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Systems of correlated particles appear in many fields of science and represent some of the most
intractable puzzles in nature. The computational challenge in these systems arises when interactions
become comparable to other energy scales, which makes the state of each particle depend on all
other particles 1. The lack of general solutions for the 3-body problem and acceptable theory for
strongly correlated electrons shows that our understanding of correlated systems fades when the
particle number or the interaction strength increases. One of the hallmarks of interacting systems is
the formation of multi-particle bound states 2–9. In a ring of 24 superconducting qubits, we develop
a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit
of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in
adjacent qubit sites, we study the propagation of these excitations and observe their bound nature
for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of
the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing
interactions between the ring and additional qubits, we observe an unexpected resilience of the bound
states to integrability breaking. This finding goes against the common wisdom that bound states
in non-integrable systems are unstable when their energies overlap with the continuum spectrum.
Our work provides experimental evidence for bound states of interacting photons and discovers their
stability beyond the integrability limit.

Photons that propagate in vacuum do not interact with
each other; however, many technological applications and
the study of fundamental physics require interacting pho-
tons. Consequently, realizing quantum platforms with
strong interactions between photons constitutes a major
scientific goal 10,11. In this regard, superconducting cir-
cuits are promising candidates since they provide a config-
urable lattice where microwave photons can be confined to
a qubit site, hop between the sites, and interact with each
other. Each site can host localized electromagnetic oscil-
lations and hence be occupied with a discrete number of
microwave photon excitations. The tunability of coupling
elements allows photons to hop between the sites, and
the non-linearity of qubits leads to interaction between
the photons. The zero- and single-photon occupancies of
qubits are used as the |0〉 and |1〉 states in quantum infor-
mation processing. Here we also confine the dynamics to
zero or single occupancy for a given qubit, the so-called
hard core boson limit, and show that microwave photons
can remain adjacent and form coherent bound states.

The advent of quantum processors is giving rise to a
paradigm shift in the studies of correlated systems 12–16.
While theoretical studies of condensed matter models
were focused on Hamiltonian systems for many decades,
high-fidelity quantum processors commonly operate based
on unitary gates rather than continuous Hamiltonian dy-
namics. This experimental access to periodic (Floquet)
unitary dynamics opens the door to a plethora of non-
equilibrium phenomena 17. Since such periodic dynamics
often cannot be described in terms of a local Hamiltonian,
established results are fewer and far in between 18–20. For
instance, until recently, there was no theoretically known
example of bound state formation for interacting Floquet
dynamics.

Integrable models form the cornerstone of our under-
standing of dynamical systems and can serve to bench-

mark quantum processors. A relevant example of an inter-
acting integrable model is the 1D quantum spin-1/2 XXZ
model which is known to support bound states 2–5,21. Re-
cently, the shared symmetries of the spin-1/2 XXZ Hamil-
tonian model with its Floquet counterpart led to a proof
for the integrability of the XXZ Floquet quantum cir-
cuits 22,23. Later, Aleiner obtained the full spectrum for
these Floquet systems and provided analytical results for
bound states 24. The advantage of using quantum pro-
cessors in studying these models becomes apparent when
going beyond the integrability limit, where the classical
counterpart of the circuit shows chaos, and analytical and
numerical techniques fail to scale favorably.

To define systems with bound states, consider a chain
of coupled qubits and the unitary evolution Û of interact-
ing photons on this array. We divide the computational
space of all bitstrings with nph photons into two sets: one
set T composed of all bitstrings in which all photons are
in adjacent sites, e.g. |00...011100...00〉; the other set S
contains all other nph bitstrings, e.g. |00...101001...00〉.
A bound state is formed when the eigenstates of the sys-
tem can be expanded as the superposition of bitstrings
mainly in T and with smaller weight in S. Therefore, for
any initial state |ψ0〉 ∈ T the photons remain adjacent

at all future times |ψ〉 = Û |ψ0〉, which implies that al-
most every projective measurement returns a bitstring in
T (Fig. 1a).

The emergence of a thermodynamic phase or the for-
mation of a bound state in Floquet dynamics seems rather
implausible at first sight. In a closed Floquet system there
is no notion of lowest energy, a key concept in equilibrium
physics. Therefore, the energy minimization that com-
monly stabilizes bound states in e.g. atoms does not hold.
In the absence of interactions and in 1D, photons hop in-
dependently and the evolution can be mapped to that of
free fermions. In this limit, obviously, no bound state can
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FIG. 1. Bound states of photons. a, In a 1D chain of
qubits hosting bound states, an initial state with adjacent pho-
tons evolves into a superposition of states in which the photons
remain bound together. b, Interactions between photons can
lead to destructive interference for paths in which photons do
not stay together, thus suppressing separation. c, Schematic
of the gate sequence used in this work. Each cycle of evolu-
tion contains two layers of fSim gates that connect the even
and odd pairs respectively. The fSim gate has three control-
lable parameters that set the kinetic energy (θ), the interaction
strength (φ) and a synthetic magnetic flux (β). The median
gate fidelity, measured with cross-entropy benchmarking, is
1.1% (see supplementary information).

