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Constanza Faŕıas1, ∗ and Sergio Davis2, 1

1Departamento de F́ısica, Facultad de Ciencias Exactas,
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The theory of superstatistics, originally proposed for the study of complex nonequilibrium systems,
has recently been extended to studies of small systems interacting with a finite environment, because
such systems display interestingly similar statistical behavior. In both situations there are several
applicable definitions of inverse temperature, either intrinsic or dependent of the statistical ensemble.
In this work we develop these concepts focusing our attention on a region of an isolated, one-
dimensional Ising chain as an example of a subsystem that does not follow the canonical Gibbs
distribution. For this example, we explicitly show that superstatistics cannot describe the behavior of
the subsystem, and verify a recently reported relation between the fundamental and microcanonical
inverse temperatures. Our results hint at a new framework for dealing with regions of microcanonical
systems with positive heat capacity, which should be described by some new class of statistical
ensembles outside superstatistics but still preserving the notion of temperature fluctuations.

I. INTRODUCTION

In traditional statistical mechanics we normally deal
with small systems , such as particles interacting inside
an isolated box or otherwise in contact with a large heat
bath. Based on this, we either apply the microcanoni-
cal or canonical ensemble, respectively, to describe the
system, often making use of the fact that, in the thermo-
dynamical limit, both ensembles are equivalent.

An interesting situation arises when we study a system
in which there exists subsystem-environment interaction
but only through nearest-neighbors, and where the size of
the environment is commensurate with the subsystem. In
this case, these systems present temperature fluctuations,
and several works[1–3] treat these systems basically using
the traditional statistical mechanics.

One of the most well known examples of small systems
is the classical Ising model, in which nearest-neighbor
interactions are given through the exchange constant J .
The classical one-dimensional Ising chain is described by
the Hamiltonian

H = −J
N∑
i=1

sisi+1. (1)

where the spins si ∈ {−1, 1} and we consider periodic
boundary conditions.

Recently Ilin et al [4] showed how one can take a piece
of L spins from a microcanonical one-dimensional Ising
chain of N spins in total and describe it as a system in
contact with an environment that is commensurate with
the system. Their results show in detail how the system
is described by a non-Gibbsian distribution that reduces
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to the traditional canonical ensemble in the limit when
L� N , as expected.

When dealing with systems presenting subsystem-
environment interactions with a finite environment, a
new theory known as superstatistics [5, 6] has been in-
troduced. This theory was originally proposed to ex-
plain the statistics of different types of complex sys-
tems, such as plasmas and self-gravitating systems and,
only lately, some applications to the thermodynamics of
small systems[7–9] characterized by short-range interac-
tions have been presented.

In those cases, the system in contact with a finite en-
vironment has a statistical distribution of temperatures
and does not follow the traditional Gibbs distribution, i.e.
the canonical ensemble. However, in the thermodynam-
ical limit the uncertainty in temperature vanishes and
the classical canonical ensemble is recovered. Because
this is exactly the situation in superstatistics, these au-
thors proposed to use this framework, obtaining accurate
fits.

However, it is not always the case that the framework
of superstatistics is capable of describing these type of
systems. Accordingly, in this work we propose to use
the properties of the fundamental and the microcanoni-
cal inverse temperatures to explore and study, as a par-
ticular case, the behavior of a one-dimensional Ising sub-
system, being a part of an isolated Ising chain. Under
the constraints that the superstatistical theory imposes
on the two temperature functions, fundamental and mi-
crocanonical, we show that the non-Gibbsian distribution
that describes the Ising subsystem is not consistent with
superstatistics, despite having temperature fluctuations.
This opens up the idea of exploring the limits of the su-
perstatistical framework and finding the family of statis-
tical ensembles that describes this type of models. We
show that these ensembles are characterized by a negative
covariance between the microcanonical and fundamental
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temperatures, similar to previously reported results [10],
and hinting towards the existence of a new class of en-
sembles that are incompatible with superstatistics.

