
Quantum space, ground space traversal, and how to embed

multi-prover interactive proofs into unentanglement

Sevag Gharibian∗ Dorian Rudolph∗

June 13, 2022

Abstract

A celebrated result in classical complexity theory is Savitch’s theorem, which states that non-
deterministic polynomial-space computations (NPSPACE) can be simulated by deterministic
poly-space computations (PSPACE). In this work, we initiate the study of a quantum analogue
of NPSPACE, denoted Streaming-QCMASPACE (SQCMASPACE), in which an exponentially
long classical proof is streamed to a poly-space quantum verifier. We first show that a quan-
tum analogue of Savitch’s theorem is unlikely to hold, in that SQCMASPACE = NEXP. For
completeness, we also introduce the companion class Streaming-QMASPACE (SQMASPACE)
with an exponentially long streamed quantum proof, and show SQMASPACE = QMAEXP (the
quantum analogue of NEXP). Our primary focus, however, is on the study of exponentially
long streaming classical proofs, where we next show the following two main results.

The first result shows that, in strong contrast to the classical setting, the solution space
of a quantum constraint satisfaction problem (i.e. a local Hamiltonian) is always connected
when exponentially long proofs are permitted. For this, we show how to simulate any Lipschitz
continuous path on the unit hypersphere via a sequence of local unitary gates, at the expense of
blowing up the circuit size. This shows that quantum error-correcting codes can be unable to
detect one codeword erroneously evolving to another if the evolution happens sufficiently slowly,
and additionally answers an open question of [Gharibian, Sikora, ICALP 2015] regarding the
Ground State Connectivity problem.

Our second main result is that any SQCMASPACE computation can be embedded into “un-
entanglement”, i.e. into a quantum constraint satisfaction problem with unentangled provers.
Formally, we show how to embed SQCMASPACE into the Sparse Separable Hamiltonian prob-
lem of [Chailloux, Sattath, CCC 2012] (known to be QMA(2)-complete for 1/ poly promise gap),
at the expense of scaling the promise gap with the streamed proof size. As a corollary, we obtain
the first systematic construction for obtaining QMA(2)-type upper bounds on arbitrary multi-
prover interactive proof systems, where the QMA(2) promise gap scales exponentially with the
number of bits of communication in the interactive proof. At the heart of our construction is a
new technique for exploiting unentanglement to simulate quadratic Boolean functions, which in
some sense allows history states to encode the future.

∗Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS), Paderborn University,
Germany. Email: {sevag.gharibian, dorian.rudolph}@upb.de.

1

ar
X

iv
:2

20
6.

05
24

3v
1

 [
qu

an
t-

ph
]

 1
0

Ju
n

20
22

mailto:sevag.gharibian@upb.de
mailto:dorian.rudolph@upb.de

1 Introduction

Computational complexity theory studies the resources required to solve a given computational
problem. The resources of time and space, in particular, are very well-studied, revealing certain
interesting discrepancies. For example, while the question of whether non-deterministic poly-time
(NP) equals deterministic poly-time (P) remains a central open problem in the field, in the context
of space, the answer is well-known: In 1970, Savitch [Sav70] gave his celebrated result that non-
deterministic poly-space computations (NPSPACE) could be simulated by deterministic poly-space
computations (PSPACE), yielding PSPACE = NPSPACE.

Motivated by the prospect of a quantum analogue of Savitch’s theorem, in this work, we initiate
the study of a “non-deterministic” quantum analogue of PSPACE, which we call SQCMASPACE.
To define the latter, recall that NPSPACE may be viewed as a PSPACE machine which receives
an exponential length proof y ∈ {0, 1}2

n

. Of course, a PSPACE verifier cannot even write down y
given its limited memory, so a natural way to formalize this idea is to allow y to be streamed, bit
by bit. This is the approach we take1 in defining SQCMASPACE.

Definition 1.1 (SQCMASPACE (informal; see Definition 2.2)). A promise problemA = (Ayes, Ano)
is in SQCMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if there exist thresholds
α(n), β(n) satisfying α(n) − β(n) ≥ 2−r(n), and a polynomial-space uniform family of quantum
circuits {Qn} such that, for any input x ∈ Σn:

• If x ∈ Ayes, there exists a streaming proof y ∈ {0, 1}2
p(n)

such that Qn accepts (x, y) with
probability at least α.

• If x ∈ Ano, then for all streaming proofs y ∈ {0, 1}2
p(n)

, Qn accepts (x, y) with probability at
most β.

To avoid cluttering the introduction, we leave our formal definition of streaming proof to Section 2
(Definition 2.1 therein), and instead make do with the following intuitive definition: To “stream”
the next bit yi to the verifier, we imagine the prover applies either “proof gate” I (if yi = 0) or X
(if yi = 1), for I and X the single-qubit identity and Pauli X (i.e. NOT) gates, respectively, to a
designated qubit k in the verifier’s memory, which is initialized to |0〉k. The verifier then copies2 this
bit into its main memory via Controlled-NOT (CNOT), and the prover subsequently uncomputes
bit yi by re-applying I or X to k, respectively. In other words, there is no separate proof—we view
the entire computation as a sequence of gates on the verifier’s memory, some gates of which (the
“proof” gates) are a priori unknown. For clarity, this is similar to how communication is modelled
in quantum interactive proofs, where prover and verifier take turns acting on a shared “message
register” (see e.g. Kitaev and Watrous [KW00]).

In Section 1.3, we survey previous works studying quantum notions of PSPACE. Most relevant to
our discussion at this point, however, is the work of Fefferman and Remscrim [FR21], which defines
a quantum variant of NPSPACE denoted QMASPACE, and which differs from SQCMASPACE
in three respects: The first two differences are that QMASPACE has a poly-length proof which is
quantum, whereas SQCMASPACE has an exponential length streamed proof, which is classical. The
third difference is that whereas QMASPACE = PSPACE [FR21], here we show SQCMASPACE =

1One can in principle consider alternative definitions of SQCMASPACE. For example, Definition 1.1 allows only
one streaming pass of the proof, but one could consider multiple passes. An even stronger access model might allow
the ability to query arbitrary single bits of the proof. For our results here, however, a single-pass streaming model
suffices, e.g. this definition already captures NEXP, as we show in Theorem 1.5.

2The verifier can also simulate the choice not to copy the bit into memory, if desired. See the discussion after
Definition 2.1.

2

NEXP (Theorem 1.5, stated shortly). To the best of our knowledge, the current work is the first to
formalize and study a quantum analogue of NPSPACE which allows an exponentially long classical
proof.

Broader theme. Beyond initiating the study of SQCMASPACE itself, the broader theme of
this work asks: “What can one say about exponentially long proofs verified by poly-space quantum
verifiers?” For example, can allowing an exp-length proof “trivialize” a problem which is provably
hard for poly-length proofs? Can exponential length proofs be encoded into poly-size history state3

constructions? Here, we give positive answers to both of these questions, for which we now set up
the background.

Question 1: Exp- versus poly-length proofs, and the solution space of constraint satis-
faction problems (CSPs). In 2006, Gopalan, Kolaitis, Maneva and Papadimitriou [GKMP06]
initiated the study of reconfiguration problems for SAT, which ask: Given two solutions x and y to
a SAT formula φ, is there a path in the hypercube from x to y on which all intermediate vertices
z are also solutions? Alternatively, in graph theoretic terms, is the solution space of φ connected?
Reference [GKMP06] showed that this decision problem is PSPACE-complete, which in particular
implies the problem is not trivial — the solution space can be either connected or disconnected,
and deciding between the two is hard.

In the quantum setting, one can ask analogous questions about the “solution space” of quantum
CSPs, and this has implications for the study of quantum error-correcting codes. To begin, the
quantum generalization of a MAX-k-SAT instance φ is a k-local Hamiltonian H. H is a 2n × 2n

Hermitian operator acting on n qubits, but specified succinctly via a sum of “local clauses” Hi

acting on k qubits (analogous to how φ is specified locally via an AND of k-local disjunctions),
i.e. H =

∑
iHi. The smallest eigenvalue of H, λmin(H), is the ground state energy of H (for φ,

this encodes the maximum number of simultaneously satisfiable clauses), and the corresponding
space of eigenvectors the ground space (for φ, this encodes the space of optimal assignments). In
2002, Kitaev [KSV02] gave his now celebrated “quantum Cook-Levin theorem”, which showed that
estimating the ground state energy of H, known as the k-local Hamiltonian problem (k-LH), is
complete4 for Quantum-Merlin Arthur (QMA).

With the definition of local Hamiltonians (i.e. quantum CSPs) in hand, we can now state the
quantum analogue of reconfiguration, defined as follows.

Definition 1.2 (Ground State Connectivity (GSCON) [GS18] (informal); see Definition 2.15).
Given a k-local Hamiltonian H with ground states |ψ〉 and |φ〉 (represented succinctly via quantum
circuits), and parameters m, l, does there exist a sequence of l-local unitaries U1, . . . , Um such that:

1. (|ψ〉 mapped to |φ〉) Um · · ·U1|φ〉 ≈ |ψ〉, and

2. (intermediate states have low energy) ∀i ∈ [m], Ui · · ·U1|ψ〉 has low energy relative to H?

In words, GSCON asks whether there exists a sequence of m l-local unitaries that map |ψ〉 to
|φ〉 such that intermediate states have low energy (i.e. are also approximate “solutions”) with
respect to H. Here, the use of local unitaries Ui is crucial, and generalizes the notion of following
a path on the hypercube for SAT (which would involve flipping one bit of an assignment per step,
or in quantum terms, applying a local X gate). Thus, GSCON asks: Is the ground space of H
“connected”?

3A history state [KSV02] is the quantum analogue of a tableau in the Cook-Levin theorem [Coo71; Lev73]).
4QMA is a quantum analogue of Merlin-Arthur (MA), except with a quantum proof and quantum verifier.

3

Recall now that in the classical setting, the solution space of a SAT formula can be either
connected or disconnected [GKMP06]. In this work, we ask the analogous fundamental question
about the structure of ground spaces of local Hamiltonians:

Question 1.3. Can ground spaces of local Hamiltonians be either “connected” or “disconnected”?

It is known that if only poly-length sequences of local gates are allowed, the answer to this question
is YES — namely, GSCON with a polynomial sequence of 2-local unitaries (m = poly(n), l = 2) and
inverse polynomial spectral gap is5 QCMA-complete [GS18]. However, even in the classical case, in
the worst case a connecting path in the hypercube might be exponentially long! (Indeed, this is what
makes the PSPACE-completeness result of [GKMP06] possible.) Thus, to answer Question 1.3, we
must allow sequences of exponentially many local gates, i.e. GSCON with m = exp(n), denoted
GSCONexp.

In addition to this fundamental structural motivation, there are two additional reasons why
Question 1.3 is interesting:

• First, from a complexity theory perspective, an instance of GSCONexp is straightforwardly
in SQCMASPACE—roughly, in step i, the prover streams gate Ui to the verifier, who ap-
plies it to map its current state from Ui−1 · · ·U1|ψ〉 to Ui · · ·U1|ψ〉. Once the proof is fully
received, the verifier randomly chooses to check one of the two conditions in the GSCON
definition, and accepts if the condition is met. Thus, if a “quantum Savitch’s” theorem were
to hold, i.e. SQCMASPACE = PSPACE, then we would immediately obtain GSCONexp ∈
SQCMASPACE = PSPACE, resolving an open question of [GS18].

• Second, and perhaps most interesting, is the connection to quantum error-correcting codes.
For example, in a stabilizer code [Got97], the set of valid codewords is the ground space of a
local Hamiltonian H. In this case, one desires the ground space of H to be “disconnected”
in the following sense. Let |ψ〉 be a codeword of H. Then, any sufficiently short sequence of
local gates (think of these as local errors “corrupting” |ψ〉) should ideally take one out of the
ground space, so that measuring the Hamiltonian catches the corrupting process with non-
negligible probability. Indeed, this is precisely what quantum codes typically achieve. What
is much less obvious, however, is what happens with exponential length corrupting processes
— by allowing an exponential-length sequences of local gates, can we stealthily map from
|ψ〉 to some other codeword |φ〉 while remaining exponentially close to the ground space? If
so, then a single measurement of the Hamiltonian during this corrupting process is highly
unlikely to detect that we are no longer in state |ψ〉!

Question 2: Exp-length proofs, poly-size history states, and QMA(2). Our next question
asks: Can exponential length proofs be encoded into poly-size history state/circuit-to-Hamiltonian
constructions? Here, a circuit-to-Hamiltonian construction is the quantum analogue of the Cook-
Levin construction [Coo71; Lev73], i.e. a map from quantum circuits V to local Hamiltonians H,
such that the ground space of H encodes the action of V . The basic premise is captured by Kitaev’s
5-local construction, which maps a QMA verification circuit V = Vm · · ·V1 (for 1- and 2-qubit gates
Vi) to a local Hamiltonian H = Hin + Hprop + Hout + Hstab. Intuitively, each of Hin, Hprop, and
Hout plays a role analogous to its classical cousin in the Cook-Levin construction— Hin ensures V ’s
computation is initialized correctly, Hprop that in time step t the gate Vt is applied, and Hout that

5Quantum-Classical Merlin-Arthur (QCMA) is a quantum analogue of MA, except with a classical proof and
quantum verifier.

4

rejecting computations are penalized. Then, the “ideal” quantum assignment perfectly satisfying
Hin and Hprop is the history state

|ψhist〉 =
1√
m+ 1

m∑
t=0

Vt · · ·V1|ψproof〉A|0 · · · 0〉B|t〉C (1)

(the quantum analogue of a “tableau”), where in the context of QMA, register A starts with the
quantum proof |ψproof〉, B is the ancilla space, and C is the clock keeping track of time.

Returning to the question at hand, the naive approach to encoding an exponentially long proof
(given explicitly) into history state |ψhist〉 would result in an exponential size proof register A, which
is too large for our purposes. However, in our definition of SQCMASPACE, the proof is not given
explicitly, but streamed via application of local gates. While this may seem a priori more difficult
to work with, it has a distinct benefit — since all gates Vt encoding streamed proof bits (i.e. “proof
gates”) are “part of” the verification circuit itself, we can directly encode them into the history
state’s superposition/sum over time steps (requiring only poly-space), thus obviating the need for
a separate proof register, A! Of course, now we are out of the frying pan into the fire, for there
remains a serious problem — the propagation term Hprop =

∑m
t=1Ht, which explicitly encodes each

gate Vt into its corresponding local propagation term, Ht, needs to be fully specified in advance.
However, by definition of streaming proof, the gates Vt which are proof gates are not known in
advance. Can correct propagation still somehow be enforced? To put it more “dramatically”, can
a history state be used to encode the future?

In and of itself, this seems paradoxical. Yet, there is a setting in which special cases of classical
proofs can be “compressed” into an exponentially smaller number of qubits—QMA(2) (Defini-
tion 2.6). Informally, QMA(2) is defined as QMA, except where the verifier is promised to get a
proof in tensor product across some prespecified partition L versus R of the qubits, i.e. an “unen-
tangled” proof of form |ψ1〉L⊗ |ψ2〉R. In this setting, Blier and Tapp [BT12] first showed that the
NP-complete problem 3-SAT could be verified using just log-size “unentangled” proofs, log-space
quantum verification, and 1/ poly promise gap, i.e. in PQMAlog(2). Next, Pereszlényi [Per12]
showed a similar result for verifying the NEXP-complete language SUCCINCT-3-COLORING
via poly-size unentangled proofs and 1/ exp promise gap, i.e. in PreciseQMA(2) (thus obtaining
PreciseQMA(2) = NEXP). (Further related works in Section 1.3.) However, these constructions
are expressly tailored to the problems being reduced from, and a priori have nothing to do with
streaming. Moreover, to-date, no systematic constructions were known for embedding “long” clas-
sical proofs into “small” unentangled quantum systems. We thus ask:

Question 1.4. Can unentanglement be exploited to compress streaming proofs into exponentially
smaller6 history state constructions?

1.1 Our Results

We divide our results into three parts: SQCMASPACE, ground space traversal, and embedding
streaming proofs into unentanglement.

1. The complexity of SQCMASPACE. We first show that a quantum analogue of Savitch’s
theorem for SQCMASPACE is highly unlikely to hold, even in the setting of constant promise gap.

6For clarity, “smaller” refers to the number of qubits in the history state. Thus, if the proof has length f(n),
then the history state should be a O(log(f(n)))-qubit state.

5

Figure 1: (Color online) Simplified illustration of the Universal quantum path following lemma
with f in black (smooth), |ψ〉 = f(0), |φ〉 = f(1), and the path of intermediate states |ψt〉 in blue
(piece-wise linear). In the actual construction, each linear segment is itself further subdivided and
likewise approximately simulated.

Theorem 1.5. SQCMASPACE with 2poly(n) proof bits, poly(n) ancilla qubits, completeness 1, and
soundness 1/2, equals NEXP, i.e. SQCMASPACE(poly,poly, 1) = NEXP.

For completeness, we also define the analogous class SQMASPACE (Definition 2.7), which takes an
exponential length streamed quantum proof, and show its equality to QMAEXP (quantum analogue
of NEXP):

Theorem 1.6. SQMASPACE with 2poly(n) proof bits, poly(n) ancilla qubits, completeness 2/3,
and soundness 1/3, equals QMAEXP, i.e. SQMASPACE(poly,poly, 1) = QMAEXP. With poly(n)
proof bits, O(log(n)), ancilla bits, it equals QMA, i.e. SQMASPACE(log, log, 0) = QMA.

2. Ground space traversal. Our second result reveals that Question 1.3 has an arguably
surprising resolution — in strong contrast to the classical case, in which the solution space for a
SAT instance can be connected or disconnected, in the quantum setting, ground spaces of local
Hamiltonians are always connected.

At the heart of this result is a new technical lemma showing how to simulate any Lipschitz
continuous path on the hypersphere by an exponentially long sequence of local quantum gates (i.e.
gates on a typical gate-based quantum computer). For this, define a path between an initial state |ψ〉
to final state |φ〉 as any Lipschitz continuous function on the unit hypersphere, i.e. f : [0, 1] 7→ Sd−1,
with f(0) = |ψ〉 and f(1) = |φ〉 (illustration in Figure 1; formal definitions in Section 4). We show7:

Lemma 1.7 (Universal quantum path following lemma). Set d := 2n, and let f : [0, 1] → Sd−1

be a K-Lipschitz continuous path. For every ε > 0, there exists a sequence of M ∈ O((n
2d2

ε)2n)
2-local unitaries U = UM · · ·U1 which “ε-approximately simulates” the path f as follows. Define
|ψt〉 = Ut · · ·U1|ψ0〉 for t ∈ {0, . . . ,M} and |ψ0〉 := f(0). Then, for all t,

‖|ψt〉 − f(t/M)‖2 ≤ ε. (2)

With Lemma 1.7 in hand, we resolve Question 1.3 by showing that in the quantum setting,
ground spaces of local Hamiltonians are always connected in the following sense.

Theorem 1.8. Let H ∈ Herm
(
Cd
)
, d = 2n with 0 4 H 4 I, |ψ〉, |φ〉 ∈ Cd with 〈ψ|H|ψ〉 ≤ η and

〈φ|H|φ〉 ≤ η. For any ∆ ≥ 2− poly(n), there exists a sequence of 2-local unitary gates U = Um · · ·U1

with m ≤ 2poly(n) such that

7For simplicity in stating the bound on M in Lemma 1.7, we assume K ∈ Θ(1), as this suffices for our ap-

plications. However, Lemma 1.7 also holds for non-constant K with M ∈ O(K(n2d2

ε
)2n) if 0 < K ≤ 1 and

M ∈ O(2O(n)(K2n2d2

ε
)2n) if K > 1.

6

(1) ‖U |ψ〉 − |φ〉‖2 ≤ ∆, and

(2) for all i ∈ [m], 〈ψi|H|ψi〉 ≤ η + ∆, where |ψi〉 := Ui · · ·U1|ψ〉.

In words, even if we wish to remain exponentially close to the ground space of H throughout the
local evolution from |ψ〉 to |φ〉, this can be achieved, at the expense of exponentially blowing up
the length of the evolution. Returning to our motivating example of error correcting codes, we
conclude: For any H, if the ground space of H encodes a quantum error-correcting code, and |ψ〉
and |φ〉 are any pair of code words, then Theorem 1.8 says one can stealthily corrupt |ψ〉 into |φ〉
via a sequence of 2-qubit gates, so that at any point in the evolution, we are exponentially close
to the code space, and thus the corruption is unlikely to be caught via measurement of H. The
trade-off is that, again, this evolution path “hugging” the code space is exponentially long.

As an immediate corollary, we are now able to answer an open question of [GS18].

Corollary 1.9 (Informal; formally Corollary 5.1). GSCON with exponentially many gates and
inverse polynomial promise gap is in P.

This follows since by Theorem 1.8, all GSCON instances in the parameter regime above are YES in-
stances. Thus, allowing an exponentially long proof trivializes GSCON, which is otherwise QCMA-
complete in the setting of poly-length proofs [GS18].

As a sanity check, we also strengthen a result of [GS18] by showing that even an unbounded
number of 1-local gates (as opposed to 2-local gates in Corollary 5.1) with constant promise gap
do not suffice to trivialize GSCON.

Theorem 1.10 (Informal; formally Theorem 5.2). GSCON is PSPACE-complete for 1-local gates,
constant promise gap, and an unbounded number of gates.

The previous PSPACE-hardness result of [GS18] required inverse exponential promise gap and an
exponential bound on the number of gates.

3. Embedding streaming proofs into unentanglement. We next resolve Question 1.4 in
the positive, showing that streaming proofs can be systematically compressed into exponentially
smaller history states.

The formalization of this goes via the Sparse Separable Hamiltonian (SSH) problem (Defini-
tion 2.5), which informally is identical to the k-local Hamiltonian problem, except for two key
differences: (1) H is sparse, rather than local, and (2) proofs are restricted to be in tensor prod-
uct form. A bit more formally: Given a sparse Hamiltonian H (Definition 2.4) on n qubits and
bipartition L versus R of [n], does there exist |ψ1〉L ⊗ |ψ2〉R such that

〈ψ1|L ⊗ 〈ψ2|RH|ψ1〉L ⊗ |ψ2〉R (3)

is “small”, or does it hold that for all |ψ1〉L⊗ |ψ2〉R, 〈ψ1|L⊗〈ψ2|RH|ψ1〉L⊗ |ψ2〉R is “large”? Note
that, in general, optimizations over tensor product states |ψ1〉L ⊗ |ψ2〉R ∈ Cd2 are harder than
optimizations over all |ψ〉 ∈ Cd2 , i.e. without the tensor product requirement. For example, if H in
Equation (3) had polynomial dimension, than maximizing Equation (3) is NP-hard [Gur03], whereas
maximizing 〈ψ|H|ψ〉 over all |ψ〉 ∈ Cd2 is an eigenvalue problem, and thus efficiently solvable in
the dimension of H. In other words, the optimal solution to a tensor product optimization is
not necessarily an eigenvector of H, and this makes the design and analysis of unentangled proof

7

systems challenging8.
We now state our main technical result. A key parameter is the promise gap of the Sparse

Separable Hamiltonian problem. Chailloux and Sattath [CS12] show SSH is QMA(2)-complete
(Definition 2.6) for inverse polynomial promise gap. We show:

Lemma 1.11 ((Informal) Embedding lemma; formally Lemma 6.1). Let p, q, r,m, α, β : R 7→ R,
where p, q, r are poly-bounded. Let Q be a quantum circuit consisting of m 2-qubit gates, taking in
(1) input x ∈ Σn, (2) a classical streaming proof y ∈ {0, 1}2

p

, and (3) q ancilla qubits initialized to
all zeroes. We are promised that either there exists a streaming proof y causing Q to accept with
probability at least α, or all streaming proofs are accepted with probability at most β, for α−β ≥ 2−r.
Then, there exists a poly-time many-one reduction from (Q, x) to a Separable Sparse Hamiltonian
H instance with norm ‖H‖∞ ∈ poly(m, 2r), and with thresholds α′, β′, such that:

1. H acts on O(q + logm) qubits.

2. The promise gap scales as |α′ − β′| ∈ Ω
(

1
m2r

)
.

In words, any quantum verification Q with q qubits as workspace and taking in a classical proof
of length 2p can be compressed to a Separable Sparse Hamiltonian instance on O(q + p) qubits
and with promise gap scaling9 as 1/2p. Moreover, the mapping (1) preserves the space required up
to poly overhead, and (2) embeds the proof of length 2p bits into ∼ p qubits. To the best of our
knowledge, this is the first such systematic method for compressing arbitrary classical proofs via
unentanglement.

Applications of the Embedding Lemma. Lemma 6.1 immediately applies to arbitrary SQCMASPACE
verifiers. Here, however, we focus on the application to MIP:

Corollary 1.12 ((Informal) Reducing MIP to unentanglement; formally, Corollary 7.2). There
exists a poly-time many-one reduction from any classical multi-prover interactive protocol (MIP,
Definition 2.10) with p provers, r rounds, u space, and t bits of communication per round, to an
instance of Separable Sparse Hamiltonian on Õ(u) qubits with promise gap scaling dominated by
scaling 2−tr. (The tilde in Õ hides polylogarithmic factors.)