be formed. The key question of bound state formation is
whether the effect of kinetic energy (hopping) that moves
photons away from each other could be balanced by in-
teractions. In Fig. 1b, we provide a plausibility argument
to illustrate this point. Consider two photons that are
initially occupying adjacent sites, in the low kinetic en-
ergy regime where maximum one hopping event occurs in
the span of a few cycles. In the spirit of Feynman path
formulation, the probability of a given configuration at a
later time can be obtained from summing over all pos-
sible paths that lead to that configuration with proper
weights. When photons are in adjacent sites, they accu-
mulate phase due to the interaction. In the three depicted
paths, the accumulated phases are different, thus lead-
ing to destructive interference. Hence, the interactions
suppress the probability of unbound configurations and
facilitate the formation of bound states.

The control sequence used to generate unitary evolution
in our experiment consists of a periodic application of en-
tangling gates in a 1D ring of NQ = 24 qubits (Fig. 1c).
Within each cycle, 2-qubit fSim gates are applied be-
tween all pairs in the ring. In the 2-qubit subspace,
{|00〉 , |01〉 , |10〉 , |11〉}, this gate can be written as

fSim(θ, φ, β) =




1 0 0 0
0 cos θ ieiβ sin θ 0
0 ie−iβ sin θ cos θ 0
0 0 0 eiφ


 , (1)

where θ and β set the amplitude and phase, respectively,
of hopping between adjacent qubit lattice sites, and the

conditional-phase angle φ imparts a phase on the |11〉
state upon interaction of two adjacent photons. In the
supplementary information, we show that we can achieve
this gate with high fidelity (∼ 1%) for several angles.
In the following, we will denote fSim(θ, φ, β = 0) as
fSim(θ, φ). The qubit chain is periodically driven by a
quantum circuit, with the cycle unitary:

ÛF =
∏

even bonds

fSim(θ, φ, β)
∏

odd bonds

fSim(θ, φ, β). (2)

In the limit of β = 0 and θ, φ→ 0, this model becomes the
Trotter-Suzuki expansion of the XXZ Hamiltonian model.

To quantify to what extent photons remain bound to-
gether, we prepare an initial state with nph photons at ad-
jacent sites and measure the photon occupancy of all sites
after each cycle with approximately 5,000 repetitions. In
Fig. 2a we plot the average photon occupancy (1−〈Ẑj〉)/2
on each site j as a function of circuit depth for the fSim
angles θ = π/6 and φ = 2π/3. Since the fSim gates are
excitation number conserving, all data are post-selected
for the bitstrings with the proper number of excitations,
which allows us to mitigate errors induced by population
decay. While nph = 1 is not a bound state, it provides
a benchmark, where we can clearly see the quantum ran-
dom walk of a single particle and its familiar interference
pattern. For nph = 2, we observe the appearance of two
wavefronts: the fastest one corresponds to unbound pho-
tons, whereas the other one corresponds to the 2-photon
bound state. For nph > 2, the concentration of the pop-
ulation near the center indicates that the photons do not
disperse far, but instead stay close to each other. In the
supplementary information, we also present the situation
where the initial photons are not adjacent, in which case
the system tends toward a uniform distribution.

To extract the wavefront velocity, we select the mea-
sured bitstrings in which the photons remain adjacent, i.e.
in T , and discard the ones in S. In panel c, we present
the spatially and temporally resolved probabilities of the
“center of photon mass” (CM, Fig. 2b) of these T bit-
strings. With this selection, the first panel in c shows a
very similar pattern to the single-particle propagation in
a, highlighting the composite nature of the bound state.
The propagation velocities of the bound states can now be
easily seen, and as expected, the larger bound states prop-
agate more slowly. The wavefronts propagate with con-
stant velocity, indicating that the bound photons move
ballistically and without effects of impurity scattering.
The extracted maximum group velocities of the bound
states, vmax

g (Fig. 2d), match very well with that corre-
sponding to the analytical dispersion relations derived in
ref24, which take the same functional form for all nph:

cos(E(k)− χ) = cos2(α)− sin2(α) cos(k), (3)

where α and χ are functions of nph, θ, and φ (see supple-
mentary information for exact forms).

