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The eigenstate thermalization hypothesis (ETH) explains why nonintegrable quantum many-body
systems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one
quantity (“charge”), the ETH implies thermalization within a charge sector—in a microcanonical
subspace. But quantum systems can have charges that fail to commute with each other and so share
no eigenbasis; microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have
degeneracies, so the ETH need not imply thermalization. We adapt the ETH to noncommuting
charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace
introduced in quantum thermodynamics. Illustrating with SU(2) symmetry, we apply the non-
Abelian ETH in calculating local operators’ time-averaged and thermal expectation values. In many
cases, we prove, the time average thermalizes. However, we find cases in which, under a physically
reasonable assumption, the time average converges to the thermal average unusually slowly as a
function of the global-system size. This work extends the ETH, a cornerstone of many-body physics,

to noncommuting charges, recently a subject of intense activity in quantum thermodynamics.

Nonintegrable closed quantum many-body systems
thermalize internally, in the absence of conserved observ-
ables, or charges. Few-body operators & equilibrate to
the expectation values they would have in the canon-
ical state pcan X e PH_ H denotes the Hamiltonian,
whose expectation value determines the inverse temper-
ature 5 [1]. The eigenstate thermalization hypothesis
(ETH) explains this thermalization [2-4]: Let |a) de-
note the energy eigenstates; F,, the eigenenergies; and
O = {(a|0|a’), matrix elements representing the op-
erator. O and H satisfy the ETH if 0,, has a cer-
tain structure, reviewed below. If O, does and H is
nondegenerate, & thermalizes: Its time-averaged expec-
tation value approximately equals its thermal expecta-
tion value. The difference is of O(N~1), if N denotes
the global system size. (We use big-O notation as in
many-body physics, meaning “scales as.”) These results
explain behaviors observed numerically and experimen-
tally across condensed matter; atomic, molecular, and
optical physics; and high-energy physics [1, 5-14].

The argument for thermalization relies on the Hamil-
tonian’s nondegeneracy and on matrix-element struc-
ture. Both postulates are questionable if H conserves
charges '. If H has an Abelian symmetry, the energy
spectrum can lack degeneracies. Since the charges com-
mute, they share eigenspaces—charge sectors. In each
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1 We focus on continuous symmetries to bridge ETH studies with
the emerging subfield of the quantum thermodynamics of non-
commuting charges (Hermitian operators that generate continu-
ous symmetries).

shared sector, the ETH applies. For example, consider
N qubits (quantum two-level systems, or spins). H can
conserve the total spin’s z-component, S, by being U(1)-
symmetric. The ETH is often applied in an S, sector,
wherein the ETH holds and implies thermalization.

A non-Abelian symmetry can eliminate our recourse to
charge sectors: Such a symmetry is generated by charges
that fail to commute with each other and so cannot
necessarily have definite values simultaneously—cannot
necessarily share sectors governable by the ETH. More-
over, non-Abelian symmetries force degeneracies on H,
having multidimensional irreducible representations. Fi-
nally, how & transforms under the symmetry operations
constrains the matrix elements &,/ in opposition to the
ETH.

For example, consider again an N-qubit system. H can
conserve the total spin components Sq—z 4 ., by being
SU(2)-symmetric. The energy spectrum splits into de-
generate multiplets labeled by total spin quantum num-
bers s,. Only the singlets, whose s, = 0, are simulta-
neous eigenspaces of S, , .. Furthermore, the matrix el-
ements @, obey the Wigner—Eckart theorem [15], con-
flicting with the ETH.

Non-Abelian symmetries are ubiquitous in quantum
many-body physics [16, 17]. They grace systems includ-
ing complex nuclei and atoms [18], Heisenberg models in
condensed matter [19, 20], gauge theories [21], and Wess-
Zumino-Witten models [22-25]. Hence the apparent con-
flict between non-Abelian symmetries and the ETH im-
pacts our basic understanding of diverse, prominent mod-
els.