For context, recall that MIP with two provers, one round and polynomially many bits of com-
munication equals NEXP [BFL90; FL92] (formal restatement in Theorem 2.11). As for NP, it is
contained in MIP with 2 provers, 1 round, and logarithmic bits of communication (see Section 2.2).
In words, Corollary 1.12 says that any MIP protocol can be reduced to an SSH instance, with the
key parameter being the number of bits t of communication; this is what dictates the promise gap
of the SSH instance H we obtain. Note we also preserve the space used by the MIP protocol (which
is important for Corollary 7.3 for the case of NP, where the MIP uses log-space).

With Lemma 6.1 in hand, we next show various QMA(2)-type containments. For this, we
first show that the specific Hamiltonian construction H output by the Embedding Lemma can be
decided in QMA(2) using appropriate parameters:

8For example, Marriott-Watrous [MW05] strong error reduction for QMA (i.e. without increasing the proof
size) fails for QMA(2), since it crucially leverages the fact that for QMA, the optimal assignment is an eigenvec-
tor. The attainment of the “standard” notion of weak error reduction (i.e. via parallel repetition) by Harrow and
Montanaro [HM13] was considered a breakthrough.

9This statement assumes the verification time m, proof length 2p, and promise gap 2r are polynomially related,
which is a reasonable setting. Of course, in general, these relationships need not hold. What we can assume without
loss of generality is that m ≥ 2p to allow Q to read the entire proof. This means the two potentially dominating
terms are m and 2r, which is why these appear in the norm and promise gap of H in Lemma 6.1.

8

Lemma 1.13 (Informal; see Lemma 7.5). Let H be the Sparse Separable Hamiltonian instance
produced by the Embedding Lemma, acting on n qubits and with promise gap g. Then, H can be
decided by a QMA(2) verifier acting on O(n) qubits and with promise gap O(g).

As an aside, at present we are curiously unable to show Lemma 7.5 without exploiting the specific
structure10 of H from the Embedding Lemma.

Finally, by combining Lemma 6.1 and Lemma 7.5, we obtain the following two main corollaries:

Corollary 1.14 (Informal; see Corollary 7.7). SQCMASPACE with proof length 2p, q ancilla
qubits, and promise gap 1/2r is contained in QMA(2) with q + log p proof and ancilla qubits, and
promise gap 1/2p+r.

Above, note that p and r are polynomially bounded, i.e. logarithmic p and r are allowed.

Corollary 1.15 (Informal; see Corollary 7.8). MIP with t bits of communication per round, space u,
v random bits, p provers, r rounds, and completeness/soundness c and s, respectively, is contained
in QMA(2) with u+v+log(tr log(pt)) proof and ancilla qubits, and promise gap 2−tr log(pt)+log(c−s).

Thus, we obtain the first systematic QMA(2)-type bounds on arbitrary multi-prover interactive
protocols. Above, the QMA(2) verifier requires the same amount of ancilla space as the MIP, and
the QMA(2) promise gap depends exponentially on the total amount of communication but only
polynomially on the MIP promise gap. As a bonus, we also immediately rederive (Corollary 7.6)
in a unified fashion the results NP = PQMAlog(2) [BT12] and NEXP = PreciseQMA(2) [Per12].

Finally, as a last application of the Embedding Lemma, we return to our study of GSCON by
showing NEXP-completeness for a variant of GSCON:

Theorem 1.16 (Informal; formally Theorem B.3). GSCON is NEXP-complete with a sparse
Hamiltonian, an inverse exponential promise gap, and an exponential number of 2-local gates which
may not act across a given L versus R cut of the qubits (i.e. all intermediate states are product
across the L versus R cut).

1.2 Techniques

The proof of SQCMASPACE = NEXP (Theorem 1.5) follows easily from the PCP characterization
of NEXP [BFL90]; see Section 3.1. As for SQMASPACE = QMAEXP (Theorem 1.6), the obstacle
is to show that (weak) error reduction holds for SQMASPACE. This is because with only poly-size
ancilla space, the verifier seemingly can only repeat the verification a polynomial number of times,
which is not enough to amplify an exponentially small promise gap. We overcome this by forcing
the streamed proof itself to repeatedly replenish the verifier’s ancilla, and run a pair of counters to
both ensure the prover sends correctly initialized ancilla qubits all set to zero, along with sufficiently
many “good” proofs accepted with high probability.

The main technical contributions of this work, however, are the Universal quantum path fol-
lowing lemma (Lemma 1.7) and the Embedding lemma (Lemma 6.1), which we now discuss.

1. Universal Quantum Path Following Lemma. Recall Lemma 1.7 shows how to simulate
any Lipschitz continuous path on the unit hypersphere via an exponentially long sequence of local
gates. To show this, we first “discretize” the given path f into a dense enough sequence of points

10In other words, given an arbitrary sparse Hamiltonian H of potentially exponential norm, it is not clear to us
how one would verify it in QMA(2) with (say) 1/ exp promise gap. (For example, Quantum Phase Estimation (QPE)
would seemingly fail — see Section 7.2 for a brief discussion.)

9

|ψ1〉, . . . , |ψN 〉 so that each consecutive pair of points |ψj〉 and |ψj+1〉 is “close”. Thus, if global (i.e.
n-local) unitaries were allowed, a “small rotation” (i.e. close to identity) would suffice to exactly
map |ψj〉 to |ψj+1〉. However, here we are restricted to 2-local gates, and the typical approach [MI00]
to simulate global rotations using 2-local gates would yield intermediate states possibly very far
from |ψj〉 and |ψj+1〉 (and more generally, from the desired path f). Hence, we devise a general
decomposition of global unitaries close to identity into 2-local gates close to identity. Specifically,
we give an approximate decomposition eitH ≈

∏
j e

itjHj , where
∑

j |tj | is bounded by 2poly(n)|t|1/2n.
Basically, we can decompose a unitary with a short pulse time into many local unitaries with short
pulse times, which allows us to map a quantum state along each segment |ψj〉 to |ψj+1〉.

For that, we first write H =
∑

j αjPj in the Pauli basis (i.e. each Pj is a tensor product
of the Pauli matrices and identity) and apply the Suzuki decomposition [Suz76] (Lemma 4.9)
eiH =

∏
j e

iαjPj + O(t2), where
∑

j |αj | ≤ t. Clinton, Bausch, and Cubitt [CBC21] give an exact

2-local decomposition for the eiαjPj terms with bounded pulse times. We provide an alternative
construction with a simpler analysis, and which requires a polynomial number of gates to implement
a Hamiltonian interaction (compared to exponential in [CBC21]), at the cost of a slightly worse
pulse time bound compared to [CBC21].

In terms of application, recall GSCON asks whether there exists a sequence of local unitaries
mapping ground state |ψ〉 of H to orthogonal ground state |φ〉, while remaining in low energy space.
Since we can apply Lemma 1.7 to arbitrary Lipschitz continuous paths, we can apply it to path

f(t) = cos(tπ/2)|ψ〉+ sin(tπ/2)|φ〉, (4)

where note that for all t, f(t) is also a ground state11 of H. Thus, Lemma 1.7 allows us to “follow”
this path via 2-qubit gates, yielding a suitable gate sequence Um · · ·U1 for GSCON. In general, this
sequence requires an exponential number of gates, and in return achieves exponential precision.

2. The Embedding Lemma. Lemma 6.1 shows how to compress any quantum verification Q
with q qubits as workspace and taking in a streaming classical proof of length 2p into a Separable
Sparse Hamiltonian instance on O(q + p) qubits and promise gap scaling as 1/2p. So, let Q =
Vm · · ·V1 be a quantum verifier taking in streaming proof y. Recall we formalized “streaming” by
partitioning the gates {Vi} into two sets: “Proof gates” indexed by P ⊆ [m], and “computation
gates” indexed by [m] \ P . Our goal is to design a Hamiltonian H so that, when there exists proof
y accepted by Q, then an appropriately defined history state |ψhist〉 has low energy against H. The
problem is that we do not know the proof gates {Vi} with i ∈ P while computing the reduction—the
verifier Q only learns this information in the future. To overcome this, at a very high level, we
instead demand an appropriately defined unentangled history state of form |ψhist〉L ⊗ |ψhist〉R. We
then exploit this “unentanglement” to logically simulate a quadratic Boolean function across the
two copies of |ψhist〉, in turn allowing the history state to decide “on-the-fly” whether it wishes to
stream proof bit 0 or 1 in step t ∈ P .

Formally, we define our Hamiltonian as (details in Section 6) H̃ = ∆inH̃in + ∆propH̃prop +

∆symH̃sym + H̃out for some weights ∆in,∆prop,∆sym ≥ 0. Briefly, H̃in and H̃out ensure that in any
candidate proof |ψ〉L ⊗ |φ〉R, both |ψ〉L and |φ〉R are initialized correctly at time t = 0 and accept
at time t = m. H̃sym enforces that a low energy state is symmetric under exchange with respect to

11Note Theorem 1.8 also applies when |ψ〉 and |φ〉 are not ground states, but just low energy states.

10

the cut L versus R. The key ingredient, however, is hiding in H̃prop, and is the FLUX gadget12,

(HI
t)L ⊗ (H iX

t)R + (H iX
t)L ⊗ (HI

t)R, (5)

used to encode future streamed proof gates (i.e. for time steps t ∈ P).
This gadget works as follows. A propagation term HI

t or H iX
t enforces that at time t ∈ P , the

local proof |ψ〉 applies proof gate I (to simulate streaming bit 0) or proof gate iX (to simulate
streaming bit 1), respectively. Since we do not know in advance which of these two gates will be
applied, we run a thought experiment — imagine we had two parallel universes, where universe L
streams bit 0, or universe R streams bit 1. This can be simulated via term (HI

t)L ⊗ (H iX
t)R —

namely, since the tensor product is multiplicative, this constraint is satisfied, i.e.(
(HI

t)L ⊗ (H iX
t)R

)
|ψ〉L ⊗ |φ〉R = HI

t |ψ〉L ⊗H iX
t |φ〉R = 0, (6)

only if either universe L (i.e. |ψ〉L) applies gate I or universe R (i.e. |ψ〉R) applies gate iX, or both.
The keyword here is “or”, in that the tensor product allows us to simulate the Boolean OR function
between universes. Of course, we have not yet achieved anything, since neither universe has any
choice in which bit it streams! This brings us back to the FLUX gadget — observe that the “+” in
Equation (5) acts as a Boolean “AND”. In other words, to satisfy the gadget, universe L can apply
I (this annihilates the first term, (HI

t)L ⊗ (H iX
t)R) and R can apply I (this annihilates the second

term, (H iX
t)L⊗ (HI

t)R). Similarly, both can instead choose to apply iX to satisfy the gadget. The
conclusion is that both universes can freely decide which proof bit to stream at time t ∈ P , so
long as they stream the same bit! Indeed, this works because we have exploited unentanglement
to simulate the quadratic Boolean function EQUALS: (x ∨ y) ∧ (x ∨ y)↔ x = y for x, y ∈ {0, 1}.

The next challenge is to prove soundness of the construction, where recall tensor product op-
timizations are difficult to analyze since optimal solutions do not correspond to eigenvectors (and
thus, standard techniques from the study of k-LH cannot be directly employed). Indeed, this step
is rather involved (a step-by-step derivation of the construction is in Section 6.1). For example,
the careful reader might wonder why we chose iX to stream bit 1 rather than simply X — it turns
out use of X breaks soundness of the FLUX gadget. Even when we use iX, without the symmetry
constraint H̃sym, soundness again breaks via simultaneous cheating across multiple FLUX gadgets.

To overcome these obstacles, very briefly, our analysis first exploits the large weight ∆sym to
enforce any low energy state to look like |ψ〉L ⊗ |ψ〉R for some |ψ〉. To next force |ψ〉 to look like
an actual history state, two ingredients smoothly fit together. First, since we use iX instead of X
in the FLUX gadget, it turns out that for any choice of assignment |ψ1〉L on L, a low energy state
|ψ2〉R on system R must implement at time t ∈ P the operator

U(at, bt) =
1√

a2t + b2t
(atiX + btI). (7)

for some at, bt ≥ 0. Now, due to the i in iX, U(at, bt) turns out to be unitary. Thus, conditioned on
any fixed assignment on L, we can “invert” U(at, bt) by applying Kitaev’s change-of-basis operator
[KSV02], thus diagonalizing what we call the “residual propagation term on R”,

〈ψ1|HI
t |ψ1〉(H iX

t)R + 〈ψ1|H iX
t |ψ1〉(HI

t)R. (8)

The second ingredient is to show that by setting ∆prop large enough, we can extract a “proper”

12This gadget will allow the history state to “encode the future”; the name is thus a reference to the “flux
capacitor”, which makes time travel possible in the film Back to the Future.

11

propagation Hamiltonian hiding under this “residual operator on R” over all time steps. This
allows us to force any low energy state of H̃ to indeed be of form |ψhist〉L ⊗ |ψhist〉R — which is
almost what we want.

The final problem is that for any t ∈ P , |ψhist〉 is currently forced to apply a unitary of form
U(at, bt) from Equation (7) for some at, bt. What we actually want is for the FLUX gadget to act
like a “switch”—either at = 0 and bt � 0 (streaming proof bit 0) or at � 0 and bt = 0 (streaming
proof bit 1). By carefully exploiting the structure of U(at, bt) itself, we finally show that any low
energy |ψhist〉L ⊗ |ψhist〉R can be “rounded” to obtain a state closeby which perfectly satisfies this
desired “switch” behavior for all t ∈ P .

1.3 Related Work

GSCON. In the classical setting, Gopalan, Kolaitis, Maneva, and Papadimitriou [GKMP06] show
the problem of determining whether two solutions of a Boolean formula are connected through its
solution space is in P or PSPACE-complete, depending on the types of constraints allowed in
the formula. The GSCON problem was introduced by Gharibian and Sikora [GS18], who show
that GSCON with m = poly(n) (l = 2)-local unitaries is QCMA-complete. For m = exp(n)
and l = 1, it is PSPACE-complete. If the Hamiltonian is given as a succinct circuit description,
GSCON is NEXP-complete. Gosset, Mehta, and Vidick [GMV17] show the surprising result that
QCMA-completeness holds even for commuting local Hamiltonians (an analogous result for QMA-
completeness of k-LH on commuting Hamiltonians remains an open question). Nagaj, Hangleiter,
Eisert, and Schwarz [NHES21] next show QCMA-completeness for stoquastic Hamiltonians. Wat-
son, Bausch, and Gharibian [WBG20] study GSCON with a translationally invariant Hamiltonian
on a 1D chain of qudits (i.e. there exists a single 2-local Hamiltonian acting on each pair of neigh-
bors in the chain) and prove QCMAEXP-completeness (QCMAEXP is QCMA with exponentially
large proof and exponential-time quantum verifier). We remark that the EXP in QCMAEXP arises
due to the translation-invariance, which causes the encoding size of the problem to be exponentially
smaller than the size of the chain.

QMA(2). The complexity class QMA(k) (QMA with k unentangled proofs) was first intro-
duced by Kobayashi, Matsumoto, and Yamakami [KMY03]. Blier and Tapp [BT12] show that
NP ⊆ QMAlog(2) (QMA(2) but with log-sized proofs and a log-space verifier) with perfect com-

pleteness and 1− 1/ poly soundness. Aaronson et al. [ABDFS08] give a QMAlog(Õ(
√
n)) protocol

for 3-SAT with a constant soundness gap (as opposed to 1/ poly in [BT12]). They further ar-
gue that assuming a weak version of the Additivity Conjecture from quantum information theory,
QMA(k) = QMA(2) for all k ≥ 2 and QMA(2) can be amplified to exponentially small error.
Harrow and Montanaro [HM13] prove this statement by developing a protocol for a product test
that allows a quantum verifier to check if a state is a product state across n cuts, given two copies.
It also follows that 3-SAT has a QMA(2) protocol with proof size Õ(

√
n). We remark that it

remains an open problem whether QMA(2) is equal to NEXP, though an oracle separation to
coNP exists [KMY03]. Gharibian, Santha, Sikora, Sundaram and Yirka [GSSSY18] define quan-
tum generalizations of the Polynomial Hierarchy, QCPH and QPH (using classical and quantum
proofs, respectively, and quantum verifiers in both cases), and show that (1) if QCPH = QPH,
then QMA(2) is in the Counting Hierarchy, and (2) unless QMA(2) = QΣ3 (QΣ3 the third level of
QPH), QMA(2) is strictly contained in NEXP.

Chen and Drucker [CD10] improve upon [ABDFS08] with a BellQMAlog(Õ(
√
n)) protocol for

3-SAT, where BellQMA(k) is defined as QMA(k) without entangled measurements. QMA(2) per-
mits an inverse polynomial gap, however with an exponentially small gap it is equal to NEXP

12

as shown by Pereszlényi [Per12]. With a linear number of provers and an exponential soundness
gap, BellQMA equals NEXP as well. Kinoshita [Kin18] proves that QMA(2) with postselection
also equals NEXP. Chiesa and Forbes [CF13] give a tight soundness analysis of the protocol of
[BT12], showing a soundness gap Ω(n−1), notably without using a PCP. They further improve
upon [CD10] by providing a smooth trade-off between the number of provers k and the soundness
gap Ω(k2/n). Chailloux and Sattath [CS12] show the Separable Sparse Hamiltonian problem with
1/poly promise gap is complete for QMA(2). Sparsity is crucial here, as [CS12] shows the Separable
Local Hamiltonian problem is in QMA.

Space-bounded quantum computation. Watrous [Wat99; Wat03] initiates the study of space-
bounded quantum computation and shows BQSPACE(s(n)) ⊆ SPACE(O(s(n)2)), where BQSPACE
is the space-bounded variant of BQP with intermediate measurements. It follows that BQPSPACE =
PSPACE. Fefferman and Lin [FL18] prove that QMA with an inverse exponentially small gap, de-
noted PreciseQMA, is equal to PSPACE, by showing that BQUSPACE(s(n)) (like BQSPACE but
with only unitary gates) equals QMA with a poly-time verifier, O(s(n)) space and proof size, and
2−O(s(n)) soundness gap. Consequently, the precise local Hamiltonian problem (inverse exponential
precision) is PSPACE-complete. Fefferman and Remscrim [FR21] improve upon these results by
showing BQUSPACE(s) = BQSPACE(s) = QUMASPACE(s) = QMASPACE(s). (For clarity, re-
call QMASPACE receives a poly-sized quantum proof, whereas in this work SQCMASPACE takes
an exponential size classical proof.) Notably, they are able to eliminate intermediate measurements,
which is nontrivial in the space-bounded setting as deferred measurements require a fresh ancilla
for each measurement.

1.4 Open questions

First, while we have given characterizations for both SQCMASPACE and SQMASPACE, our fo-
cus has primarily been on classical streamed proofs. Discovering further properties of quantum
streamed proofs is thus left as a natural open question.

Next, via the Universal Quantum Path Following Lemma (Lemma 1.7), we showed that GSCON
with exponentially many gates and inverse poly promise gap is in P (Corollary 5.1). However,
what remains unclear is the complexity of GSCON with exponentially many gates and inverse
exponential promise gap. Then, depending on the exact size of the gap and number of unitaries
allowed, Lemma 1.7 does not necessarily apply, and indeed, in Theorem A.3 we show that GSCON
in this setting is PSPACE-hard. The only progress we are able to make here is Theorem B.3, which
requires a sparse (versus local) Hamiltonian and predefined L versus R cut across which gates may
not act (whereas originally GSCON has no such restriction). Second, whereas the classical analogue
of GSCON, S, T -CONN, satisfies a dichotomy theorem (i.e. is either in P or PSPACE-complete
depending on the constraints allowed) [GKMP06], a similar result remains unknown for GSCON.

In terms of unentanglement, the Embedding Lemma (Lemma 6.1) recovers the result of [BT12]
for NP with log-size QMA(2) proofs, and in particular, also with an inverse poly promise gap.
Whether this gap can be improved to constant while maintaining a log-size proof remains open.
Next, can an analogue of Lemma 7.5 be shown without assuming the structure on H guaranteed
by the Embedding Lemma? Recall our proof of Lemma 7.5 crucially leveraged the latter. Finally,
the complexity of QMA(2) remains frustratingly open — is QMA(2) = NEXP? What other
natural complete problems are there for QMA(2) beyond the (inverse poly-gapped) Separable Sparse
Hamiltonian [CS12]?

13

1.5 Organization

Section 2 begins with all relevant definitions. In Section 3, we give our no-go result for a quantum
analogue of Savitch’s theorem and analyze streaming quantum proofs. Section 4 gives our first
main result, the Universal Quantum Path Following Lemma. This is then applied in Section 5 to
show Theorem 1.8, i.e. that the low energy space of any Hamiltonian is always “connected” in the
presence of exponentially long local gate sequences. Section 6 gives our second main result, the
Embedding Lemma, with applications in Section 7. Appendices A and B study variants of GSCON
with exponentially many local gates.

2 Definitions

We begin by defining SQCMASPACE. Remarks: First, the definition of SQCMASPACE will allow
inverse exponential promise gap, although we show in Theorem 1.5 that without loss of generality,
we may assume a constant promise gap. Second, intermediate measurements are not free in our
model, and so only a polynomial number of simulated measurements via the principle of deferred
measurement [NC11] can be made in polynomial space. To begin, we model a streaming classical
proof via the quantum circuit model as follows.

Definition 2.1 (Streaming classical proof). Let U be a quantum circuit acting on an n1-qubit
input register R1, n2-qubit ancilla register R2, and 1-qubit proof register R3, for some n1, n2 > 0.
Registers R2 and R3 are initialized to all zeroes. At a high level, the idea is to stream a classical
proof in register R3 one bit at a time. To do so, we view the entire execution of U as a sequence
of 1- and 2-qubit gates, but where certain 1-qubit gates on R3 are a priori unknown. Formally:

1. There are two main phases in the circuit, which repeat until the circuit completes. In iteration
i:

(a) (Computation phase) A sequence of 1- and 2-qubit gates acts solely on registers R1 and
R2.

(b) (Proof phase)

i. (Compute) Single-qubit gate Wi ∈ {I,X} is applied to R3, for X the Pauli NOT
gate.

ii. (Copy) R3 is classically copied into R2 via CNOT gate (controlled from R3 onto
R2).

iii. (Uncompute) Wi is applied to R3 to return R3 to |0〉.

Remarks. Above, we view each gate Wi as being applied dynamically by the prover, i.e. each time
the computation phase ends, the prover supplies the next bit. In principle, this can be embedded
into an interactive proof, although this is possibly overkill, as all communication is one-way (from
prover to verifier). Further clarifications: (1) Each time the computation phase is run, the sequence
of gates applied need not be the same as in the previous computation phase. (2) For simplicity, we
may assume without loss of generality that the computation ends with a proof streaming phase in
which Wi = I. (3) Without loss of generality, in Step 1(b)ii we assume there is a fixed qubit in R2,
say q, to which the content of R3 is copied each time. If U does not wish to use the next proof bit,
it may set q to |+〉 just before Step 1(b)ii, so that the CNOT gate of 1(b)ii acts invariantly.

Definition 2.2 (Streaming-QCMASPACE (SQCMASPACE(p, q, r))). A promise problem A =
(Ayes, Ano) is in SQCMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if there exist

14

thresholds α(n), β(n) satisfying α(n)−β(n) ≥ 2−r(n), and a q(n)-space uniform family of quantum
circuits {Qn} with properties as follows. Qn takes as input a string x ∈ Σn, a classical streaming

proof y ∈ {0, 1}2
p(n)

, and q(n) ancilla qubits in state |0〉⊗q(n). We say Qn accepts (x, y) with
probability p if on input (x, y), measuring Qn’s dedicated output wire in the standard basis yields
1 with probability p. Then:

• (Completeness) If x ∈ Ayes, there exists a streaming proof y ∈ {0, 1}2
p(n)

such that Qn accepts
(x, y) with probability at least α.

• (Soundness) If x ∈ Ano, for all streaming proofs y ∈ {0, 1}2
p(n)

, Qn accepts (x, y) with
probability at most β.

Finally, let the input, ancilla, and proof registers be denoted R1, R2, R3 respectively. To enforce
that R1 and R3 are not used as ancilla, we require that Qn only acts on R1 and R3 via CNOTs
with the control in R1 or R3 and the target in R2.

Note the use of term “polynomially-bounded”—thus, r = log n is allowed above. For clarity, a
polynomial-space Turing machine is bounded only in its workspace tape length; its output tape is
unbounded to allow for outputting the (exponential length) quantum circuit Qn.

Remark 2.3. Throughout this paper, for SQCMASPACE and all other complexity classes below, we
slightly abuse notation and use SQCMASPACE(p, q, r) to mean SQCMASPACE(O(p), O(q), O(r))
(i.e. we omit explicitly writing the Big-Oh each time).

Definition 2.4 (Sparse Hamiltonian (e.g. [CS12])). A Hermitian operator H ∈ Herm
(
(C2)⊗n

)
is

row-sparse if each row of H has at most poly(n) non-zero entries, and if there exists an efficient
classical algorithm mapping row index i ∈ [2n] to a sequence of all non-zero entries Hij of H.

