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Recent work has shown that a self-correcting memory can exist in 3 spatial dimensions, provided
it is protected by a 1-form symmetry. Requiring that a system’s dynamics obey this type of sym-
metry is equivalent to enforcing a macroscopic number of symmetry terms throughout the bulk.
In this paper, we show how to replace the explicit 1-form symmetry in the bulk with an emer-
gent 1-form symmetry. Although the symmetry still has to be explicitly enforced on the boundary,
this only requires O(L2) terms instead of O(L3) terms. We then reinterpret this boundary as a
symmetry-protected topological defect in a bulk topological order. Defects can have interesting
memory properties even in the absence of symmetry.

I. INTRODUCTION

Systems that can store quantum information for an ex-
tended period of time while interacting with a noisy envi-
ronment will be integral components in any scalable im-
plementation of quantum computation. Two important
classes of such systems are fault-tolerant quantum mem-
ories and self-correcting quantum memories. From the
perspective of condensed matter physics, fault-tolerant
quantum memories can store quantum information in-
definitely while evolving at zero temperature in the ther-
modynamic limit, even in the presence of small pertur-
bations. The paradigmatic example is the two-space-
dimensional (2d) toric code [1], which is topologically
ordered. Topologically ordered systems [2] can generi-
cally provide fault tolerance by storing quantum infor-
mation in their space of degenerate ground states. On
the other hand, self-correcting quantum memories must
be able to store quantum information indefinitely even
at some nonzero temperatures, again in the thermody-
namic limit. While the 4d toric code [3] is self-correcting,
there are no known examples in three dimensions. The
4d toric code remains topologically ordered in the tem-
perature range in which it is self-correcting [4], but there
is no general mathematical result on the connection be-
tween self-correction and finite-temperature topological
order [5]. The existence of robust self-correction in 3d
remains an open question.

The hunt for self-correction in systems with generic
dynamics has generated interesting physics even where it
hasn’t achieved its central goal. In 2d, the introduction
of exactly-solvable models has shed light on the classifi-
cation of topological phases. In 3d, a direct search over a
space of models [6] did not result in self-correction [7, 8],
but did kick off the study of fractons [9–11].

In a parallel line of development, progress has been
made by coupling toric codes to 2d [12] or 3d [13] bosons.
In the presence of diverging couplings (for the 2d bosons)
or fine-tuned dynamics (for both), the bosonic systems
can restore self-correction to the toric code. Generic per-
turbations destabilize the memory properties [14].

A more recent model from Roberts and Bartlett [5]
achieves a similar result by coupling to a bulk lattice

spin model, with the advantage that bulk local Hilbert
spaces are finite-dimensional. The model still requires
fine-tuned dynamics, but encodes the fine-tuning in a
higher-form symmetry. Higher-form symmetries [15–17]
are local symmetries that are not gauge symmetries, in
that states related by a symmetry transformation are not
identified as physically equivalent. The locality of the
symmetry means that requiring the dynamics to respect
the symmetry is a very strong constraint. For the model
in Ref. [5], the dynamics must respect a number of con-
straints that scales with the volume of the system. We
will refer to the model as the Roberts-Bartlett model.

In this paper, we show that the bulk higher-form sym-
metry need not be enforced. Instead, we only need to
enforce the symmetry on the boundary. First, in Sec. II
we review the physics of the existing models of quantum
memories. Along the way, we look for insight into what
role the higher-form symmetry plays in self-correction in
the Roberts-Bartlett model. Then, in Sec. III we con-
struct a new model that only requires a higher-form sym-
metry to be enforced on the boundary. The new model
has a topologically ordered bulk, so there is an emer-
gent bulk higher-form symmetry [18], which need not be
enforced. We discuss the physical interpretation of the
new model as a topological defect in Sec. IV. Finally, we
ponder some possible future directions in Sec. V.

II. BACKGROUND

Here we will review the physics that will be useful in
motivating and understanding the model presented in
the next section. First we will focus on various quan-
tum memories and behavior at temperatures above zero.
That material is reviewed thoroughly in Ref. [19]. We
next define higher-form symmetries, leaning on the toric
code for interpretation. Then, we motivate the power of
higher-form symmetries for quantum memories and in-
troduce the Roberts-Bartlett model.
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A. Quantum memories and nonzero temperature

Quantum memories store quantum information for an
extended period of time by using special protected states.
We call the states logical states, and the operators that
act within the space of logical states are logical operators.
The error model that acts on the quantum memory can
not apply logical operators, possibly up to some probabil-
ity cutoff or timescale. In this sense quantum memories
are a generalization of quantum error-correcting codes,
which are in turn a generalization of classical error cor-
recting codes.

In this paper we will focus on Hamiltonian lattice mod-
els, where the logical states are ground states of the sys-
tem. The first such system that was studied as a quan-
tum memory was the toric code [1]. This is a 2d lattice
model, with qubits living on the edges of the lattice. The
Hamiltonian is

HTC = −
∑
v

Av −
∑
f

Bf ,

Av =
∏
e∈∂†v

Xe, Bf =
∏
e∈∂f

Ze,
(1)

where ∂f is the four edges in the boundary of the face
f , and ∂†v is the four edges that form a “star”: the dual
boundary of the vertex v. We use X and Z to denote the
Pauli matrices σx and σz, respectively.

