = 1

Let us finally analyze briefly the qubit case, i.e. de = dg = 1. Choosing any couple |e〉 ∈ He,

|g〉 ∈ Hg of states with unit norm, the most general X ∈ H can be written as

X =

[

xee|e〉〈e| xeg|e〉〈g|
xge|g〉〈e| xgg|g〉〈g|

]

≃
[

xee xeg
xge xgg

]

(47)
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for some xee, xeg, xge, xgg ∈ C, with the obvious isomorphisms He,Hg ≃ C being henceforth

understood. With this representation, the most general map Φ : B(H) → B(H) as in Eq. (2)

can be written as follows:

Φ(X) =

[ |a|2xee bxeg
b∗xge γxgg + |q|2xee

]

(48)

for some a, b, q ∈ C, γ ≥ 0. This family of maps contains some familiar qubit channel, cf. Eq. (6):

• when γ = 1, |b| = |a| and |q|2 = 1− |a|2, it reduces to an amplitude-damping channel;

• when γ = 1 and |a| = |q| = 1, it reduces to a phase-damping channel.

In all such cases, γ = 0, Theorem 2.1 and Corollaries 2.1–2.2 imply that complete positivity

and positivity hold if and only if |b| ≤ √
γ|a|; also, the map is CPTP if and only if γ = 1 and

|q|2 = 1− |a|2, cf. Example 2.1 in the qubit case.

3 Time-dependent scenario: semigroups and CP-divisibility

We shall now analyze time-dependent excitation-damping channels. Given He,Hg,H as before,

we shall consider a time-dependent map Φt : B(H) → B(H) defined as follows: for all t ≥ 0 and

all X ∈ B(H) partitioned as in Eq. (1), we set

Φt(X) =

[

φt(Xee) BtXeg

XgeB
†
t γtXgg + ωt(Xee)

]

, (49)

where φt : B(He) → B(He), ωt : B(He) → B(Hg), Bt ∈ B(He), and γt ≥ 0. Since we will be

ultimately interested in the case of trace preserving time-dependent maps, we shall hereafter

restrict our attention to the case γt = 1 in Eq. (49), so that

Φt(X) =

[

φt(Xee) BtXeg

XgeB
†
t Xgg + ωt(Xee)

]

. (50)

Theorem 2.1 implies that Φt is completely positive at all t ≥ 0 if and only if ωt and φt−Bt(·)B†
t

are completely positive at all times; besides, by Proposition 2.1, Φt is invertible at all times if

and only if φt, Bt are all invertible at all times, with

Φ
−1
t (X) =

[

φ−1
t (Xee) B−1

t Xeg

XgeB
†−1
t Xgg − ωt ◦ φ−1

t (Xee)

]

. (51)

By using Theorem 2.1, we will be able characterize all excitation-damping semigroups in

Subsection 3.1, and then all invertible CP-divisible excitation-damping channel in Subsection 3.3.

3.1 Excitation-damping Markovian semigroups

Recall that a time-dependent map Φt : B(H) → B(H) is said to satisfy the semigroup property

whenever

Φt ◦ Φs = Φt+s ∀t, s ≥ 0; (52)

in particular, all completely positive maps satisfying said property, together with Φ0 = id, are

usually referred to as Markovian semigroups [6]. Besides, all trace non-increasing semigroups
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with Φ0 = id can be characterized via the relation Φt = exp(tL), where L : B(H) → B(H), the

Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) generator, reads, for all X ∈ B(H),

L(X) = E(X)−
[

ΓX+ XΓ
†
]

, (53)

where E : B(H) → B(H) is a completely positive map, and Γ ∈ B(H) with Re Γ � 0. By choosing

a Kraus representation E =
∑

µ Fµ(·)F
†
µ for the former, and writing Γ without loss of generality

as

Γ = iH+
1

2

(

G+
∑

µ

F
†
µFµ

)

, H = H
†, G = G

† � 0, (54)

so that Tr L(X) = Tr(GX), we restore the familiar expression for GKLS generators:

L(X) = −i[H,X]− 1

2
{G,X}+

∑

µ

[

FµXF
†
µ − 1

2
{F†µFµ,X}

]

, (55)

where the symbols [·, ·] and {·, ·} are respectively used for the commutator and anticommutator.