To overcome the conflict, we propose a non-Abelian
ETH. We apply it to SU(2) symmetry for simplicity,
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expecting results to generalize. Using the non-Abelian
ETH, we compute two averages of few-body operators &
time-averaged and thermal expectation values. For many
operators and initial states, the time average agrees with
the thermal average: Differences are O(N 1), as without
noncommuting charges [26, 27]. For certain operators
and initial states, however, the time average may deviate
from the thermal prediction by anomalously large cor-
rections ~ N~1/2. This result holds under a physically
reasonable assumption about the non-Abelian analog of
Opor -

Below, we review the conventional ETH. We then
introduce our setup, present the non-Abelian ETH
[Eq. (14)], and apply it to calculate operators’ ther-
mal and time-averaged expectation values. Finally,
we describe opportunities established by our results.
This work extends the ETH, a mainstay of many-body
physics, to the more fully quantum domain of noncom-
muting charges and so to a growing subfield of quantum-
information thermodynamics [28-62].

Review of conventional ETH.—Let the Hamilto-
nian H, energy eigenstates |«a), eigenenergies F,, opera-
tor 0, and matrix elements Oy, = (a|0|a’) be defined

as in the introduction. The operator and Hamiltonian
satisfy the ETH if

Oper = O(E) buor + €50 E2 (€ D Ryor . (1)

The relevant energies average to £ := (Eq + Eqy/)/2, their
difference is w = Ey — Ey, O(E) and f(€,w) are real
functions that vary smoothly with the energy density
E/N, Sin(€) denotes the thermodynamic entropy (loga-
rithm of the density of states) at energy &, 0, o denotes
the Kronecker delta, and the R, are erratically varying
O(1) numbers [63-65]. The first, “diagonal” (a=a’) term
in Eq. (1) contains the microcanonical expectation value
O(€). The thermodynamic entropy Si,(€) exponentially
suppresses the second, “off-diagonal” term.

If & and a nondegenerate H satisfy the ETH, & ther-
malizes [1, 27]: Let N denote the system’s size. The
system begins in a normalized state [(0)) = > Cqla)
with an extensive energy E = (H) = O(N). We denote
expectation values by () == (1(0)|-]1(0)). Let the energy
variance, var(H) := (H?) — E?, be at most O(N).

At time t, the operator’s expectation value is

(0), = |Cal*Oan + > CiCo e FoEadtihg, .
a aFa’
(2)

Consider averaging this value over an infinite time:
(0), = limy oo L [[dt' (0),. As H lacks degenera-
cies, phase cancellations make the second term average
to zero: (0), =3, |Cal?Opa-

To the first term, we apply a strategy that will echo in
our noncommuting-charge arguments. By the ETH (1),
Ouna = O(E,) can be Taylor-expanded about F, = F.
The zeroth-order term yields (€), ~ O(F), by the

state’s normalization. The first-order term vanishes,
by the definition of E. All higher-order terms yield
corrections < O(N™1), by the energy-variance bound
and the smoothness of O(€). Hence the time average
(0), = O(E) + O(N™!) approximately equals the mi-
crocanonical average. So does the canonical average,
Tr(Opean) = O(E)+O(N1), by the ETH (1) and related
arguments [27, 66-68]. Therefore, the time average (0),
equals the thermal average plus O(N ') corrections.

Setup suited to mnoncommuting charges.—
Consider a quantum system formed from N > 1 degrees
of freedom. The Hamiltonian, H, is nonintegrable. It
conserves a number < N of charges @), that do not all
commute: [H,Q,] = 0, but [Qqa, @a] # 0 for some o’ # a.
The charges generate a non-Abelian symmetry group.

We illustrate with an NN-qubit system that has an
SU(2) symmetry—whose total spin components So—g 4.~
are conserved. (Those components decompose as S, =
Z;Vd Sj.a, if the s;, denote qubit j’s spin operators.)

H, S2, and S, share an eigenbasis {la,m)}. f h =1,

H|a,m) = Ey|a,m), (3)
S52|a,m) = $q(5a + 1)|a,m), and (4)
Sxla,m) = m|a,m), wherein (5)
m=—8q,—84+1,...,54. (6)

Ladder operators Si = S, £ 1.5, raise and lower S,
The normalized initial state decomposes as

[¥(0)) = ZCa,m|a,m>, wherein Cy,m € C. (7)

Operators ¢ have time-t expectation values (0); =
(W(t)|Op(t)). We drop the subscript from time con-
stants:

(HYy = F, and (8)

Aligning the z-axis with (S), we set M > 0 and
(Sz), (Sy) = 0, without sacrificing generality. The state
has an extensive energy, E = O(N), and is far from max-
imally spin-polarized: N—M = O(N). (ETH-type state-
ments tend to hold when the thermodynamic entropy is
extensive [1]. Sy, tends to be nonextensive when additive
charges [e.g., E and S, 4 .| lie near their extremes, which
we therefore exclude.)