All Av and Bf terms commute with each other. The
only time is this is not obvious is when the vertex v is
on the boundary of the face f . In that case, Av and Bf
share two edges and the signs from commuting two X
operators past two Z operators cancel, so the full terms
commute. Since all terms in the Hamiltonian can be
simultaneously satisfied, the model is exactly solvable.
Ground states are +1 eigenstates of all Av and Bf oper-
ators. Carefully counting the degrees of freedom and the
ground state constraints shows that, while the constraints
locally use up all the degrees of freedom, there are some
global degrees of freedom that are not constrained, giving
degenerate ground states. The ground state degeneracy
depends on the topology of the manifold on which the
lattice is placed.

The spectrum of the toric code contains anyons, or
topologically charged excitations. The topological charge
means that the anyons have nontrivial Aharonov-Bohm
phases with respect to each other. Incomplete logical op-
erators create and remove anyons at their endpoints, or
transport anyons. Complete logical operators (defined
on topologically nontrivial closed strings) tunnel anyons
across the system in non-contractible loops. Even when
perturbations are introduced to (1), the tunneling ampli-
tude is exponentially small in system size. As a result,
the system can evolve under its own dynamics for a time
τ without losing the stored information. As long as the
system is at absolute zero temperature, the memory time
τ diverges in the thermodynamic limit, up to some crit-
ical perturbation strength [3]. As we said before, this is
the defining feature of fault-tolerant quantum memories.

The toric code and related systems possess topolog-
ical order [2], a type of order with no local order pa-
rameter. Instead, the different ground states can only
be distinguished by order parameters that are topolog-
ically nontrivial. In fact, the order parameters are the
previously-mentioned logical operators. Due to the ab-
sence of local order parameters, the topological order is
robust to small perturbations. By this we mean that the
distinct ground states remain degenerate, up to correc-
tions that are exponentially small in system size. Clearly,
the fault-tolerant nature of the quantum memory is in-
timately related to the existence of topological order in
the ground state, or at T = 0.

At any nonzero temperature, the 2d toric code is not
topologically ordered [4]. Heuristically, this is because at
any T > 0, the anyons exist at some finite density. As the
system reaches thermodynamic equilibrium, these anyons
wander along paths than can be large compared to the
system size, connecting the different ground states. The
result is that there is only a single equilibrium thermal
state, and it does not possess topological order. This
suggests that the 2d toric code can not store quantum
information indefinitely at T > 0, but the lack of topolog-
ical order is an equilibrium property, while any quantum
memory properties must be dynamical.

We will discuss the dynamics of quantum systems
evolving at nonzero temperatures following the conven-
tions of Ref. [5]. To model the evolution of a system
with Hamiltonian Hsys at some nonzero temperature, we
evolve with the full Hamiltonian

Hfull = Hsys +Hbath + λ
∑
α

Sα ⊗Bα, (2)

where Hbath is the bath Hamiltonian. The index α runs
over local operators on the system Sα with some corre-
sponding operators on the bath Bα.

When a thermal bath disorders a memory, it does so by
applying a logical operator. From Eqn. 2, this happens
when some product of Sα form a logical operator. Thus,
the bath can only apply logical operators transversally,
or as a series of local operators, each of which is an in-
complete logical operator. Incomplete logical operators
always anticommute with some terms in the Hamiltonian,
so the transveral application of a logical operator must
overcome some energy barrier.

It turns out that the 2d toric code cannot store quan-
tum information indefinitely at T > 0 without active
correction [3]. As with the topological order, the prob-
lem is that the point-like anyons exist at finite density at
finite temperature, and can wander across the system.

The 4d toric code [3] is analogous to (1) but in 4 di-
mensions with qubits on faces, Ae terms on edges, and
Bc terms on cubes. It evades the issues with finite den-
sities of anyons because the logical operators live on
membranes that stretch across the whole system. The
topologically-charged excitations, which now live on the
boundaries of incomplete logical membranes, are loop-
like. A finite temperature bath can create loop excita-
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tions of any finite size, but larger loops are suppressed
by having larger energy. As the system size L increases,
the time that we have to wait for the bath to create L-
sized loops increases without bound. In fact, the system
prefers to shrink any loops that do exist in order to lower
the energy. A system that is able to correct errors gen-
erated by the bath in this sense is self-correcting.

In the thermodynamic limit, the bath never creates
loops that are as large as the system, so quantum infor-
mation can be stored indefinitely. In addition, the 4d
toric code does remain topologically ordered for nonzero
temperatures up to a critical temperature Tc. Above Tc
the 4d toric code is also no longer self-correcting. Thus,
self-correction appears to be related to topological order
at T > 0 in the same sense that fault tolerance is re-
lated to topological order at T = 0. The 4d toric code
is self-correcting and possesses topological order below
Tc. Sadly, our world only has 3 spatial dimensions, so we
would like to reproduce this behavior in a 3d system.