Definition 2.5 (Separable Sparse Hamiltonian (SSH(g)) [CS12]). Let g : N 7→ R be an efficiently
computable function. Given as input a sparse Hamiltonian H, a bipartition L versus R of the n
qubits H acts on, and threshold parameters α, β satisfying β − α ≥ 1/g(n), decide:

• (YES case) If there exists |ψ1〉L|ψ2〉R such that 〈ψ1|L〈ψ2|RH|ψ1〉L|ψ2〉R ≤ α, output YES.

• (NO case) If for all |ψ1〉L|ψ2〉R, 〈ψ1|L〈ψ2|RH|ψ1〉L|ψ2〉R ≥ β, output NO.

Chailloux and Sattath show that the Separable Sparse Hamiltonian problem with inverse polyno-
mial gap, SSH(1/ poly), is QMA(2)-complete, for QMA(2) defined next.

Definition 2.6 (QMA(2, p, q, r) [KMY03]). A promise problemA = (Ayes, Ano) is in QMA(2, p, q, r)
for polynomially bounded functions p, q, r if there exist thresholds α(n), β(n) satisfying α(n) −
β(n) ≥ 2−r(n), and a poly-time uniform family of quantum circuits {Qn} with properties as follows.

Qn takes as input a string x ∈ Σn, a quantum proof |ψ1〉L⊗|ψ2〉R ∈ C2p(n)⊗C2p(n)
, and q(n) ancilla

qubits in state |0〉⊗q(n). We say Qn accepts (x, y) with probability pacc if on input (x, |ψ1〉L|ψ2〉R),
measuring Qn’s dedicated output wire in the standard basis yields 1 with probability pacc. Then:

• (Completeness) If x ∈ Ayes, there exists a |ψ1〉L|ψ2〉R such that Qn accepts (x, |ψ1〉L|ψ2〉R)
with probability at least α.

• (Soundness) If x ∈ Ano, for all |ψ1〉L|ψ2〉R, Qn accepts (x, |ψ1〉L|ψ2〉R) with probability at
most β.

15

Caution: We are using slightly non-standard notation above, in that the promise gap scales as 2−r,
whereas typically in the literature the parameter r would define a 1/r gap. This is to align with our
definition of (e.g.) SQCMASPACE, which can have an exponentially small promise gap. Next, by
setting p, q, r appropriately, Definition 2.6 captures the variants of QMA(2) studied thus far in the
literature (as far as we are aware): When p, q ∈ poly(n) and r ∈ log n, we recover QMA(2) [KMY03],
p, q, r ∈ poly(n) yields PreciseQMA(2) [Per12], and p, q, r ∈ log(n) gives PQMAlog(2) [BT12] (for
PQMAlog(2), only c = 1 versus s = 1 − 1/ poly(n) is known, i.e. error reduction to arbitrary c
and s remains open without blowing up the proof size superlogarithmically). Note that even when
q ∈ log(n), the circuit Qn may still consist of poly(n) gates. Harrow and Montanaro [HM13] have
shown that error reduction holds for QMA(2), i.e. we may assume α and β are exponentially close
to 1 and 0, respectively.

2.1 Streaming-QMASPACE

For our streaming version of QMASPACE, the previous setup of SQCMASPACE does not suffice,
as (e.g.) single-qubit gates do not suffice to generate arbitrary quantum proofs. Hence, we define
SQCMASPACE with an exponentially long proof that is swapped into the proof register bit-by-bit.

Definition 2.7 (Streaming-QMASPACE (SQMASPACE(p, q, r))). A promise problem A = (Ayes,
Ano) is in SQMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if there exist thresholds
α(n), β(n) satisfying α(n) − β(n) ≥ 2−r(n), and a q(n)-space uniform family of quantum circuits
{Qn} with properties as follows. Qn takes as input a string x ∈ Σn, a 2p(n)-qubit proof |ψ〉 in
register Y, a q(n)-bit ancilla register X initialized to |0〉⊗q(n), and is of form (see Figure 2)

Qn =
1∏

i=m

(
(Vi)X · SWAPX1,Yi

)
· (V0)X . (9)

Then,

• (Completeness) If x ∈ Ayes: ∃|ψ〉 ∈ Y : 〈0q|〈ψ|
(
Q†n|1〉〈1|X1Qn

)
|0q〉|ψ〉 ≥ α(n).

• (Soundness) If x ∈ Ano: ∀|ψ〉 ∈ Y : 〈0q|〈ψ|
(
Q†n|1〉〈1|X1Qn

)
|0q〉|ψ〉 ≤ β(n).

As in Definition 2.2, we do not allow Qn to alter the contents of its input register (to avoid using
said register as additional ancilla space).

As in SQCMASPACE, we allow an inverse exponential promise gap. Later in Theorem 3.2, we
show that weak error reduction holds for SQMASPACE. Note that proof streaming is modeled
here by swapping the proof bits one by one into a designated ancilla register of the verifier.

Since we will reduce SQMASPACE to QMAEXP, we also define the latter now, as well as its
complete problem. QMAEXP is defined the same as QMA but with an exponential-time uniform
circuit family.

Definition 2.8 (QMAEXP(p, q)). A promise problem A = (Ayes, Ano) is in QMAEXP(p(n), q(n)) for
polynomially bounded functions p, q if there exists an exponential time uniform family of quantum
circuits {Qn} with properties as follows. Qn takes as input a string x ∈ Σn, a quantum proof

|ψ1〉 ∈ (C2)⊗2
p(n)

, and ancilla qubits in state |0〉⊗2q(n)
. We say Qn accepts (x, |ψ〉) with probability

pacc if on input (x, |ψ〉), measuring Qn’s dedicated output wire in the standard basis yields 1 with
probability pacc. Then:

16

. . .

. . .

. . .

. . .

. . .

|0q〉X
... V0 V1 V2 Vm−1 Vm

|ψ〉Y
...

Figure 2: SQMASPACE circuit. The gates from X to Y are SWAP gates. For simplicity, we do
not depict the input register, whose contents without loss of generality are not altered by Qn.

• (Completeness) If x ∈ Ayes, there exists a |ψ〉 such that Qn accepts (x, |ψ〉) with probability
at least 2/3.

• (Soundness) If x ∈ Ano, for all |ψ〉, Qn accepts (x, |ψ〉) with probability at most 1/3.

We write QMAEXP to mean QMAEXP(poly,poly). The 1D translationally invariant Hamiltonian
problem is complete for QMAEXP [DS09]. Here, “1D translationally invariant” means the same
local constraint Hi,i+1 is repeated on all consective qubits i on the chain. Formally:

Definition 2.9 (1D-TIH [DS09]). Fix a constant d. The input is the length of the chain N
encoded in binary, a single Hamiltonian constraint H ∈ Herm(Cd ⊗ Cd) specified with a constant
number of bits, and polynomials α, β such that β − α ≥ 1/poly(N). The full Hamiltonian is thus
H(N) :=

∑N−1
i=1 Hi,i+1 (i.e. H acts on each pair of qudits on a line). Decide:

• (YES case) If λmin(H(N)) ≤ α(N), output YES.

• (NO case) If λmin(H(N)) ≥ β(N), output NO.

Note that, crucially, the length of the chain N is exponential in the encoding size of the input.

2.2 Multi-prover interactive proofs

Definition 2.10 (MIP(t(n), u(n), v(n), p(n), r(n), c(n), s(n)) (introduced in [BGKW88], as stated
in [FV15])). A promise problem A = (Ayes, Ano) is in MIP(t, p, r, c, s) if there exist polynomial t
and polynomially bounded functions u and v, and a classical verifier V using poly(n) time, u(n)
space, v(n) bits of randomness, and interacting with p non-communicating provers via r rounds of
interaction, where each round consists of t(n) bits of communication between verifier and provers,
and where n = |x| is the size of input x, such that

• If x ∈ Ayes, then there exists a strategy for the provers that is accepted by the verifier with
probability at least c.

• If x ∈ Ano, any strategy of the provers is accepted by the verifier with probability at most s.

17

Theorem 2.11 ([BFL90; FL92]). For any polynomial r,

MIP(poly, poly, poly, poly, poly, 2/3, 1/3) = MIP(poly, poly, poly, 2, 1, 1, 2−r) = NEXP. (10)

Next, NP ⊆ MIP(log, log, log, 2, 1, 1, 1 − 1/poly(n))—this follows from the standard 3-SAT multi-
prover protocol, in which the verifier asks prover 1 for the assignment (x, y, z) to a random clause,
and prover 2 for the assignment to one of the bits x, y, or z uniformly at random. By applying
the PCP theorem, one immediately strengthens this inclusion to the case of constant soundness
for MIP. More generally, MA = MIP(log, poly, poly, 2, 1, 1, 1− 1/poly(n)). (The forward inclusion
follows by applying the Cook-Levin theorem to the MA verifier to obtain a 3-SAT formula φ, and
using MIP’s randomness to choose poly(n) random bits for φ (this is why the space requirement
increases from log to poly for NP versus MA, respectively) and then run the interactive protocol
for NP above. The reverse inclusion simply has the MA verifier receive a brute force concatenation
of all answers the provers would send to the verifier possible questions, which will have poly(n)
total length.)

2.3 Probabilistically checkable proofs

Definition 2.12 (PCP[r(n), q(n)] [AS98]). A language L is in PCP[r(n), q(n)] if there exists verifier
Turing machine M that behaves as follows:

1. M receives input x, a proof y ∈ {0, 1}∗, and a random string z ∈ {0, 1}r(n) on separate tapes.

2. M computes indices i1, . . . , iq(n) without accessing y (it may access z) in polynomial time.

3. M copies proof bits yi1 , . . . , yiq(n)
to its work tape.

4. M accepts or rejects in polynomial time without accessing y.

M must also satisfy the following conditions for all x ∈ {0, 1}n:

• If x ∈ L, ∃y : Prz[M(x, y, z) = 1] = 1, where z ∈ {0, 1}r(n) is chosen uniformly at random.

• If x /∈ L, ∀y : Prz[M(x, y, z) = 1] ≤ 1/2.

Theorem 2.13 (PCP Theorem [ALMSS98]). NP = PCP[O(log(n)), O(1)].

Theorem 2.14 ([BFL90]). NEXP = PCP[O(poly(n)), O(poly(n))].

2.4 Ground State Connectivity Problem

The ground state connectivity problem (GSCON) introduced by Gharibian and Sikora [GS18] in-
tuitively asks the following question: Given a Hamiltonian H and ground states |ψ〉 and |φ〉, does
there exist a sequence of local gates that maps |ψ〉 to |φ〉, such that all intermediate states have
low energy with respect to H? Formally, it is defined as follows.

Definition 2.15 (GSCON(H, k, η1, η2, η3, η4,∆, l,m, Uψ, Uφ) [GS18]).

Input:

• A k-local Hamiltonian H ∈ Herm (B⊗n), where B := C2.

• η1, η2, η3, η4,∆ ∈ R and integer m ≥ 0, such that η2 − η1 ≥ ∆ and η4 − η3 ≥ ∆.

18

• Polynomial size quantum circuits Uφ, Uψ generating “starting” and “target” states |φ〉 and
|ψ〉 (on input |0n〉), respectively, satisfying 〈ψ|H|ψ〉 ≤ η1 and 〈φ|H|φ〉 ≤ η1.

Output:

YES: There exists a sequence of l-local unitaries U1, . . . , Um such that:

(a) (Intermediate states remain in low energy space) For all i ∈ [m] and intermediate
states |ψi〉 := Ui · · ·U1|ψ〉, it holds that 〈ψi|H|ψi〉 ≤ η1, and

(b) (Final state is close to target state) ‖|ψm〉 − |φ〉‖2 ≤ η3.
NO: For all l-local sequences of unitaries U1, . . . , Um, either:

(a) (Intermediate state obtains high energy) There exists i ∈ [m] and an intermediate
state |ψi〉 such that 〈ψi|H|ψi〉 ≥ η2, or

(b) (Final state far from target state) ‖|ψm〉 − |φ〉‖2 ≥ η4.

We assume Uψ and Uφ to be given as sequences of gates from a universal gate set. The numeric
parameters are specified with rational entries using O(poly(n)) bits of precision. Note that |ψ〉 and
|φ〉 are not necessarily required to be ground states.

This definition is quite flexible as it allows all parameters to be specified. For 2-local unitaries,
a 5-local Hamiltonian, polynomial m and ∆, GSCON is QCMA-complete.

Theorem 2.16 ([GS18]). There exists a polynomial p such that GSCON is QCMA-complete for
m = O(p(n)), ∆ = Θ(1/m5), l = 2, and k ≥ 5, where n denotes the number of qubits H acts on.

Choosing different parameters leads to PSPACE-completeness.

Theorem 2.17 ([GS18]). GSCON is PSPACE-complete for m = 2n, ∆ = 2−(2n+4), l = 1, k = 3,
where n denotes the number of qubits H acts on.

This result is a consequence of the fact that S, T -CONN is PSPACE-complete [GKMP06].

Definition 2.18 (S, T -CONN). Given a 3-CNF formula φ and solutions x, y ∈ {0, 1}n to φ, does
there exist a sequence of strings x1, . . . , xm, such that

• x1 = x, and xm = y, and

• for all i ∈ [m], the Hamming distance between xi and xi+1 is at most 1, and

• for all i ∈ [m], xi is a solution to φ?

Observe the similarity between S, T -CONN and GSCON: φ corresponds to H, x to |ψ〉, y to |φ〉,
and xi to |ψi〉. We are interested in the power of GSCON with l = 2 and m = 2poly(n), and denote
this class GSCONexp.

Definition 2.19 (GSCONexp). GSCONexp is the union over all GSCON(· · ·), where l = 2, m =
O(2p(n)) and ∆ = Ω(2−p(n)) for some polynomial p.

19

3 Quantum analogues of NPSPACE

In this paper, we investigate the power of GSCONexp. To show the containment GSCON ∈ QCMA
for polynomial m and ∆, [GS18] construct a QCMA-verifier that receives classical approximations
of the unitaries U1, . . . , Um as proof. That technique no longer works for GSCONexp. The paths
through the Hamiltonian’s low energy space can be of exponential length and therefore intermediate
states can no longer be expressed succinctly. For that reason, we conjecture that GSCONexp may
not even by contained in PSPACE.

It holds that GSCONexp is PSPACE-hard (see Appendix A) (under polynomial-time reductions)
and contained in NEXP. The containment is trivial, since a NEXP-verifier can choose the unitary
sequence nondeterministically. Also, hardness is not implied by Theorem 2.17, since 2-local unitaries
can flip two bits at the same time.

A natural question is whether there exists a better upper bound than NEXP. We do not know
the answer to that question. One intuitive candidate would be a quantum analogue of NPSPACE,
which we model as a variant of QCMA with an exponentially long proof and polynomially many
qubits. However, we argue in Section 3.1 that any such construction equals NEXP.

Lastly, we show in Section 5, that for sufficiently large m = 2poly(n), we can map |ψ〉 to |φ〉 while
remaining close to the span of |ψ〉 and |φ〉. We can make the distance to the span arbitrarily small
by increasing m. We conclude that GSCONexp does not have any NO-instances with m = 2poly(n)

and ∆ = 2−o(n) for sufficiently large n.

3.1 Streaming-QCMASPACE vs. NEXP and Savitch’s theorem

We now show our no-go theorem for a quantum analogue of Savitch’s theorem. For this, recall the
definition of SQCMASPACE:

Definition 2.2 (Streaming-QCMASPACE (SQCMASPACE(p, q, r))). A promise problem A =
(Ayes, Ano) is in SQCMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if there exist
thresholds α(n), β(n) satisfying α(n)−β(n) ≥ 2−r(n), and a q(n)-space uniform family of quantum
circuits {Qn} with properties as follows. Qn takes as input a string x ∈ Σn, a classical streaming

proof y ∈ {0, 1}2
p(n)

, and q(n) ancilla qubits in state |0〉⊗q(n). We say Qn accepts (x, y) with
probability p if on input (x, y), measuring Qn’s dedicated output wire in the standard basis yields
1 with probability p. Then:

• (Completeness) If x ∈ Ayes, there exists a streaming proof y ∈ {0, 1}2
p(n)

such that Qn accepts
(x, y) with probability at least α.

• (Soundness) If x ∈ Ano, for all streaming proofs y ∈ {0, 1}2
p(n)

, Qn accepts (x, y) with
probability at most β.

Finally, let the input, ancilla, and proof registers be denoted R1, R2, R3 respectively. To enforce
that R1 and R3 are not used as ancilla, we require that Qn only acts on R1 and R3 via CNOTs
with the control in R1 or R3 and the target in R2.

We observe that a PCP verifier (see Definition 2.12) can easily be simulated in SQCMASPACE.

Theorem 1.5. SQCMASPACE with 2poly(n) proof bits, poly(n) ancilla qubits, completeness 1, and
soundness 1/2, equals NEXP, i.e. SQCMASPACE(poly,poly, 1) = NEXP.

20

Proof. The containment SQCMASPACE ⊆ NEXP is trivial. To show NEXP ⊆ SQCMASPACE,
we use the fact that NEXP = PCP[poly,poly] (see Theorem 2.14). We construct a SQCMASPACE
verifier Q that simulates a PCP[r, q] verifier. Let T = 2poly(n) be an upper bound on the largest
proof bit index accessed by M .

1. Q generates the random string z ∈ {0, 1}r(n) by constructing a state |+〉⊗r(n) and then
measuring it in standard basis. This can be done with the usual deferred measurement
technique (e.g., [NC11]) since r(n) is polynomial (it is nontrivial to simulate an exponential
number of measurements).

2. Q simulates the index computation of M and stores the indices i1, . . . , iq(n) in ancilla space.

3. For j = 1, . . . , T , Q applies Wj to an ancilla |0〉c, which maps it to |yj〉c. If j = ik for some k,
copy yj to a fresh ancilla. Afterwards, Wj is applied again to reset the ancilla c back to |0〉c.

4. Simulate M with the stored proof bits to accept or reject.

Since the measured string z ∈ {0, 1}r(n) is distributed uniformly at random, we have

Pr[Qyn accepts |x〉] = Pr
z

[M(x, y, z) = 1].

Note that mapping |yj〉c back to |0〉c is no issue because the circuit is entirely classical after
generating the random string.

We remark that above theorem really only uses quantum computation to generate randomness. It
follows that the soundness gap in SQCMASPACE(poly, poly, poly) can be reduced to a constant.

Corollary 3.1. SQCMASPACE(poly,poly, 1) = SQCMASPACE(poly, poly, poly).

We leave as open problem the question whether direction error reduction is possible, i.e. without
the detour via PCP and NEXP.

An alternative interpretation of Theorem 1.5 is that Savitch’s theorem [Sav70], which im-
plies PSPACE = NPSPACE, has likely no quantum analogue because the space-bounded vari-
ant of BQP, denoted BQUPSPACE, equals PSPACE, as shown by Fefferman and Lin [FL18].
BQUPSPACE is defined as BQP with polynomial-space uniformly generated quantum circuits (i.e.
like SQCMASPACE without a proof). Watrous [Wat99; Wat03; Wat08] gave an earlier defi-
nition of BQPSPACE based on quantum Turing machines. The main difference between these
definitions is that the quantum Turing machines may perform an exponential number of inter-
mediate measurements, whereas that is not possible with a BQUPSPACE verifier (the subscript
‘U’ indicates the verifier may only perform unitary operations). The usual deferred measurement
approach does not work because it requires fresh ancillae for each measurement. Both defini-
tions nevertheless equal PSPACE. Recently, Fefferman and Remscrim [FR21] proved that even
QMASPACE = PSPACE, where the QMASPACE verifier is an exponentially long quantum cir-
cuit that receives a polynomially-sized proof and is allowed to perform an unrestricted number of
intermediate measurements. Hence, a variant of SQCMASPACE with exponentially long circuit,
but only polynomially sized proof, would also equal PSPACE.

3.2 Streaming-QMASPACE vs. QMAEXP

Next, we characterize the power of SQMASPACE, which recall is defined as:

21

Definition 2.7 (Streaming-QMASPACE (SQMASPACE(p, q, r))). A promise problem A = (Ayes,
Ano) is in SQMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if there exist thresholds
α(n), β(n) satisfying α(n) − β(n) ≥ 2−r(n), and a q(n)-space uniform family of quantum circuits
{Qn} with properties as follows. Qn takes as input a string x ∈ Σn, a 2p(n)-qubit proof |ψ〉 in
register Y, a q(n)-bit ancilla register X initialized to |0〉⊗q(n), and is of form (see Figure 2)

Qn =

1∏
i=m

(
(Vi)X · SWAPX1,Yi

)
· (V0)X . (9)

Then,

• (Completeness) If x ∈ Ayes: ∃|ψ〉 ∈ Y : 〈0q|〈ψ|
(
Q†n|1〉〈1|X1Qn

)
|0q〉|ψ〉 ≥ α(n).

• (Soundness) If x ∈ Ano: ∀|ψ〉 ∈ Y : 〈0q|〈ψ|
(
Q†n|1〉〈1|X1Qn

)
|0q〉|ψ〉 ≤ β(n).

As in Definition 2.2, we do not allow Qn to alter the contents of its input register (to avoid using
said register as additional ancilla space).

We first show that SQMASPACE can be amplified to a constant promise gap13.

Theorem 3.2. SQMASPACE(p, q, r) ⊆ SQMASPACE(p′, q′, 1), where q′(n) = q(n) +O(r(n)) and
p′(n) = O(p(n) + r(n) + log q(n)).

Proof. Let Qn be an SQMASPACE(p, q, r) verifier with m gates, which is given some input x. Our
goal is to amplify its completeness/soundness via repetition. The main challenge is that there are
not enough ancillas for the usual deferred measurement approach as we require 2q repetitions with
O(q) space. Our solution is to use the proof itself as ancillas for each repetition and count the
number of accepting computations.

We construct a verifier V with the following registers: Counter Cacc to count accepting com-
putations, Cinit to count correct initializations of ancillas, and X to simulate Qn. Formally, V is
given as (explanation in words below):

V :=
1∏

i=R

C-U+
X1=1,Cacc

·
1∏

j=m

(
ViSX1,Yi(q+m)+q+j

)
· V0 · C-U+

X=0q ,Cinit
·

1∏
j=q

(
SX1,XjSX1,Yi(q+m)+j

)
(11)

Here, C-U+ indicates a controlled increment operation (e.g. C-U+
X1=1,Cacc

increments the counter
in Cacc if X1 = 1) and S a SWAP gate. The indices are upside down to indicate that the leftmost
term has the largest index. In words, V operates in R rounds as follows:

1. (Refresh ancilla qubits) Swap q streamed proof bits into X .

2. (Condition on ancilla being properly initialized) Increment Cinit conditioned on X = 0q, i.e.
apply unitary

|0q〉〈0q|X ⊗ U+
Cinit

+ (I − |0q〉〈0q|)X ⊗ ICinit . (12)

3. (Run the actual verification) Simulate Qn.

4. Increment Cacc conditioned on X1 = 1 (output qubit of Qn).

13In fact, the completeness/soundness thresholds can be made to be exponentially close to 1/0 in the length of
the proof.

22

Letting δ := (α− β)/2 and t := (α− δ)R, define the accepting projector as

Πacc :=
∑
i≥t
|i〉〈i|Cacc ⊗ |R〉〈R|Cinit . (13)

Note that dlog2(R)e bits are required for each counter. Hence, V acts on q′ = q+2dlog2(R)e ancillas.

Completeness: In the YES-case, we assume the honest prover sends |φ〉 = (|0q〉|ψ〉)⊗R, where |ψ〉 is
a proof accepted by Qn with probability ≥ α. We can view Cacc as the sum of independent random
variables corresponding to the outcomes of each round. Then by Hoeffding’s inequality,

Pr[−Cacc + αR ≥ δR] ≤ e−2δ2R ≤ 1/3 (14)

for R ≥ ln(1/3)/2δ2 with log(R) = O(r).

Soundness: In the NO-case, we first argue that we can assume the proof’s ancilla bits are initialized
to 0. We split the proof register Y into A for the ancillas, B for the actual proof, and write
|φ〉 =

∑
z∈{0,1}qR az|z〉A|φz〉B. Then ΠaccV |φ〉 = a0qR |0qR〉A|φ0qR〉B as only A = |0qR〉 causes

Cinit = r. Hence, we can assume A = |0qR〉 and get the POVM

Pacc = 〈0q′+qR|A,Cinit,Cacc

(
V †ΠaccV

)
|0q′+qR〉A,Cinit,Cacc (15)

=
∑

z∈{0,1}R,|z|≥t

R⊗
i=1

Pzi , (16)

where |z| denotes the Hamming weight and P1, P0 the accepting/rejecting POVM of Qn. Since
P0 and P1 = I − P0 commute, Pacc has an eigenbasis {|φi1 , . . . , φiR〉}i1,...,iR , where {|φi〉}i is an
eigenbasis of P0 (and P1). Therefore, Pacc has an eigenvector with maximum eigenvalue of the
form |ψ1〉 ⊗ · · · ⊗ |ψR〉, where Qn accepts each |ψi〉 with probability ≤ β by assumption. Since
we have projected A onto all-zeroes, the optimal proof is of form

⊗R
i=1|0q〉|ψi〉, and we can apply

Hoeffding’s inequality again:

Pr[Cacc − βR ≥ δR] ≤ e−2δR ≤ 1/3. (17)

Corollary 3.3. SQMASPACE(poly,poly, 1) = QMAEXP.