By construction, the corresponding semigroup is trace preserving, and hence CPTP, if and only

if Tr L(X) = 0 for all X ∈ B(H), which happens if and only TrGX = 0, and thus if and only if

G = 0; in this sense, G is the operator responsible for the loss of trace (cf. Remark 3.1).

The first main result of this section follows: a complete characterization of all completely

positive excitation-damping semigroups, and in particular all CPTP excitation-damping semi-

groups, can be obtained.

Theorem 3.1. For all t ≥ 0, let φt : B(He) → B(He), ωt : B(He) → B(Hg), and Bt ∈ B(He),

with all functions being continuously differentiable; let Φt : B(H) → B(H) as in Eq. (50). The

following statements are equivalent:

(i) Φt is a completely positive semigroup;

(ii) the following conditions hold:

• φt = exp(tL), where L : B(He) → B(He) is a GKLS generator, that is,

L = −i[H, ·]− 1

2
{G, ·} +

r
∑

µ=1

(

Fµ(·)F †
µ − 1

2
{F †

µFµ, ·}
)

(56)

for some H,G,F1, . . . , Fr ∈ B(He), with H = H† and G = G† � 0;

• Bt = exp(tK), where

K = −iH − 1

2



G+

r
∑

µ=1

F †
µFµ



−
(

iε+
κ

2

)

1le −
√
κ

r
∑

µ=1

cµFµ (57)

for some ε ∈ R, κ ≥ 0 and some c1, . . . , cr ∈ C with
∑r

µ=1 |cµ|2 ≤ 1;

• ωt is given by

ωt = ψ ◦
∫ t

0

dτ exp(τL) (58)

for some completely positive map ψ : B(He) → B(Hg).
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Furthermore, Φt is a completely positive and trace preserving semigroup if and only if, in addi-

tion, TrL(Xee) + Trψ(Xee) = 0, or equivalently

Trψ(Xee) = TrGXee, (59)

for all Xee ∈ B(He).

We refer to Subsection 3.2 for the proof. This theorem basically implies that, once a com-

pletely positive trace non-increasing semigroup on the excited sector φt : B(He) → B(He),

i.e. φt = etL with L as defined in Eq. (56), has been fixed, our freedom in constructing a

completely positive excitation-damping semigroup Φt consists entirely in the choice of

• the parameters ε ∈ R, κ ≥ 0, and c1, . . . , cr ∈ C with by
∑

µ |cµ|2 ≤ 1 in Eq. (57);

• a completely positive map ψ : B(He) → B(Hg),

with the latter being further constrained by Eq. (59) if one imposes the trace preserving con-

dition. We stress that larger values of κ yield a quicker decoherence phenomenon, with the

coherence completely vanishing in the limit κ→ ∞.

Remark 3.1. The case of trace preserving semigroups, i.e. those for which the additional con-

dition (59) holds, is of particular importance from a physical standpoint. Indeed, such a case,

Theorem 3.1 characterize all possible ways to upgrade a completely positive, but generally only

trace non-increasing semigroup φt, into a CPTP semigroup Φt. In terms of master equations,

this can be restated as follows: φt satisfies a master equation in the form

φ̇t(Xee) = −i
(

HeffXee −XeeH
†
eff

)

+
∑

µ

[

FµXeeF
†
µ − 1

2
{F †

µFµ,Xee}
]

(60)

where

Heff = H − i

2
G, (61)

plays the role of an (effective) non-hermitian Hamiltonian; instead, Φt satisfies

Φ̇t(X) = −i (HX− XH) +
∑

µ

[

FµXF
†
µ − 1

2
{F†µFµ,X}

]

, (62)

with a hermitian Hamiltonian: the enlargement of the Hilbert space allows us to describe a decay

phenomenon (e.g. a particle decay) by means of a CPTP semigroup. As such, Theorem 3.1

generalizes the results derived in [17], which are reproduced by taking ε = κ = 0, c1 = . . . =

cr = 0 and ψ =M(·)M †, where G =M †M (cf. Example 3.3).