In order to characterize the stability of the bound
state, it is useful to consider the evolution of the frac-
tion of bitstrings in which the photons remain adjacent,
nT /(nT + nS) (where nT (S) is the number of bitstrings
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FIG. 2. Trajectory of bound photons. a, Time- and site-resolved photon occupancy on a 24-qubits ring for photon numbers
nph = 1−5. To measure a nph-photon bound state, nph adjacent qubits are prepared in the |1〉 state. b, Schematic and example
of bitstrings in T and S. Center of mass is defined as the center of nph adjacent occupied sites. c, Evolution of the center of
mass of nph-bound states. Each trajectory is similar to the single photon case, highlighting the composite nature of the bound
states. d, Extracted maximum group velocity from the trajectory of the center of mass. Black line: theoretical prediction. e,
Decay of the bound state into the single excitations continuum due to dephasing. For all panels, θ = π/6 and φ = 2π/3, and the
trajectories are averaged over all possible initial states. Data are post-selected for number of excitations equal to nph.

in T (S)), which reflects contributions from both internal
unitary dynamics as well as external decoherence (Fig. 2e).
In the absence of dephasing, nT should reach a steady-
state value after the observed initial drop. However, we
observe a slow decay which we attribute to the dephasing
of the qubits, since the data is post-selected to remove
T1 photon loss effects. A remarkable feature of the data
is that the decay rate for various nph values is the same,
indicating that this decay is dominated by bond breaking
at the edges of the bound state.

To show that the bound photons are quasiparticles with
well-defined momentum, energy, and charge, we study
the spectrum of the bound states using a many-body
spectroscopy technique25. We measure the energy of the
bound states by comparing their accumulated phase over

time relative to the vacuum state |0〉⊗NQ . This is achieved
by preparing nph adjacent qubits in the |+X〉-state and
measuring the following nph-body correlator that couples
the bound states with the vacuum state:

〈Cj,nph
〉 = 〈Πj+nph−1

i=j σ+
i 〉 = 〈Πj+nph−1

i=j (Xi + iYi)〉 (4)

for all sets of nph adjacent qubits (Fig. 3a). This proto-
col is based on measuring the Green function of the sys-
tem. While the correlator above is not Hermitian, it can
be reconstructed by measuring its constituent terms (e.g.
〈XjXj+1〉−〈YjYj+1〉+i〈XjYj+1〉+i〈YjXj+1〉 for nph = 2)
and summing these with the proper complex pre-factors.
We note that since Cj,nph

only couples the nph-photon
terms to the vacuum, the initial product state used here
serves the same purpose as an entangled superposition
state |000..00〉+ |00..0110..00〉. By expanding these states
in the momentum basis (k-space), it becomes evident that
〈Cj,nph

〉 contains the phase information needed to evalu-

ate the dispersion relation of the nph bound states:

|ψ(t)〉 =
1√
2

(
|0〉⊗NQ +

∑

k

αke
−iω(k)t |k〉

)

→ 〈Cj,nph
〉 = 1/(2

√
NQ)

∑

k

α∗ke
i(ω(k)t−kj), (5)

where |k〉 and αk are bound nph-photon momentum states
and their coefficients, respectively.

Fig. 3b shows the real and imaginary parts of the cor-
relator for the case of two photons. While the real space
data displays a rather intricate pattern (Fig. 3b), conver-
sion to the energy and momentum domain through a 2D
Fourier transform reveals a clear band structure for both
the single-particle and the many-body states (Fig. 3c).
The observed bands, which are defined modulo 2π/cycle
due to the discrete time translation symmetry of the Flo-
quet circuit, are in agreement with the predictions of Eq.
3, as illustrated in colored dashed curves. The bands shift
when the photon number increases, as expected from the
higher total interaction energy. Moreover, they become
flatter, a characteristic feature of increased interaction ef-
fects.

In order for a bound state to form, the interaction en-
ergy must be sufficiently high compared to the kinetic en-
ergy of the particles. In particular, bound states are only
expected to exist for all momenta when φ > 2θ 24. To ex-
plore this dependence on φ/θ, we also measure the band
structure for nph = 2 in the weakly interacting regime
(θ = π/3, φ = π/6; Fig.3d), which exhibits very dif-
ferent behavior from the more strongly interacting case
studied in Fig.3c: while no band is observed for most
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FIG. 3. Band structure of multi-photon bound states. a, Schematic of circuit used for many-body spectroscopy. nph

adjacent qubits are prepared in the |+〉-state, before evolving the state with a variable number of fSim gates. The phase of
the bound state is probed by measuring the correlator 〈σ+

i ..σ
+
i+nph−1〉 for all sets of nph adjacent qubits. b, Real (top) and

imaginary (bottom) parts of the nph = 2 correlator. c, Band structure for nph = 1−5 (top to bottom), obtained via a 2D Fourier
transform in space and time of the nph-correlators. Color scale: absolute square of the Fourier transform, |Ak,ω|2. Dashed
curves: theoretical prediction in Eqn. 3. d, Band structure for nph = 2 in the weakly interacting (φ < 2θ) regime, displaying the
emergence of a bound state only at momenta near k = ±π. Dashed black lines: theoretically predicted momentum threshold for
the existence of the bound state (see supplementary information). e, Flux dependence of the nph = 2 band structure, displaying
a gradual momentum shift as the flux increases (Φ0 = 2πNQ). Orange circles and dashed line indicate the peak position of the
band. f, Extracted momentum shifts as a function of flux for nph = 1 − 5 (top to bottom), indicating that the rate of shifting
scales linearly with the photon number of the bound states, i.e. the pseudo-charge q of each bound state is proportional to its
number of photons. Colored lines: theoretical prediction.