The paper is organized as follows. In Section II, we
briefly describe the theory of superstatistics and give the
definition of the fundamental and microcanonical inverse
temperatures. In Section III, we give the theoretical re-
sults obtained by this analysis, presenting the statistical
properties of the fundamental temperature, following by
the application of the necessary condition that any su-
perstatistical system must fulfill. Section IV provides a
deeper discussion of the results obtained, and finally in
Section V, we conclude this work.

II. SUPERSTATISTICS AND ITS DEFINITION
OF TEMPERATURE

Although the main objective of superstatistics [5, 6]
was originally to describe non-equilibrium systems in
steady states, soon the framework was extended [7, 8,
11] in order to apply it to finite thermodynamical sys-
tems having energy and temperature fluctuations.

In the canonical ensemble, based on a fixed tem-
perature T , and whose probability distribution of mi-
crostates is obtained by constraining the expectation
value of energy according to the maximum entropy prin-
ciple [12, 13], we have,

P (x|β) =
exp(−βH(x))

Z(β)
, (2)

where Z(β) =
∫
dx exp (−βH(x)) is known as the par-

tition function and H(x) is the Hamiltonian of the sys-
tem. On the other hand, for a non-equilibrium steady
state system the probability density of microstates is of
the form

P (x|S) = ρ(H(x)), (3)

where the function ρ(E) is known as the generalized
Boltzmann factor or ensemble function.

In superstatistics, which is a particular case of the form
in Eq. 3, a system experiences fluctuations of the inverse
temperature β, and therefore the probability distribution
of microstates is replaced by a joint probability distribu-
tion using Bayes’ Theorem [13],

P (x, β) = P (x|S)P (β|S) =

[
exp(−βH(x))

Z(β)

]
P (β|S).

(4)

Eq. 4 shows an additional component beside the clas-
sical canonical ensemble, P (β|S) known as the temper-
ature distribution, which contains all the information of
the temperature fluctuations into the system. In the par-
ticular case where

P (β|S) = δ(β − β0) (5)

we recover the canonical ensemble, as it is expected.
Likewise, in principle we can consider the Hamiltonian

of a composite system and extend the traditional formu-
lation of nonequilibrium systems by explicitly incorporat-
ing an environment y so that H(x,y) = H(x) + G(y),
with a joint probability distribution given by

P (x,y|S) = ρ(H(x) +G(y)) (6)

in a steady state S, where H(x) is the system Hamilto-
nian and G(y) is the environment Hamiltonian.

In this work we will focus on the microcanonical en-
semble, where for a system described by a Hamiltonian
H(x) the energy is conserved, i.e. H(x) = E0 for all rel-
evant states x. Because a given ensemble function ρ(E)
has a distribution of energies

P (E|S) = ρ(E)Ω(E) (7)

and we have P (E|E0) = δ(E − E0), it follows that

ρ(E) =
δ(E − E0)

Ω(E0)
. (8)

In the case of an isolated composite system, combining
Eqs. 6 and 8 yields

P (x,y|E0) =
δ(H(x) +G(y)− E0)

Ω(E0)
. (9)

For every nonequilibrium steady state described by
Eq. 3 we can obtain temperature by two different paths.
First we have an ensemble-dependent inverse tempera-
ture given by

βF (E) := − ∂

∂E
ln ρ(E) (10)

known as the fundamental inverse temperature. On the
other hand, the intrinsic inverse temperature

βΩ(E) :=
∂

∂E
ln Ω(E) (11)

is the microcanonical inverse temperature, related to the
logarithm of the density of states, i.e. the Boltzmann
entropy of the system. Being an intrinsic temperature,
that only depends on the definition of the Hamiltonian, it
is in principle measurable in superstatistical systems and
more general steady states. Both approaches to obtain
the temperature become equivalent in the thermodynam-
ical limit, however, their uncertainties, measured through
their variances, are in general different.