Proof. Containment is trivial. The other direction follows by amplifying the verification circuit V of
a 1D-TIH instance (1D translationally invariant Hamiltonian, Definition 2.9), which is complete for
QMAEXP with a promise gap of 1/ exp [GI13]. We use the standard verifier from Kitaev’s “quantum
Cook-Levin theorem” [KSV02] that picks a random index i, and then measures using a (potentially
rescaled) 2-local constraint H as POVM (recall in TIH all terms on the chain are identical). V then
has a promise gap of 1/ exp(n), where n is the input size. Note it is straightforward to implement
V as an SQMASPACE(poly, poly, poly) circuit because we only need to measure one Hamiltonian
term (selected at random). Hence, the required qubits can be swapped into the ancilla space when
streamed and measured at the end of the computation. Theorem 3.2 completes the proof.

Corollary 3.4. SQMASPACE(log, log, 1) = QMA.

23

Proof. The proof is analogous to Corollary 3.3, but instead using QMA-completeness of the (non-
translationally invariant) local Hamiltonian problem [KSV02].

4 Universal Quantum Path Following Lemma

In this section, we give a general construction for simulating any Lipschitz continuous path f on
the unit hypersphere via a sequence of 2-local gates. We begin with definitions.

Definition 4.1 (Paths and Lipschitz continuity). For any d ≥ 2, consider unit hypersphere Sd−1 :={
|ψ〉 ∈ Cd | ‖|ψ〉‖2 = 1

}
. A path is any function f : [0, 1] → Sd−1. We say f is K-Lipschitz

continuous if for all a, b ∈ [0, 1], ‖f(a)− f(b)‖2 ≤ K|a− b|.

We measure the distance between two paths by the metric d(f, g) := maxt∈[0,1]‖f(t) − g(t)‖2 for
‖·‖2 the Euclidean norm.

The main result of this section is the following.

Lemma 1.7 (Universal quantum path following lemma). Set d := 2n, and let f : [0, 1] → Sd−1

be a K-Lipschitz continuous path. For every ε > 0, there exists a sequence of M ∈ O((n
2d2

ε)2n)
2-local unitaries U = UM · · ·U1 which “ε-approximately simulates” the path f as follows. Define
|ψt〉 = Ut · · ·U1|ψ0〉 for t ∈ {0, . . . ,M} and |ψ0〉 := f(0). Then, for all t,

‖|ψt〉 − f(t/M)‖2 ≤ ε. (2)

In words, any Lipschitz continuous path f on the unit hypersphere can be approximately simulated
to any desired precision ε by applying a sequence of M 2-local unitaries (see Figure 1 for an
illustration). The main idea behind the proof is to first discretize f sufficiently finely, and then
to locally simulate f between each consecutive pair of discrete points via a sequence of “small
rotations”. Here, by “small rotations”, we mean unitaries close to identity, which can also be
written as U = eiH with small ‖H‖∞. We can write H =

∑
j αjHj in Pauli basis (i.e. each Hj

is a tensor product of I,X, Y, Z) with small αj . Applying a result due to Suzuki (Lemma 4.9),
we have eiH ≈

∏
j e

αjHj . Next, a construction of Clinton, Bausch, and Cubitt [CBC21] is used to

decompose the eαjHj into 2-local unitaries U1, . . . Um (m independent of αj) such that Uk → I as
αj → 0 (Section 4.2).14 Section 4.3 combines the Suzuki and CBC decompositions and Section 4.4
applies that result to complete the proof of Lemma 1.7.

4.1 Technical Lemmas

We state a collection of technical results used in the proof of Lemma 1.7.

4.1.1 Norms

Lemma 4.2 ([Gol96, Equation 2.2.5]). For all v ∈ Cd, ‖v‖2 ≤ ‖v‖1 ≤
√
d‖v‖2.

Lemma 4.3. For all |ψ〉, |φ〉 ∈ Cd, ‖|ψ〉 − |φ〉‖2 =
√

2− 2 Re(〈φ|ψ〉).

For operators M ∈ L(Cd), the corresponding operator norm, usually called the spectral norm, is
defined as

‖M‖∞ := max
v∈Cd

‖Mv‖2
‖v‖2

. (18)

14Decompositions of arbitrary unitaries into 2-local gates are well known (e.g., [NC11]), but to the best of our
knowledge, they do not provide bounds on the distance from I.

24

It holds that ‖M‖∞ =
√
λmax(M †M). For M < 0, we have ‖M‖∞ = λmax(M), where λmax(M)

denotes the largest eigenvalue of M . We write M = O(f(d)) if ‖M‖∞ = O(f(d)) for some function
f .

The Frobenius norm is defined as

‖M‖F :=
√

Tr(M †M) =

√√√√ d∑
i=1

d∑
j=1

|mij |2, (19)

where mij denote the entries of M . Note that the Frobenius norm is the same as the Euclidean
norm of M viewed as a d2-dimensional vector.

Lemma 4.4 ([Gol96, Equation 2.3.7]). ‖M‖∞ ≤ ‖M‖F ≤
√
d‖M‖∞

We define the trace norm for operators M ∈ L(Cd) as ‖M‖tr := Tr(|M |) = Tr
√
M †M, where |·|

and
√
· are applied as operator functions.

Lemma 4.5. Let |ψ〉, |φ〉 ∈ Cd. Then, ‖|ψ〉〈ψ| − |φ〉〈φ|‖tr = 2
√

1− |〈ψ|φ〉|2.

4.1.2 Unitaries and Hamiltonians

Lemma 4.6. For all x ∈ R, it holds that |1− eix| ≤ |x|.

Lemma 4.7. Let H ∈ Herm(Cd). For U = eiH , ‖U − I‖∞ ≤ ‖H‖∞.

Proof. Let H =
∑d

j=1 λj |ψj〉〈ψj | be the spectral decomposition of H. Then, the spectral decom-
position of U − I is given by

I − eiH =

d∑
j=1

|ψj〉〈ψj | −
d∑
j=1

eiλj |ψj〉〈ψj | =
d∑
j=1

(
1− eiλj

)
|ψj〉〈ψj |. (20)

Therefore,

‖I − U‖∞ = max
j

∣∣∣1− eiλj ∣∣∣ ≤ max
j
|λj | = ‖H‖∞, (21)

where the inequality follows from Lemma 4.6.

Lemma 4.8. Let U = Um · · ·U1 and V = Vm · · ·V1 be unitary matrices. For a submultiplicative
norm ‖·‖, it holds that ‖U − V ‖ ≤

∑m
i=1‖Ui − Vi‖.

Lemma 4.9 (Suzuki). Let H =
∑m

j=1Hj be a sum of Hermitian operators such that
∑m

j=1‖Hj‖∞ ≤
t ≤ 1 and s ∈ N. Then

eiH =

 m∏
j=1

eiHj/s

s

+O

(
t2

s

)
. (22)

Proof. Follows directly from [Suz76, Theorem 3].

This lemma can also be used for Hamiltonian simulation, for if H is a k-local Hamiltonian, then
the eiHj/n terms are k-local gates. Therefore, we can simulate the evolution eiH with only local
gates. The well-known Lie-Trotter product formula follows directly from Equation (22)

eiH1+iH2 = lim
n→∞

(
eiH1/neiH2/n

)n
. (23)

25

4.2 Decomposition of Pauli Interactions

Next, we show how to decompose operators eitH for H ∈ {I,X, Y, Z}⊗n into 2-local gates of the
form eitjHj , such that the total evolution time

∑
j |tj | is bounded by O(t1/n). This result is originally

due to Clinton, Bausch, and Cubitt [CBC21]. For clarity, here we give an alternative construction
of their decomposition (still using Lemmas from [CBC21]), with a simpler analysis of pulse time
bounds, and with an exponential improvement in the number of gates required — see Remark 4.12
below for details. The main insight we use in the decomposition is as follows.

Lemma 4.10 ([CBC21, Lemmas 7 and 9]). Let U = eitH for a Hamiltonian H = 1
2i [h1, h2], where

h1 and h2 anti-commute and square to identity. For 0 ≤ t ≤ π/2, there exist t1, t2 ∈ R with

|t1|+ |t2| ≤
√

2t, (24)

and
U = eit1h1eit2h2eit2h1eit1h2 . (25)

We can also use Lemma 4.10 with negative t ≥ −π/2 by applying the lemma to −t and then using
the inverse of the resulting decomposition ((eitH)† = e−itH).

To apply this to Pauli interactions, we observe that X,Y, Z pairwise anti-commute, square to
identity, and

[X,Y] = 2iZ, [X,Z] = 2iY, [Y,Z] = 2iX. (26)

Hence, we can apply Lemma 4.10 to decompose eitH for n = 2k + 1 and

H = P1 ⊗ · · · ⊗ Pn ∈ {I,X, Y, Z}⊗n (27)

into two 2k−1 + 1 local evolutions as follows. Let j = 2n−1 + 1, assume Pj = Z, and set

h1 = P1 ⊗ · · · ⊗ Pj−1 ⊗Xj ⊗ Ij+1,...,n, (28)

h2 = I1,...,j−1 ⊗ Yj ⊗ Pj+1 ⊗ · · · ⊗ Pn. (29)

Then,

[h1, h2] = P1 ⊗ · · · ⊗ Pj−1 ⊗XYj ⊗ Pj+1 ⊗ · · · ⊗ Pn (30)

− P1 ⊗ · · · ⊗ Pj−1 ⊗ Y Xj ⊗ Pj+1 ⊗ · · · ⊗ Pn (31)

= P1 ⊗ · · · ⊗ Pj−1 ⊗ [X,Y]j ⊗ Pj+1 ⊗ · · · ⊗ Pn, (32)

= 2iH. (33)

The cases Pj = X or Pj = Y are analogous due to Equation (26). The decomposition is depicted
in Figure 3 (tensor products between the Pauli operators are omitted for conciseness).

For n 6= 2k+1, we cannot always choose the split j to be exactly in the middle, but the resulting
interactions will still be at most (2k−1 +1)-local, provided n ≤ 2k+1. Applying this decomposition
recursively we show:

Lemma 4.11. Let H ∈ {I,X, Y, Z}⊗n with n ∈ (2k−1 + 1, 2k + 1], and t ∈ R with 8|t|1/2k ≤ π/2.
There exists a decomposition of eitH = Πm

j=1e
itjHj , where the Hj are 2-local Pauli matrices, m ≤

4k = O(n2), and
∑m

i=1 |ti| = O(n2|t|1/2k) = O(n2|t|1/2n).

For clarity, the last equality of the claim, O(n2|t|1/2k) = O(n2|t|1/2n), holds since 8|t|2−k ≤ π/2
implies |t| < 1.

26

2k−1 ...

eitP1···Pj−1ZPj+1···Pn =

eit1P1···Pj−1X eit2P1···Pj−1X

eit2Y Pj+1···Pn eit1Y Pj+1···Pn

2k−1 ...

Figure 3: Decomposition of Pauli interactions.

Proof of Lemma 4.11. We construct the 2-local H1, . . . ,Hm by applying Lemma 4.10 recursively
as outlined above. eitH = Πm

j=1e
itjHj follows from the correctness of Lemma 4.10. After each

recursion, we have interactions that are at most (2k−1 + 1)-local. Hence, after k recursions, only 2-
local interactions remain and we are done. Since each recursion increases the number of interactions
by a factor of 4, we have m ≤ 4k = O(n2).

By Lemma 4.10, a recursion constructs new interactions, each with a pulse time of at most

|t1|+ |t2| ≤
√

2t. (34)

This gives us a recurrence for an upper bound on the individual pulse times after r recursions:

T (r) =

{
|t|, if r = 0√

2T (r − 1), if r > 0
. (35)

Using induction on r, we show that

T (r) = 21−2
−r |t|2−r

. (36)

For r = 0, we have T (0) = |t|. For r > 0, we have

T (r) =
√

2T (r − 1) =
(

2 · 21−2−r+1 |t|2−r+1
)1/2

= 21/2 · 21/2−2−r |t|2−r
= 21−2

−r |t|2−r
. (37)

Hence, the individual pulse times after k recursions are bounded by T (k) ≤ 8|t|2−k
. The total pulse

time is then bounded by mT (k) = O(n2|t|1/2n).

Remark 4.12. Our decomposition only uses polynomially many gates, whereas it appears to us that
the construction given in [CBC21] uses exponentially many. This might be of interest for physical
applications. We also only require their Lemmas 7 and 9, without having to use the more complex
Lemmas 8 and 10. Their decomposition has a total pulse time of O(|t|1/n).

27

4.3 General Decomposition

Next, we show how to use Lemma 4.11 to decompose general unitaries of small norm.

Lemma 4.13. Let U = eiH for Hermitian H ∈ Herm(Cd), d = 2n with ‖H‖∞ =: ε < (π/16)2n.
There exists an approximate decomposition U = Um · · ·U1 + O

(
d2ε2

)
into m ≤ 2O(n) 2-local uni-

taries, such that
m∑
j=1

‖I − Uj‖∞ = O
(
n2d2ε1/2n

)
(38)

Proof. We write H in the Pauli basis:

H =

d2∑
j=1

αjPj , (39)

where αj ∈ R and Pj ∈ {I,X, Y, Z}⊗n for all j ∈ [d2]. Then, by Lemma 4.4

√
d‖H‖∞ ≥ ‖H‖F =

√
Tr(H†H) =

√√√√d
d2∑
j=1

α2
j . (40)

Therefore, |αj | ≤ ε for all j ∈ [d2]. It holds that

d2∑
j=1

‖αjPj‖∞ =
d2∑
j=1

|αj | ≤ d

√√√√ d2∑
j=1

α2
j ≤ d‖H‖∞ ≤ 1, (41)

where the first inequality follows by Lemma 4.4 (note
∑d2

j=1|αj | is a sum of d2 terms), and the
second by Equation (40). Applying Lemma 4.9 with s = 1, we have

U = eiH =

d2∏
j=1

eiαjPj +O
(
d2ε2

)
. (42)

Lemma 4.11 allows us to decompose each term eiαjPj into mj = O(n2) 2-local unitaries

eiαjPj =

mj∏
k=1

eitj,kHj,k (43)

with an evolution time of
∑mj

k=1|tj,k| = O(n2|αj |1/2n). We get the complete decomposition

U = eiH =
d2∏
j=1

mj∏
k=1

eitj,kHj,k +O(d2ε2), (44)

with a total evolution time of

O

n2 d2∑
j=1

|αj |1/2n
 = O

(
n2d2ε1/2n

)
. (45)

28

Equation (38) follows from Lemma 4.7 as

‖I − eitj,kHj,k‖∞ ≤ ‖tj,kHj,k‖∞ = tj,k. (46)

We remark, that we usually choose ε � (π/16)2n in order to make Equation (38) small. Further-
more, the above decomposition is approximate. It appears to be an open question whether a similar
result is achievable with an exact decomposition.

4.4 Approximating paths via local unitaries

We are almost ready to prove 1.7; the last ingredient we require is the following lemma. It uses the
above decomposition to (approximately) map between two close vectors |ψ〉 and |φ〉 while bounding
the distance of intermediate states from |ψ〉.

Lemma 4.14. Let |ψ〉, |φ〉 ∈ Cd be unit vectors with d = 2n. Let ‖|ψ〉 − |φ〉‖2 ≤ ε < (π/16)2n.
There exists a sequence of 2-local unitaries U = Um · · ·U1 with m ≤ 2O(n), such that

(1) ‖|φ〉 − U |ψ〉‖2 = O(d2ε2), and

(2) for all i ∈ [m], ‖|ψ〉 − Ui · · ·U1|ψ〉‖2 = O(n2d2ε1/2n).

Proof. Let θ = cos−1(Re(〈ψ|φ〉)) be the angle between |ψ〉 and |φ〉. After a suitable change of basis
W , we have

W |ψ〉 = |0〉, (47)

W |φ〉 = cos(θ)|0〉+ sin(θ)|1〉. (48)

Hence, we only need to apply the rotation matrix (extended to d dimensions)

R(θ) =


cos θ − sin θ
sin θ cos θ

0

0 I

 (49)

to map from W |ψ〉 to W |φ〉. Let V = W †R(θ)W . V has the same eigenvalues as R(θ), namely
eiθ, e−iθ, 1. Hence, V = eiH for ‖H‖∞ = |θ|.

To apply Lemma 4.13, we need to bound θ. We have for |θ| < 1,

‖|ψ〉 − |φ〉‖2 =
√

2− 2 Re(〈φ|ψ〉) =
√

2− 2 cos θ ≥
√
θ2 − θ4/12 ≥ |θ|/2, (50)

where the first equality follows from Lemma 4.3, and the first inequality via Taylor expansion.
Hence, |θ| ≤ 2ε. Let U = Um · · ·U1 from Lemma 4.13. Properties (1) and (2) of the claim follow
from Lemma 4.8.

We now restate and prove 1.7.

Lemma 1.7 (Universal quantum path following lemma). Set d := 2n, and let f : [0, 1] → Sd−1

be a K-Lipschitz continuous path. For every ε > 0, there exists a sequence of M ∈ O((n
2d2

ε)2n)

29

2-local unitaries U = UM · · ·U1 which “ε-approximately simulates” the path f as follows. Define
|ψt〉 = Ut · · ·U1|ψ0〉 for t ∈ {0, . . . ,M} and |ψ0〉 := f(0). Then, for all t,

‖|ψt〉 − f(t/M)‖2 ≤ ε. (2)

Proof. The idea is to first discretize f into a sufficiently large number N ′ + 1 of points, and
subsequently apply Lemma 4.14 to simulate f along each interval [i/N ′, (i + 1)/N ′]. To begin,
Definition 4.1 says that for any i ∈ {0, . . . , N ′ − 1},

‖f(i/N ′)− f((i+ 1)/N ′)‖2 ≤ K/N ′ =: δ. (51)

We will shortly set N ′ as needed, but it will be sufficiently large so that δ < (π/16)2n. Thus, to the
ith interval [i/N ′, (i + 1)/N ′] we can apply Lemma 4.14 to obtain a sequence of 2-local unitaries
Ui = Ui,mi · · ·Ui,1 with mi ≤ 2O(n) such that for all i,

‖f((i+ 1)/N ′)− Ui · f(i/N ′)‖2 = O(d2δ2), and (52)

∀j ∈ {1 . . . ,mi}, ‖f(i/N ′)− Ui,j · · ·Ui,1f(i/N ′)‖2 = O(n2d2δ1/2n). (53)

Letting U = UN ′ · · ·U1, we have M =
∑N ′−1

i=0 mi ≤ N ′2O(n). It remains to choose N ′ so as to
bound the point-wise error to ε as in Equation (2).

The analysis proceeds in two stages. First, Equation (52) and Lemma 4.8 imply that for any
t ∈ {0, . . . ,M} such that t/M = i/N ′ for some i ∈ {0, . . . , N ′ − 1} (these are the N ′ + 1 points
obtained after our first round of discretizing f),

‖|ψt〉 − f(t/M)‖2 ∈ O(N ′d2δ2). (54)

Second, we “subdivided” each interval [i/N ′, (i+1)/N ′] into intermediate points Ui,j · · ·Ui,1f(i/N ′)
via Lemma 4.14. Equation (53) says each of these intermediate points is at most O(n2d2δ1/2n)-far
from the start point of that interval, f(i/N ′). Combining the two errors, we have that for any
t ∈ {0, . . . ,M},

‖|ψt〉 − f(t/M)‖2 ∈ O(N ′d2δ2 + n2d2δ1/2n). (55)

(Note N ′ does not appear on the n2d2δ1/2n term, as this error does not accumulate from one interval
[i/N ′, (i+ 1)/N ′] to the next.) To bound this by ε > 0, it suffices to set

N ′ ∈


Ω

(
K
(
n2d2

ε

)2n)
if 0 < K ≤ 1

Ω

((
K2n2d2

ε

)2n)
if K > 1,

(56)

and thus M ≤ N ′2O(n) ∈ O(K(n
2d2

ε)2n) if 0 < K ≤ 1 and M ∈ O(2O(n)(K
2n2d2

ε)2n) if K > 1.

5 Applying Quantum Path Following to GSCONexp

In the previous section, we show how to implement general paths with 2-local unitaries. We apply
this approach to construct unitary sequences for GSCON instances. Note, however, that these
sequences have exponential length. Suppose we are given a GSCON instance, where l = 2, and
for simplicity the starting state |ψ〉 and the target state |φ〉 are orthogonal ground states of H
(as opposed to just low energy states). To determine whether we have a YES-instance, we need

30

to check whether there exists a sequence of 2-local unitaries that maps |ψ〉 to |φ〉 but keeps the
energy of intermediate states low. Certainly, states in the span of |ψ〉 and |φ〉 are also ground
states. Hence, we can apply Lemma 1.7 to the path f(t) := cos(tπ/2)|ψ〉 + sin(tπ/2)|φ〉 to obtain
a suitable unitary sequence. This approach also works if |ψ〉 and |φ〉 are not orthonormal ground
states, which is proven in the theorem below.

Theorem 1.8. Let H ∈ Herm
(
Cd
)
, d = 2n with 0 4 H 4 I, |ψ〉, |φ〉 ∈ Cd with 〈ψ|H|ψ〉 ≤ η and

〈φ|H|φ〉 ≤ η. For any ∆ ≥ 2− poly(n), there exists a sequence of 2-local unitary gates U = Um · · ·U1

with m ≤ 2poly(n) such that

(1) ‖U |ψ〉 − |φ〉‖2 ≤ ∆, and

(2) for all i ∈ [m], 〈ψi|H|ψi〉 ≤ η + ∆, where |ψi〉 := Ui · · ·U1|ψ〉.

Proof. The idea is to first rotate |ψ〉 onto a ground state |µ〉 and then use the same method to rotate
|µ〉 to |φ〉. This will leave all intermediate states at an energy of at most η (in practice it might
exceed η since the construction is approximate). Let |λ1〉, . . . , |λd〉 be an orthonormal eigenbasis of
H. We assume |µ〉 = |λ1〉 is a ground state. We can write

|ψ〉 = cos(θ)|µ〉+ sin(θ)|ν〉,

where |ν〉 ∈ Span {|λ2〉, . . . , |λd〉}.
We argue that increasing the amplitude on |µ〉 and decreasing the amplitude on |ν〉 cannot

increase the energy. Let |ψ′〉 = cos(θ′)|µ〉+ sin(θ′)|ν〉 with |cos θ′| > |cos θ|. Then, for λ = λmin(H),

〈ψ|H|ψ〉 = cos2(θ)λ+ sin2(θ)〈ν|H|ν〉 (57)

= cos2(θ)λ+ (1− cos2(θ))〈ν|H|ν〉 (58)

< cos2(θ′)λ+ (1− cos2(θ′))〈ν|H|ν〉 (59)

= 〈ψ′|H|ψ′〉, (60)

where the inequality follows since λ ≤ 〈ν|H|ν〉. Define path f(t) := cos((1−t)θ)|µ〉+sin((1−t)θ)|ν〉.
The path f is Lipschitz continuous for K = π/2, and by the above argument, f(t)†Hf(t) ≤ η
(assuming θ ∈ [0, π/2] without loss of generality). Define a path g from |µ〉 to |φ〉 in the same
way and concatenate both to path h. The proof is complete by applying Lemma 1.7 to h with
ε = ∆.

Note that the theorem easily generalizes to any 0 4 H 4 2poly(n)I.
We can now partially answer an open question of Gharibian and Sikora [GS18], which asked

about the complexity of GSCON with exponential m and l = 2. Specifically, Reference [GS18]
showed that for exponential m, l = 1, and inverse exponential gap ∆, GSCON is PSPACE-complete,
and conjectured that the analogous l = 2 case is NEXP-complete. Here, on the one hand, we will
later show (Theorem 5.2 below) that the l = 1 PSPACE-completeness result holds even for constant
gap ∆. However, in strong contrast, in the l = 2 case Theorem 1.8 says that for any subexponential
∆, GSCON is poly-time decidable:

Corollary 5.1. GSCON with m = 2poly(n), l = 2, and subexponential ∆ does not have NO-
instances for sufficiently large n.

In the following, we investigate how the above result relates to the 1-local case (Section 5.1), the
classical case (Section 5.2), and the Traversal Lemma from [GS18] (Section 5.3).

31

5.1 Relation to the 1-Local Case

We have seen that any GSCONexp instance with 2-local gates (l = 2) becomes either a YES-instance
or an invalid instance if we make m sufficiently large. This raises the question of what happens in
the 1-local case (i.e. l = 1). We show that GSCON with l = 1 and m = ∞ (i.e. gate sequences
may be arbitrarily long) is still PSPACE-complete. Therefore, arbitrarily long sequences does not
change the hardness of 1-local GSCON, which is also PSPACE-complete for bounded m.

Theorem 5.2. GSCON is PSPACE-complete for l = 1, k = 3, η1 = η3 = 0, η2 = 1/8, η4 =
1/2,∆ = 1/8 and unbounded m.

Proof. Lemmas 5.4 and 5.6 below show hardness and containment.

5.1.1 Hardness

Lemma 5.3 ([GS18, Lemma 6.2]). GSCON is PSPACE-hard for k = 3, η1 = η3 = 0, η2 =
2−(2n+4), η4 = 1/4, ∆ = 2−(2n+4), l = 1, and m = 2n, where n denotes the number of qubits H acts
on.