A feature that distinguishes the 4d toric code from the
2d toric code is that it has an unbounded energy bar-
rier: applying any logical operation through a series of
local operation requires traversing a high-energy state,
whose energy continues to increase for larger system sizes.
The energy of such a state is called the energy barrier
of the logical operator. One might be tempted to draw
the conclusion that an unbounded energy barrier is suf-
ficient for self-correction. This seems reasonable because
operations that cost a divergent energy ∆ should only
occur on timescales τ ∼ exp(β∆), which is called the
Arrhenius law. Any string-like logical operator will have
a bounded energy barrier because, once the endpoints
of the string are well-separated, each endpoint becomes
a point-like excitation with constant energy. Thus, the
search for models with unbounded energy barriers re-
duces to a search for models free from string-like logical
operators.

In fact, while it is possible to construct 3d systems
where all energy barriers are unbounded [6, 20], even
these systems do not perform self-correction [7]. As in
the 2d toric code, the problem can be traced to the ex-
istence of topologically-charged point-like excitations [8].
At nonzero temperature, these excitations exist at finite
density. Then, on a very heuristic level, the bath only
needs to transport each topological excitation a finite
distance to its nearest neighbor. Since the timescale for
these partial logical operators is finite, the bath can per-
form logical operations in a finite time.

The conclusion to draw here is that unbounded en-
ergy barriers are necessary but not sufficient for self-
correction. On the other hand, local thermal baths can-
not apply membrane-like operators in any finite time, in
the thermodynamic limit below some critical tempera-
ture [3, 5], so we expect a memory wherein all logical
operators are membrane-like will be self-correcting. As
an example, the logical operators in the 4d toric code are
all membrane-like.

Instead of looking for a quantum memory that is self-

correcting under its own dynamics, we can imagine cou-
pling a toric code to another system in such a way that
the latter endows the former with long-range interac-
tions, confining the anyons. For simplicity, assume the
coupled system consists of bosons. The 2d version of this
proposal is the toric-boson model [12]. The toric-boson
model requires couplings between anyons and bosons to
have a divergent energy scale. Furthermore, the dynam-
ics of the bosons must be fine-tuned so they do not de-
velop a gap. The 3d version [13] drops the requirement
of divergent energy scales, but still needs fine-tuned dy-
namics [14]. A further difficulty of the generalized toric-
boson models is that the boson parts have infinite local
Hilbert space dimensions, which is not as useful for quan-
tum computing applications [19]. In Sec. II C we will
see how the Roberts-Bartlett model reproduces similar
physics with finite local Hilbert space dimension.

B. Higher-form symmetries

Before getting to the Roberts-Bartlett model, let us
define higher form symmetries. These generalized global
symmetries compactly encode the dynamical constraints
required for that model.

In the continuum, an ordinary global symmetry is a
group of operators that act on the entire d-dimensional
space of some theory. As a generalization of global
symmetries, p-form symmetries act on closed, (d − p)-
dimensional submanifolds of space [16, 17]. In this
classification, ordinary global symmetries can be called
0-form symmetries. Unlike gauge symmetries, which
are just redundancies in some description of a theory,
higher-form global symmetries are physical symmetries
that transform between distinct states. They can give
rise to symmetry-protected topological phases [16] and
symmetry-broken phases [16–18], like ordinary global
symmetries.

On a lattice, the definition of the higher-form symme-
try needs to be clarified. The proper way to do this is in
the language of cellular homology [21]. We will instead
proceed by example.

It is easy to find higher-form symmetries in topologi-
cal phases. In fact, spontaneous breaking of higher-form
symmetries leads to topological order [16, 18]. As an ex-
ample, the 2d toric code with no perturbations has an
X-type and a Z-type 1-form symmetry, partially gener-
ated by the vertex and face terms, respectively.

An arbitrary product of face terms Bf =
∏
e∈f Ze for

some set F of faces gives a symmetry operator WC =∏
e∈C Ze.

1 The path C = ∂F is a (possibly disconnected)
closed path on the lattice. It is closed in the sense that
it does not have any endpoints. Since C is the boundary

1 The notation is meant to reflect that this operator becomes a
Wilson operator if we interpret the toric code as a model for a
Z2 gauge theory.
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of a collection of faces, these symmetry operators are
topologically trivial, meaning they do not wrap around
the system. We will call these operators the local part of
the symmetry, even though the operators may be large.

There are also topologically nontrivial symmetry oper-
ators that do wrap around the system. These are the log-
ical operators in the toric code, which are also closed. We
will say they are are the topological part of the symmetry.
Both types of operators act on (1 = d − 1)-dimensional
paths, so they jointly generate the Z-type 1-form sym-
metry. A similar story exists for the X-type 1-form sym-
metry, with symmetry operators TC′ =

∏
e∈C′ Xe where

C′ is a path on the dual lattice.

In the 3d toric code with qubits on edges [22], the
terms Bf =

∏
e∈f Ze still act on the four edges around

a face, while the terms Av =
∏
e∈∂†vXe now act on the

six edges around a vertex. The face terms still generate
1-dimensional symmetry lines. This means that they are
part of a 2-form symmetry now. The vertex terms gen-
erate membrane-type operators, which are 2-dimensional
objects and therefore part of the 1-form symmetry. These
membranes are closed in the sense that they do not have
any boundaries.