momenta, a clear state emerges near k = ±π/site. Inter-
estingly, this observation of a bound state in the weakly
interacting regime can be attributed to destructive inter-
ference of the decay products of the bound state: a 2-
photon bound state |..0110..〉 can separate into two possi-
ble states, |..1010..〉 and |..0101..〉, which are shifted rela-
tive to each other by one lattice site. Hence, they destruc-
tively interfere when the momentum is near k = ±π/site,
which prevents separation. (See the supplementary infor-
mation for band structures of additional fSim angles.)

External magnetic fields can shift the energy bands
and reveal the electric pseudo-charge of the quasi-particles
constituting the band. We produce a synthetic magnetic
flux Φ that threads the ring of qubits by performing Z-
rotations with angles ±Φ/NQ on the qubits before and
after the two-qubit fSim gates, resulting in a complex hop-
ping phase β = Φ/NQ when a photon moves from site j
to j+1 26. As a consequence, the eigenstates are expected
to attain a phase (nphβ)·j, effectively shifting their quasi-
momentum by nphβ. Fig. 3e displays the flux dependence
of the two-photon band structure, exhibiting a clear shift
in momentum as Φ increases. In Fig. 3f, we extract the
shift for nph = 1−5 and observe excellent agreement with
the theoretical predictions 24. Crucially, the momentum
shift is found to scale linearly with nph, indicating that
the observed states have the correct pseudo-charge.

Generally, bound states in the continuum are rare and

very fragile, and their stability rely on integrability or
symmetries27,28. Familiar stable dimers, such as excitons
in semiconductors, have energy resonances in the spectral
gap. In the system considered here, the bound states are
predicted to almost always be inside the continuum due
to the periodicity of the quasi-energy. Our results shown
in Figs. 3 demonstrate an experimental verification of this
remarkable theoretical prediction in the integrable limit
and constitutes our first major result.

Next we probe the stability of the bound states against
integrability breaking. Fermi’s golden rule suggests that
any weak perturbation that breaks the underlying sym-
metry will lead to an instability and a rapid decay of the
bound states into the continuum. We examine the ro-
bustness of the nph = 3 bound state by constructing a
quasi-1D lattice where every other site of the 14 qubit
ring is coupled to an extra qubit site (Fig. 4a). The ex-
tra sites increase the Hilbert space dimension and ensure
that the system is not integrable. We implement the cir-
cuit depicted in Fig. 4b with three layers of fSim gates
in each cycle. The first two layers are the XXZ ring dy-
namics with the same parameters used in Fig. 2: θ = π/6
and φ = 2π/3. In the third layer we also use φ′ = 2π/3
but vary the swap angle θ′ to tune the strength of the
integrability breaking perturbation.

Fig. 4c shows the probability of measuring three-photon
T -bitstrings as a function of time for various θ′ angles.
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the momentum averaged spectra (g) as a function of θ′. The gray line indicates the result for the chain without the extra qubits.
g, Momentum averaged quasi-energy spectra for varying θ′ fitted with Lorentzian. The bound state peak slowly disappears with
the increase of θ′.

In the limit of small θ′, where the integrability breaking
is weak, the system shows a slowly decaying probability,
similar to the unperturbed (integrable, θ′ = 0) results
presented in Fig 2. In Fig. 4d, we show the dependence of
this probability on perturbation strength after two fixed
circuit depths. For strong perturbations, the integrability
breaking washes out the bound state and the probability
rapidly decays to the equiprobable distribution in the full
Hilbert space of 3 photons (T +S). However, the surpris-
ing finding is that even up to θ′ = π/6, which corresponds
to perturbation gates identical to the gates on the main
ring, i.e. a strong perturbation, there is very little de-
cay in nT . This observation demonstrates the resilience
of the bound state to perturbations far beyond weak in-
tegrability breaking for nph = 3. We further confirm this
finding by performing spectroscopy of these states, which
shows the presence of the nph = 3 bound states up to
large perturbations (Fig. 4e). By fitting the momentum
averaged spectra (Fig. 4g), we extract the θ′-dependence
of the half-width of the band (Fig. 4f). Indeed, we find
that the bandwidth is insensitive to θ′ up to very large
perturbation.