Example 3.1. In the framework depicted in Remark 3.1, the simplest scenario corresponds to a

Wigner–Weisskopf [27] dynamics: in such a case, the evolution in the excited sector is governed

by

φ̇t(Xee) = −i
(

HeffXee −XeeH
†
eff

)

, (63)

where

Heff = H − i

2
G, (64)

plays the role of an (effective) non-hermitian Hamiltonian. One finds

φt(Xee) = AtXeeA
†
t , (65)
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with At = e−iHeff t. Hence

K = −iHeff −
(

iε+
κ

2

)

1le, (66)

giving rise to

Bt = eKt = e−iεte−κt/2At. (67)

Finally,

ωt(Xee) =

∫ t

0

dτ ψ(AτXeeA
†
τ ). (68)

Importantly, even in this simple case, we still have a freedom on the construction of a semigroup

Φt in the choice of the parameters ε ∈ R, κ ≥ 0 which enter the modulation of the coherence

blocks (with, in particular, higher values of κ corresponding to quicker decoherence phenomena)

and especially in the choice of the map ψ such that the total trace is preserved, cf. Examples 3.2–

3.3.

In view of Remark 3.1, before proving the theorem, it will be useful to provide some examples

of manifestly trace preserving excitation-damping semigroups.

Example 3.2. As an example of excitation-damping CPTP semigroup as in Eq. (50), fix Ω ∈
B(Hg) with TrΩ = 1, and let

Xee ∈ B(He) 7→ ψ(Xee) := −TrL(Xee) Ω = (TrGXee) Ω, (69)

which clearly satisfies the condition for trace invariance. Correspondingly, the map ωt : B(He) →
B(Hg) acts as such:

ωt(Xee) = ψ ◦
∫ t

0

dτ exp(τL)Xee = −
[∫ t

0

dτ Tr (L exp(τL)Xee)

]

Ω

= −
[∫ t

0

dτ
d

dτ
Tr (exp(τL)Xee)

]

Ω = Tr [Xee − exp(tL)Xee] Ω, (70)

which therefore belongs to the subclass of such models considered in Example 2.1.

Example 3.3. More generally, a possible choice to satisfy Eq. (59), thus obtaining a CPTP

excitation-damping semigroup, is the following: writing G =
∑

mM
†
mMm for some family of

operators {Mm}m ⊂ B(He,Hg), we set

ψ = E ◦M, where M =
∑

m

Mm(·)M †
m, (71)

where E : B(Hg) → B(Hg) is any completely positive and trace preserving map on the ground

sector. With this choice, clearly Eq. (59) is satisfied and a CPTP excitation-damping semigroup

is obtained. The particular case of Example 3.2 is recovered by choosing E = Tr(·)Ω: indeed, in
such a case,

ψ(Xee) = E
(

∑

m

MmXeeM
†
m

)

= Tr

(

∑

m

MmXeeM
†
m

)

Ω

= Tr

(

∑

m

M †
mMmXee

)

Ω = (TrGXee) Ω. (72)

13



3.2 Proof of Theorem 3.1

To prove Theorem 3.1, it will be useful to start by first proving a necessary and sufficient

condition for Φt to be a (not necessarily completely positive) semigroup.