III. RESULTS

A. Fundamental temperature of a one-dimensional
Ising subsystem

In the following we present the calculation of the fun-
damental inverse temperature βF (Es;E) for a subchain
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of L Ising spins, which is part of an isolated Ising chain
of N spins at total energy E. First, we take Eq. 6 from
Ref. [4], which gives the number of states ωn having a
fixed subsystem energy,

ωn =
1

ΩM

(N − L+ 1)!

(M −K)!(N − L+ 1−M +K)!
(12)

where ΩM is the number of states with total energy
compatible with M , and the entire chain has fixed energy
E. Here, the integer variables K and M determine the
subsystem and system energy, respectively, through the
relations

K :=
L

2
− 1

2
+
Es
2J
, (13)

M :=
N

2
+
E

2J
. (14)

and in our case we will take ρ(Es;E) as the limit of ωn
when N → ∞. In addition, we will consider the choice
J = 1 to simplify the computation in the rest of this
work. We will now define the intensive quantities

γ :=
L

N
(15)

and

εs :=
Es
N
, ε :=

E

N
, (16)

so that we can take the thermodynamic limit (N → ∞)
while preserving the relative proportions of subsystem
and environment.

As it is shown in detail in the appendix, using the
property ψ(n) = Hn−1 − γe where ψ(n) is the digamma
function, and the asymptotic expansion of the harmonic
number Hn[15],

Hn ∼ ln(n) +
1

2n
+ γe (17)

where γe := 0.57721566. . . is known as the Euler-
Mascheroni constant, we finally get

βF =
1

2
ln

(
1 + (εs − ε)− γ
1 + (ε− εs)− γ

)
. (18)

We see that the fundamental inverse temperature is
an intensive quantity, as expected. Furthermore, when
applying the thermodynamic limit together with γ −→ 0,
we have εs � ε (because L � N) and we recover the
Gibbs distribution, with the same inverse temperature
as in Ref. [4],

β =
1

2
ln

(
1− α
α

)
, (19)

where α := 1
2 (1 +E/NJ). In the case when γ −→ 1, the

fundamental inverse temperature βF is indeterminate as
expected, this is because the sub-system has the same
size as the entire system, therefore it is an isolated sys-
tem with ensemble function proportional to a Dirac delta
function [14].

B. Connection between the fundamental and
microcanonical temperatures

As follows from Eq. 9 for a subsystem of a microcanon-
ical ensemble, it corresponds an ensemble function

ρ(x)(E;E0) =
1

Ω(E0)

∫
dyδ(E +G(y)− E0)

=
Ω(y)(E0 − E)

Ω(E0)
,

(20)

and from this, by taking the logarithmic derivative of
ρ(x)(E;E0) with respect to E we can obtain the funda-
mental inverse temperature of the subsystem as

β
(x)
F (E;E0) = − ∂

∂E
ln ρ(x)(E;E0)

= β
(y)
Ω (E0 − E)

(21)

where x refers to the microstates of the system and y to
the environment microstates. We clearly see that there
exists a relation between these two inverse temperatures,
the fundamental temperature of the subsystem and the
microcanonical temperature of the environment,

In our case, by explicitly computing βΩ from the den-
sity of states of the Ising model, we obtained

βΩ =
1

2
ln

(
γ − εs
γ + εs

)
(22)

by which we can verify the relation in Eq. 21, simply by
performing the replacements

γ −→ (1− γ), (23a)

εs −→ (ε− εs), (23b)

into Eq. 22, after which we recover Eq. 18, the funda-
mental inverse temperature.

We see that this transformation is completely general
and can be used in several ways according to the choice
of subsystem and environment, noting that, if γ is the
relative size of the subsystem, then 1− γ corresponds to
the relative size of the environment. Moreover, if Es is
the energy of the subsystem, then E − Es is the energy
of the environment when E is the fixed total energy.