These observations are at odds with the expectation
that non-integrable perturbation leads to the fast decay
of bound states into the continuum. One known excep-
tion is many-body scars, where certain initial states ex-
hibit periodic revivals and do not thermalize 29,30. More-
over, in the case of weak integrability breaking, robust-
ness to perturbations can result from quasi-conserved or
hidden conserved quantities 31,32. However, the resilience
observed here extends well beyond the weak integrabil-
ity breaking regime typically considered in such scenarios.
Alternatively, the presence of highly incommensurate en-

ergy scales in the problem can lead to a very slow decay
in a chaotic system due to parametrically small transi-
tion matrix elements, a phenomenon called prethermal-
ization 33,34. Our experiment finds the survival of an in-
tegrable system’s feature - bound states - for large per-
turbation and in the absence of obvious scale separation,
which may point to a new regime arising due to interplay
of integrability and prethermalization.

The key enabler of our experiment is the capability of
tuning high fidelity fSim gates to change the ratio of ki-
netic to interaction energy, as well as directly measuring
multi-body correlators 〈Cj,nph

〉, both of which are hard
to access in conventional solid state and atomic physics
experiments. Aided by these capabilities, we observed the
formation of multi-photon bound states and discovered a
striking resilience to non-integrable perturbations. This
experimental finding, although still observed for computa-
tionally tractable scales, in the absence of any theoretical
prediction, constitutes our second major result (Fig. 4). A
proper understanding of this unexpected discovery is cur-
rently lacking.
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I. Quantum processor details and coherence times

The experiment is performed on a quantum processor with similar design as that in Ref. [? ]. The qubits are
transmons with tunable frequencies and interqubit couplings. Figure S1a shows the single-qubit relaxation times of the
24 qubits used in the experiment, where a median value of T1 = 16.1 µs is found. The dephasing times T ∗2 , measured
via Ramsey interferometry, are shown in Fig. S1b and have a median value of 5.3 µs. Lastly, The T2 values after CPMG
dynamical decoupling sequences are also shown in Fig. S1b and have a median of 17.8 µs.
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FIG. S1. a, Single-qubit relaxation times T1 across the 24-qubit ring. Dashed line represents the median value of 16.1 µs. b,
Single-qubit T2 values measured via Ramsey and Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling sequence. Dashed
lines indicate median T2 values of 5.3 µs (Ramsey) and 17.8 µs (CPMG), respectively.

II. 2-Qubit fSim gates

A. fSim calibration

The floquet unitaries used in the experiment are composed of alternating layers of fSim(θ, φ, β) gates which are
defined as:

fSim(θ, φ, β) =




1 0 0 0
0 cos θ ieiβ sin θ 0
0 ie−iβ sin θ cos θ 0
0 0 0 eiφ


 , (S1)

where θ is the SWAP angle and φ is the conditional phase, and β is phase accumulated resulting from hopping. For
open chains, β is not gauge invariant and can be ignored, but for closed chains, non-zero β values lead to a total flux
threading the closed chain. fSim(θ, φ, β) describes the unitary form output by a DC pulse bringing the fundamental
frequencies ω1 and ω2 of two transmons into resonance and turning on their interqubit coupling g for a given time
duration tp, as illustrated in Fig. S2a. During tp, resonant interaction between the |10〉 and |01〉 states of the two
transmons leads to population transfer and a finite θ. Additionally, dispersive interaction between the |11〉 and |02〉
(as well as |20〉) states of the two qubits gives rise to a finite conditional phase φ.

Due to the frequency detunings of the qubits during the DC pulse, the fSim unitary also includes additional single-
qubit Z rotations and is more generally described by:

FSIM(θ, φ, γ, α, β) =




1 0 0 0
0 ei(γ−α) cos θ iei(γ+β) sin θ 0
0 iei(γ−β) sin θ ei(γ+α) cos θ 0
0 0 0 e2iγeiφ


 , (S2)

where γ, α and β are complex phases incurred by the single-qubit Z rotations. These single-qubit phases are calibrated
and reduced to nearly zero using the technique of Floquet calibration described in our previous works [? ? ? ]. Here
we focus on the tuning and calibration of the two-qubit angles θ and φ.

Figure S2c and Figure S2d show experimentally obtained values of θ and φ as functions of pulse parameters tp and
gmax. In these measurements, the technique of unitary tomography [? ] is used to estimate the angles. We have also
enforced a Gaussian filter with time constant 5 ns on the rising/falling edges of the pulse on g to ensure adiabatic
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FIG. S2. a, Schematic illustration of the DC pulse used to realize a fSim gate. b, Schematic plot showing the four sets of
fSim angles used in this work: (θ/π, φ/π) = ( 1