Lemma 3.1. Let Φt as above, with φt being completely positive and all quantities being contin-

uously differentiable as functions of t. Then Φt satisfies the semigroup property and Φ0 = id, if

and only if there are a GKLS generator L : B(He) → B(He), a map ψ : B(He) → B(Hg), and

an operator K ∈ B(He), such that

φt = exp(tL), Bt = exp(tK), (73)

and

ωt = ψ ◦
∫ t

0

dτ exp(τL). (74)

Proof. By Eq. (50), a straightforward computation shows that Φt ◦ Φs = Φt+s for all t, s ≥ 0

and Φ0 = id if and only if, for all t, s ≥ 0, the following conditions hold:

φt ◦ φs = φt+s, φ0 = id; (75)

BtBs = Bt+s, B0 = 1le; (76)

ωs + ωt ◦ φs = ωt+s, ω0 = 0. (77)

The first two conditions are clearly equivalent to φt, Bt being as in Eq. (73). We must prove

that the latter condition (77) is satisfied if and only if there exists some ψ : B(He) → B(Hg)

such that Eq. (74) holds. Now, if Eq. (74) holds, then an immediate computation shows that

Eq. (77) holds. Vice versa, suppose that Eq. (77) holds for all t, s ≥ 0, that is,

ωt+s − ωs + ωs = ωt ◦ exp(sL). (78)

Dividing by t and taking the limit t→ 0, we get the following differential equation for ωs:

ω̇s = ω̇0 ◦ exp(sL), (79)

with the initial condition ω0 = 0, which is uniquely solved by Eq. (74) with ψ = ω̇0.

Proof of Theorem 3.1. (ii) =⇒ (i) Let φt = exp(tL) with L : B(He) → B(He) being a GKLS

generator on B(He), Bt = exp(tK), and ωt as in Eq. (58). Lemma 3.1 ensures that Φt is a

semigroup; it is therefore a Markovian semigroup if and only if can be written as Φt = exp(tL),

with L : B(H) → B(H) being a GKLS generator on B(H).

By differentiating Eq. (50), for all t ≥ 0 we get Φ̇t(X) = L(Φt(X)), where

L(X) =

[

L(Xee) KXeg

XgeK
† ψ(Xee)

]

. (80)

Now, since L is a GKLS generator, it admits the following decomposition:

L(Xee) = E(Xee)−
[

ΓXee +XeeΓ
†
]

, (81)

with E : B(He) → B(He) completely positive, and Γ ∈ B(He) with ReΓ � 0. A simple

computation then shows that

L(X) = E(X)−
[

ΓX+ XΓ
†
]

, (82)
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where

E(X) =

[

E(Xee)
(

K + Γ + iε+ κ
2

)

Xeg

Xeg

(

K + Γ + iε+ κ
2

)†
κXgg + ψ(Xee)

]

, (83)

Γ =

[

Γ + iε 0

0 κ
2
1lg

]

, (84)

with the map in Eq. (83) being completely positive by Theorem 2.1 as long as ψ is completely

positive, κ ≥ 0, and the operator K + Γ +
(

iε+ κ
2

)

1lg is a linear combination of any family of

Kraus operators F1, . . . , Fr associated with the map E : B(He) → B(He):

K + Γ +
(

iε+
κ

2

)

1le =
r
∑

µ=1

c̃µFµ,
r
∑

µ=1

|c̃µ|2 ≤ κ, (85)

or equivalently, defining cµ := c̃µ/
√
κ,

K = −Γ−
(

iε+
κ

2

)

1le +
√
κ

r
∑

µ=1

cµFµ,

r
∑

µ=1

|cµ|2 ≤ 1. (86)

The claim therefore follows by identifying Γ with the operator iH + 1
2

(

G+
∑r

µ=1 F
†
µFµ

)

.

(i) =⇒ (ii). First of all, in order for Φt to be completely positive, by Theorem 2.1 necessarily

φt must be completely positive for all t. Besides, since Φt is a semigroup, by Lemma 3.1

necessarily we must have

φt = exp(tL), Bt = exp(tK), ωt = ψ ◦
∫ t

0

dτ exp(τL) (87)

for some GKLS generator L : B(He) → B(He) as in Eq. (56), some K ∈ B(He), and some map

ψ : B(He) → B(Hg). Again by Theorem 2.1, ωt must be completely positive at all times, which

implies that ψ is completely positive.