[1)(0)) belongs to an approximate microcanonical sub-
space, which generalizes a microcanonical subspace for
noncommuting charges [31, 44, 59]: Measuring any
charge @, likely yields an outcome near (Q,); the
charges’ variances are bounded as

var(H) < O(N), (10)
var(S;) < O(N), and (11)
var(Sy.y) < O(N). (12)



Conditions (10)—(12) govern typical many-body states
prepared today, including all short-range-correlated
states 2 [44, 59).

Having introduced the initial state, we profile opera-
tors expected to obey the non-Abelian ETH. Without
sacrificing generality, we focus on symmetry-adapted op-
erators: Spherical tensor operators consist of components

Tq(k) that transform irreducibly under global SU(2) rota-
tions [15]. For example, consider an atom absorbing a
photon (of spin k& = 1), which imparts g=1 quantum of
z-type angular momentum. T(ZTI) represents the pho-

ton’s effect. Generally, the index ¢ = —k,—k +1,... k.

Examples include single-spin operators: s; . is a Tél),

and the ladder operators s; + = s;, & S;, are propor-
tional to Tfl) operators. Every operator equals a linear

combination of Tq(k) operators [15].

We focus on few-body operators, commonly expected
to satisfy ETH-type postulates [1, 69]. More precisely,
we consider K-local operators ¢, which have operator
norms < O(K). Examples include products of K single-
spin operators, e.g., §1 452,y - - - Sk,» + h.c. Every K-local
operator equals a linear combination of spherical-tensor
components Tq(SK). We focus on K = O(1) and hence
on operators Tq(k) with k,q = O(1).

Consider representing a Tq(k) operator as a matrix rel-
ative to the energy eigenbasis. The matrix elements obey
the Wigner-Eckart theorem [15],

(a,m|Tq(k)|o/,m'> = (S0, M50, M k, q) (| |[TP)||a).
(13)

The first factor, (so, m|sq, m'; k, q), is a Clebsch—Gordan
coefficient, which encodes the rules of quantum angular-
momentum addition: The coefficient is nonzero only if
m=m'~+qand sq = |So — kl,|Sar — k| +1,...,80 +k
(only if, in the photon example, the atomic transition
obeys selection rules). Whereas the Clebsch-Gordan co-
efficient is kinematic, the second factor in (13) is dynam-
ical. This reduced matriz element {a||T™*)||a’) depends

on the operator Tq(k) and on H but not on the quantum
numbers m, m/, and ¢ (e.g., not on how many quanta of
z-type angular momentum the photon gives the atom).

Non-Abelian ETH.—We now posit that the reduced
matrix element can obey the non-Abelian ETH. Define
the average energy & = %(Ea + E, ) and energy dif-
ference w = E, — E,/. Analogously, define the average
spin quantum number S = %(sa + $o) and the difference
V=S4 — Sor. Denote by S, (€,S) the thermodynamic
entropy at energy £ and spin quantum number S. The

2 Let d denote the spatial dimensionality. Equations (11) and (12)
are satisfied if spin-spin correlations (s;a5;7q) — (Sj,a)(5;%a)
decay more quickly than |j — j/|~¢ as the spatial separation
|j — 4’| — oo. If this latter condition governs energy-density
correlations, Eq. (10) holds.
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operator T; q(k) and Hamiltonian H obey the non-Abelian
ETH if

(@lIT®][a) = TH) (£, 8) b (14)
+ e SmES)/2 (£ S W) Rag -

The real functions 7*) and fy(k) depend smoothly on the
densities £/N and S/N. The R, are erraticaly varying
O(1) numbers, as in the conventional ETH.

Unlike &€, S is nonextensive, so the S dependencies
in (14) may be unexpected. Yet the Wigner—Eckart the-
orem (13) prevents (a||T™||o/) from depending on m or
m/. Hence only S can encode the non-Abelian-charge
conservation here.