The higher-form symmetries just described are differ-
ent than the continuum higher-form symmetries usually
considered in the high energy literature [21, 23]. To un-
derstand the difference, recall that the toric code is a
model for Z2 gauge theory. If we were really studying
gauge theory, we would identify any states related by
a gauge transformation as the same physical state. In
the toric code, this means requiring that Av = 1 hold
as an operator equation for all v. Thus, the entire local
part of the X-type 1-form symmetry acts trivially on the
physical Hilbert space. Only the topological part of the
X-type 1-form symmetry acts nontrivially. Furthermore,
any two operators that are topologically equivalent (in
the same homology class) are equivalent as operators on
the physical Hilbert space.

The two ways of defining higher-form symmetries are
called faithful and topological, respectively [21]. Faithful
higher-form symmetries are more natural in lattice mod-
els when we do not want to restrict the Hilbert space,
and in non-relativistic models. Topological higher-form
symmetries are more natural in gauge theories and rela-
tivistic theories [23]. In this paper we will discuss faithful
higher-form symmetries in order to preserve the tensor-
product structure of the global Hilbert space.

When we say that we will enforce a symmetry, we mean
that we require that the operators Sα that appear in (2)
must commute with the generators of the symmetry. Any
local operator that fails to commute with a topological
generator also fails to commute with a local generator,
so it is enough to require that all the Sα commute with
the local part of the symmetry.

C. Self-correction with a 1-form symmetry

Now that we have defined higher-form symmetries, we
can ask the following question: “Is it possible to con-
struct a self-correcting quantum memory if we allow our-
selves to enforce a 1-form symmetry?” At first, this might
seem like an interesting question. Ordinary (0-form) SPT
phases are not stable at finite temperature because ther-
mal effects can violate the symmetry locally. On the
other hand, 1-form symmetry-protected phases are sta-
ble at nonzero temperature, essentially because the sym-
metry imposes stronger constraints [24].

We can quickly see that the answer is trivially “yes”.
As an example, take the 2d toric code and require that
the dynamics respect all vertex and face terms. In that
case, the only allowed operators are products of stabiliz-
ers or complete logical operators. If we restrict our bath
to only be able to apply operators of bounded size, the
bath cannot apply any logical operators. Previously, we
could have said that the 1-form symmetries were enforced
energetically, in the sense that anyons (which break the
symmetry) were suppressed by the gap. Now, we can say
the symmetry is enforced explicitly rather than energet-
ically.

Similarly, we can consider the 3d toric code with the
vertex terms (which generate a 1-form symmetry) en-
forced, but not the face terms (which would generate a 2-
form symmetry). Once again, the string logical operators
can not be applied transversally. The interesting differ-
ence is that while the membrane operators can be applied
transversally without breaking the symmetry, the mem-
ory time still grows without bound. This is because of
the previous argument that thermal baths cannot apply
membrane operators in the thermodynamic limit [3, 22].

A more interesting question to ask is: “Is it possible
to construct a self-correcting quantum memory that per-
mits the transversal application of logical Pauli opera-
tors, if we allow ourselves to enforce a 1-form symmetry?”
Neither the 2d or 3d toric codes with 1-form symme-
try enforced answer this question. Instead, the Roberts-
Bartlett model shows that the answer is “yes” [5], con-
structing a model that consists of the 3d cluster state
Hamiltonian of Raussendorf, Bravyi, and Harrington
(RBH) [25], with 2d toric code boundary conditions.
When the 1-form symmetry is enforced in the bulk, the
boundary logical degrees of freedom do not evolve in
time, even at nonzero temperature.

We should note that the Roberts-Bartlett model does
not allow for the transversal application of arbitrary
(non-Pauli) logical operators. In fact, the same is true
of the 4d toric code (which is self-correcting at T > 0
without any enforced symmetry). There is a model that
supports arbitrary transversal logical operations in 7 spa-
tial dimensions, but no such model in fewer dimensions
is known [26].

The explicit construction of the Roberts-Bartlett
model is rather involved, so we leave the details to the
original literature [5]. Here, we will only review the mod-
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FIG. 1. Decomposition of a logical operator. The top and
bottom of the cube are identified and the front and back
of the cube are identified. In the RBH model and in the
symmetry-protected boundary memory introduced in this pa-
per, anyons on the boundary are attached to flux in the bulk.
Red crossed represent anyons, red lines are bulk flux, and blue
lines are logical operators on the boundary. The blue shaded
region is a membrane operator, which is necessary for the
symmetry-protected boundary memory but not for the RBH
model. Compare to Fig. 12 of [5] and Fig. 7 of [27].

els at the effective level. The RBH Hamiltonian is not
topologically ordered, but is SPT-ordered under a 1-form
symmetry [24]. Furthermore, this SPT order is stable
at nonzero temperatures. Ordinary (0-form) SPT order
does not survive to nonzero temperatures [24].

The logical information in the Roberts-Barlett model
resides on the boundary toric code qubits. As always,
anyons live at the ends of partial logical operators. In
the Roberts-Bartlett model, the anyons are connected to
extended excitations (flux strings) that extend into the
bulk and have linear energy cost. The 1-form symme-
try then ensures that these bulk flux strings cannot end,
except on another anyon on the boundary. [5].

Once the anyons are connected to the bulk flux, they
are confined, and cannot traverse the system through
thermal effects. In 2d, confinement ruins topological or-
der because if the anyons leave energetic flux behind, then
the full operator cannot be a logical operator (because it
does not commute with the Hamiltonian). Instead, the
Roberts-Bartlett model uses the third space dimension
to remove the energetic flux. Although specific details of
this procedure depend on the explicit construction, Fig. 1
shows the removal on the effective level.