Finally, Theorem 2.1 requires φt−Bt(·)B†
t , and thus φt−Bt(·)B†

t to be a completely positive

operator. Now, since φt is a Markovian semigroup with GKLS generator given by Eq. (56), the

map φt admits a family of Kraus operators A0(t), A1(t), . . . , Ar(t) satisfying

A0(t) = 1le − t



iH +
1

2



G+
r
∑

µ=1

F †
µFµ







+O(t2); (88)

Aµ(t) =
√
t Fµ +O(t), µ = 1, . . . , r, (89)

which, in particular, imply for all t > 0

Ȧ0(t) = −



iH +
1

2



G+

r
∑

µ=1

F †
µFµ







+O(t); (90)

Ȧµ(t) =
1

2
√
t
Fµ +O(1), µ = 1, . . . , r. (91)

Since φt−Bt(·)B†
t must be completely positive, recalling Lemma 2.1 we must have, for all t ≥ 0,

Bt = exp(tK) =

r
∑

µ=0

βµ(t)Aµ(t),

r
∑

µ=0

|βµ(t)|2 ≤ 1 (92)

15



for some β0(t), . . . , βr(t) ∈ C, with the right-hand side of Eq. (92) necessarily being differentiable.

Eq. (92) at t = 0 implies β0(0) = 1 and βµ(0) = 0 for all µ = 1, . . . , r. Besides, differentiating

Eq. (92), we get

K exp(tK) = β̇0(t)A0(t) + β0(t)Ȧ0(t) +

r
∑

µ=1

[

β̇µ(t)Aµ(t) + βµ(t)Ȧµ(t)
]

, (93)

and, as t→ 0,

K = lim
t→0

β̇0(t)1le −



iH +
1

2



G+
r
∑

µ=1

F †
µFµ







+
r
∑

µ=1

lim
t→0

[√
tβ̇µ(t) +

βµ(t)

2
√
t

]

Fµ. (94)

Necessarily,

lim
t→0

β̇0(t) =: −iε− κ

2
(95)

is finite, and we must have βµ(t) = cµ
√
t + o(

√
t) for some cµ ∈ C. Finally, the condition

∑r
µ=0 |βµ(t)|2 ≤ 1 at small times implies

r
∑

µ=1

|cµ|2 ≤ κ (96)

with κ ≥ 0; Eq. (57) follows by rescaling the cµs properly, finally proving the claim.

3.3 CP-divisible excitation-damping channels

Let us recall that a dynamical map Φt is divisible whenever, for all t ≥ s ≥ 0, the following

decomposition

Φt = Φt,s ◦Φs, (97)

holds true for some family of maps (propagators) Φt,s : B(H) → B(H); if so, one calls Φt CP-

divisible if the family of propagators Φt,s is CPTP, and P-divisible if Φt,s is positive and trace

preserving.

We shall restrict ourselves to the case of invertible processes: such processes are divisible,

with Φt,s = Φt ◦ Φ−1
s . In the case of excitation-damping maps, we know from Proposition 2.1

that Φt is invertible if and only if φt and Bt are invertible, with

Φ
−1
t (X) =

[

φ−1
t (Xee) B−1

t Xeg

XgeB
†−1
t Xgg − ωt ◦ φ−1

t (Xee)

]

; (98)

in such a case Φt satisfies a time-local master equation Φ̇t = Lt ◦ Φt, and the corresponding

time-local generator Lt is defined via

Lt = Φ̇t ◦Φ−1
t ; (99)

a straightforward computation leads to

Lt(X) =

[

Lt(Xee) KtXeg

XgeK
†
t ψt(Xee)

]

, (100)
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where Lt : B(He) → B(He), Kt ∈ B(He), and ψt : B(He) → B(Hg) are defined via

Lt = φ̇t ◦ φ−1
t ; (101)

Kt = ḂtB
−1
t ; (102)

ψt = ω̇t ◦ φ−1
t . (103)

Such relations can be (formally) inverted as follows:

φt = T exp

(
∫ t

0

dτ Lτ

)

, Bt = T exp

(
∫ t

0

dτ Kτ

)

, (104)

with T denoting the time-ordered product. Solving Eq. (101) for ωt, one finds

ωt =

∫ t

0

dτ ψτ ◦ φτ . (105)