Thermal prediction.—Nonintegrable systems ther-
malize to the canonical state pcan o e PH if just en-
ergy is conserved; to the grand canonical state pgc
e PUH=1N) if the energy and particle number N are
conserved; etc. Which thermal state emerges depends
on the charges [66, 70]. If they fail to commute,
derivations of the thermal state’s form break down [29,
31]. Certain derivations were generalized in quantum-
information thermodynamics to accommodate noncom-
muting charges [30-32, 70, 71], leading to the non-Abelian
thermal state (NATS),

prats = e PHTEa1aQe) /7. (15)
£ and the effective chemical potentials p, are defined
by the charge expectation values, Tr(HpnaTs) = E and
Tr(Qa pnaTs) = (Qa) [44] 3. The partition function is
Z = Tr(e PH~2araQa)) The NATS shares its form
with the generalized Gibbs ensemble [72-76], often de-
fined for integrable Hamiltonians and usually used with
commuting charges (see [77] for an exception). Since
our charges fail to commute and our H is nonintegrable,
we write “NATS” for clarity. Signatures of pxars have
emerged dynamically in numerical simulations [44] and
a trapped-ion experiment [59], yet full thermalization to
pNnaTs has not been observed in closed quantum systems.
Furthermore, noncommuting charges were conjectured to
alter thermalization [44].

Our z-axis choice simplifies pnaTs to e‘ﬁ(H_"Sz)/Z
(Suppl. Note 1). Although pnars now shares its math-
ematical form with pgc, the physics differs signifi-
cantly. Here, energy and three noncommuting charges
are conserved globally and transported locally; during
grand canonical thermalization, energy and particles—
two commuting charges—are. In the grand canonical
case, the global system begins in a microcanonical sub-
space. Here, no nontrivial microcanonical subspace (as-
sociated with s, # 0) exists, and the global system be-
gins in an approximate microcanonical subspace. These

3 In a non-Abelian twist on chemical potential, the p, transform
as an adjoint representation of SU(2). If rotating bodies replace
the spins, the pq reduce to angular velocities normalized by .



differences in setup, we show, permit differences in ther-
malization.
qu) has a thermal expectation value (Tq(k)>th =

Tr(Tq(k)pI\IATS)7 whose trace we calculate using the |, m)
basis. We apply the Wigner—Eckart theorem (13), then
the non-Abelian ETH (14). The Clebsch—Gordan coeffi-
cient vanishes if ¢ # 0, so

g0

(10 = S Y

Sa, M|Sa, m; k, 0)

X TW(Eqssa) - (16)
(We omit corrections exponentially small in N.)

Time-averaged expectation value.—After [1(0))

[Eq. (7)] evolves for a time t, the operator Tq(k) has an
expectation value
(T, - om ()

"
E CmmC’agm/ e

a,a’ ;m,m/’

x (o, m|TM o/, m).

We apply the Wigner—Eckart theorem (13), invoke the
non-Abelian ETH (14) and average (Tq(k)>t/ over an infi-

nite time (hthOO h fo dt’). For all o # «a, the exponen-
tial in (17) dephases, so the “off-diagonal” terms vanish:

k
T( )>t Z a,m+q am Sa,m+Q|Sa,m k q>

x TR (Ey, sq) - (18)

Comparison.—We prove two results: (i) If M =
O(N), the time average (18) equals the thermal aver-
age (16), plus O(N~1) corrections, as in the absence of
noncommuting charges [26, 27]. (ii) If M = 0, the time
average may deviate from the thermal average by anoma-
lously large, O(N~'/2) corrections. These corrections ap-
pear sourced by different physics: quantum uncertainty
in noncommuting charges, rather than thermodynamic
ensembles’ distinguishability at finite N [26, 27]. Re-
sult (ii) holds under a physically reasonable assumption
described and motivated below Eq. (21). Anomalous
thermalization may occur also at intermediate scalings
M = O(N7), for exponents 0 < v < 1, but this regime
lies outside this paper’s scope.

Consider an extensive M = O(N) and s; ,-like oper-
ators Tq(i)o. We sketch the argument for thermalization
here; details appear in Suppl. Note 2. The thermal aver-
age (16) and time average (18) share a crucial property:
In each, T(k)(Ea, Sq) is averaged over a sharply peaked
probability distribution. The peaking follows primar-
ily from the variance conditions (10)—(12). Near each
peak, the smooth function 7 (E,,s,) can be Taylor-
expanded, then averaged term by term. The leading term
evaluates to 7*)(E, M) in both averages, (16) and (18).
All higher-order terms evaluate to < O(N~!). There-
fore, the averages equal each other to within the usual

correction:

k k _
(1M, — (1), = O(NY). (19)
Now, consider ladder-operator-like operators Tq( 720
The thermal average (16) vanishes, due to the Kronecker
delta. The time average (18) is < O(N~1), as shown in
Suppl. Notes 3 and 4. Hence the time average equals the
vanishing thermal average to within the ordinary O(N 1)
correction.