3
, 5
6
) (filled circle), ( 1

6
, 2
3
) (square), ( 1

6
, 1
2
) (triangle) and ( 1

3
, 1
6
) (diamond). c,

Experimentally measured θ as a function of pulse length tp and maximum interqubit coupling gmax. The approximate pulse
parameters for the fSim gates in panel b are indicated by their corresponding symbols. d, Similar plot as panel c but with φ
shown instead. e, θ and φ as functions of tp for a fixed gmax/2π of 36 MHz. Solid lines show linear fits. f, θ and φ as functions
of gmax for a fixed tp of 5 ns. Solid lines show a linear fit ∝ gmax to θ(gmax) and a quadratic fit ∝ g2max to φ(gmax).

evolution with respect to the |11〉 → |20〉 and |11〉 → |02〉 transitions. This is important to minimize leakage. We
observe that θ shows a series of maxima/minima corresponding to values of tp and gmax where |01〉 is fully transformed
to |10〉 or returned back to |01〉. On the other hand, φ increases monotonically over tp and gmax until it reaches a
maximum value of π where it is wrapped by 2π and becomes −π. Given the dependence of both unitary angles on both
pulse parameters tp and gmax, independent control of θ or φ is not possible with a single pulse parameter. As such, past
works have added a resonant pulse between the |11〉 and |02〉 states to enact a pure CPHASE gate, thereby enabling full
tunablity over θ and φ [? ]. The additional pulse, however, significantly increases the complexity of quantum control
and is also prone to leakage.

In this work, we have chosen to perform fSim gates directly using the single pulse in Fig. S2a. Our approach relies on
the different scaling of θ and φ with the pulse parameters, as illustrated by Fig. S2e and Fig. S2f. Here we observe that
while θ and φ both scale linearly with tp, the scaling with gmax is different for the two angles: whereas θ scales linearly
with gmax, φ ∝ g2max due to the fact that dispersive shift of the |11〉 state by the |02〉 and |20〉 states is proportional
to g2/∆, where ∆ is the frequency difference between |11〉 and the |02〉 (|20〉). The difference in scaling implies that
it is possible to achieve a desired combination of θ and φ by choosing a particular “contour” in the 2D space of (tp,
gmax) where θ has the target value, then increasing (decreasing) gmax while decreasing (increasing) tp until φ attains
the target value as well.

Practically, φ and θ are calibrated via a simple gradient descent method: we start with an initial guess (t0, g0) for
the pulse parameters (tp, gmax) based on the 2D scan shown in Fig. S2c and Fig. S2d. The corresponding values of
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φ and θ are then accurately determined via Floquet calibration [? ? ? ] which we denote as φ0 and θ0. We then
calibrate the fSim angles at (tp, gmax) = (t0 + δt, g0) and (tp, gmax) = (t0, g0 + δg). The results allow us to approximate
the following gradient matrix:

Mg =

(
∂φ/∂t ∂φ/∂g
∂θ/∂t ∂θ/∂g

)
. (S3)

A new set of pulse parameters (t1, g1) are then computed from the gradient matrix and the deviations from target fSim
angles, (∆t,∆g) = (tc − t0, gc − g0), via:

(
t1
p1

)
= M−1g

(
∆t
∆g

)
+

(
t0
p0

)
. (S4)

The fSim angles (tp, gmax) are then measured at the new pulse parameters (t1, g1) and the process is repeated. Generally
only two gradient descents are sufficient to reach control errors on the level of ∼20 mrad for both θ and φ.

When repeating the fSim gate n times in Floquet calibration, the error accumulates as:

fSim(θ, φ) =




1 0 0 0
0 eiγnA iei(γn+β)B 0
0 iei(γn−β)B eiγnA∗ 0
0 0 0 e2iγneiφn


 (S5)

with

A = cosnΩ− iQ sinnΩ (S6)

B =
√

1−Q2 sinnΩ (S7)

cos Ω = cos θ cosα/2 (S8)

Q = cos θ sinα/2/sin Ω (S9)

B. fSim gate control error

The angular errors, which are measured using periodic Floquet calibration as outlined in section II A, are displayed
in Fig.II A along with the measured 2-qubit Pauli error for the four pairs of θ,φ studied in our work. The angular errors
of the fSim gate can be combined into an overall control error by calculating the coherent gate infidelity:

εc = 1− F =
1

1 +D−1

eP︷ ︸︸ ︷(
1− 1

D2
|Tr{U†targetUactual}|2

)
(S10)

where eP is the Pauli error, D = 4 is the size of the computational subspace of the gate, and Utarget(actual) is the target
(actual) unitary. Inserting the unitary matrix in eq. S2, we find the control error in terms of the angular errors:

εc =
2

5
dθ2 +

3

20
dφ2 +

1

10
dγ2 +

1

5
dγdφ+

1

10
cos2 θ· dα2 +

1

80
sin2 θ

(
7 + cos 2θ + 2 sin2 θ

)
· dβ2 (S11)