The evolution is CP-divisible if and only if the family of propagators Φt,s = Φt ◦ Φ−1
s is CPTP

for all pairs t ≥ s. One finds

Φt,s(X) =

[

φt,s(Xee) Bt,sXeg

XgeB
†
t,s Xgg + ωt,s(Xee)

]

; (106)

where

φt,s = φt ◦ φ−1
s = T exp

(
∫ t

s
dτ Lτ

)

; (107)

Bt,s = BtB
−1
s = T exp

(∫ t

s
dτ Kτ

)

, (108)

and

ωt,s = (ωt − ωs) ◦ φ−1
s . (109)

Using Eq. (105) one obtains

ωt,s =

∫ t

s
dτ ψτ ◦ φτ,s =

∫ t

s
dτ ψτ ◦

{

T exp

(∫ τ

s
du Lu

)}

, (110)

which, in the homogeneous case, reduces to

ωt−s =

∫ t

s
dτ ψ ◦ φτ−s = ψ ◦

∫ t−s

0

dτ φτ = ψ ◦
∫ t−s

0

dτ exp (τL) . (111)

Consequently, we obtain the following generalization of Theorem 3.1:

Theorem 3.2. For all t ≥ 0, let φt : B(He) → B(He), ωt : B(He) → B(Hg), and Bt ∈ B(He),

with all functions being continuously differentiable; let Φt : B(H) → B(H) as in Eq. (50). The

following statements are equivalent:

(i) Φt is a CP-divisible dynamical map,

(ii) the following conditions hold:
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• Lt, defined in Eq. (101), is a trace non-increasing GKLS generator for all t ≥ 0, that

is,

Lt = −i[Ht, ·]−
1

2
{Gt, ·}+

r
∑

µ=1

(

Fµ,t(·)F †
µ,t −

1

2
{F †

µ,tFµ,t, ·}
)

, (112)

for some time dependent operators Ht, Gt, F1,t, . . . , Fr,t ∈ B(He), with Ht = H†
t and

Gt = G†
t � 0;

• Kt, defined in Eq. (102), reads

Kt = −iHt −
1

2



Gt +
r
∑

µ=1

F †
µ,tFµ,t



−
(

iεt +
κt
2

)

1le −
√
κt

r
∑

µ=1

cµ,tFµ,t (113)

for some εt ∈ R, κt ≥ 0 and some c1,t, . . . , cr,t ∈ C satisfying
∑r

µ=1 |cµ,t|2 ≤ 1;

• ωt is defined in Eq. (105) for some completely positive map ψt : B(He) → B(Hg).

Furthermore, Φt is a completely positive and trace preserving channel if and only if, in addition,

TrLt(Xee) + Trψt(Xee) = 0, or equivalently

Trψt(Xee) = TrGtXee, (114)

for all Xee ∈ B(He) and all t ≥ 0.

The proof goes exactly on the same line as the proof of Theorem 3.1. As in the semigroup

case, our freedom in constructing a CP-divisible excitation-damping map resides in the choice

of

• the time-dependent parameters εt ∈ R, κt ≥ 0, and c1,t, . . . , cr,t ∈ C with by
∑

µ |cµ,t|2 ≤ 1

in Eq. (57);

• a time-dependent completely positive map ψt : B(He) → B(Hg),

with the latter being further constrained by Eq. (114) if one imposes the trace preserving con-

dition. Some final considerations are in order.

Remark 3.2. Reprising the discussion in Remark 3.1, let us focus again on the trace preserving

scenario. Again, in such a case the result can be restated as follows: the map φt, which satisfies

a generalization of Eq. (60):

φ̇t(Xee) = −i
(

Heff,tXee −XeeH
†
eff,t

)

+
∑

µ

[

Fµ,tXeeF
†
µ,t −

1

2
{F †

µ,tFµ,t,Xee}
]

(115)

with a time-dependent effective non-hermitian Hamiltonian Heff ,t, is upgraded to a map Φt

satisfying a generalization of Eq. (62):