Due to the fact that, for every superstatistical model
it must hold that

∂βF (E)

∂E
= −

〈
(δβ)2

〉
E,S
≤ 0, (24)

it follows from Eq. 21 that any system who is in con-
tact with an environment with CV > 0 will not follow
superstatistics [10], because we have

∂β
(x)
F

∂E
=

(
β

(y)
Ω

)2
C

(y)
V

(25)
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where we have used

CV (ε) =

(
∂T (ε)

∂ε

)−1

= −βΩ(ε)2

β′Ω(ε)
. (26)

In our case, we have

∂βF
∂εs

=
1

2

[
1

1 + (ε− εs)− γ
+

1

1 + (εs − ε)− γ

]
, (27)

which we can show is always positive, therefore the model
does not follow superstatistics. This is because, in order
for βF in Eq. 18 to be a real number, we need both de-
nominators to be of equal sign, and in fact they are both
positive, as we show below. From Eq. 13 and Eq. 14 we
can express the denominators in Eq. 27 in terms of the
original variables M and K, and taking into account the
arguments of the factorials in the denominator of ωn in
Eq. 12, we have the inequalities

M −K > 0, (28)

1− L−M +N +K > 0. (29)

From Eq. 28 we immediately obtain

M −K
N

=
1

2
(1− γ + ε− εs) > 0 (30)

while from Eq. 29 it follows the inequality

M −K < N − L+ 1 ≈ N − L, (31)

where we have approximated N+1 ≈ N because of ther-
modynamic limit. Hence, we have

M −K
N

=
1

2
(1− γ + ε− εs) < 1− γ, (32)

so that

(1− γ) + (ε− εs) < 2(1− γ) (33)

and then it follows that

ε− εs < 1− γ. (34)

Eqs. 30 and 34 prove that the right-hand side of Eq. 27
is always positive.

As we have mentioned, superstatistics for a region of an
isolated system requires the environment to have negative
heat capacity, which explains the result just obtained.

This negative heat capacity can be shown to ocurr in
both systems with long-range interactions [16, 17], as well
as in short-range interactions where system size and en-
ergies are comparable with an environment[18–21]. In
both situations the key thermodynamical feature is the
presence of a region of convex entropy [22, 23].

In the case of microcanonical finite systems this behav-
ior is clear in first-order phase transitions which are char-
acterized by a bimodal energy distribution and anoma-
lously large fluctuations. In fact, a bimodal energy distri-
bution, originating from particular features of the energy
landscape, is a necessary and sufficient condition for a
system to show negative heat capacity [24, 25], and in
the case of classical spin systems, the Potts model pro-
vides some examples of this kind of behavior [26, 27].

C. Variance and correlations of the fundamental
temperature

Given that we have just shown the Ising subsystem
does not follow superstatistics, this does not means that
it follows the traditional Gibbs distribution, instead, it
for sure follows another type of statistics, because βF in
Eq. 18 is not the constant function. In the following, we
will show that there exist a possibility to constrain the
kind of distribution, providing additional bounds in the
theory of superstatistics.

Consider the inverse temperature covariance parame-
ter U , defined as

U :=
〈
δβF δβΩ

〉
S
. (35)

In the limit of small, Gaussian fluctuations of energy,
that is, when

P (E|S) ≈ 1√
2πσE

exp
(
− (E − E∗)2

2σ2
E

)
(36)

with σ2
E :=

〈
(δE)2

〉
S

, we can approximate〈
δf δg

〉
S
≈ f ′(E∗)g′(E∗)

〈
(δE)2

〉
S

(37)

for any pair of functions f and g of the energy [28, p. 51].
Hence we will have

U ≈ β′F (E∗)β′Ω(E∗)
〈
(δE)2

〉
. (38)

Note that E∗ is the most probable energy of the system
and is given by the equality

βF (E∗) = βΩ(E∗), (39)

which leads to the intuitive result,

ε∗s = γε. (40)