The correction can be anomalously large when M = 0.
When M = 0, the thermal state is rotationally invari-
ant. Only similarly invariant Téo) operators can have
nonzero thermal averages *. Contrariwise, some states
[£(0)) have M = 0 but are rotationally noninvariant.
Intuitively, these states have vanishing magnetic dipole
moments but nonzero magnetic quadrupole moments (or
higher-order moments). Such states can endow operators
Tq(k>0) with time averages of O(N~'/2), in contrast with
their vanishing thermal averages. Here is an example.

Consider an arbitrary Hamiltonian eigenspace labeled
by a = A, associated with an extensive energy E4 =
O(N) and a spin quantum number s, = O(N'/2) (chosen
for reasons shown below). The following state has M =0
but is rotationally noninvariant:

\[Am sa) [‘Am__>. (20)

|1(0)) has the properties stipulated in the setup, one can
check directly. Consider the local magnetic quadrupole
moment 3s; .S; . — 5; - 5;. The ¢ and j label neighboring

sites. This TéQ) operator’s time average (18) reduces to

(T5?), = O(1) x T (B4, 54). (21)

Clebsch-Gordan coefficients determine the O(1) factor.

The T®)(Ea4,54) scales linearly with the spin
density—as s 4 /N—for some systems, we assume. Bound
states motivate this assumption, as outlined here and
detailed in Suppl. Note 5. T (E,, s4) approximately
equals an eigenstate expectation value, by the Wigner—
Eckart theorem and the non-Abelian ETH:

T (Ea,s4) ~ (A, 54351 28). — & - §j|A,54).  (22)
The right-hand side is essentially the joint probability
P(i,j) of finding spin quanta at sites ¢ and j. Semi-
classically, P(i,j) = P(i|j) x P(j), if P(j) denotes the
probability of finding a quantum at j and P(i|j) denotes
the conditional probability of then finding a quantum at
i. P(ilj) can be O(1) if the spin quanta form bound

4 One can check this claim using Eq. (16). Since M = 0, u = 0, so
the >, vanishes if & > 0.



clusters: Just as attractive interactions can bind parti-
cles together, so may suitable (e.g., ferromagnetic) cou-
plings bind spin quanta. In the high-energy eigenstate
|A, s4), clusters will be spread uniformly, with a den-
sity ~ s4/N ~ P(j). Combining these steps yields
TG By, 54) ~ P(ilj) x P(j) = O(1) x O(s/N) =
O(N~'/2), by our choice s, = O(N'/?). Substituting
into Eq. (21) yields the time average. It deviates from
the vanishing thermal average by

(TP), — (T§), = ON"12) > O(NY). (23)

See Suppl. Note 6 for details and Suppl. Note 7 for an-
other anomalous-thermalization example.

Anomalous O(N ~1/2) scaling characterizes also a kine-
matic bound in Ref. [31]. That work generalized a con-
ventional derivation of the thermal state’s form to ac-
commodate noncommuting charges: The global system,
formed from N identical subsystems, was assumed to
be in a generalized microcanonical state. The average
subsystem’s reduced state was found to lie a distance
< (const.)N=/2 4 (const.) from pyxars. It is possible
that our results, based on dynamics and the ETH, re-
flect the Hamiltonian-independent results in [31].

Outlook.—We have extended the eigenstate thermal-
ization hypothesis, a cornerstone of many-body physics,
to the more fully quantum scenario in which conserved
charges fail to commute with each other. Noncommuta-
tion can prevent the charges from sharing an eigenspace
(a sector) and invalidates the usual assumption of the
Hamiltonian’s nondegeneracy. We overcame these chal-
lenges by proposing a non-Abelian ETH and focusing
on an approximate microcanonical subspace. Applying
these tools to SU(2), we compared the long-time average
of an operator’s expectation value with the thermal ex-
pectation value. The averages agree in many cases, e.g.,
whenever M = O(N). Yet the averages can disagree by
anomalously large O(N —1/2) corrections under a physi-
cally reasonable assumption.