For the four angle pairs in our study, we find median control errors of εc(θ = π/6, φ = 2π/3) = 1.5· 10−4, εc(θ =
π/6, φ = π/2) = 1.0· 10−4, εc(θ = π/3, φ = 5π/6) = 3.1· 10−4, and εc(θ = π/3, φ = π/6) = 1.8· 10−4.
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FIG. S3. a, Integrated histogram of errors in the control angle parameters of the fSim gate as measured by periodic calibration,
for target angles θ = π/6, φ = π/2, α = β = γ = 0. Inset: table displaying the mean errors and their standard deviation. b,
Integrated histogram of average 2-qubit Pauli errors, considering both the target unitary (blue) and the re-fitted unitary (pink).
Inset: Pauli errors plotted against qubit position, demonstrating the absence of systematic spatial dependence. Dashed vertical
lines denote the medians. c-h, Same as a,b, but for target fSim angles, θ = π/6, φ = 2π/3 (c,d), θ = π/3, φ = 5π/6 (e,f),
θ = π/3, φ = π/6 (g,h). The remaining target angles are zero (α = β = γ = 0) in all plots.
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III. Analytical results for the Floquet XXZ chain

A. Band structure

In this section, we present analytical expressions for the dispersion relations in the Floquet XXZ model, as derived
in Ref.[? ]. The solution is separated into two cases, corresponding - in the limit of the Hamiltonian model - to the
gapped (φ > 2θ) and the gapless (φ < 2θ) phase.

We first focus on the gapped phase (φ > 2θ), since in this case, there exists a bound state for all nph for every
momentum (see end of section 3.5 p.19 in Ref.[? ]). Importantly, the dispersion relations of the bound states have a
similar functional form to that of a single particle excitation (see Eqs. (72) and (85) in [? ]):

cos(E(k)− χ) = cos2(α)− sin2(α) cos(k) with k ∈ [−π, π], (S12)

where α and χ depend on the number of photons:

• For nph = 1, the parameters are α = θ and χ = 0

• For nph ≥ 2, one finds:

χ = nphφ− 2 arctan (tan(φ/2) tanh η coth(nphη)) (S13)

cos2 α =
cos2 θ sinh2 nphη

cos2 θ sinh2 nphη + sin2 θ sinh2 η
, (S14)

where η is given by:

sinh2(η) =
cos2 θ − cos2(φ/2)

sin2 θ
. (S15)

In the gapless regime (φ < 2θ), the bound state is only predicted to appear for one of the two branches in the first
Brillouin zone and for a finite range of momenta, with limits given by (see end of section 3.5 p.19 in Ref.[? ]):

k0 = ±2nphη (S16)

These are the limits plotted with dashed black vertical lines in Fig. 3d in the main text, as well as in Fig. S8d. In this
case the dispersion relation is similar to the gapless case with the substitution sinh η 7→ sin η and tanh η 7→ tan η.

B. Group velocity

We can calculate the group velocity by differentiating both sides of S12:

vg(k) =
dE

dk
= − sin2 α sin k

sin(E(k)− χ)
(S17)

We notice that the maximum group velocity is achieved for k = π/2 leading to

vmax
g =

sin2 α√
1− cos4 α

(S18)

This is the velocity of the initial cone that is shown in the main text Fig.2d
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FIG. S4. a, Band structure of the different bound states for θ = π/6 and φ = 2π/3. b, c, Width of the nph-photon band
structure as a function of the parameters of the fSim gate. All these results are calculated using the exact solution given in eq.
S12.

C. Choice of parameters θ and φ

The choice of the angles θ and φ of the fSim gate is dictated by several considerations, with regards to both the
physics of the bound state and the experimental parameters of the fSim gate. In the main text, we present several
angles as they have differents properties:

• First and foremost, the behavior is significantly different for the gapped φ > 2θ regime and the gapless regime.
We have predominantly focused on the gapped regime where bound states exist for all momenta, simplifying the
analysis.

• Secondly, as shown in Fig. S4b, the amount of dispersion in the spectrum increases with increasing (decreasing)
values of θ (φ). Hence, the ratio φ/θ should not be too large in order to maximize the visibility of the dispersion.

• Higher values of φ cause the bound state to be more localized, as intuitively expected from the stronger interac-
tions.

• Finally the quality of the fSim gate depends on the angles, since strong interaction requires longer gates time or
larger interaction strength (see section II).
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IV. Examples of multi-photon spectroscopy

In this section we provide a pedagogical illustration of the basics of multi-photon spectroscopy by stepping through
two simple examples. We focus on Hamiltonian dynamics, which is conceptually similar to the Floquet dynamics. The
Fourier transform in space that was done in the main text is resulting from the space invariance of the circuit. For
simplicity we only focus on the time-energy transformation and do not talk about the space-momentum transformation.