Reference [5] also shows that once the anyons are con-
fined by flux strings with linear energy cost, the memory
time of the model will grow without bound in the ther-
modyanmic limit. This is different from fracton models,
where a diverging (but sub-linear) energy barrier does
not lead to a diverging memory time [7].

The Roberts-Bartlett construction can be extended to
any Walker-Wang model [28, 29]. In fact, the RBH

Hamiltonian (the bulk of the Roberts-Bartlett model)
is equivalent to the Walker-Wang model with the toric
code braided fusion category as input, after moving some
qubits to faces [30]. Furthermore, the Roberts-Bartlett
construction can be extended to a model with a trivial
bulk, [27] at the cost of enforcing a 1-form symmetry with
an action at the boundary that is not on-site [18].

We can gain a new perspective on the Roberts-Bartlett
model by examining the precise role of the 1-form symme-
try in protecting the memory. As emphasized in Ref. [5],
the 1-form symmetry in the bulk prevents the flux-like
excitations from ending. On the boundary, the 1-form
symmetry requires that any boundary anyons live on the
endpoints of bulk fluxes. Both roles are essential in this
family of models. If boundary anyons did not need to
be attached to bulk excitations, they would be decon-
fined. If the bulk fluxes were allowed to end, then bound-
ary anyons could be attached to finite-length bulk fluxes,
again leading to deconfinement.

Reference [5] already pointed out that topologically-
ordered models like the 3d toric code can have an emer-
gent 1-form symmetry, so that there are loop excitations
that cannot end in the bulk. The contribution of the cur-
rent paper is to demonstrate that we can use this emer-
gent symmetry to replace the enforced symmetry in the
bulk. However, we have not found a way for the emergent
symmetry to attach the anyons to the bulk flux. Instead,
we will need to enforce a 1-form symmetry on the bound-
ary. This means that we can achieve self-correction while
enforcing an O(L2) number of stabilizers, rather than an
O(L3) number.

III. RESTRICTING TO A BOUNDARY
SYMMETRY

In this section we will introduce our new model that
uses an emergent 1-form symmetry in the bulk rather
than directly enforcing a bulk symmetry. As the model
consists of a memory on a boundary protected by a sym-
metry, we will call it the symmetry-protected boundary
memory. We will first define the Hamiltonian and then
describe the logical operators. We will then explain why
a subspace of the logical codespace forms a memory that
is stable at finite temperature.

A. Hamiltonian and logical operators

In the absence of the symmetry, the symmetry-
protected boundary memory is a tensor product of two
3d toric codes with a 2d toric code on their boundary.
It lives on a cubic lattice with boundary. The Hilbert
space is as in Fig. 2, with qubits on edges and faces and
a second qubit on each boundary edge. Thus, we have
enough qubits to define two copies of the 3d toric code
and one copy of the 2d toric code. The full Hamiltonian
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will be

H = H(e) +H(f) +H(b), (3)

with each term defined below. We will use a lattice that
is periodic in the z and x directions, so that the global
structure is a thickened torus, T 2 × I. There are two
boundaries, each a 2d torus, with the 2d toric code on
the y = 0 boundary as shown in Fig. 2. The other bound-
ary (at y = L) will have similar boundary conditions on
the (e) and (f) qubits, but without the extra boundary
degrees of freedom.
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FIG. 2. We can view the Hilbert space of the model as living
on a cubic lattice. In the bulk, qubits live on faces and edges.
The boundary faces have no qubits. The boundary edges
have two qubits each, one of which is a bulk (e) degree of
freedom (solid line) and one of which is a boundary (b) degree
of freedom (dotted line). The lattice is periodic in the x and
z directions and has boundaries at y = 0 and y = L. This
figure shows the “right” boundary at y = 0, where we will put
our 2d toric code. The boundary at y = L is gapped with no
additional topological order.

The first term in H,

H(e) = −
∑
v

A(e)
v −

∑
f

B
(e)
f , (4)

is a bulk 3d toric code Hamiltonian acting on edge de-
grees of freedom. The individual stabilizers,

A(e)
v =

∏
e∈∂†v

X(e)
e , B

(e)
f =

∏
e∈∂f

Z(e)
e (5)

are shown in Fig. 3. The logical operators in this sector
are direct lines of Z(e) operators and dual membranes2

2 A dual membrane is a membrane on the dual lattice. The dual
lattice is the result of exchanging vertices with cubes and inter-
changing edges with faces.








































































































FIG. 3. Stabilizers for the 3d toric code on edges. Green
edges are X(e) operators and blue edges are Z(e) operators.

of X(e) operators. At endpoints of Z(e) lines we have
e(e) anyons and on the boundaries of X(e) membranes
we have m(e) flux. The boundary conditions at ±y are
“smooth”, so that the m(e) flux is condensed (meaning
the flux can be removed at the boundary) and e(e) anyons
are confined. Equivalently, X(e) membranes can termi-
nate on the boundaries but Z(e) lines cannot.