This work establishes several research opportunities.
First, our analytical results call for testing with numerics
and quantum simulators. Trapped ions have been shown,
and ultracold atoms and superconducting qudits have
been argued, to be able to test noncommuting-charge
thermodynamics [44, 58, 59]. Promising models include
nonintegrable Heisenberg Hamiltonians [44, 58, 59] and
many-electron atoms. One would verify the non-Abelian

5

ETH (14); identify operators Tq(k) whose smooth func-
tions T*) satisfy our assumptions, enabling anomalous
thermalization; and observe deviations (23) from thermal
predictions.

Second, those deviations may signal the retention, by
local subsystems, of information about their initial con-
ditions. Such retention might be leveraged. Noncom-
muting charges could enhance quantum memories, as
many-body localization has been proposed to [78]. Lo-
calization resembles prethermalization [79], scars [80],
and Hilbert-space fragmentation [81] in disrupting closed
quantum many-body systems’ thermalization. Noncom-
muting charges may belong on the list, our results indi-
cate. Confirmation would hold fundamental interest, as
disrupting thermalization effectively hinders time’s ar-
row.

Third, our arguments merit generalization from SU(2).

Fourth, the smooth function ,Sk)(E,S,w) [Eq. (14)]
should reveal how non-Abelian symmetries influence
thermalization dynamics and so merits investigation.
This work extends the ETH to the more fully quantum
regime of noncommuting charges, linking many-body

physics to quantum-information thermodynamics [28-
62].
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1. SIMPLIFICATION OF THE NON-ABELIAN THERMAL STATE

The non-Abelian thermal state, pyarg = e #(H~2a “aQa)/Z, appears as Eq. (15) in the main text. In the setup
section, we chose for the Z-axis to align with the magnetization, such that (S, ,) = 0. This choice, we claimed,
simplifies the mathematical form of pyarg to e PH—#52) /Z . We prove that claim here.

Conserving S 4., H shares an eigenbasis with every linear combination thereof, including - S = (i §) , wherein

||f]]| . Denote such a shared ecigenbasis by {|o,m)}: Hl|a,m) = Eqla,m), S2|a,m) = so(sa + 1)|a,m), and
|, M)y = pm|a, m) . Since [ - S is a component of S, by the ordinary algebra of quantum angular momentum,
—Say, —Sa+1,...,584.

Using the shared eigenbasis, we calculate the thermal expectation value

Iy Il

o
i-
m

<§>th = %Tr (ge—ﬂ(H—ﬁ-§)) = %Z@% m‘ge—B(H—ﬁﬁ) la, ) = %Z(mﬁﬂg\a, ) e~ B(Ea—pim) (S1)

a,m a,m

The final equality follows from the eigenvalue equations. To calculate (a, ﬁz|§ |a, M) , imagine that m’s replaced the
m’s. The inner product would be {(«, m|S|a,m) = («, m|S.2|a,m) = mZ. Analogously, (o, m|S|a,m) = (o, M| -
Sla, m) = mji. Hence (S1) reduces to

<§>th _ g;ﬁmfﬁwa—m) _ gzme—mm—um) _ %Tr@z e—ﬂ(H—uSz)) . (S2)

a,m

The second equality follows from the m values’ being the same as the m values. Hence <§ )th points in the direction
fv. Therefore, if (S; ,) =0, then p,, =0.

2. TIME-AVERAGED EXPECTATION VALUES THERMALIZE TO WITHIN O(N~') CORRECTIONS
IF M = O(N) AND ¢=0

This Suppl. Note details the thermalization proof sketched in the main text. Let the magnetization be extensive,

M = O(N), and consider s; .-like operators Tq(i)o. The thermal average (16) and time average (18) both assume the
form

Zpa,m<sa,m|sa,m; k,0) T®)(E,, s0) = <T0(k)> . (S3)
a,m p
The distribution {pa,m} equals {e=#(Fa=#m) /71 in the thermal average and, in the time average, equals the diagonal
ensemble {|C,.m|?}. The probabilities p,. ., are unit-normalized and have bounded moments: For all nonvanishing
triples (A4, B,C) € (Z>0)*\ (0,0,0) of non-negative integers,

((Bo — E)* (m — M)P (54 — M)©) <O (NAHBFET), (S4)

For a variable X, we have defined (X), as the average over {ps..}. The thermal and diagonal distributions satisfy
the moment condition (S4) by the scalings E, M = O(N) and the variance conditions (10)—(12). We prove this claim



for the initial state in Suppl. Note 2 A. pnars satisfies the variance conditions (10)—(12) by Laplace’s method and,
independently, by the thermal state’s being short-range-correlated [82].