We can strengthen this statement as follows.

Lemma 5.4. GSCON is PSPACE-hard for l = 1, k = 3, η1 = η3 = 0, η2 = 1/8, η4 = 1/2,∆ = 1/8
and unbounded m.

Proof. As in [GS18], we reduce L ∈ PSPACE to S, T -CONN(1) (see Definition 5.7). Let (φ, x, y)
be an S, T -CONN instance. We set |ψ〉 = |x〉, |φ〉 = |y〉, H =

∑
iHi, where Hi = |zi〉〈zi| ⊗ I for

the unsatisfying assignment zi of clause ci in φ. Completeness follows from Lemma 5.3.
To prove soundness, let (φ, x, y) be a no-instance and consider a sequence of 1-local unitaries

U1, . . . , Um. We show that (H, |x〉, |y〉) is a no instance for GSCON. All intermediate states are of
the form

|ψi〉 =
n⊗
j=1

(
α0
i,j |0〉+ α1

i,j |1〉
)
. (61)

For i = 1, . . . ,m define xi = xi,1 · · ·xi,n with

xi,j =

{
0 if |α0

i,j |2 ≥ 1
2

1 else
. (62)

Hence, |〈xi|ψi〉| ≥ 2−n/2. Since |ψi〉 and |ψi+1〉 differ in only one qubit, we have h(xi, xi+1) ≤ 1.
Assume for contradiction that ‖|ψm〉 − |φ〉‖2 ≤ η4. Then,

‖|ψm〉 − |y〉‖2 =
√

2− 2 Re(〈ψm|y〉) ≤ η4. (63)

Hence,

|〈ψm|y〉| ≥ Re(〈ψm|y〉) ≥ 1− η24
2
>

√
1

2
. (64)

Therefore, we have |αyjm,j | >
√

1/2 for all j ∈ [n] and thus y = xm. Hence, there exists an xi such
that xi does not satisfy a clause cj of φ. It follows that 〈xi|Hj |xi〉 = 1. W.l.o.g., Hj operates
on qubits 1, 2, 3. Then, xi,1xi,2xi,3 = zj and 〈ψi|Hj |ψi〉 = |αxi,1m,1α

xi,2
m,2α

xi,3
m,3|2 ≥ 1/8 = η2. Thus,

(H, |ψ〉, |φ〉) is a no-instance.

32

5.1.2 Containment

Lemma 5.5 ([GS18, Lemma 6.3]). For all nonnegative constants c1 and c2, GSCON with l = 1 is
in PSPACE for m ≤ 2n

c1 and ∆ ≥ 1/2n
c2 , where n denotes the number of qubits H acts on.

GSCON is also contained in PSPACE for unbounded m.

Lemma 5.6. GSCON ∈ PSPACE with l = 1 for ∆ ≥ 2− poly(n) and unbounded m.

Proof. We use the same NPSPACE algorithm given in [GS18, Algorithm 2] used to prove Lemma 5.5
with some sufficiently large m′, except here we must account for the fact that m can be unbounded,
unlike in [GS18]. That m is unbounded does not affect the soundness analysis, which follows from
Lemma 5.5. For completeness, however, we show that the sequence U1, . . . , Um can be shortened
to some U ′1, . . . , U

′
m′ with m′ ≤ 2poly(n). For this, note that every intermediate state is of the form

|ψi〉 =

 n⊗
j=1

Vi,j

 |ψ〉 =: Vi|ψ〉. (65)

For all i, there exists at most one j for which Vi,j 6= Vi+1,j . The NPSPACE algorithm, however,
stores approximations V ′i,j in 2p(n) bits such that for all j ∈ [n], ‖V ′i,j − Vi,j‖∞ ≤ ε/n for some ε ≥
2−poly(n) (i.e. the V ′ are taken from an ε-net; see [GS18, Lemma 3.1]). Therefore, ‖Vi−V ′i ‖∞ ≤ ε,
where V ′i =

⊗n
i=1 V

′
i,j . Thus, ‖|ψi〉 − |ψ′i〉‖2 ≤ ε and 〈ψ′i|H|ψ′i〉 ≤ η1 + 2ε if ‖H‖∞ ≤ 1. There are

m′ := 2n·p(n) possibilities for each Vi. Hence, the sequence can be shortened to V ′′1 , . . . , V
′′
m′ . We can

assume that V ′i and V ′i+1 only differ on a single qubit, which allows us to construct the sequence
U ′1, . . . , U

′
m′ of 1-local unitaries with V ′′i = U ′iV

′′
i−1. Choosing sufficiently small ε, the NPSPACE

algorithm accepts when given the sequence U ′1, . . . , U
′
m′ .

5.2 Locality in S, T -CONN

We have shown that GSCON with m =∞ becomes trivial for l = 2, but remains PSPACE-complete
for l = 1. Does a similar result hold classically, i.e. for S, T -CONN? We define l-local S, T -CONN
and show that a classical analogue of Theorem 1.8 does not hold.

Definition 5.7 (S, T -CONN(l)). Given a 3-CNF formula φ and solutions x, y ∈ {0, 1}n to φ, does
there exist a sequence of strings x1, . . . , xm, such that

• x1 = x, and xm = y, and

• for all i ∈ [m], the Hamming distance between xi and xi+1 is at most l, and

• for all i ∈ [m], xi is a solution to φ?

Theorem 5.8. S, T -CONN(l) is PSPACE-complete for all l ≥ 1.

Proof. S, T -CONN(l) ⊆ PSPACE follows from Savitch’s theorem. S, T -CONN(1) is PSPACE-
complete [GKMP06]. Let L ∈ PSPACE and reduce L to a S, T -CONN(1)-instance (φ, x, y).
Construct a 3-CNF formula φ′ from φ by creating l − 1 copies of each variable with equality
constraints with corresponding solutions x′ and y′. We show that (φ, x, y) ∈ S, T -CONN(1) iff
(φ′, x′, y′) ∈ S, T -CONN(l).

If (φ, x, y) ∈ S, T -CONN(1), then there exists a sequence of solutions x = x1, . . . , xm = y with
h(xi, xi+1) = 1. By adding l − 1 copies of each variable, we get a sequence of valid solutions
x′ = x′1, . . . , x

′
m = y′ with h(x′i, x

′
i+1) = l. Hence, (φ′, x′, y′) ∈ S, T -CONN(l).

33

If (φ′, x′, y′) ∈ S, T -CONN(l), then there exists a sequence of solutions x′ = x′1, . . . , x
′
m = y′

with h(x′i, x
′
i+1) ≤ l. All l copies of each variable must be equal in each solution. Hence, between

x′i and x′i+1 all copies of exactly one variable are changed. Hence, we can convert x′1, . . . , x
′
m to

solutions of φ x = x1, . . . , xm = y. Thus, (φ, x, y) ∈ S, T -CONN(1).

5.3 Relation to the Traversal Lemma

Reference [GS18] uses the Traversal Lemma as an important tool to show that GSCON is QCMA-
complete. Two states |u〉, |w〉 ∈ B⊗n are said to be k-orthogonal if for all k-local unitaries U ,
we have 〈w|U |v〉 = 0. Two subspaces S, T ⊆ B⊗n are called k-orthogonal if any pair of vectors
|v〉 ∈ S, |w〉 ∈ T is k-orthogonal.

Lemma 5.9 (Traversal Lemma [GS18]). Let S, T ⊆ B⊗n be k-orthogonal subspaces. Let |v〉 ∈
S, |w〉 ∈ T and consider a sequence of unitaries U1, . . . , Um with

‖|w〉 − Um · · ·U1|v〉‖2 ≤ ε < 1/2.

Let |vi〉 := Ui · · ·U1|v〉 and P := I −ΠS −ΠT . Then, there exists an i ∈ [m] such that

〈vi|P |vi〉 ≥
(

1− 2ε

2m

)2

.

Reference [GS18] provides an example for which the Traversal Lemma is tight by explicitly con-
structing a gate sequence to map |000〉 to |111〉 with 〈vi|P |vi〉 ≤ ∆ for m = O(1/∆2). Our
Theorem 1.8 constructs such a sequence in general, although it is not as tight, because m is only
polynomial in ∆−1 and exponential in n.

6 Embedding streaming proofs into unentanglement

In this section, we state and prove the Embedding Lemma (Lemma 6.1), which shows how to
embed any quantum circuit verifying a streaming proof into unentanglement (more accurately, into
a Sparse Separable Hamiltonian problem (Definition 2.5).

Lemma 6.1 (Embedding lemma). Let p, q, r,m, α, β : R 7→ R be efficiently computable functions,
where p, q, r are polynomially bounded. Let Qn be a quantum circuit consisting of m(n) 1-and 2-

qubit gates, taking in (1) input x ∈ Σn, (2) a classical streaming proof y ∈ {0, 1}2
p(n)

, and (3) q(n)
ancilla qubits in state |0〉⊗q(n), such that m(n) ≥ 2p(n) and q(n) ≥ p(n) for all sufficiently large n.
Define thresholds α(n), β(n) satisfying α(n)− β(n) ≥ 2−r(n). We are promised that either:

• (YES) There exists15 a streaming proof y ∈ {0, 1}2
p(n)

such that Qn accepts (x, y) with prob-
ability at least α.

• (NO) For all streaming proofs y ∈ {0, 1}2
p(n)

, Qn accepts (x, y) with probability at most β.

There exists a poly(n)-time mapping from (Qn, x) to a sparse Hamiltonian H on O(q(n)+log(m(n)))
qubits, partition (L,R) of the qubits H acts on, and threshold parameters α′(n) and β′(n) satisfying
α(n)′ − β(n)′ ≥ ((m(n) + 1)2r(n))−1 such that:

15To clarify, we are slightly abusing notation here for simplicity. Formally, Definition 2.1 defines y as being “part
of the circuit” Qn. Section 6.1 will reflect this by using notation Qn(y) (i.e. the circuit Qn with proof gates according
to y). In the statement of the lemma, however, we say for simplicity, in the usual wording, “there exists a proof y
such that. . .”.

34

• If (Qn, x) is a YES case, there exists |ψ1〉L|ψ2〉R such that 〈ψ1|L〈ψ2|RH|ψ1〉L|ψ2〉R ≤ α′.

• If (Qn, x) is a NO case, then for all |ψ1〉L|ψ2〉R, 〈ψ1|L〈ψ2|RH|ψ1〉L|ψ2〉R ≥ β′.

The norm of H scales as ‖H‖∞ ∈ poly(m(n), 2r(n)).

Note that verification circuits Qn in which the classical proof y is fully specified (as opposed to
streamed), such as for NP or QCMA, are also covered by Lemma 6.1 so long as the ancilla space is
large enough to store the entire proof y. (In this case, as each bit of y in Lemma 6.1 is streamed, we
save it to a fresh ancilla qubit. Once the entire proof is recorded, we run the (say) QCMA circuit
Qn on y. Thus, there is no loss of generality in streaming the proof.)

Organization of section. Section 6.1 first sets up the proof ingredients. For pedagogical pur-
poses, an effort is made to derive each of the ingredients as a response to a roadblock which arises
when using a simpler construction. The full formal proof combining all ingredients is in Section 6.2.

6.1 Proof setup and ingredients

Let Qn(y) = Vm · · ·V1 be the quantum circuit in Lemma 6.1 for input size n given streaming proof
y, which recall acts on registers R1 (input of size n), R2 (ancilla of q(n) ∈ poly(n) qubits), R3

(streaming classical proof, single qubit). We write Qn(y), as opposed to simply Qn, because the
set {Vi} includes both computation and proof unitaries (cf. Definition 2.1), of which the latter are
a priori unknown. This is in contrast to, say, QMA verification, where Qn is fixed given just n.

Setup. Next, we recall and slightly adapt the definitions of history state and the Feynman-Kitaev
circuit-to-Hamiltonian construction [KSV02] to our setting. As is common in the study of circuit-
to-Hamiltonian mappings, without loss of generality16 we do not need to explicitly encode the input
register, R1. We will, however, keep the naming conventions for R2, R3, R4 for consistency.

We define the history state as

|ψhist(y)〉 =
1√
m+ 1

m∑
t=0

Vt · · ·V1|0 · · · 0〉R2 |0〉R3 |t〉R4 , (66)

where R4 denotes the clock register. As with Qn(y), we write |ψhist(y)〉 to stress the proof y is now
embedded into the circuit Qn, rather than given directly via a separate proof register (as it would
be in the setting of QMA). Also, since m(n) ∈ Ω(2p(n)) necessarily (otherwise the circuit does not
have time to see each bit of proof y), the clock register R4 is encoded in binary (as opposed to
unary, as in [KSV02]) to potentially handle p(n) polynomial in n. This makes the Hamiltonian
terms defined below log(m(n))-local.

Next, we define the Feynman-Kitaev circuit-to-Hamiltonian construction elements as

Hin := (I − |0 · · · 0〉〈0 · · · 0|)R2
⊗ |1〉〈1|R3 ⊗ |0〉〈0|R4 (67)

Hout := |0〉〈0|out ⊗ |m〉〈m|R4 (68)

Hprop :=
m∑
t=1

Ht, where Ht is defined as (69)

Ht := −Vt ⊗ |t〉〈t− 1|R4 − V
†
t ⊗ |t− 1〉〈t|R4 + I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|)R4 , (70)

16This is because, as per Definition 2.1, R1 is treated as a read-only register, and thus as classical control. Since
we will be designing a Hamiltonian whose terms depend on the gates in Qn, the poly-time Turing machine computing
the reduction can simply hardcode the gates on-the-fly conditional on the bits of x.

35

where in Hout, |0〉〈0|out projects onto the dedicated output wire of Qn (say, the first qubit of R2).
Finally, define for 1- or 2-qubit unitary U the operator HU

t as Ht, but with Vt replaced with U .
Let P ⊆ [m] denote the set of time steps for which Vi = Wi or Vi = W †i (corresponding to Steps
1(b)i and 1(b)iii of Definition 2.1, respectively), i.e. in which a proof bit is written or uncomputed.
We shall refer to such Vi as proof gates. Let y∗ denote an optimal streamed proof, i.e. accepted by
Qn with the maximum probability p∗ possible.

The construction. The basic goal of our construction is simple—design Hamiltonian H so that
|ψhist(y

∗)〉 is its ground state. Unfortunately, since we do not know the proof gates in advance,
we cannot embed the action of Qn(y) into Hprop. To overcome this, we weaken our optimism—we
instead design H to so that |ψhist(y

∗)〉L ⊗ |ψhist(y
∗)〉R is a low-energy state (in the sense of Defi-

nition 2.5) of H. We then use unentanglement across the two copies to logically simulate Boolean
functions, allowing the history state to decide “on-the-fly” whether it wishes to stream proof bit
0 or 1 in the next round. We proceed in a sequence of attempts, each time pushing the current
setup as far as possible before it breaks down, and then adding the next work-around. The full final
construction is stated succinctly in Section 6.2. For clarity, throughout we assume the Hamiltonians
we design act on bipartition L versus R of the Hilbert space.

Attempt 1: The foundation. Define:

H̃in = (Hin)L ⊗ IR + IL ⊗ (Hin)R (71)

H̃prop =

m∑
t=1

H̃t, where H̃t is defined as (72)

H̃t =

{
(HI

t)L ⊗ (HX
t)R + (HX

t)L ⊗ (HI
t)R if t ∈ P

(Ht)L ⊗ IR + IL ⊗ (Ht)R if t 6∈ P
(73)

H̃out = (Hout)L ⊗ IR + IL ⊗ (Hout)R (74)

H̃ = H̃in + H̃prop + H̃out. (75)

Completeness will hold straightforwardly for this and all subsequent iterations of the construction
(see proof of Lemma 6.1 in Section 6.2), but the intuition is as follows. Recall our goal is for
|ψhist(y

∗)〉L ⊗ |ψhist(y
∗)〉R to be a low-energy state of H̃. Then, the “+” in H̃in and H̃out simulates

a logical “AND”, forcing both L and R registers to be correctly initialized and to accept in the final
time step, respectively. H̃t is split into two cases: When t 6∈ P , we know Vt and hence can directly
force both L and R to implement it via the “+”. When t ∈ P , however, we do not know Vt, but
only that Vt ∈ {I,X} acting on R3. In this case, the “⊗” in H̃t simulates a logical “OR”, and H̃t

itself simulates identity (x∨ y)∧ (x∨ y)↔ x = y for x, y ∈ {0, 1}; denote this construction of H̃t as
the FLUX gadget. Intuitively, if (say) |ψhist〉L chooses to apply Vt = I to annihilate (HI

t)L, then
|ψhist〉R must also apply Vt = I to annihilate (HI

t)R.
We now address the various shortcomings of this construction, beginning with the fact that the

FLUX gadget itself is not sound.

Obstacle 1: Fooling the FLUX gadget. Let |ψ1〉L|ψ2〉R be an arbitrary state. To force a
dishonest prover to simulate an honest one, ideally, H̃t with t ∈ P should act approximately like a
“switch”, meaning

〈ψ1|L〈ψ2|LH̃t|ψ1〉R|ψ2〉R ≈ 0 iff
(
〈ψ1|HI

t |ψ1〉 ≈ 0 and 〈ψ1|HX
t |ψ1〉 ≈ 1(or vice versa)

)
. (76)

36

To formally study this idea, define for a, b ∈ R the operator-valued function

G(a, b) := aHX
t + bHI

t , (77)

so that

〈ψ2|G
(
〈ψ1|HI

t |ψ1〉, 〈ψ1|HX
t |ψ1〉

)
|ψ2〉 = 〈ψ1|〈ψ2|

(
HI
t ⊗HX

t +HX
t ⊗HI

t

)
|ψ1〉|ψ2〉. (78)

The problem is that for any a, b ∈ R, aHX
t + bHI

t has null vector |φ〉R1R2 |+〉R3(|t − 1〉 + |t〉)R4

for any |φ〉, clearly violating the intended behavior of applying either I or X to |0〉R3 in step t.
Moreover, we cannot simply force R3 set to |0〉 or |1〉, as the projector onto the latter space is
simply identity.

Attempt 2: Make it complex. Suppose instead of using I and X to encode proof bit 0 and 1, we
instead use more general unitaries U, V ∈ U

(
C2
)

applied to some initial state |φ〉 (generalizing the
use of |0〉 in R3). In other words, an honest prover prepares U |φ〉 to encode logical proof bit 0, and
V |φ〉 for proof bit 1. The FLUX gadget is thus generalized to (for t ∈ P)

H̃t(U, V) := (HU
t)L ⊗ (HV

t)R + (HV
t)L ⊗ (HU

t)R. (79)

(Observe the initial state |φ〉 is not explicitly encoded here; this would instead be enforced by
setting R3 to |φ〉 at time step 0 of the history state. We will shortly choose |φ〉 = |0〉 anyway, which
is enforced by our present choice of H̃in.) Next, Equation (77) is generalized to

G(a, b) := aHV
t + bHU

t . (80)

The reason soundness breaks following Equation (77) is captured by the following sufficient condi-
tion.

Lemma 6.2. Let U, V,G be defined as in Equation (80). If there exist unit vectors |γ1〉, |γ2〉 ∈ C2

such that

1. V †U |γ1〉 = |γ1〉,

2. V U †|γ2〉 = |γ2〉, and

3. U |γ1〉 = |γ2〉,

then there exists non-zero |η〉 acting on R2R3R4 such that for all a, b ∈ R, G(a, b)|η〉 = 0.

Proof. Assume such |γ1〉, |γ2〉 exist. Then, U |γ1〉 = V |γ1〉 and U †|γ2〉 = V †|γ2〉. For any |v〉 acting
on R2, define

|η〉R2R3R4 := |v〉R2 (|γ1〉R3 |t− 1〉R4 + |γ2〉R3 |t〉R4) . (81)

Then,

G(a, b)|η〉 ∝ (a+ b)|v〉R2 ⊗
(
−U |γ1〉|t〉 − U †|γ2〉|t− 1〉+ |γ2〉|t〉+ |γ1〉|t− 1〉

)
R3R4

= 0, (82)

where the last equality uses U |γ1〉 = |γ2〉.

As a sanity check, we may apply this to Equation (77) by setting |γ1〉 = |γ2〉 = |+〉, U = X and
V = I, for which the preconditions of Lemma 6.2 hold.

37

Figure 4: Above, the horizontal axes correspond to a and b, and the vertical axis to the minimum
eigenvalue of G(a, b).

Now that we understand the bottleneck, we can work around it. Call (|φ〉, U, V) a valid encoding
if 〈φ|V †U |φ〉 = 0, i.e. U and V map |φ〉 to orthogonal states, which may be viewed as logical 0
and 1. For simplicity, pick |φ〉 = |0〉. First, by Item 1 of Lemma 6.2, V †U should not have a
1-eigenvector, and second, condition 〈0|V †U |0〉 = 0 and the fact that V †U is unitary enforce

V †U =

(
0 eiθ1

eiθ2 0

)
(83)

for some θ1, θ2 ∈ R. Thus, set |φ〉 = |0〉, U = I, and V = iX. We now have that, restricted to
Span(|t− 1〉, |t〉) on R4,

λmin(G(a, b)) = a+ b−
√
a2 + b2. (84)

The behavior of λmin(G(a, b)) is depicted graphically in Figure 4, from which one immediately sees
that λmin(G(a, b)) = 0 only if at least one of a = 0 or b = 0. By Equation (78), this almost gets
us what we want—in order to have a chance at annihilating the residual operator G(a, b), the first
proof must correctly encode either I or iX as the tth gate.17 We just need to check that both a
and b are not zero (otherwise, the second proof becomes unconstrained at time t).

Lemma 6.3. For U = I and V = iX, restricted to Span(|t − 1〉, |t〉) on R4 we have for any unit
|ψ〉

〈ψ|HU
t |ψ〉+ 〈ψ|HV

t |ψ〉 ≥ 2−
√

2 ≈ 0.586. (85)

Proof. The claim follows by plugging Equation (84) into the sequence of observations,

min
unit |ψ〉

〈ψ|(HU
t +HV

t)|ψ〉 = min
unit |ψ〉

〈ψ|G(1, 1)|ψ〉 = λmin(G(1, 1)) = 2−
√

2. (86)

In words, defining a = 〈ψ1|HU
t |ψ1〉 and b = 〈ψ1|HV

t |ψ1〉 (cf. Equation (78)), Lemma 6.3 says that
a+ b ≥ 2−

√
2� 0, i.e. we cannot have a = b = 0.

The fix. For all t ∈ P , update our current construction so that

H̃t := H̃t(I, iX) = (HI
t)L ⊗ (H iX

t)R + (H iX
t)L ⊗ (HI

t)R (87)

To recap, to annihilate H̃t for t ∈ P , the first proof |ψ1〉 must simulate either I (a = 0) or iX
(b = 0) at time t. If a = 0 (resp. b = 0), then |ψ2〉 must annihilate G(0, c) (resp. G(c, 0)) for

17Note the use of iX at a time step t in Definition 2.2 only produces a global phase i, and so does not affect the
distribution obtained when measuring the output of the circuit.

38

c ≥ 2−
√

2, meaning the history state must simulate application of iX (resp. I) at time t. (These
pieces will be formally combined in Section 6.2.)

Obstacle 2: Skipping time steps. Thus far, we have characterized how a single FLUX gadget
H̃t for t ∈ P acts in isolation. In particular, when there is a single FLUX gadget, we have shown
that it is sound, forcing |ψ1〉 ⊗ |ψ2〉 to correctly act like a “switch” at time t.

The next step is to analyze whether soundness holds in the presence of multiple FLUX gadgets,
which requires analysis of H̃prop as a whole. To do so, define M(a, b) = aiX + bI, and rewrite

G(a, b) = −M(a, b)⊗ |t〉〈t− 1| −M †(a, b)⊗ |t− 1〉〈t|+ (a+ b)I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|). (88)

It will be helpful to view this as a “dynamic” choice of propagation Hamiltonian, where M(a, b) is
applied in step t. For convenience, we often omit the a, b term and write M henceforth.

The standard approach [KSV02] for analyzing a propagation Hamiltonian Hprop is to apply a
change of basis that maps Hprop to a tri-diagonal matrix encoding a 1D random walk. Unfortu-
nately, this change of basis requires a unitary gate to be applied at each step t, and M above is
not unitary. However, since we chose V = iX (as opposed to V = X),

U(a, b) :=
1√

a2 + b2
M (89)

is unitary. (Aside: It is not necessarily true that a2 + b2 = 1.) Plugging this into Equation (88),
we have

G(a, b) =−
√
a2 + b2U(a, b)⊗ |t〉〈t− 1| −

√
a2 + b2U †(a, b)⊗ |t− 1〉〈t|

+ (a+ b)I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|).
(90)

Recall now Kitaev’s [KSV02] change of basis unitary W , which for circuit Vm · · ·V1 acting on R2R3

as in Equation (66), is defined as W =
∑m

t=1 V
†
1 · · ·V

†
t ⊗ |t〉〈t|R4 , except where for t ∈ P , we now

replace Vt with Ut(a, b). Then, restricted to Span(|t− 1〉, |t〉) on R4,

WG(a, b)W † =

(
a+ b −

√
a2 + b2

−
√
a2 + b2 a+ b

)
. (91)

So, for example, if we chain together time steps t ∈ P (compute proof bit), t+ 1 (copy proof bit),
t+ 2 ∈ P (uncompute proof bit), the joint propagation Hamiltonian under conjugation by W is:18

. . . −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 1 + ai + bi −
√
a2i + b2i 0 0 0 0

0 0 −
√
a2i + b2i 1 + ai + bi −1 0 0 0

0 0 0 −1 1 + aj + bj −
√
a2j + b2j 0 0

0 0 0 0 −
√
a2j + b2j 1 + aj + bj −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1
. . .