Moreover, for any steady state ensemble following
Eq. 7, in the approximation of Eq. 36, the derivatives
of the microcanonical and fundamental inverse temper-
ature at E∗ are connected to the variance of the energy
by 〈

(δE)2
〉

=
1

β′F (E∗)− β′Ω(E∗)
. (41)

We can obtain the variance of both the microcanonical in-
verse temperature σ2

βΩ
and the fundamental inverse tem-

perature σ2
βF

by using Eq. 37 for f = g,

σ2
βΩ

=
〈
(δE)2

〉
|β′Ω(ε∗)|2=

1

|Nγ(ε2 − 1)|
, (42a)

σ2
βF

=
〈
(δE)2

〉
|β′F (ε∗)|2=

1

|N(γ − 1)(ε2 − 1)|
(42b)

respectively, where we have used Eq. 27 and the deriva-
tive of Eq. 22 at ε∗ = γε,

∂βΩ

∂εs
=

γ

(ε∗2s − γ2)
=

1

ε2 − 1
. (43)
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Replacing our previous results, we obtain in our case that
Eq. (41) reduces to〈

(δE)2
〉

= Nγ(γ − 1)(ε2 − 1). (44)

Finally, in this particular model, we obtain

U ≈ 1

N

[
1

(ε2 − 1)

]
< 0 (45)

for large N .

IV. DISCUSSION

Noting the fact that the variance of energy in Eq. (44)
is proportional to N , unlike the inverse temperature
derivatives, which are each proportional as 1/N , we can
confirm the asymptotic dependence

U ∝ 1

N

that is expected of the variance of an intensive quantity.
Additionally, here we note that, because σ2

E > 0 and
0 ≤ γ ≤ 1, that is, γ − 1 < 0, it follows from Eq. 44 that
is strictly necessary that ε < J must be fulfilled, which
is in fact true of the Ising chain but was not used in the
analysis.

The result given by Eq. 45 is an interesting one, be-
cause it can be clearly seen that U is independent of the
γ parameter, that is, is independent of the portion of the
entire system that we are considering as the subsystem,
i.e. it follows that

Usub = Uenv = Usys.

In Fig. 1 we can see the behavior of the variances of the
microcanonical and fundamental inverse temperatures,
given by Eqs. 42a and 42b, respectively. It is clear from
our results that there is a crossover of the curves exactly
at the value

γc :=
1

2
,

so that when γ < γc we have σ2
F < σ2

Ω, which suggests a
kind of conjugate relationship between both βF and βΩ,
where they cannot be simultaneously determined with
precision. This is linked to the exchange symmetry be-
tween the relative sizes of the subsystem and the envi-
ronment, namely γ → 1 − γ, in such a way that, when
both regions of the system are equal in size, at γ = 1/2,
the variances are equal as expected.

According to Fig. 2, for any isolated system it is, in
principle, simple to compute the microcanonical caloric
curve just by considering the definition of β′Ω, this agrees
with the analytical solution of the one-dimensional Ising
model in the canonical ensemble [29, p. 122], where the
partition function is given by

Z(β) = [2 cosh (βJ)]
N

(46)

FIG. 1: Relation between the variance of each inverse
temperature with the γ parameter and ε = 0.5. There

exists a crossover at γ = γc = 0.5, where both variances
are equal.

and the corresponding caloric curve is

E(β) := − ∂

∂β
lnZ(β) = −JN tanhβJ. (47)

By inverting E(β) and applying the relation

atanh(x) =
1

2
ln

(
1 + x

1− x

)
we readily obtain

β(E) =
1

2J
ln

(
1− ε/J
1 + ε/J

)
, (48)

which is the same result obtained by replacing γ = 1,
εs = ε and J = 1 in Eq. 22.