Using the moment condition (S4), we evaluate the average (S3). We outline the calculation here; Suppl. Note 2B
contains details. Consider the summand in (S3). The probability ps . peaks about (E, = E, m = M, sq = M), by
the moment condition (S4). In contrast, the Clebsch-Gordan coefficient and 7*) are smooth. They can therefore be
Taylor-expanded about the peak. In the Taylor expansion, a general term is an n*"-order derivative times an n*"-order
moment, for some n > 0. The derivative is < O(N~"), by the functions’ smooth dependence on E,/N, m/N, and
So/N. By the moment condition (S4), the moment is < O(N"~1). Hence Eq. (S3) reduces to

<T(§k)> = T® (B, M)+ O(N?). (S5)

The left-hand side equals the thermal average, for one instance of the probability distribution p, as well as the time
average, for another instance. Hence the averages equal each other to within the usual O(N~!) corrections.

A. The initial state satisfies the moment condition

The previous section casts the diagonal ensemble {|C,, ,,,|*} as satisfying the moment condition (S4). We prove the
claim here. The proof relies on three ingredients: (i) the finite dimensionality of the local subsystems’ Hilbert spaces;
(ii) the scalings

E=0O(N) and M =O(N); (S6)
and (iii) the variance conditions (10)—(12), repeated here for convenience:
var(H) = () — F* < O(N), (
var(S,) = (S%) — M? < O(N), and (
Var(S,.y) = (52,) < O(N).

—~
v U W\
© o
= = —

Recall that the variance conditions are satisfied, for example, if [¢)(0)) is short-range-correlated.

=,

The proof proceeds in three steps. First, we derive analogs for S? of the scaling and variance conditions (S6)—(S9).
Second, we upper-bound fairly general correlators’ magnitudes. Third, we combine steps 1-2.

Step 1: Unlike S, S? is nonextensive. Therefore, S?’s expectation value and variance are not necessarily bounded
as S.’s are. However, we can prove similar bounds. We define the diagonal average of any variable X, ., as

<Xa,m>diag = Z |Ca,m|2Xa,m- (S10)
We will prove the bounds
(8a)diag < M +O(1) and ((5a — M)2>diag < O(N). (S11)

First, we sum the variance conditions (S8) and (S9):
(%) — M? < O(N). (S12)
We evaluate the left-hand side (LHS) on |¢(0)) [Eq. (7)]:

> [Caiml*sa(sa +1) = M? < O(N). (S13)

a,m

The inequality is equivalent, by algebra and the normalization of {|Cy m|?}, to

M+ (2M +1) Z |Oa,m|2(5a - M)+ Z |Ooz,m|2(sa - M)2 <O(N). (S14)

a,m

Since M =%, |Ca,m|* m, we can replace the second term’s (s, — M) with (sq — m). Recall that m < s,. Every
factor on the inequality’s LHS is therefore nonnegative, so every term is, so every term must be < O(N). Since
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2M +1 = O(N), the second term implies that Y- . |Co.m|*(5a — M) < O(1). By the definition of (.)diag, we recover
the first inequality in (S11). The second inequality in (S11) follows similarly from Ineq. (S14)’s third term.

Step 2: We now upper-bound fairly general correlators’ magnitudes. Let x1, zs, ..., x, denote real-valued functions

of a and m. (For notational brevity, we suppress the functions’ dependencies on « and m.) Let the functions’
magnitudes obey the upper bound |z;| < X € R Vj,a,m. We analyze correlator magnitudes of the form

Ay As A
<$1 x5 xn"> )
diag

Without loss of generality, the powers are ordered from greatest to least: A7 > As > ... > A, > 0. At-least-two-point
correlators interest us, so A = Z;;l Aj > 2. Therefore, either A; > 2 or A; = Ay = 1. In the first case, we show,

(S15)

the correlator magnitude (S15) is upper-bounded by X“~2 times (x2); in the second case, the correlator magnitude
is upper-bounded by X4~2 times 1 (2} + x3). We parcel the factors so for reasons clarified in step 3.
First, suppose that A; > 2. To upper-bound (S15), we invoke the average’s definition, then the triangle inequality:

(eivage . al) ‘ <> (Caml? foa[* ozl - a4 (s16)
iag wm

We separate out a factor of |z1|>. Then, we bound the rest using the assumption |z;| < X and the definition
A=5"A;
j=1""J