(92)

18W only acts on space R. Recall that G(at, bt) is the residual operator on timestep t after applying |ψ1〉 (see
Equation (78)), where at, bt are functions in |ψ1〉.

39

Two remarks: First, ai, bi ≥ 0 since HU
t � 0 for all unitary U . Second, as a sanity check, when

the first prover is honest, we have ai = 0 and bi = 1 or vice versa for all i, reducing us to Kitaev’s
original 1D random walk matrix on the second prover’s space, as expected.

Reading the fine print: How to break soundness, again. Equation (84) and Lemma 6.3 together
imply that in isolation, the FLUX gadget is sound. However, that analysis was done restricted to
Span(|t − 1〉, |t〉) in R4. A cheating prover, on the other hand, a priori is under no obligation to
place any reasonable weight on time steps |t−1〉 and |t〉 in the history state. Indeed, we now sketch
a cheating strategy which breaks soundness when multiple FLUX gadgets are chained together.

Roughly, the intuition is as follows. Normally, Kitaev’s propagation Hamiltonian acts logically
as follows: H̃t (Equation (70)) ensures that the weight on consecutive time steps t − 1 and t
is identical. By chaining together all H̃t, we thus obtain that all time steps must have equal
amplitude, and moreover this must be non-zero (otherwise we cannot have a unit vector). The
reason this breaks down in our current setting is that each H̃t has two ways of being satisfied—
either |ψL〉 has equal amplitude on steps t− 1 and t, or |ψR〉 does (or possibly both). So let us give
a simple example of how to exploit this. Suppose there are m time steps, with time step 1 and m
being proof bit computation steps (i.e. so that H̃1 and H̃m encode the FLUX gadget). We claim
that any unit vector of form

|ψL〉 ⊗ |ψR〉 := (|φL〉R2R3 |m〉R4)⊗ (|φR〉R2R3 |0〉R4) (93)

is in the null space of H̃prop, violating soundness. To see why, note that |ψL〉 trivially annihilates

all terms H̃t except t = m, since it only has support on |m〉R4 . As for H̃m, while this is not annihi-
lated by |ψL〉, it is annihilated by |ψR〉, since the latter only has support on |0〉R4 . Note that |ψL〉
reciprocates this favor for |ψR〉 at time t = 0, in that the former annihilates H̃0, allowing |ψR〉 to
“hide” all its amplitude on |0〉R4 .

The fix. The silver lining is that this loophole is highly asymmetric—in our simple example, |ψL〉
and |ψR〉 had their supports on disjoint sets of time steps in R4. To close this loophole, we thus
force |ψ1〉 ≈ |ψ2〉 by adding the projector onto the complement of the symmetric subspace (with
respect to the L versus R cut) to our Hamiltonian:

H̃sym := I − P sym
LR for P sym

LR =
1

2

(
ILR +

∑
xy

|xy〉〈yx|LR

)
(94)

Note H̃sym is sparse (Definition 2.4); this is the second of two places necessitating our construction

to be sparse. Moreover, any |ψL〉 ⊗ |ψR〉 satisfying H̃sym|ψL〉 ⊗ |ψR〉 = 0 must have |ψL〉 = |ψR〉 by
definition of the symmetric subspace.

The final ingredient. With symmetry in hand, we give the final ingredient, Lemma 6.4. For
this, define for any t ∈ P (cf. Equation (77) and Equation (78))

at := 〈ψ1|∆HI
t |ψ1〉 bt := 〈ψ1|∆H iX

t |ψ1〉 (95)

for ∆ defined as needed. The following lemma shows that in the case of perfect symmetry, we may
compute a polynomial ∆ in m such that, for all t ∈ P , at + bt cannot be “too small”, even if the
adversary can cheat across multiple FLUX gadgets.

40

Lemma 6.4 (Full support lemma). Define H̃prop as in Equation (75), except with the update of
Equation (87). Assume perfect symmetry, i.e. |ψ1〉 = |ψ2〉, and the notation of Equation (95). For
any19 δ ≥ 0 and ∆ ≥ 1 satisfying ∆ > max(36δ, (8m4)/c) (for c ∈ O(1) from Equation (102)), the
following holds: If

〈ψ1|〈ψ1|∆H̃prop|ψ1〉|ψ1〉 ≤ 2, (96)

then for all t ∈ P , at + bt ≥ δ.

Proof. As in the claim, assume 〈ψ1|〈ψ1|∆H̃prop|ψ1〉|ψ1〉 ≤ 2 =: µ. Next, for sake of contradiction,
assume there exists t∗ ∈ P with 0 ≤ at∗ + bt∗ ≤ δ (recall HI

t , H
iX
t � 0 for all t). To highlight20 the

single place in which the symmetry assumption is used, we run as much as of the proof as possible
in full generality (i.e. not requiring |ψ1〉 = |ψ2〉). We aim to set ∆ so as to achieve a contradiction.

Step 1: Bounding the weight on time steps t∗ − 1 and t∗. Recalling that R4 is the clock
register, let

St := Span (IR2,R3 ⊗ |t− 1〉R4 , IR2,R3 ⊗ |t〉R4) .

Then, for all unit vectors |φ〉 ∈ St∗ , Lemma 6.3 says 〈φ|(HI
t∗ + HX

t∗)|φ〉 ≥ 2 −
√

2. Writing |ψ1〉 =
a|φ1〉+ b|φ2〉, for |a|2 + |b|2 = 1 and unit vectors |φ1〉 ∈ St∗ , |φ2〉 ∈ S⊥t∗ , observe

δ ≥ at∗ + bt∗ = ∆〈ψ1|(HI
t∗ +HX

t∗)|ψ1〉 = ∆|a|2〈φ1|(HI
t∗ +HX

t∗)|φ1〉 ≥ ∆|a|2(2−
√

2),

where the second equality follows since HI
t∗ and HX

t∗ are only supported on St∗ by definition, and
the last inequality by Lemma 6.3. We conclude that

|a| ≤

√
δ

∆(2−
√

2)
=: δ′, (97)

implying the weights of |ψ1〉 on time steps t∗ − 1 and t∗ are each at most δ′ as well, i.e. writing

|ψ1〉 =
m∑
t=0

|ηt〉R2,R3 |t〉R4 (98)

for vectors |ηt〉, we have ‖|ηt∗−1〉‖2, ‖|ηt∗〉‖2 ≤ δ′.

Step 2: Decomposing the analysis into computation and proof phases. We next decom-
pose the analysis into proof and computation phases. By Definition 2.1, we may partition the set
of time steps {1, . . . ,m} into sets of contiguous time steps T1, T2, T3, . . . , Tm′ for m′ ≤ m as follows.
To begin, T1 is set of time steps corresponding to the first time the first computation phase is run
(Step 1(a) of Definition 2.1), T2 the gate W1 (proof phase, Step 1(b)i), T3 the single CNOT gate
(proof phase, Step 1(b)ii), T4 the second W1 gate (proof phase, Step 1(b)iii). The pattern now
repeats itself until we have accounted for all time steps. For simplicity21, we assume Tm′ = {m}
is the final time step, which corresponds to an execution of Step 1(b)iii (proof phase, uncompute).

19In our use of Lemma 6.4, δ and ∆ will be functions in parameters such as m, i.e. δ ∈ O(1/ poly(m)) and
∆ ∈ Ω(poly(m)).

20Recall that a theme of the present work is to highlight precisely which parts of our construction require unen-
tanglement.

21This keeps the notation simpler; the proof approach applies analogously even without this assumption.

41

Consider now

〈ψ1|〈ψ2|∆H̃prop|ψ1〉|ψ2〉 = 〈ψ1|∆
∑
t6∈P

Ht|ψ1〉+ 〈ψ2|∆
∑
t6∈P

Ht|ψ2〉+ 〈ψ1|〈ψ2|
∑
t∈P

∆H̃t|ψ1〉|ψ2〉. (99)

We focus on the terms involving |ψ1〉. Define Tcomp := {Ti | i is odd} (Steps 1(a) and 1(b)ii of
Definition 2.1) and Tproof := {Ti | i is even} (Steps 1(b)i and 1(b)iii of Definition 2.1), and for any

T ⊆ {0, . . . ,m}, define shorthand HT :=
∑

t∈T Ht for T ∈ Tcomp and H̃T :=
∑

t∈T H̃t for T ∈ Tproof
(note the former acts on L or R, the latter on both L and R). Then, by definition

〈ψ1|∆
∑
t6∈P

Ht|ψ1〉+〈ψ1|〈ψ2|
∑
t∈P

∆H̃t|ψ1〉|ψ2〉 =
∑

T∈Tcomp

〈ψ1|∆HT |ψ1〉+
∑

T∈Tproof

∆〈ψ1|〈ψ2|H̃T |ψ1〉|ψ2〉.

(100)
As an aside, note that for any distinct sets A,B ∈ Tcomp, HA and HB have support on disjoint
sets of time steps. (This is because A and B must have at least one proof phase C ∈ Tproof
between them.) Moreover, although

⋃
T∈Tcomp

6= [L] (since we are missing all proof time steps P),

nevertheless the Hamiltonian
∑

T∈Tcomp
HT has support on all time steps in {0, . . . , L}. (This is

because each C ∈ Tproof is a singleton, and each Ht has support on both |t〉 and |t− 1〉.)

Step 3: Triggering a chain reaction. With the decomposition of Step 2 in mind, we can now
sketch the remaining proof approach at a high level.

1. Recall t∗ ∈ P , i.e. is in a proof phase, and that from Equations (97) and (98) that ‖|ηt∗−1〉‖2 ≤
δ′ and ‖|ηt∗〉‖2 ≤ δ′.

2. Since ‖|ηt∗〉‖2 is small, we claim this triggers a “chain reaction” causing all ‖|ηt〉‖2 for t ≥ t∗
to be small. An identical argument also applies to t∗ − 1 and all t ≤ t∗ − 1. (For brevity, we
show the claim only for the former case; the latter case follows analogously.)

3. Thus, all amplitudes of |ψ1〉 are small, contradicting the fact that |ψ1〉 is a unit vector.

To make this formal, and in particular to show the claim in the second point above, we treat proof
and computation phases separately.22 Consider any T ∈ Tcomp ∪ Tproof, and suppose t∗ + 1 is the
smallest time step in T . We show that if ‖|ηt∗〉‖2 is small, so is ‖|ηt〉‖2 for all t ∈ T . For brevity,
define for any T ∈ Tcomp ∪ Tproof the projector ΠT :=

∑
t∈T |t〉〈t|R4 , and |ψT 〉 := ΠT |ψ1〉.

Case 1: T ∈ Tcomp. Suppose T = {t∗ + 1, t∗ + 2, . . . , t∗ + s} for some s. Then, HT has support on
time steps {t∗, . . . , t∗ + s}. Now suppose ‖|ηt∗〉‖2 ≤ ε for arbitrary ε ≥ 0. Since all time steps in T
are computation steps, we may use the well-known facts [KSV02] that:

1. (Fact 1) The null space of HT is the span of all states of form

t∗+s∑
t=t∗

Ut · · ·Ut∗+2Ut∗+1|φinit〉|t〉, (101)

where Ut is the tth computation gate applied in computation phase T , and for any initial unit
vector |φinit〉.

22In Kitaev’s original circuit-to-Hamiltonian construction [KSV02], this claim is achieved in one elegant stroke by
analyzing the eigenvalues of a random walk matrix which is unitarily equivalent to the propagation Hamiltonian. In
our setting, however, we also have operators H̃t acting on both |ψ1〉, |ψ2〉, i.e. we are not looking at the spectral
properties of a propagation Hamiltonian acting solely on |ψ1〉.

42

2. (Fact 2) The eigenvalues of HT are precisely λt = 2(1− cos[πt/(s+ 1)]) for 0 ≤ t ≤ s, and so
the smallest non-zero eigenvalue is

2(1− cos(π/(s+ 1))) ≥ c/s2 for some c ∈ Θ(1). (102)

Defining T ′ := T ∪ {t∗}, consider now |ψT ′〉 =
∑t∗+s

t=t∗ |ηt〉|t〉 (recall |ψT ′〉 is |ψ1〉 projected onto time
steps in T ′) for vectors {|ηt〉} of possibly differing norms. We claim that ‖|ηt〉‖2 is small for all
t ∈ {t∗, . . . , t∗ + s}.

To see this, by assumption, ‖|ηt∗〉‖2 ≤ ε and 〈ψT ′ |∆HT |ψT ′〉 ≤ µ. Writing |ψT ′〉 in terms of its
components in the null space (|ψT ′,0〉) and support (|ψT ′,+〉) of HT , respectively, i.e.

|ψT ′〉 =

t∗+s∑
t=t∗

|ηt〉|t〉 =

t∗+s∑
t=t∗

|ηt,0〉|t〉+

t∗+s∑
t=t∗

|ηt,+〉|t〉 =: |ψT ′,0〉+ |ψT ′,+〉, (103)

we have

µ ≥ 〈ψT ′ |∆HT |ψT ′〉 = 〈ψT ′,+|∆HT |ψT ′,+〉 ≥
c∆‖|ψT ′,+〉‖22

s2
, (104)

where the last inequality follows from Fact 2. Thus, ‖|ψT ′,+〉‖22 ≤ s2µ/(c∆). But by Fact 1, all |ηt,0〉
have the same norm with ‖|ηt∗,0〉‖2 ≤ ε (since ‖|ηt∗〉‖2 ≤ ε by assumption), and each |ηt,+〉 has norm
‖|ηt,+〉‖2 ≤ s

√
µ/(c∆). By the triangle inequality, we conclude that for all t ∈ {t∗, . . . , t∗ + s},

‖|ηt〉‖2 ≤ ε+ s

√
µ

c∆
. (105)

Case 2: T ∈ Tproof. For concreteness, suppose T = {t∗ + 1}, so that HT has support on time steps
T ′ := {t∗, t∗ + 1}. Now suppose ‖|ηt∗〉‖2 ≤ ε for arbitrary ε ≥ 0. Letting Ft∗+1 denote an arbitrary
Feynman-Kitaev propagation term (Equation (70)) for arbitrary unitary Ut∗+1 at time t∗ + 1,

〈ψ1|Ft∗+1|ψ1〉 = 〈ψT ′ |Ft∗+1|ψT ′〉 =
1

2
‖|ηt∗〉‖22 +

1

2
‖|ηt∗+1〉‖22 − Re(〈ηt∗+1|Ut∗+1|ηt∗〉) (106)

≥ 1

2
(‖|ηt∗〉‖2 − ‖|ηt∗+1〉‖2)2, (107)

where the inequality follows by the Cauchy-Schwarz inequality and unitary invariance of the Eu-
clidean norm. Suppose ‖|ηt∗+1〉‖2 = ‖|ηt∗〉‖2 + ζ for ζ ∈ R. By Equation (107), 〈ψ1|Ft∗+1|ψ1〉 ≥
ζ2/2. And now we use the assumption that |ψ1〉 = |ψ2〉 to obtain that

µ ≥ ∆〈ψ1|〈ψ2|
(
HI
t∗+1 ⊗H iX

t∗+1 +H iX
t∗+1 ⊗HI

t∗+1

)
|ψ1〉|ψ2〉 ≥

∆ζ4

2
, (108)

where we have substituted HI
t∗+1 or H iX

t∗+1 for Ft∗+1, as appropriate. We conclude that

‖|ηt∗+1〉‖2 ≤ ε+ ζ ≤ ε+

(
2µ

∆

) 1
4

. (109)

Step 4: Combining all bounds. By Equations (97) and (98), there exists a t∗ ∈ P with

‖|ηt∗−1〉‖2 ≤ δ′ and ‖|ηt∗〉‖2 ≤ δ′ for δ′ :=
√
δ/(∆(2−

√
2)). Running the chain reaction upwards

from t∗ (respectively, downwards from t∗ − 1):

• Each time we encounter a computation phase T ∈ Tcomp, Equation (105) says we increase our

43

norm by at most an additive factor of s
√
µ/(c∆).

• Each time we encounter a proof phase T ∈ Tproof, Equation (109) says we increase our norm

by at most an additive factor of (2µ/∆)
1
4 .

We hence have the (naive) upper bound

1 = ‖|ψ1〉‖2 ≤
m∑
t=0

‖|ηt〉‖2 ≤ 2

√
δ

∆(2−
√

2)
+ (m− 2)

(
m

√
µ

c∆
+

(
2µ

∆

) 1
4

)
, (110)

where the first inequality follows by the triangle inequality, and the second23 since s ≤ m in
Equation (105). Since δ ≥ 0, ∆ ≥ 1, and µ = 2 ∈ Θ(1), choosing ∆ > max(36δ, (8m4)/c) yields a
contradiction, completing the proof.

6.2 Final proof: Combining all ingredients

With the ingredients of Section 6.1 in hand, we are ready to restate and prove the main lemma of
this section.

Lemma 6.1 (Embedding lemma). Let p, q, r,m, α, β : R 7→ R be efficiently computable functions,
where p, q, r are polynomially bounded. Let Qn be a quantum circuit consisting of m(n) 1-and 2-

qubit gates, taking in (1) input x ∈ Σn, (2) a classical streaming proof y ∈ {0, 1}2
p(n)

, and (3) q(n)
ancilla qubits in state |0〉⊗q(n), such that m(n) ≥ 2p(n) and q(n) ≥ p(n) for all sufficiently large n.
Define thresholds α(n), β(n) satisfying α(n)− β(n) ≥ 2−r(n). We are promised that either:

• (YES) There exists15 a streaming proof y ∈ {0, 1}2
p(n)

such that Qn accepts (x, y) with prob-
ability at least α.

• (NO) For all streaming proofs y ∈ {0, 1}2
p(n)

, Qn accepts (x, y) with probability at most β.

There exists a poly(n)-time mapping from (Qn, x) to a sparse Hamiltonian H on O(q(n)+log(m(n)))
qubits, partition (L,R) of the qubits H acts on, and threshold parameters α′(n) and β′(n) satisfying
α(n)′ − β(n)′ ≥ ((m(n) + 1)2r(n))−1 such that:

• If (Qn, x) is a YES case, there exists |ψ1〉L|ψ2〉R such that 〈ψ1|L〈ψ2|RH|ψ1〉L|ψ2〉R ≤ α′.

• If (Qn, x) is a NO case, then for all |ψ1〉L|ψ2〉R, 〈ψ1|L〈ψ2|RH|ψ1〉L|ψ2〉R ≥ β′.

The norm of H scales as ‖H‖∞ ∈ poly(m(n), 2r(n)).

Proof. To reduce clutter, we omit the dependence on n when referring to functions p, q, r,m, α, β.
We assume all notation and definitions of Section 6.1. Define

H̃ = ∆inH̃in + ∆propH̃prop + ∆symH̃sym + H̃out, (111)

23This is a naive bound, since for each phase we are charging both s
√
µ/(c∆) and (2µ/∆)

1
4 for simplicity, rather

than introducing additional notation to carefully account for each type of phase.

44

where for convenience we restate definitions

H̃in = (Hin)L ⊗ IR + IL ⊗ (Hin)R (112)

H̃prop =
m∑
t=1

H̃t, where H̃t is defined as (113)

H̃t =

{
(HI

t)L ⊗ (H iX
t)R + (H iX

t)L ⊗ (HI
t)R if t ∈ P

(Ht)L ⊗ IR + IL ⊗ (Ht)R if t 6∈ P
(114)

H̃out = (Hout)L ⊗ IR + IL ⊗ (Hout)R (115)

H̃sym = I − P sym
LR for P sym

LR =
1

2

(
ILR +

∑
xy

|xy〉〈yx|LR

)
, (116)

and ∆in,∆prop,∆sym are set as follows. Set M := (m + 1)2r. Then, define24 ∆in = M31, ∆prop =
72M31, and ∆sym = M66+2k, where q(n) ∈ O(nk) for some k ∈ O(1) (recall q is the poly-bounded

number of ancilla qubits in circuit Qn). Next, set α′ = 2 1−α
m+1 and β′ = 2 1−β

m+1 −
1
M , where recall

α− β ≥ 2−r by assumption. Observe H̃ acts on O(q(n) + log(m(n))) qubits (workspace and clock
register encoded in binary, respectively). Importantly, H̃ is sparse (in the sense of Definition 2.4;
here we use the fact that although Hprop has m terms, which may be exponential, each such term
has support on only 2 basis states in the clock register in Section 6.1). For clarity, this means
our reduction does not output the explicit Hamiltonian H̃, but rather the classical algorithm
of Definition 2.4 which produces entries of H̃ on demand. Finally, the norm of H̃ is ‖H̃‖∞ ∈
poly(m, 2r), as claimed.

Correctness. Assume (Qn, x) is a YES case. Let Qn = V ′m · · ·V ′2V ′1 . For each t ∈ P with V ′t = X
(i.e. a proof bit of 1 is streamed at time t), define Vt := iX, and for all t 6∈ P , define Vt := V ′t .
Recall the history state of Equation (66), i.e.

|ψhist(y)〉 =
1√
m+ 1

m∑
t=0

Vt · · ·V1|0 · · · 0〉R2 |0〉R3 |t〉R4 , (117)

where y is implicitly encoded by the choice of gates V ′t for t ∈ P . It is straightforward to verify

H̃in|ψhist〉 ⊗ |ψhist〉 = H̃prop|ψhist〉 ⊗ |ψhist〉 = H̃sym|ψhist〉 ⊗ |ψhist〉 = 0, and (118)

〈ψhist| ⊗ 〈ψhist|H̃out|ψhist〉 ⊗ |ψhist〉 ≤
2(1− α)

m+ 1
= α′, (119)

where the factor 2 appears since H̃out contains two copies of Hout. Thus, completeness holds.
Assume next that (Qn, x) is a NO case. Assume, for sake of contradiction, there exists

|ψ1〉L|ψ2〉R such that 〈ψ1|L〈ψ2|RH̃|ψ1〉L|ψ2〉R ≤ β′. The soundness analysis proceeds in steps.
Throughout, recall H̃in, H̃prop, H̃sym, H̃out � 0.

Step 1: Enforcing symmetry. We first show that, up to small additive error, we may assume
|ψ1〉 = |ψ2〉. By assumption,

〈ψ1|L〈ψ2|R∆H̃sym|ψ1〉L|ψ2〉R ≤ 〈ψ1|L〈ψ2|RH̃|ψ1〉L|ψ2〉R ≤ β′,
24We have not attempted to optimize these parameters.

45

from which we have 〈ψ1|〈ψ2|H̃sym|ψ1〉|ψ2〉 ≤ β′/∆sym. Since the spaces L and R have the same
dimension, we may write |ψ2〉 = a|ψ1〉+ b|ψ⊥1 〉 for |a|2 + |b|2 = 1 and |ψ⊥1 〉 orthogonal to |ψ1〉. We
thus have

β′

∆sym
≥ 〈ψ1|〈ψ2|H̃sym|ψ1〉|ψ2〉 (120)

= |b|2〈ψ1|〈ψ⊥1 |H̃sym|ψ1〉|ψ⊥1 〉 (121)

=
1

2
|b|2〈ψ1|〈ψ⊥1 |

(
ILR −

∑
xy

|xy〉〈yx|LR

)
|ψ1〉|ψ⊥1 〉 (122)

=
1

2
|b|2, (123)

where the third statement follows by substituting the definition of H̃sym, and the fourth since∑
xy|xy〉〈yx| is the SWAP operator (and so (

∑
xy|xy〉〈yx|)|ψ1〉|ψ⊥1 〉 = |ψ⊥1 〉|ψ1〉). Applying identity

‖|u〉〈u| − |v〉〈v|‖tr = 2
√

1− |〈u|v〉|2 (Lemma 4.5), we conclude

‖|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2| − |ψ1〉〈ψ1| ⊗ |ψ1〉〈ψ1|‖tr ≤ 2

√
2β′

∆sym
≤ 2
√

2

M33
=: γ1. (124)

Step 2: Extracting a history state which is “good enough”. We next treat H̃in and H̃prop simulta-

neously. Similar to Step 1, 〈ψ1|〈ψ2|(∆inH̃in + ∆propH̃prop)|ψ1〉|ψ2〉 ≤ β′ by assumption. Combining
this with Equation (124), the Hölder inequality, and the triangle inequality yields

〈ψ1|〈ψ1|
(

∆inH̃in + ∆propH̃prop

)
|ψ1〉|ψ1〉 ≤ β′ + 2

√
2β′

∆sym
(∆inq + 2∆propm) (125)

≤ 1 +O

(
1

M

)
(126)

=: ζ, (127)

where (1) we are implicitly writing Hin as a sum of 1-local terms as is standard, e.g. via trick
I − |00〉〈00| � |1〉〈1| ⊗ I + I ⊗ |1〉〈1|, and so ‖H̃in‖∞ ≤ q, (2) since for any t, ‖Ht‖∞ = 1, implying
‖H̃prop‖∞ ≤ 2m by the triangle inequality, and (3) we use that q(n) ∈ O(nk).