Φ̇t(X) = −i (HtX− XHt) +
∑

µ

[

Fµ,tXF
†
µ,t −

1

2
{F†µ,tFµ,t,X}

]

, (116)

with a time-dependent hermitian Hamiltonian Ht.
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Example 3.4. A simple scenario ensuring trace preservation corresponds again to the choices

εt = κt = 0, c1,t = . . . = cr,t = 0, and ψt(Xee) = Et(MtXeeM
†
t ), where Gt = M †

tMt and

Et : B(Hg) → B(Hg) is a family of trace preserving maps such that

ωt(Xee) =

∫ t

0

dτ Eτ (Mτφτ (Xee)M
†
τ ), (117)

is completely positive. In this case, one finds

Ẋee,t = −i[Ht,Xee,t]−
1

2
{Gt,Xee,t}+

r
∑

µ=1

(

Fµ,tXee,tF
†
µ,t −

1

2
{F †

µ,tFµ,t,Xee,t}
)

, (118)

Ẋeg,t =



−iHt −
1

2



Gt +

r
∑

µ=1

F †
µ,tFµ,t







Xeg,t (119)

and

Xgg,t =

∫ t

0

dτ Eτ (MτXee,τM
†
τ ), (120)

Clearly, whenever Eτ is completely positive, then the map

ψτ (Xee) = Eτ (MτXeeM
†
τ ) (121)

is completely positive and hence Φt is a CP-divisible dynamical map. However, when Eτ is not

completely positive but ωt is completely positive for all t ≥ 0, then Φt is a legitimate map but

not CP-divisible.

This shows that a CP-divisible trace non-increasing map φt can be extended to a non-CP-

divisible trace preserving map Φt. If we identify the CP-divisibility property as a mathematical

description of Markovianity, this provides an example of a non-Markovian quantum system

which, nevertheless, behaves as a Markovian one on the excited sector. Likewise, when Lt = L

and Kt = K are time independent and hence characterized by Theorem 3.1, one may still have a

time dependent ψt; therefore, a semigroup φt can be extended to a CP-divisible evolution which,

however, fails to satisfy the semigroup property.

Finally, generalizing the discussion in Example 3.3, a CP-divisible and trace preserving

excitation-damping map can be obtained as follows: writing Gt =
∑

mM
†
m,tMm,t for some

time-dependent family of operators {Mm,t}m ⊂ B(He,Hg), we set

ψt = Et ◦Mt, where Mt =
∑

m

Mm,t(·)M †
m,t, (122)

with Et : B(Hg) → B(Hg) being an arbitrary quantum channel (a CPTP map).

4 Conclusions and outlooks

In this work we have introduced and studied a class of quantum operations describing excitation-

damping phenomena, that is, one-way transfer of probability between two sectors of the Hilbert

space of a quantum system, an excited and a ground one. Such maps may be interpreted

as generalizations the well-known amplitude-damping channel, as well as of their extension to

multilevel excited sectors studied in [15], and can be considered as a way of upgrading a trace

non-increasing map (quantum operation) to a possibly trace preserving map on a larger Hilbert

space, by adding additional degrees of freedom playing the role of a ground sector.
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For such maps, a simple characterization of complete positivity has been obtained; besides, in

the case of one-dimensional ground sectors, complete positivity turns out to be equivalent to the

(generally much weaker) positivity. This nontrivial feature generalizes what already observed for

amplitude-damping and phase-damping qubit channels, as well as their generalizations studied

respectively in [15] and [26], thus showing that the equivalence between the two properties does

indeed hold for a wider class of maps.

Furthermore, the time-dependent scenario has been examined; a characterization of all dy-

namical semigroups, and more generally all invertible and CP-divisible maps, belonging to the

class of excitation-damping channels has been obtained. This characterization involves an ex-

plicit expression for all admissible generators, which must be carefully chosen in such a way to

ensure complete positivity at all times.

Future research will be devoted to investigating other mathematical and physical properties

of excitation-damping maps, as well as their practical implementation, and to study the time-

dependent case via a memory kernel approach.
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