The other bulk Hamiltonian is

H(f) = −
∑
c

A(f)
c −

∑
e

B(f)
e , (6)

which acts on face qubits. The terms are

A(f)
c =

∏
f∈∂c

Z
(f)
f , B(f)

e =
∏
f∈∂†e

Z
(f)
f , (7)

as shown in Fig. 4. They are equivalent to the edge terms
after swapping edges with faces, swapping cubes with
vertices, and swapping X with Z. The logical operators
in this sector are dual lines of X(f) operators and direct
membranes of Z(f) operators. Here, the excitations are
point-like m(f) anyons on the ends of X(f) dual lines and
extended e(f) flux at the boundaries of Z(f) membranes.
Note that we are using a convention for the (f) degrees of
freedom where the electric excitations are extended and
the magnetic excitations are point-like. The boundary
conditions are such that them(f) flux is condensed, which
is now called the “rough” boundary conditions.

On the extra set of boundary qubits we will define a
2d toric code,

H(b) = −
∑
v

A(b)
v −

∑
f

B
(b)
f ,

A(b)
v =

∏
e∈∂†v

X(b)
e , B

(b)
f =

∏
e∈∂f

Z(b)
e ,

(8)

where the sums and products are only taken over bound-
ary faces, edges, and vertices. These terms are shown in
Fig. 5. Here, the logical operators are direct lines of Z(b)

and dual lines of X(b). The excitations are e(b) anyons
and m(b) anyons.

For simplicity let us only describe a subset of the logical
qubits, and therefore a subset of the logical operators.
Let Z̄(e) correspond to a vertical line of Z(e) operators
in the bulk and X̄(e) to a horizontal dual membrane of
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FIG. 4. Stabilizers for the 3d toric code on faces. Green faces
are X(f) operators and blue faces are Z(f) operators.








































































































FIG. 5. Stabilizers for the 2d toric code on the boundary.
Green dotted lines are X(b) operators and blue dotted lines
are Z(b) operators.

X(e) operators (which must intersect both boundaries).
For the face code let Z̄(f) be a vertical membrane of Z(f)

operators and X̄(f) a horizontal dual line through the
bulk of X(f) operators. On the boundary we have Z̄(b) a
vertical line of Z(b) operators and X̄(b) a horizontal dual
line of X(b) operators. There are another 3 logical qubits
whose logical operators are related by a global rotation,
but we can safely ignore these as their description is the
same.

All three of these qubits are fault tolerant. This corre-
sponds to the existence of topological order at T = 0 [1].
At nonzero temperature, a local thermal bath can ap-
ply the operators Z̄(e), X̄(f), Z̄(b), and X̄(b), essentially
because they have a constant energy barrier. Thus the
edge and face logical qubits can serve as classical, but
not quantum, memories [22], while the boundary logical
qubit can store no information.

B. Enforcing the symmetry

The last ingredient is the 1-form symmetry that we will
choose to enforce. The symmetry acts on the boundary,
in the sense that it acts only on (b) qubits, and those (e)






































































































 FIG. 6. The terms we enforce are Av = A

(b)
v A

(f)

e(0)
(left) and

Bf = B
(e)
f B

(b)
f (right). Since the symmetry operators are

products of stabilizers, the ground space is not affected. In-
stead, some excitations are forbidden, so that boundary logi-
cal operators can only be applied in tandem with bulk mem-
brane operators.

and (f) qubits that are adjacent to the boundary. For v
a boundary vertex and f a boundary face, the generators
of the local part of the symmetry,

Av = A(b)
v A

(f)

e(0)
, Bf = B

(b)
f B

(e)
f , (9)

are products of stabilizers in Hamiltonians. The edge
e(0) is the unique non-boundary edge such that v ∈ ∂e(0).
The terms are illustrated in Fig. 6. The generators of the
topological part of the symmetry are products of logical
operators, such as Z̄(e)Z̄(b). The local and topological
generators locally look the same.

When the symmetry is enforced, e(b) anyons are re-
quired to coincide with endpoints of e(f) flux and m(b)

anyons are required to coincide with endpoints of m(e)

flux, all of which occur only on the lattice boundary. This
means that the operators Z̄(b), Z̄(f), X̄(b), and X̄(e) all
can no longer be applied transversally. For the bound-
ary operators this is because the boundary anyons are
prohibited. This is demonstrated for Z̄(e) in Fig. 7. For
the two membrane operators, open membranes (incom-
plete logical operators) are permitted in the bulk but are
not allowed to intersect the boundary. The bulk line op-
erators Z̄(e) and X̄(f) can still be applied transversally
because they need not intersect the boundary.

The only way to transversally act on the boundary
logical qubit is through the composite logical operators
X̄(e)X̄(b) and Z̄(f)Z̄(b). Figure 8 demonstrates the partial
application of Z̄(f)Z̄(b). Since both composite operators
include a membrane part, the composite operators are
linearly confined. The upshot is that all logical operators
that can transversally act on the boundary logical qubit
are linearly confined. We should notes that while we need
the bulk topological order to supply the bulk flux, we do
not store any information in the bulk.