Consider a Hamiltonian Ĥ with eigenenergies ωn and eigenstates |ϕn〉

Ĥ |ϕn〉 = ωn |ϕn〉 . (S19)

We seek a dynamical approach to learn the spectrum of H. Consider an initial state |ψ0〉 and its evolution |ψt〉

|ψ0〉 =
∑

n

cn |ϕn〉 , |ψt〉 = e−iĤt |ψ0〉 =
∑

n

cn e
−iωnt |ϕn〉 , (S20)

where the complex coefficient cn = 〈ϕn|ψ0〉 is the overlap of |ψ0〉 with |ϕn〉. The desired spectrum of Ĥ can be extracted
(e.g. by Fourier transform) from the overlap of |ψ0〉 and |ψt〉

〈ψ0|ψt〉 =
∑

n

|cn|2 e−iωnt . (S21)

This overlap also frequently appears in non-equilibrium dynamics questions. Next, we provide a scheme to computing
it via two simple examples.

Single-excitation example. We begin with the case of single photon dynamics in a 4-qubit system. We
are only considering excitation conserving Hamiltonians. The resulting unitary Û when written in the basis of
|0000〉 , |1000〉 , |0100〉 , |0010〉 and |0001〉 becomes:

|0000〉 |1000〉 |0100〉 |0010〉 |0001〉

Û =




1 0 0 0 0
0 u11 u12 u13 u14
0 u21 u22 u23 u24
0 u31 u32 u33 u34
0 u41 u42 u43 u44


 .

(S22)

The first insight is using the fact that Û is photon conserving and the |0000〉 manifold is detached from the other
manifolds. We leverage this fact and create a phase-sensitive initial state (normalizations ignored)

|ψ0〉 = |0000〉+ |0100〉 , (S23)

which leads to

|ψt〉 = Û |ψ0〉 = |0000〉+ u12 |1000〉+ u22 |0100〉+ u32 |0010〉+ u42 |0001〉 . (S24)

From equations S19 to S21 it is evident that the spectrum is always given by the Fourier transform of 〈ψ0|ψt〉. The task
is to find an observable which is a measure of this overlap. Given the initial state we have chosen, then 〈ψ0|ψt〉 = 1+u22.

The second insight is to measure a non-hermitian operator M̂Q2 ≡ |0000〉 〈0100|, because:

〈ψt| M̂Q2 |ψt〉 = 〈ψt|u22 |0000〉 = u22. (S25)

Note that the qubit lowering operator acting on Q2, σ−2 , could also be written as

σ−2 = X̂2 − iŶ2 = M̂Q2 + |....〉 〈more than single excitation|. (S26)

Since |ψt〉 has terms with only single photons, all gray colored terms can be ignored, and the Fourier transform of
〈ψt|σ−2 |ψt〉 provides the desired spectrum. Notably, this would not have been achieved if the initial state was |ψ0〉 =

|0100〉. While the overlap 〈ψ0|ψt〉 = u22 still gives the spectrum, we find 〈ψt| M̂Q2 |ψt〉 = 0 and also 〈ψt|σ−2 |ψt〉 = 0,
which clearly does not allow for measuring u22.
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FIG. S5. Pulse sequences for determining the spectra of a, a single excitation, and b, two excitations for 4 qubits.

Multi-excitation example. Next, we consider the photon conserving dynamics of two excitations in a 4 qubit
system, with the computational basis |1100〉 , |1010〉 , |1001〉 , |0011〉 , |0101〉 , |00110〉. We start by placing Q3 and Q4
in a |0〉 + |1〉 superposition, which gives rise to a superposition of the vacuum and a two-excitation state, as well as
undesired single excitation states:

|ψ0〉 = |0000〉+ |0011〉+ |0001〉+ |0010〉 . (S27)

The appearance of single excitation terms is not desired and could have been avoided by using proper entangling gates to
arrive at |0000〉+ |0011〉 as a more relevant initial state. However, as our experimental results show, populating (wrong)
manifolds with fewer number of excitations, is not harmful since the two-qubit lowering operator does not couple these
manifolds to the vacuum. The existence of these undesired states does, however, reduce the signal contrast, due to
distributed probabilities. The evolution of the initial states results in:

Û |ψ0〉 = |0000〉+ u14 |1100〉+ u24 |1010〉+ u34 |1001〉+ u44 |0011〉+ u54 |0101〉+ u64 |0110〉
+ |single excitation bitstrings〉. (S28)

The two-qubit lowering operator acting on Q3 and Q4, can also be written as

σ−3 σ
−
4 = X̂3X̂4 − Ŷ3Ŷ4 + iX̂3Ŷ4 + iŶ3X̂4 = |0000〉 〈0011|+ |....〉 〈more than two excitations|. (S29)

Hence, the presence of terms in other manifolds does not leading to wrong answers and 〈ψt|σ−3 σ−4 |ψt〉 provides the
desired 2-photon spectrum. The number of independent Pauli strings that need to be measured scales exponentially
with the number of excitations in the manifold, and hence this method is not scalable to large photon number systems.
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V. Supplementary data
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B. Spectroscopy
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