Fig. 2 shows the fundamental inverse temperature βF
in Eq. 18 and its uncertainty as a function of ε in the
entire range ε ∈ [−1, 1]. We obtained an inflection point
at ε = 0, where the curvature changes. We can also see a
symmetry between the fundamental inverse temperature
βF and the energy of the system ε, namely

βF (−γε;−ε) = −βF (γε; ε), (49)

which implies βF = 0 at ε = 0 for any γ.

Then, for positive values of the total energy, the fun-
damental inverse temperature become negative, as ex-
pected for a system with an upper bound of energy, with
the same uncertainty as in the positive branch. For val-
ues of ε such that |ε| → 1, the uncertainty tends to zero,
as expected.
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FIG. 2: Fundamental inverse temperature of an Ising
subsystem (blue line) as a function of the total energy
of the system at γ = 0.5. The light-red band indicates

the uncertainty of βF according to Eq. 42b.

V. CONCLUDING REMARKS

In this work we have used the finite, classical, one-
dimensional Ising model to explore the temperature fluc-
tuations in a system in contact with a commensurate en-
vironment, described by a non-Gibssian distribution, as
reported in Ref. [4]. We proved, by computing the funda-
mental inverse temperature and its derivative, that the
Ising subchain of L spins inside a microcanonical chain of
N spins cannot be described within the superstatistical
framework. According to this last result, we focus our
analysis on the behavior of the fundamental and micro-
canonical inverse temperatures, where we obtained a de-
pendence on the energy Es and the relative size γ = L/N .

We have also highlighted the importance of an envi-
ronment with negative heat capacity, expected in sys-
tems with long-range interactions, as a necessary condi-
tion for superstatistics, providing a new, simpler method
to quickly recognize if a particular setup can be described
by superstatistics.

From our results we see that there is an invariance of
the inverse temperature covariance U between the full
system, the subsystem and the environment, that is, its
value is independent of the portion of the system we take.
This suggests the possibility of describing some aspects
of the entire system using information from an arbitrary
subsystem, possibly leading to the use of another family
of statistical models, different from the ones employed
in traditional statistical mechanics and from some well-
known generalizations of statistical mechanics such as
Tsallis statistics.

By using a Gaussian approximation in the limit of
small fluctuations, we computed the uncertainty of the
fundamental and microcanonical inverse temperatures
which have a conjugate behavior given by the symme-
try relation between the sub-system and environment.

In summary, this work presents an alternative method
for the generalized thermodynamics of small systems in
contact with a commensurate environment, strongly sug-
gesting that when a system experiments temperature and
energy fluctuations a description using superstatistics is
not always possible.
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Appendix A: Derivation of the fundamental
temperature of the Ising chain

In order to show the step-by-step computation of how
the fundamental inverse temperature βF was obtained,
consider the following definitions which relate the original
parameters with the energy of the system E and the sub-
system Es, that is,

M

N
=

1

2
+

E

2N
, (A1)

K =
1

2
(γN − 1 + Es) , (A2)

and L = γN . We start with the quantity ωn of Ref. [4],
which in our case corresponds to the ensemble function
ρ(Es;E)

ρ(Es) =
Γ
(
N(1 − γ) + 2

)
Γ
(

3
2

+ 1
2

(E − Es) + N
2

(1 − γ))
)×

1

Γ
(

3
2

+ 1
2
(Es − E) + N

2
(1 − γ)

) (A3)

The next step was to take the logarithmic derivative
of ρ in Eq. (A3), with respect to the sub-system energy,

∂ ln ρ(Es)

∂Es
=

1

2

[
ψ

(
1

2

(
3 + E − Es +N(1− γ)

))
−

ψ

(
1

2

(
3− E + Es +N(1− γ)

))]
(A4)

Applying the definition of βF and simplifying, we ob-
tained the last expression in terms of the harmonic num-
ber Hn, finally we obtained a simplified expression for
βF

βF =
1

2
ln

[
N(1− γ) + (Es − E)

N(1− γ) + (E − Es)

]
, (A5)

that, when cancelling N and using εs := Es/N , ε := E/N
reduces to Eq. 18.
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