Since both boundary logical operators are linearly con-
fined, a local bath cannot apply them in finite time in
the thermodyamic limit [5]. This means that the cur-
rent model achieves the same memory properties as the
Roberts-Bartlett model, while only requiring that a sym-
metry be enforced at the boundary. No symmetry terms
need to be enforced in the bulk.
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FIG. 7. Blue dotted lines represent Z(e) operators, a partial
application of the logical operator Z̄(e). At the highlighted

vertex, the partial logical operator anticommutes with A
(b)
v

and Av. Anticommutation with A
(b)
v only leads to an energy

penalty, but anticommutation with Av means that this opera-
tor is forbidden by the 1-form symmetry. A similar argument
applies to any partial Z̄(e) operator.
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FIG. 8. Blue dotted lines represent Z(e) operators and blue
faces are Z(f) operators. This operator anticommutes with

A
(b)
v at the highlighted vertex and B

(f)
e at every highlighted

edge, which leads to a large energy penalty. The addition
of the Z(f) operators means it now commutes with Av, so
it is a permitted operator. We should view this as a partial
application of the composite logical operator Z̄(f)Z̄(b).

IV. INTERPRETATION

We can gain some insight into the behavior of this
model by analyzing it on the effective level, instead of
focusing on the specific lattice realization. There, the
simplest language to use is that of defects in 3d topolog-

ical orders. So far, we have been orienting the model so
that the 2d toric code sits on the boundary of the sys-
tem. Since the edge and face bulk degrees of freedom are
noninteracting, we can alternatively unfold [31] the two
bulks and view the 2d toric code as a boundary or de-
fect between two spatially separated 3d toric codes. Ref-
erence [32] explains defects in depth, furthermore using
networks of defects (and defects of defects, etc.) to con-
struct fracton phases. Here, we will only need to discuss
2d defects in 3d topological orders.

We will describe defects as the result of a process in
which we confine and condense composite objects at a 2d
surface in a 3d topological order. Condensation of com-
posite objects can be useful in constructing many mod-
els, including Michnicki’s welded code [7, 20] and frac-
tons [21, 33, 34]. When a condensed composite a1 . . . an
has nontrivial mutual statistics with another anyon a′,
the anyon a′ becomes confined. Similarly, when the same
composite is condensed on a boundary, a′ becomes con-
fined on that boundary, meaning it cannot be annihilated
at and cannot pass through that boundary.

Let us say that a flux string is deconfined on a certain
boundary if it can end on that boundary, and confined
if it can not. Under this definition, in the 3d toric code
(defined on edges), flux strings are confined at the rough
boundary and deconfined at the smooth boundary. Fur-
thermore, the e anyons are confined at the smooth bound-
ary and condensed on the rough boundary. If we take a
smooth boundary and condense e anyons, the flux strings
become confined and we end up with a rough boundary.
This generalizes the previous notion of condensation lead-
ing to confinement. If we start with a rough boundary
and condense m flux near the boundary, the e anyons
become confined on that boundary.

Now recall from Sec. II C that a 2d toric code with both
1-form symmetries enforced is trivially self-correcting be-
cause it has no dynamics. We can view enforcing the
1-form symmetry as confining the m and e anyons “by
hand,” or without any condensation procedure.

We can also construct the symmetry-protected bound-
ary memory using by-hand confinement. As in Fig. 9, we
have a 3d toric code labeled by (e), a 2d toric code in
the center labeled by (b), and another 3d toric code on
the left labeled by (f). The labels are chosen to match
the labels in Sec. III, but we no longer need to refer to
edges and faces. On the boundary, we confine the e(b)

and m(b) anyons and the m(e) and e(f) fluxes, in such a
way that the composite objects m(e)m(b) and e(b)e(f) are
deconfined. When we say that a composite of a boundary
anyon and a bulk flux are deconfined, we mean that the
flux may end on the boundary, but only if its endpoint
coincides with the corresponding anyon. Similarly, the
boundary anyons my move freely only when attached to
bulk flux.

The bulk fluxes give the boundary anyons dynamics, so
the anyons are (linearly) energetically confined, instead
of exactly confined like in the trivial 2d toric code ex-
ample. As in Sec. III, the boundary anyon confinement
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(e)

(e)

(b)
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e
(b)

f(  )f(  )e

m

m

m
m(b)

FIG. 9. The setup for the symmetry-protected boundary
memory has e(e) and m(f) anyons and m(e) and e(f) flux in
the two bulks, and e(b) and m(b) anyons on the defect. For
the microscopic realization in Sec. III, the green excitations
are created from Z-type errors while the blue excitations are
created from X-type errors. The confinement procedure en-
sures that e(b) anyons coincide with endpoints of e(f) flux and
m(b) anyons coincide with endpoints of m(e) flux.

means that the bath cannot apply logical operators, even
though the operators can be transversally applied. Just
like in Sec. III, though, these boundary conditions need
the presence of the 1-form symmetry in order to be sta-
ble to perturbations. We can view this as saying that
by-hand confinement without condensation is fine-tuned.

Note that, for example, the confinement of m(e) and
m(b) but not m(e)m(b) is the confinement pattern that
would result from condensing the composite e(e)e(b). In
fact, we can follow that condensation procedure on the
microsopic lattice by considering the Hamiltonian (3) as
a perturbation to the condensing Hamiltonian

Hcond = −Jx
∑
e

X(e)
e X(b)

e , (10)

where the sum is taken over boundary edges, in the large
Jx limit. Then we get the symmetry term Bf in (9) at

some order in perturbation theory, which confines m(e)

and m(b) but not m(e)m(b). Unfortunately, fully building
the symmetry-protected boundary memory from conden-
sation would also require condensing m(b)m(f), which is
not possible because condensed composites cannot have
mutual statistics.