Our strategy for this step is now as follows. We first exploit Lemma 6.4 to extract from H̃prop

a “proper” Feynman-Kitaev propagation Hamiltonian (i.e. in the form of Equation (69)). We then
couple the latter with H̃in and Equation (127) to argue that |ψ1〉 must be close to a history state.
This history state will not be exactly what we need, but we will show in the next step that it is
“good enough”.

To begin, recall

〈ψ1|〈ψ1|∆propH̃prop|ψ1〉|ψ1〉 = 〈ψ1|

2
∑
t6∈P

∆propHt +
∑
t∈P

G(at, bt)

 |ψ1〉 (128)

at = 〈ψ1|∆propH
I
t |ψ1〉 ≥ 0 (129)

bt = 〈ψ1|∆propH
iX
t |ψ1〉 ≥ 0 (130)

for G(at, bt) from Equation (90). We now show how to extract a “proper” Feynman-Kitaev propa-

46

gation Hamiltonian from the right hand side of Equation (128).

Lemma 6.5. Assume the notation above, and that 〈ψ1|〈ψ1|∆propH̃prop|ψ1〉|ψ1〉 ≤ 2. Suppose that
δ′ ≥ 0 and ∆prop ≥ 1 satisfy ∆prop > max(36

√
2δ′, (8m4)/c) (for c ∈ O(1) from Equation (102)).

For all t ∈ P , define Ft to be the Feynman-Kitaev propagation term (Equation (70)) for unitary
U(at, bt) from Equation (89). Then,

2∆prop

∑
t6∈P

Ht +
∑
t∈P

G(at, bt) � δ′
∑
t6∈P

Ht +
∑
t∈P

Ft

 . (131)

Proof. Consider first the case of t ∈ P . Recall

G(at, bt) =−
√
a2 + b2U(at, bt)⊗ |t〉〈t− 1| −

√
a2 + b2U †(at, bt)⊗ |t− 1〉〈t|

+ (at + bt)I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|).
(132)

Set δ =
√

2δ′. Then, we have by Lemma 6.4 that at + bt ≥
√
a2t + b2t ≥ δ′ (here we use ‖·‖1 ≥

‖·‖2 ≥ ‖·‖1/
√

2 for C2). Thus, defining s1 :=
√
a2 + b2 − δ′ and s2 := a+ b− δ′, we may rewrite

G(at, bt) = δ′Ft + [− s1U(at, bt)⊗ |t〉〈t− 1| − s1U †(at, bt)⊗ |t− 1〉〈t|
+ s2I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|)].

(133)

Since a+ b ≥
√
a2 + b2 for all a, b ≥ 0, we have s2 ≥ s1 ≥ 0, implying G(at, bt)− δ′Ft � 0. Similarly

for t 6∈ P , since ∆prop ∈ ω(δ′) by assumption, we have (2∆prop − δ′)Ht � 0, from which the claim
follows.

To apply Lemma 6.5, set δ′ = M31. By Section 6.2, 〈ψ1|〈ψ1|
(

∆propH̃prop

)
|ψ1〉|ψ1〉 ≤ 2. Thus,

Equation (128) and Lemma 6.5 yield

〈ψ1|

2∆prop

∑
t6∈P

Ht +
∑
t∈P

G(at, bt)

 |ψ1〉 ≥ 〈ψ1|

δ′
∑
t6∈P

Ht +
∑
t∈P

Ft

 |ψ1〉 =: δ′〈ψ1|Hprop|ψ1〉.

(134)
Note Hprop is a standard Feynman-Kitaev propagation Hamiltonian over all m time steps. So, set
∆in = δ′, and combine Equation (127), Equation (128), and Equation (134) to obtain

ζ ≥ 〈ψ1|〈ψ1|∆inH̃in + ∆propH̃prop|ψ1〉|ψ1〉 (135)

≥ δ′
(
〈ψ1|〈ψ1|H̃in|ψ1〉|ψ1〉+ 〈ψ1|Hprop|ψ1〉

)
(136)

≥ 〈ψ1|δ′ (Hin +Hprop) |ψ1〉, (137)

where the last inequality follows since 〈ψ1|〈ψ1|H̃in|ψ1〉|ψ1〉 = 2〈ψ1|Hin|ψ1〉 and since Hin � 0. Since
Hin +Hprop is a standard Feynman-Kitaev construction, it is known25 (Lemma 3 of [GK12]) that
its smallest non-zero eigenvalue scales as Ω(1/m3). Moreover, for the null space of Hin + Hprop,
since Hin requires time step t = 0 to be initialized to |0 · · · 0〉R2 |0〉R3 |0〉R4 , we have that conditioned

25More accurately, Lemma 3 of [GK12] shows this lower bound for Hin + Hprop + Hstab, but the Hstab term is
easily omitted while retaining the bound.

47

on any |ψ1〉 on system L, Hin +Hprop in system R has unique null vector

|ψhist〉 =
1√
m+ 1

m∑
t=0

Vt · · ·V1|0 · · · 0〉R2 |0〉R3 |t〉R4 , (138)

with unitaries Vt for t ∈ P defined as Vt = U(at, bt). (The uniqueness follows since there is no proof
register in our setting, in contrast to the setting of the local Hamiltonian problem for QMA.) Note
|ψhist〉 is not our desired history state |ψhist(y)〉 (Equation (66)), since unitaries U(at, bt) do not
necessarily simulate the honest action of applying I or X for the proof bit at step t. (Step 3 will
show, however, that |ψhist〉 is nevertheless “good enough”.)

Finally, we combine these observations to confirm |ψ1〉 can be made close to |ψhist〉 for our choice
of δ′. Write |ψ1〉 = a|ψhist〉+ b|ψ⊥hist〉 for |a|2 + |b|2 = 1. Then, by Equation (137),

ζ

δ′
≥ |b|2〈ψ⊥hist|Hin +Hprop|ψ⊥hist〉 ≥

|b|2c
m3

(139)

for some c ∈ Θ(1) (recall Hin +Hprop has min non-zero eigenvalue Ω(1/m3)). Thus,

‖|ψ1〉〈ψ1|⊗2 − |ψhist〉〈ψhist|⊗2‖tr = 2
√

1− |〈ψ1|ψhist〉|4 ≤ 4

√
m3

cδ′
ζ ≤ 8√

c

1

M14
=: γ2, (140)

where the second statement holds since m3ζ/(cδ′) < 1, and since ∆in = δ′. One comment is im-
portant here: Above there is the subtlety that |ψhist〉 is conditioned on |ψ1〉, so it would be more
accurate to write |ψhist(ψ1)〉. Thus, what the trace distance bound above shows is that any low-
energy |ψ1〉 (in the sense of Equation (127)) must be close to the history state |ψhist(ψ1)〉 it defines.

Step 3. Why |ψhist〉 is good enough. We have shown that for any t ∈ P , there exist scalars at, bt ≥ 0,
such that |ψhist〉 applies unitary Vt = U(at, bt) at time t. Recall that

U(at, bt) =
1√

a2t + b2t
(atiX + btI). (141)

In the honest case, recall that for all t ∈ P the history state would choose |ψ1〉 on system L so that
either at = 0 and bt = 1 (corresponding to streaming proof bit 0 in step t) or at = 1 and bt = 0
(corresponding to streaming proof bit 1 in step t). We now argue that for any low-energy |ψhist〉,
this must approximately hold.

First, by Equations (124), (140), the Hölder inequality, and the triangle inequality, for all H̃t,

〈ψhist|〈ψhist|∆propH̃t|ψhist〉|ψhist〉 ≤ β′ + (γ1 + γ2) ‖∆propH̃t‖∞ ≤ β′ + 2∆prop (γ1 + γ2) , (142)

where the last statement holds since ‖H̃t‖∞ ≤ 2. But

〈ψhist|〈ψhist|∆propH̃t|ψhist〉|ψhist〉 = 2∆prop〈ψhist|HI
t |ψhist〉〈ψhist|H iX

t |ψhist〉 (143)

=
8∆prop

(m+ 1)2

(
1− bt√

a2t + b2t

)(
1− at√

a2t + b2t

)
. (144)

Assume without loss of generality that bt ≥ at ≥ 0. Then, combining Equation (142) with Equation

48

(144) and rearranging yields

bt√
a2t + b2t

≥ 1− m+ 1

2

√
β′

2∆prop
+ γ1 + γ2 =: 1− ε (145)

for ε ≥ 0, where our parameter choices ensure ε� 1. From this, we also conclude

a√
a2 + b2

≤
√

1− (1− ε)2 ≤
√

2ε. (146)

We conclude that when b ≥ a, it must be that |ψhist〉 applied a unitary close to I at time t, i.e.

‖U(at, bt)− I‖∞ =

∥∥∥∥ a√
a2 + b2

iX +

(
b√

a2 + b2
− 1

)
I

∥∥∥∥
∞
≤
√

2ε+ ε ≤ 4
√
ε, (147)

where the second statement follows since 1 ≥ b/(
√
a2 + b2) ≥ 1− ε, and the last since ε ≤

√
2ε for

small ε. An essentially identical calculation shows that in the complementary case when at ≥ bt ≥ 0,
‖U(at, bt) − iX‖∞ ≤ 4

√
ε. (Note at = bt is impossible, as otherwise Equation (145) yields a

contradiction for small ε.)
Finally, recalling the definition of |ψhist〉 from Equation (138), we “round” to an honest circuit

V ′ = V ′m · · ·V ′1 as follows. For t 6∈ P , set V ′t = Vt, and for t ∈ P , set V ′t = I if bt > at and V ′t = iX
if bt < at. Then, for all t ∈ [m], we have ‖Vt − V ′t ‖∞ ≤ 4

√
ε, from which we conclude via standard

bounds that

‖Vm · · ·V1 − V ′m · · ·V ′1‖∞ ≤ 4m
√
ε = 4m

√√√√m+ 1

2

√
β′

2∆prop
+ γ1 + γ2 =: γ3. (148)

There is a minor subtlety we should clarify at this point. By construction, for any t ∈ P , V ′ applies
either I or iX, as desired. Then, Definition 2.1 has the additional structure that each Wi ∈ {I,X}
in a “compute” proof phase (Step 1(b)i) is subsequently undone by a matching W †i ∈ {I,X} in the
“uncompute” proof phase (Step 1(b)iii). Let t, t + 2 ∈ P be an arbitrary pair of such “compute”
and “uncompute” steps, respectively. Then, our construction only enforces that V ′t , V

′
t+2 ∈ {I, iX},

but not that V ′t+2 = (V ′t)†. However, this is without loss of generality, since any streaming proof
which deviates from this pattern can easily be simulated by a “proper” streaming proof without
increasing the proof length26. Thus, deviating from this pattern cannot increase the best accep-
tance probability over all streamed proofs y.

Step 4: The contradiction. Recall that (Qn, x) is a NO case, and that we have assumed, for sake of
contradiction, that 〈ψ1|〈ψ2|H̃|ψ1〉|ψ2〉 ≤ β′. The former implies that for any streaming proof y, Qn
accepts with probability at most β. But V ′ is by construction the verifier Qn, except with all gates
at times t ∈ P “rounded” to the closest gate in {iX, I}. Thus, V ′ simulates Qn on some streaming
proof y, implying V ′ also accepts with probability at most β. Since |ψhist〉 encodes circuit V with

26For example, suppose at step t and t + 2, V ′ applies iX and I. This corresponds to classically streaming bit 1
in step t, but not uncomputing register R3 from |1〉 back to |0〉 in step t + 2. Logically, this just has the effect of
negating the standard basis, so that when the next proof bit is streamed, iX and I now correspond to streaming bits
0 and 1, respectively (as opposed to 1 and 0).

49

‖V − V ′‖∞ ≤ γ3 (Equation (148)), we conclude that Pr(V accepts) ≤ β + γ3. Thus,

〈ψhist|〈ψhist|H̃out|ψhist〉|ψhist〉 = 2〈ψhist|Hout|ψhist〉 ≥ 2
1− β
m+ 1

− 2γ3
m+ 1

, (149)

which by the Hölder inequality, Equation (124), and Equation (140) implies

β′ ≥ 〈ψ1|〈ψ2|H̃|ψ1〉|ψ2〉 ≥ 〈ψ1|〈ψ2|H̃out|ψ1〉|ψ2〉 ≥ 2
1− β
m+ 1

− 2γ3
m+ 1

− 2(γ1 + γ2), (150)

where we have used ‖H̃out‖∞ = 2. Combining Equation (150) with Equations (124), (140), and
(148), we obtain 2γ3

m+1 + 2(γ1 + γ2) < 1/M = 1
(m+1)2r+1 , obtaining the desired contradiction.

7 Applications of the Embedding Lemma

In this section, we apply the Embedding Lemma (Lemma 6.1) to obtain various corollaries. These
proceed in two steps. Section 7.1 first reduces problems from various complexity classes into
instances of Separable Sparse Hamiltonian (SSH). Section 7.2 then shows how the exact structure
of the SSH instances from Lemma 6.1 can be exploited to obtain various upper bounds of form
QMA(2, p, q, r) for appropriate p, q, r.

7.1 Reductions to Separable Sparse Hamiltonian (SSH)

The first corollary is immediate by recalling that without loss of generality, a SQCMASPACE
circuit has m ∈ Θ(2p).

Corollary 7.1. There exists a poly-time many-one reduction from any SQCMASPACE(p, q, r)
instance to an instance of Separable Sparse Hamiltonian on O(q + log p) qubits with promise gap
Ω(2−p−r).

The second corollary requires slightly more work, but still goes by combining Lemma 6.1 with
completely standard techniques.

Corollary 7.2. There exists a poly-time many-one reduction from any MIP(t, u, v, p, r, c, s) protocol
to an instance of Separable Sparse Hamiltonian on O(u + v + log(tr log(pt))) qubits with promise

gap scaling as Ω
([

2tr log(pt)(c− s)
]−1)

.

Proof sketch. Apply the standard trick of concatenating, for all possible sequences of questions
from the verifier V to the provers, the corresponding sequence of all answers from the provers. This
will be the proof y to be streamed, and it has length |y| = pt2tr. Without loss of generality, we
may assume y first records, in order, all possible answers from the provers to the verifier’s first
round of questions (call this “block 1”), followed by all possible answers from the provers to the
second round of questions (“block 2”), etc. (Note the questions in a given round can depend on the
answers from all previous rounds). Thus, given streaming access to y, a SQCMASPACE verifier
Q can straightforwardly simulate V as follows: For each round t of the MIP protocol, Q simulates
V to select its questions. It then streams block t of y, storing only the answers to the questions
selected for round t. It then proceeds to round t+ 1.

Let us analyze Q’s parameters. First, note that Q’s time complexity increases to Θ(|y|) ∈
Θ(pt2tr)—this is because under Definition 2.1, Q’s total gate count also counts the gates used to
stream bits, of which there are |y|. For clarity, of these Θ(pt2tr) time steps, only poly(n) are used

50

to simulate computation steps of V . We now discuss space complexity. For this, random bits can
be simulated via the principle of deferred measurement [NC11]. This requires the use of a fresh
ancilla qubit for each measurement. Since V uses v random bits, and u ancilla space, Q’s overall
space requirement is u + v. Summarizing, for this construction, Q has parameters p = tr log(pt),
q ∈ O(u+ v), r ∈ O(log(c− s)). Applying Lemma 6.1 to Q now yields the claim.

From Corollary 7.2, we immediately obtain the following, since NP ⊆ MIP(log, log, 2, 1, 1, 1 −
1/poly(n)) (Section 2).

Corollary 7.3. Any instance of an NP language is reducible under poly-time many-one reduc-
tions to an instance of Sparse Separable Hamiltonian on O(log(n)) qubits with completeness 1 and
soundness 1− 1/poly(n).

Note the completeness 1 arises since α′ = 0 in the proof of Lemma 6.1 (since the MIP has com-
pleteness 1 and thus α = 1), implying the history state is a null state of H̃. Observe the instance of
Sparse Separable Hamiltonian above can be decided in NP, since it acts on log n qubits (and so the
NP verifier can explicitly write out the matrix for the Hamiltonian). The corollary for NEXP fol-
lows analogously by recalling NEXP = MIP(poly,poly, poly 2, 1, 1, 2−r) for any desired polynomial
r (Theorem 2.11).

Corollary 7.4. Any instance of a NEXP language is reducible under poly-time many-one reductions
to an instance of Sparse Separable Hamiltonian on O(poly(n)) qubits with completeness 1 and
soundness 1− 1/ exp(n).

As was the case for NP above, here the instance of Sparse Separable Hamiltonian is decidable in
NEXP, since it acts on poly(n) qubits.

7.2 Containment in QMA(2, p, q, r)

Next, by combining Corollary 7.1, Corollary 7.2, Corollary 7.3 and Corollary 7.4 with the following
lemma, we immediately obtain containment in QMA(2, p, q, r) for various appropriate p, q, r.

Lemma 7.5. Assume the notation of Lemma 6.1, and let H̃ be the Sparse Separable Hamiltonian
instance produced by the latter. Then, H̃ can be decided in27 QMA(2, q+ logm, q+ logm, r logm),
i.e. with proof and ancilla space scaling as O(q + logm), and promise gap as O(1/(2rm)).

In words, the QMA(2) verifier preserves (up to linear overhead) both the number of qubits H̃
acts on and its promise gap. The proof of Lemma 7.5 exploits the structure of the Hamiltonian
produced by the Embedding Lemma, together with standard ideas. Curiously, at present we do not
know28 how to show the analogue of Lemma 7.5 for arbitrary sparse Hamiltonians (i.e. satisfying
Definition 2.4 and having worst-case exponential norm, but not promised to be of the form produced
by Lemma 6.1).

Proof of Lemma 7.5. We will need to explicitly reference the definitions below, reproduced for

27Recall from Remark 2.3 that we omit big-Oh notation when listing class parameters, including for QMA.
28Briefly, a natural approach is via phase estimation, as done in [CS12] for QMA(2). However, the issue is that

phase estimation requires exponential time in general to obtain exponential precision, which may be required in our
setting since the weights ∆in,∆prop,∆sym scale as poly(m), which can be exponential in n.

51

convenience:

H̃in = (Hin)L ⊗ IR + IL ⊗ (Hin)R (151)

H̃prop =
m∑
t=1

H̃t, where H̃t is defined as (152)

H̃t =

{
(HI

t)L ⊗ (H iX
t)R + (H iX

t)L ⊗ (HI
t)R if t ∈ P

(Ht)L ⊗ IR + IL ⊗ (Ht)R if t 6∈ P
(153)

H̃out = (Hout)L ⊗ IR + IL ⊗ (Hout)R (154)

H̃sym = I − P sym
LR for P sym

LR =
1

2

(
ILR +

∑
xy

|xy〉〈yx|LR

)
, (155)

The relevant facts regarding H̃ = ∆inH̃in + ∆propH̃prop + ∆symH̃sym + H̃out are:

1. n is the input size to circuit Qn, and all functions m, p, q, r are parameterized in terms of n.

2. ∆in,∆prop,∆sym are fixed polynomials in m (the number of gates in the circuit Qn, where
recall m ≥ 2p by assumption to allow enough time to process the full streamed proof),

3. H̃ acts on O(q + logm) qubits,

4. the promise gap scales as |α′ − β′| ∈ Ω((m2r)−1) (recall Qn had promise gap 2−r), and

5. in the YES case, there exists |ψ1〉L|ψ2〉R such that 〈ψ1|L〈ψ2|RH̃|ψ1〉L|ψ2〉R ≤ α′, and in the
NO case, for all |ψ1〉L|ψ2〉R, 〈ψ1|L〈ψ2|RH̃|ψ1〉L|ψ2〉R ≥ β′.

We construct a QMA(2, q+logm, q+logm, r logm) verifier V deciding whether H̃ is a YES or NO
instance.

Constructing V . We use Kitaev’s original approach for placing the k-local Hamiltonian problem
in QMA [KSV02, Proposition 14.2]: Pick a random “term” (defined shortly) of H̃ and measure it
against the claimed proof |ψ〉 = |ψ1〉L|ψ2〉R. The catch is that unlike in [KSV02], the “terms” of H̃
are not k-local, so a slight bit more work is required to ensure V can implement these measurements.

To begin, define the “terms” of H̃ as precisely the set of summands (with appropriate weights)
on Equation (151) (e.g. ∆inHin⊗ I is a term), Equation (153) (e.g. for any t ∈ P , ∆propH

I
t ⊗H iX

t

and ∆propH
iX
t ⊗HI

t are each terms), and Equation (154) (e.g. I⊗Hout), as well as ∆symH̃sym. Then,
there are precisely K := 2m + 5 terms, on which we fix an arbitrary ordering. By construction,
for all i ∈ {1, . . . ,K}, each term is a projector Πi up to scaling wi — for example, since HI

t and
H iX
t are projectors, so is ∆propH

I
t ⊗H iX

t up to scaling ∆prop. (In this case, Πi = HI
t ⊗H iX

t and
wi = ∆prop.)

We thus write H̃ =
∑K

i=1wiΠi with 0 ≤ wi ≤ poly(m), and define total weight W :=
∑K

i=1wi.
V now acts as follows given proof |ψ〉 = |ψ1〉L|ψ2〉R:

1. Randomly select index i ∈ [K] with probability pi = wi/W .

2. Apply two-outcome projective measurement M0 := Πi, M1 := I −Πi to |ψ〉.

3. Accept on outcome M1, reject on outcome M0.

52

|0〉 H H

|ψ1〉
SWAP

|ψ2〉

Figure 5: The circuit for the SWAP test. The SWAP gate has action |x〉|y〉 7→ |y〉|x〉 for any
standard basis states |x〉, |y〉. Note the inputs |ψ1〉 and |ψ2〉 are in tensor product. Measuring the
first wire in the standard basis yields output 0 with probability (1+ |〈ψ1|ψ2〉|2)/2, and postselecting
on 0 projects |ψ1〉|ψ2〉 onto the symmetric subspace.

The probability that V accepts |ψ〉 is

Pr[V accepts |ψ〉] =
K∑
i=1

pi〈ψ|(I −Πi)|ψ〉 = 1− 1

W
〈ψ|H̃|ψ〉. (156)

Therefore, V accepts with probability at least 1− α′/W in the YES case and at most 1− β′/W in
the NO case. Thus, V has promise gap

β′ − α′

W
∈ Ω

(
1

m2r
· 1

poly(m)

)
∈ Ω

(
1

2r poly(m)

)
, (157)

where we have used the fact that W ∈ poly(m) (since there are 2m + 5 terms, each with weight
wi ∈ poly(m)).

Efficiency of V . It remains to argue that V can be implemented efficiently, which in our setting
means using O(q + logm) ancilla qubits and poly(n) gates. For Step 1 of V (picking random
i ∈ [K]), here is one approach to sample from distribution {pi} efficiently: Choose j ∈ {1, . . . ,W}
uniformly at random, where recall W ∈ poly(m) ∈ exp(n) in the worst case. Then, compute the

smallest K ′ ∈ [K] such that j ≤
∑K′

i=1wi, and output K ′. Both steps can clearly be done with
O(logm) qubits, and K ′ can be computed in time poly(n) since there are only a constant number
of distinct weight values wi in our construction.

As for Step 2 (projective measurements), the simplest measurement corresponds to term H̃sym,
for which M1 = P sym (i.e. the projector onto the symmetric subspace) and M0 = I −M1. This
measurement is well-known to be efficiently implemented by the SWAP test [BCWW01] (Figure 5),
which outputs 0 with probability 〈ψ1|〈ψ2|P sym|ψ1〉|ψ2〉 = (1+|〈ψ1|ψ2〉|2)/2. The SWAP test clearly
uses O(q + logm) qubits and is computable in time poly(n).

As for the remaining terms of H̃, we show how to efficiently implement for t 6∈ P the measure-
ment corresponding to projector Ht from Equation (70):

Ht := −1

2
Vt ⊗ |t〉〈t− 1|R4 −

1

2
V †t ⊗ |t− 1〉〈t|R4 +

1

2
I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|)R4 (158)

The measurement of all remaining terms then follows similarly. Above, recall that Vt is a 2-qubit
unitary, but the problem is the clock register R4, which requires O(logm) qubits, which can scale
as poly(n) in the worst case. However, this is easy to overcome — informally, V efficiently applies
a change of basis to R4 to map |t − 1〉 and |t〉 to |0〉 and |1〉 (expressed in binary), respectively.
Since the latter two differ only on their least significant bit, we have that under the change of basis,

53

Ht can be implemented by a 3-local measurement (two qubits for Vt, one qubit for the clock).
More formally, define permutation U which swaps |t− 1〉R4 with |0〉R4 , swaps |t〉R4 with |1〉R4 ,

and otherwise acts invariantly on any |x〉R4 for x 6∈ {0, 1, t− 1, t}. This permutation can clearly be
implemented efficiently classically (and thus quantumly) with linear overhead space overhead, and
in poly(n) time. Let B denote the last qubit of R4, and A all other qubits of R4. Then, expanding
R4 out in binary:

UHtU
† = |0 · · · 0〉〈0 · · · 0|A ⊗

(
−1

2
Vt ⊗ |1〉〈0|B −

1

2
V †t ⊗ |0〉〈1|B +

1

2
I ⊗ (|1〉〈1|+ |0〉〈0|)B

)
=: |0 · · · 0〉〈0 · · · 0|A ⊗H ′t.