Before concluding, let us briefly mention an interest-
ing related model, which can be constructed from a 2d
Z4 topologically-ordered defect in a 3d Z2 topologically-
ordered bulk. The boundary topological order contains
anyons e(b), e2(b), e3(b), m(b), m2(b), and m3(b), along
with their products. All are abelian, and the e(b) and
m(b) anyons have mutual statistics i. The bulks are as
before.

On the defect, condense the composite objects e(e)e2(b)

and m2(b)m(f). This condensation is consistent because
e2(b) and m2(b) have trivial mutual statistics. The proce-
dure also removes all topological order from the defect.
The anyons e2(b) and m2(b) are still deconfined, but are
respectively equivalent to the e(e) and m(f) bulk anyons.
Furthermore, the m(e) flux string is allowed to terminate
on the boundary, but only in the presence of a m(b) anyon
which is otherwise confined. A similar story exists for the
e(f) flux and e(b) anyon.

The resulting model is stable to any small perturbation
and does not require any symmetry-protection. We can
construct a microscopic model, as in Sec. III, by putting
qubits on bulk edges and faces, and 4-level qudits on
boundary edges. The 4-level qudits have Pauli-like oper-
ators obeying

X(b)
e Z(b)

e = iZ(b)
e X(b)

e ,
(
X(b)
e

)4
=
(
Z(b)
e

)4
= 1, (11)

while the bulk face and edge qubits have ordinary 2-level
Pauli operators. The Hamiltonian consists of the ordi-
nary bulk toric code Hamiltonian, with the boundary
Hamiltonian

Hbdy = −
∑
v

Av −
∑
f

Bf −
∑
v

A(b)
v −

∑
f

B
(b)
f + h.c.,

Av =
∏
e∈∂†v

X(b)
e X

(f)

f(0) , Bf =
∏
e∈∂f

Z(b)
e Z(e)

e ,

A(b)
v =

∏
e∈∂†v

(
X(b)
e

)2
, B

(b)
f =

∏
e∈∂f

(
Z(b)
e

)2
, (12)

where f (0) is the unique non-boundary face in ∂†e and,
analogous to in Ref. [1], each edge and plaquette must
be assigned an orientation. The sums are over boundary
vertices and faces, and the second two terms are just the
squares of the first two terms. The terms are shown in
Fig. 10 using the “folded” conventions from Sec. III.

This Z4 defect model is not self-correcting. At nonzero
temperature it can only store a number of probabilistic
bits, just like decoupled 3d toric codes [22]. Instead, it is
interesting because membrane operators in the two bulks
fail to commute, due to the fact that the bulk fluxes
must terminate in anyons on the defect and the respective
anyons have nontrivial mutual statistics. The presence of
membrane operators that fail to commute seems to be a
necessary (although clearly not sufficient) ingredient for
self-correction [3, 5]. The Z4 defect model appears to
be the first model in three or fewer dimensions with this
property.

V. CONCLUSIONS

The symmetry-protected boundary memory is useful in
two ways. First, it improves upon the Roberts-Bartlett
model by only requiring that O(L2) symmetry genera-
tors be enforced, rather than O(L3). In that sense it
is a continuation of the work in Ref. [27], which showed
that self-correction is possible with a number of enforced
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FIG. 10. The boundary Hamiltonian terms in (12). The top

row shows Av and Bf , where green faces are X(f), green dot-

ted lines are X(b), blue solid lines are Z(e), and blue dotted

lines are Z(b). The bottom row shows A
(b)
v and B

(b)
f , where

green dashed lines are now
(
X

(b)
e

)2
and blue dashed lines are(

Z
(b)
e

)2
. The top two terms square to the bottom two, respec-

tively.

terms that is asymptotically smaller than L3 but greater
than L2.

The second contribution of the present model is to em-
phasize that, in the Roberts-Bartlett model, the 1-form

symmetry serves two distinct purposes. Namely, it en-
sures that the flux strings do not end in the bulk and
requires that boundary anyons and flux string endpoints
coincide. Here, we show that the first contribution can
be supplied by bulk topological order. Even at nonzero
temperature, the flux strings of the 3d toric code cannot
end. This is connected to the fact that discrete 1-form
symmetries can be spontaneously broken (and therefore
emergent [18]) at non-zero temperature in 3d.

On the other hand, we have not yet found a way to
require that boundary anyons and flux string endpoints
coincide without explicitly enforcing the 1-form symme-
try at the boundary. Finding a way to make this require-
ment emergent, rather than explicit, would certainly be
exciting.

It might also be interesting to extend the construc-
tions in this paper to more general boundaries and bulks.
For example, generalizations of the symmetry-protected
boundary memory should be able to realize more general
G-crossed braided tensor categories [35]. Relatives of the
Z4 defect model could have more interesting string-nets
on the boundary, and other exotic phases in the bulk.

Finally, the finite-temperature behavior of topological
defects may warrant further exploration. It may be the
case that they have no memory properties beyond those
of the topologically-ordered bulks, but the existence of
noncommuting membrane operators in 3d seems intrigu-
ing.
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