A measurement corresponding to projector UHtU
† can be efficiently implemented, since H ′t is now

a 3-qubit operator. (For example, V first measures A in the standard basis, and conditioned on
obtaining outcome |0 · · · 0〉A, measures H ′t.) Thus, V applies UHtU

† to U |ψ〉 to complete the
measurement. Again, each of these takes O(q + logm) space and poly(n) time, as required.

With Lemma 7.5 in hand, the following corollary is immediate, and recovers the results of
Blier and Tapp [BT12] for NP and Pereszlényi for NEXP [Per12]. Below, recall PQMAlog(2) =
QMA(2, log n, log n, log n), i.e. QMA(2) with log-size proof and ancilla and 1/ poly promise gap
(technically, PQMAlog(2) also has perfect completeness by definition, which also matches the result
we obtain below).

Corollary 7.6. NP = PQMAlog(2) (cf. [BT12]) and NEXP = PreciseQMA(2) (cf. [Per12]).

Proof. The containments PQMAlog(2) ⊆ NP and PreciseQMA(2) ⊆ NEXP are trivial. The con-
tainment NP ⊆ PQMAlog(2) follows by mapping NP to a log-size SSH instance via Corollary 7.3,
followed by application of Lemma 7.5 to verify the SSH instance in QMA(2, log n, log n, log n) =
PQMAlog(2). NEXP ⊆ PreciseQMA(2) follows analogously by combining Corollary 7.4 with
Lemma 7.5.

Via analogous arguments, we also obtain the following immediate corollaries.

Corollary 7.7. SQCMASPACE(p, q, r) ⊆ QMA(2, q + log p, q + log p, p+ r).

In words, SQCMASPACE with proof length 2p, q ancilla qubits, and promise gap 1/2r is contained
in QMA(2) with q + log p proof and ancilla qubits, and promise gap 1/2p+r.

Corollary 7.8. It holds that

MIP(t, u, v, p, r, c, s) ⊆ QMA(2, u+ v+ log(tr log(pt)), u+ v+ log(tr log(pt)), tr log(pt) + log(c− s)).
(159)

In words, MIP with t bits of communication per round, space u, v random bits, p provers, r rounds,
and completeness/soundness c and s, respectively, is contained in QMA(2) with u+v+log(tr log(pt))
proof and ancilla qubits, and promise gap 2−tr log(pt)+log(c−s). In more words, the amount of space
is preserved, and the promise gap depends exponentially on the total amount of communication
but only polynomially on the MIP promise gap.

Acknowledgements

We thank Rolando Somma for pointing us to [CBC21] and for interesting discussions, and Chinmay
Nirke for feedback on this manuscript. SG acknowledges support from DFG grants 450041824 and
432788384.

54

A GSCONexp is PSPACE-hard

During the proof of Theorem 2.16, [GS18, Lemma 5.2] shows the following result, which we restate
here for completeness.

Lemma A.1. Let A ∈ Herm (B⊗n) be a k′-local Hamiltonian. Consider the following promise
problem Π′.

YES: There exists a sequence (Ui)
m′
i=1 of l-local unitaries such that 〈ψA|A|ψA〉 ≤ α for |ψA〉 =

Um′ · · ·U1|0〉⊗n.

NO: λmin(A) ≥ β.

Π′ is polynomial-time reducible to GSCON with m = 2m′ + 2, η1 = α, η2 = β/(16m2), η3 = 0,
η4 = 1/4, l = 2, k = k′ + 2, ∆ = η2 − η2, if ∆ > 0.

Proof. The basic idea is to construct a Hamiltonian H by adding three “GO” qubits to A, such
that traversing the low energy space of H forces one to simulate a protocol, which first prepares
state |ψA〉 using local gates, then checks that |ψA〉 is indeed low energy, and finally uncomputes
|ψA〉.

Define H ∈ Herm(B⊗(n+3)) acting on a Hamiltonian register h and GO register G:

H := Ah ⊗ PG, P := I − |000〉〈000| − |111〉〈111|

H is k-local, as P can be written 2-locally [GS18]. The initial and final states are defined as
|ψ〉 := |0〉⊗n|0〉⊗3 and |φ〉 := |0〉⊗n|1〉⊗3. Π = (H, η1, η2, η3, η4,∆, l,m, |ψ〉, |φ〉) is now a valid
instance of GSCON, and can be computed in polynomial time.

Correctness: Suppose Π′ is a YES instance, i.e. there exists a sequence (Ui)
m′
i=1 of l-local

unitaries, such that 〈ψA|A|ψA〉 ≤ α for |ψA〉 = Um′ · · ·U1|ψ〉. We show that Π is also a YES
instance by constructing a sequence (Vi)

m
i=1 of l-local unitaries, such that |φ〉 = Vm · · ·V1|ψ〉 and

〈ψi|H|ψi〉 ≤ η1 with |ψi〉 := Vi · · ·V1|ψ〉 for all i ∈ [m]. Vm · · ·V1 implement the following steps:

1. Prepare |ψA〉: Apply (Um′ · · ·U1)h.

2. Begin checking |ψA〉: Apply (X ⊗X ⊗ I)G.

3. Finish checking |ψA〉: Apply (I ⊗ I ⊗X)G.

4. Uncompute |ψA〉: Apply (U †1 · · ·U
†
m′)h.

This sequence has length m = 2m′ + 2 and maps |ψ〉 to |φ〉 as desired. All intermediate states
(besides the state after Step 2) |ψi〉 are in the nullspace of H, as P maps their register G to 0. After
Step 2, we have state |a2〉 = |ψA〉h|110〉G. By assumption, it holds that 〈a2|H|a2〉 = 〈ψA|A|ψA〉 ≤
α = η1.

Soundness: Suppose Π′ is a NO instance. Let S and T be the image of projectors Ih⊗|000〉〈000|G
and Ih ⊗ |111〉〈111|G, respectively. S, T are 2-orthogonal, and |ψ〉 ∈ S, |φ〉 ∈ T . Now fix any
sequence (Vi)

m
i=1 of two-qubit unitaries. If ‖|ψm〉 − |φ〉‖2 ≥ 1/4 = η4, Π is already a NO instance

for GSCON. Otherwise, we can apply the Traversal Lemma (Lemma 5.9) with ε = 1/4 to conclude
that there exists an i ∈ [m], such that

〈ψi|P ′|ψi〉 ≥
(

1

4m

)2

=
η2
β
,

55

where |ψi〉 := Vi · · ·V1|ψ〉 and P ′ = I −ΠS −ΠT = Ih ⊗ PG. Then, Π is a NO instance because

〈ψi|H|ψi〉 = 〈ψi|A⊗ P |ψi〉 ≥ β〈ψi|Ih ⊗ P |ψi〉 = β〈ψi|P ′|ψi〉 ≥ η2,

where the first inequality follows since, by assumption, λmin(A) ≥ β.

To prove PSPACE-hardness, we combine Lemma A.1 with two further insights. Firstly, 2r(n)

unitary 2-local gates are sufficient to construct any state |ψ〉 ∈ Bn exactly (starting in |0n〉) for
some polynomial r [NC11]. Therefore, the problem Π defined in Lemma A.1 is equivalent to the
problem whether λmin(H) ≤ α or λmin(H) ≥ β for m′ = 2r(n).

Secondly, QMA with an inverse exponential promise gap (i.e. c − s = 2− poly(n)), denoted
PreciseQMA, was shown by Fefferman and Lin to be PSPACE-complete [FL18]. They also show
that k-LH with inverse exponential gap, denoted precise k-LH, is PSPACE-complete. Their con-
struction leads to the following lemma, which allows us to reduce PSPACE to a precise k-LH
instance with thresholds α and β, such that we can apply Lemma A.1 to solve it in GSCONexp

with m = 2r(n).

Lemma A.2. Any problem Π in PSPACE is poly-time reducible to a k-LH instance with β/α ≥
2p(n) with α ≥ 2− poly(n), where p(n) is a freely chosen polynomial.

Proof. This proof is based on [FL18, Theorem 24]. Π can be reduced to PreciseQMA with com-
pleteness c and soundness s, such that

1− c = ε, 1− s = −ε+ 2−g(n),

for some polynomial g(n) depending on Π and any ε = 2−q(n) for some polynomial q(n) of our
choice [FL18].

The corresponding PreciseQMA verifier uses T ≤ h(n, log(1/ε)) unitaries, for some polynomial
h(x, y) [FL18]. Hence, PreciseQMA with completeness c and soundness s can be reduced to a
3-local Hamiltonian instance with thresholds

α =
1− c
T + 1

=
ε

T + 1
, β =

1− s
T 3

=
2−g(n) − ε

T 3
.

We can then choose a polynomial q(n) ≥ 2g(n) such that

β

α
=
T + 1

T 3

2−g(n) − ε
ε

≥ T−2 ε−1 2−g(n)−1 =
2q(n)−g(n)−1

h2(n, q(n))
≥ 2p(n).

Theorem A.3. GSCONexp is PSPACE-hard.

Proof. Follows directly from Lemmas A.1 and A.2 and the above discussion.

B SEPARABLE SPARSE GSCONexp is NEXP-complete

Based on the fact that the separable sparse Hamiltonian problem is NEXP-complete (Corollary 7.4),
we introduce a variant of GSCON that is also NEXP-complete.

Definition B.1 (Separable sparse ground state connectivity). SEPARABLE SPARSE GSCON is
defined as GSCON, but the input H ∈ Herm (B⊗n) is a sparse Hamiltonian (instead of a local one)

56

with a bipartition (L,R) of the qubits H acts on, and every unitary U1, . . . , Um acts either on L or
on R. SEPARABLE SPARSE GSCONexp is defined analogously.

An analogue of Lemma A.1 for the separable sparse case also follows from the proof of [GS18,
Lemma 5.2].

Lemma B.2. Let A ∈ Herm (B⊗n) be a sparse Hamiltonian with a bipartition of the qubits A acts
on into (L,R). Consider the following promise problem Π′.

YES: There exists a sequence (Ui)
m′
i=1 of l-local unitaries acting either on L or R such that

〈ψA|A|ψA〉 ≤ α for |ψA〉 = Um′ · · ·U1|0〉⊗n.

NO: For all unit vectors |ψ1〉|ψ2〉, 〈ψ1|L〈ψ2|RA |ψ1〉L|ψ2〉R ≥ β.

Π′ is polynomial-time reducible to SEPARABLE SPARSE GSCON with m = 2m′ + 2, η1 = α,
η2 = β/(16m2), η3 = 0, η4 = 1/4, l = 2, ∆ = η2 − η2, if ∆ > 0.

Proof. The proof is almost the same as Lemma A.1, so we just mention the differences. Here, Π is
a SEPARABLE SPARSE GSCON instance. We choose the bipartition as (L,R+G), i.e. the gates
may act on R and G simultaneously. In the end, we need to show 〈ψi|H|ψi〉 ≥ η2. For that, note
that |ψi〉 is a product state of the form |ψi〉 = |γ1〉L ⊗ |γ2〉RG, where we can further decompose

|γ2〉 =
∑

x∈{0,1}3
ax|γ2,x〉R|x〉G.

Then for X := {0, 1}3 \ {000, 111},

〈ψi|H|ψi〉 =
∑
x∈X
|ax|2〈γ1|〈γ2,x|A|γ1〉|γ2,x〉 ≥

∑
x∈X
|ax|2β = β〈ψi|P ′|ψi〉 ≥ η2,

where the first inequality holds by assumption of the NO case.

Theorem B.3. SEPARABLE SPARSE GSCONexp is NEXP-complete.

Proof. Containment of SEPARABLE SPARSE GSCONexp in NEXP is trivial. Hardness is analo-
gous to Theorem A.3 using Lemma B.2 and Corollary 7.4.

References

[ABDFS08] S. Aaronson, S. Beigi, A. Drucker, B. Fefferman, and P. Shor. “The Power of Unen-
tanglement.” In: (Nov. 2008). arXiv: 0804.0802 [quant-ph].

[ALMSS98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof verification and
the hardness of approximation problems.” In: Journal of the ACM 45.3 (May 1998),
pp. 501–555. issn: 0004-5411. doi: 10.1145/278298.278306.

[AS98] S. Arora and S. Safra. “Probabilistic checking of proofs: a new characterization of
NP.” In: Journal of the ACM 45.1 (Jan. 1998), pp. 70–122. issn: 0004-5411. doi:
10.1145/273865.273901.

[BCWW01] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. “Quantum Fingerprinting.”
In: Physical Review Letters 87.16 (Sept. 2001). issn: 1079-7114. doi: 10 . 1103 /

physrevlett.87.167902.

57

https://arxiv.org/abs/0804.0802
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1103/physrevlett.87.167902
https://doi.org/10.1103/physrevlett.87.167902

[BFL90] L. Babai, L. Fortnow, and C. Lund. “Nondeterministic exponential time has two-
prover interactive protocols.” In: Proceedings [1990] 31st Annual Symposium on Foun-
dations of Computer Science. Oct. 1990, 16–25 vol.1. doi: 10.1109/FSCS.1990.
89520.

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. “Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions.” In: Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing. STOC ’88. Chicago, Illinois, USA:
Association for Computing Machinery, 1988, pp. 113–131. isbn: 0897912640. doi:
10.1145/62212.62223.

[BT12] H. Blier and A. Tapp. “A Quantum Characterization Of NP.” In: computational
complexity 21.3 (Sept. 2012), pp. 499–510. issn: 1420-8954. doi: 10.1007/s00037-
011-0016-2. arXiv: 0709.0738 [quant-ph].

[CBC21] L. Clinton, J. Bausch, and T. Cubitt. “Hamiltonian simulation algorithms for near-
term quantum hardware.” In: Nature Communications 12.1 (Aug. 2021). issn: 2041-
1723. doi: 10.1038/s41467-021-25196-0. arXiv: 2003.06886 [quant-ph].

[CD10] J. Chen and A. Drucker. Short Multi-Prover Quantum Proofs for SAT without En-
tangled Measurements. 2010. arXiv: 1011.0716 [quant-ph].

[CF13] A. Chiesa and M. A. Forbes. In: Chicago Journal of Theoretical Computer Science 1
(2013), pp. 1–23. issn: 1073-0486. doi: 10.4086/cjtcs.2013.001. arXiv: 1108.2098
[quant-ph].

[Coo71] S. A. Cook. “The complexity of theorem-proving procedures.” In: Proceedings of the
third annual ACM symposium on Theory of computing. STOC ’71. Shaker Heights,
Ohio, USA: Association for Computing Machinery, May 1971, pp. 151–158. isbn:
9781450374644. doi: 10.1145/800157.805047.

[CS12] A. Chailloux and O. Sattath. “The Complexity of the Separable Hamiltonian Prob-
lem.” In: 2012 IEEE 27th Conference on Computational Complexity. ISSN: 1093-0159.
June 2012, pp. 32–41. doi: 10.1109/CCC.2012.42.

[DS09] D. Gottesman and S. Irani. “The Quantum and classical complexity of translationally
invariant tiling and Hamiltonian problems.” In: 50th IEEE Symposium on Founda-
tions of Computer Science (FOCS 2009). 2009, pp. 95–104.

[FL18] B. Fefferman and C. Y.-Y. Lin. “A Complete Characterization of Unitary Quan-
tum Space.” In: 9th Innovations in Theoretical Computer Science Conference (ITCS
2018). Ed. by A. R. Karlin. Vol. 94. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 4:1–4:21. isbn: 9783959770606. doi: 10.4230/LIPIcs.ITCS.2018.4. arXiv:
1909.05981 [quant-ph].

[FL92] U. Feige and L. Lovász. “Two-Prover One-Round Proof Systems: Their Power and
Their Problems (Extended Abstract).” In: Proceedings of the Twenty-Fourth Annual
ACM Symposium on Theory of Computing (STOC). Association for Computing Ma-
chinery, 1992, pp. 733–744. doi: 10.1145/129712.129783.

[FR21] B. Fefferman and Z. Remscrim. “Eliminating intermediate measurements in space-
bounded Quantum computation.” In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (June 2021). doi: 10.1145/3406325.3451051.
arXiv: 2006.03530 [quant-ph].

58

https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1145/62212.62223
https://doi.org/10.1007/s00037-011-0016-2
https://doi.org/10.1007/s00037-011-0016-2
https://arxiv.org/abs/0709.0738
https://doi.org/10.1038/s41467-021-25196-0
https://arxiv.org/abs/2003.06886
https://arxiv.org/abs/1011.0716
https://doi.org/10.4086/cjtcs.2013.001
https://arxiv.org/abs/1108.2098
https://arxiv.org/abs/1108.2098
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/CCC.2012.42
https://doi.org/10.4230/LIPIcs.ITCS.2018.4
https://arxiv.org/abs/1909.05981
https://doi.org/10.1145/129712.129783
https://doi.org/10.1145/3406325.3451051
https://arxiv.org/abs/2006.03530

[FV15] J. Fitzsimons and T. Vidick. “A multiprover interactive proof system for the local
Hamiltonian problem.” In: 2015 Conference on Innovations in Theoretical Computer
Science (ITCS 2015). 2015, pp. 103–112.

[GI13] D. Gottesman and S. Irani. “The Quantum and Classical Complexity of Transla-
tionally Invariant Tiling and Hamiltonian Problems.” In: Theory of Computing 9
(Jan. 2013), pp. 31–116. doi: 10.4086/toc.2013.v009a002. arXiv: 0905.2419

[quant-ph].

[GK12] S. Gharibian and J. Kempe. “Hardness of approximation for quantum problems.” In:
39th International Colloquium on Automata, Languages and Programming (ICALP).
2012, pp. 387–398.

[GKMP06] P. Gopalan, P. G. Kolaitis, E. N. Maneva, and C. H. Papadimitriou. “The Con-
nectivity of Boolean Satisfiability: Computational and Structural Dichotomies.” In:
Automata, Languages and Programming. Ed. by M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2006, pp. 346–357. isbn: 9783540359050. doi: 10.1007/11786986_31.

[GMV17] D. Gosset, J. C. Mehta, and T. Vidick. “QCMA hardness of ground space connectivity
for commuting Hamiltonians.” In: Quantum 1 (July 2017), p. 16. doi: 10.22331/q-
2017-07-14-16.

[Gol96] G. Golub. Matrix computations. Baltimore: Johns Hopkins University Press, 1996.
isbn: 080185413X.

[Got97] D. Gottesman. “Stabilizer codes and quantum error correction.” Available at arXiv.org
quant-ph/9705052. 1997.

[GS18] S. Gharibian and J. Sikora. “Ground State Connectivity of Local Hamiltonians.” In:
ACM Transactions on Computation Theory 10.2 (Apr. 2018), 8:1–8:28. issn: 1942-
3454. doi: 10.1145/3186587. arXiv: 1409.3182 [quant-ph].

[GSSSY18] S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka. “Quantum Gener-
alizations of the Polynomial Hierarchy with Applications to QMA(2).” In: 43rd In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS
2018). Vol. 117. 2018, 58:1–58:16.

[Gur03] L. Gurvits. “Classical deterministic complexity of Edmond’s problem and quantum
entanglement.” In: 35th Symposium on Theory of computing (STOC 2003). ACM
Press, 2003, pp. 10–19.

[HM13] A. W. Harrow and A. Montanaro. “Testing product states, quantum Merlin-Arthur
games and tensor optimisation.” In: Journal of the ACM 60.1 (Feb. 2013), pp. 1–43.
issn: 0004-5411, 1557-735X. doi: 10.1145/2432622.2432625. arXiv: 1001.0017.

[Kin18] Y. Kinoshita. QMA(2) with postselection equals to NEXP. 2018. arXiv: 1806.09732
[quant-ph].

[KMY03] H. Kobayashi, K. Matsumoto, and T. Yamakami. “Quantum Merlin-Arthur Proof
Systems: Are Multiple Merlins More Helpful to Arthur?” In: Algorithms and Compu-
tation. Ed. by T. Ibaraki, N. Katoh, and H. Ono. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 189–198. isbn: 978-3-540-24587-2.

[KSV02] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation.
USA: American Mathematical Society, 2002. isbn: 0821832298.

59

https://doi.org/10.4086/toc.2013.v009a002
https://arxiv.org/abs/0905.2419
https://arxiv.org/abs/0905.2419
https://doi.org/10.1007/11786986_31
https://doi.org/10.22331/q-2017-07-14-16
https://doi.org/10.22331/q-2017-07-14-16
https://doi.org/10.1145/3186587
https://arxiv.org/abs/1409.3182
https://doi.org/10.1145/2432622.2432625
https://arxiv.org/abs/1001.0017
https://arxiv.org/abs/1806.09732
https://arxiv.org/abs/1806.09732

[KW00] A. Y. Kitaev and J. Watrous. “Parallelization, amplification, and exponential time
simulation of quantum interactive proof systems.” In: Proceedings of the thirty-second
annual ACM symposium on Theory of computing. STOC ’00. Portland, Oregon, USA:
Association for Computing Machinery, May 2000, pp. 608–617. isbn: 9781581131840.
doi: 10.1145/335305.335387.

[Lev73] L. A. Levin. “Universal sequential search problems.” In: Problems of Information
Transmission 9.3 (1973), pp. 265–266.

[MI00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[MW05] C. Marriott and J. Watrous. “Quantum Arthur–Merlin games.” In: computational
complexity 14.2 (June 2005), pp. 122–152. issn: 1420-8954. doi: 10.1007/s00037-
005-0194-x.

[NC11] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. 10th. USA: Cambridge University Press, 2011. isbn:
1107002176.

[NHES21] D. Nagaj, D. Hangleiter, J. Eisert, and M. Schwarz. “Pinned quantum Merlin-Arthur:
The power of fixing a few qubits in proofs.” In: Physical Review A 103.1 (Jan. 2021).
issn: 2469-9934. doi: 10.1103/physreva.103.012604.

[Per12] A. Pereszlényi. Multi-Prover Quantum Merlin-Arthur Proof Systems with Small Gap.
2012. arXiv: 1205.2761 [quant-ph].

[Sav70] W. J. Savitch. “Relationships between nondeterministic and deterministic tape com-
plexities.” In: Journal of Computer and System Sciences 4.2 (Apr. 1970), pp. 177–
192. issn: 0022-0000. doi: 10.1016/S0022-0000(70)80006-X.

[Suz76] M. Suzuki. “Generalized Trotter’s formula and systematic approximants of exponen-
tial operators and inner derivations with applications to many-body problems.” In:
Communications in Mathematical Physics 51.2 (1976), pp. 183–190. issn: 0010-3616,
1432-0916.

[Wat03] J. Watrous. “On the complexity of simulating space-bounded quantum computa-
tions.” In: computational complexity 12.1 (June 2003), pp. 48–84. issn: 1420-8954.
doi: 10.1007/s00037-003-0177-8.

[Wat08] J. Watrous. “Quantum Computational Complexity.” In: arXiv:0804.3401 [quant-ph]
(Apr. 2008). arXiv: 0804.3401.

[Wat99] J. Watrous. “Space-Bounded Quantum Complexity.” In: Journal of Computer and
System Sciences 59.2 (Oct. 1999), pp. 281–326. issn: 0022-0000. doi: 10.1006/jcss.
1999.1655.

[WBG20] J. D. Watson, J. Bausch, and S. Gharibian. The Complexity of Translationally Invari-
ant Problems beyond Ground State Energies. 2020. arXiv: 2012.12717 [quant-ph].

60

https://doi.org/10.1145/335305.335387
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1103/physreva.103.012604
https://arxiv.org/abs/1205.2761
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1007/s00037-003-0177-8
https://doi.org/10.1006/jcss.1999.1655
https://doi.org/10.1006/jcss.1999.1655
https://arxiv.org/abs/2012.12717

	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Related Work
	1.4 Open questions
	1.5 Organization

	2 Definitions
	2.1 Streaming-QMASPACE
	2.2 Multi-prover interactive proofs
	2.3 Probabilistically checkable proofs
	2.4 Ground State Connectivity Problem

	3 Quantum analogues of NPSPACE
	3.1 Streaming-QCMASPACE vs. NEXP and Savitch's theorem
	3.2 Streaming-QMASPACE vs. QMA_EXP

	4 Universal Quantum Path Following Lemma
	4.1 Technical Lemmas
	4.1.1 Norms
	4.1.2 Unitaries and Hamiltonians

	4.2 Decomposition of Pauli Interactions
	4.3 General Decomposition
	4.4 Approximating paths via local unitaries

	5 Applying Quantum Path Following to GSCON_exp
	5.1 Relation to the 1-Local Case
	5.1.1 Hardness
	5.1.2 Containment

	5.2 Locality in S,T-CONN
	5.3 Relation to the Traversal Lemma

	6 Embedding streaming proofs into unentanglement
	6.1 Proof setup and ingredients
	6.2 Final proof: Combining all ingredients

	7 Applications of the Embedding Lemma
	7.1 Reductions to Separable Sparse Hamiltonian (SSH)
	7.2 Containment in QMA(2,p,q,r)

	A GSCON_exp is PSPACE-hard
	B SEPARABLE SPARSE GSCON_exp is NEXP-complete