<Y (Caml? leal? - 21 [A1 72 ] 42 -

a,m

An < (21) ding X4z, (S17)

A A2 An
<x1 57 ...x, > '
diag

The final inequality follows from the reality of .
Now, suppose that A; = A; = 1. To bound the correlator magnitude (S15), we again invoke the average’s definition,
then the triangle inequality. This time, we separate x‘flx‘gﬁ = x1x9 from the other variables:

<XA-2

(g atn) <3 Coml ool - fwal Slaa - o (518)
a,m <xA-2
Since z; and x are real, # + 3 — 2|z122| = (|21 — |22])? > 0. Rearranging yields |z122| < (2} + 23). Combining
this inequality with Ineq. (S18), we obtain
1
Ay A A, A
<x11x22 ST, >diag < §<xf +x§>diagX Z, (S19)

Step 3: We now synthesize steps 1 and 2. Let (z1,z2,23) equal (E, — E, m — M, s, — M) or some permutation
thereof. Since local subsystems have finite-dimensional Hilbert spaces, each variable is upper-bounded by some O(N)
number X. By the variance conditions, the functions (23)qiag and 3(z7 + 27)diag are O(N) for all j,k = 1,2,3.
Therefore, substituting into Eq. (S17) yields the moment condition (S4), as does substituting into Eq. (S19).

We can now explain why, during step 2, we sought bounds that contained (%) giag O (27 + 23)diag. These averages
are only O(N). If we had treated 23 or z;x5 like the other variables, each would have contributed an O(N?) factor
to the corresponding bound. We would not have recovered the all-important —1 in the moment condition’s exponent

[Eq. (S4)].

B. Detailed calculation of general average

The average (S3) equals the thermal expectation for one distribution {pa.,} and, for another distribution, equals
the time-averaged expectation value. We evaluate (S3) in detail here. The moment condition (S4) implies that {pa.m }
peaks near (E, = E, m = M, s, = M) . Furthermore, the Clebsch-Gordan coefficient and 7 vary slowly. Hence
we can Taylor-expand each function about the peak. We do so consecutively, then combine both approximations in
the sum (S3).
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Taylor expansion of Clebsch—Gordan coefficient: In Suppl. Note 4, we approximate the Clebsch—Gordan coefficients
at s > 1 and s, — m < s, . The latter condition does govern the dominant contributions to Eq. (S3): The moment
condition (S4), together with M = O(N), implies that ((so — m)"/s%), < O(N~!'), for n > 1. To prove this
inequality, we Taylor-expand (s, — m)™/s? about m = M and s, = M. A general term in the expansion is of
O(Im — M]B[sq — M]°/MBTY) | wherein B,C' € Z>o and B 4+ C > n. Each such term averages to < O(N~!).
Hence

<{sa - mr>p <O(N7Y, for n>1. (S20)

Sa

Having justified the use of the asymptotic expansion in Suppl. Note 4, we now use the expansion. Substituting
g = 0 into Eq. (S51) yields

(sa,m|sa,m;k‘,0):1+O(Sas_m) + ... (S21)
The ... consists of terms that contain additional powers of (s, — m)/s, . Taylor-expanding the Clebsch—Gordan
coefficient about m = s, = M, which is O(N), yields
m— M Sa — M
(sa,m|sa,m;k,0>=1+O(N>—|—O< N )+ (S22)

A general term in the expansion is of O([m — M)Bs, — M}C/NB"'C)7 wherein B, C € Zxo.

Taylor expansion of T™*): By assumption [see the text immediately above the non-Abelian ETH (14)], T®)(€,S)
is a smooth function of £/N and S/N:

or 9%
DEA DSC THE.S)

1
_ o() . (323)
E=E,S=M NA+C

Hence the Taylor expansion of 7®*)(E,, s,) about (E, = E, s, = M) has the form

TEN By, sa) = T® (B, M) +0<E°‘A7E) +0(3“;,M) +... (S24)

A general term in the expansion is of O([Eq — E]*[sq — M]9/N4TY), wherein A,C € Zx.

Combining the two Taylor expansions: We substitute the Taylor series (S22) and (524) into the average (S3), then
multiply out. As discussed in the main text’s setup section, 7)(E, M) = O(1) . Therefore,

<Tg’“>>p :(;npa’m [T(k)(E,M) +0(E“A;E> +o(m_NM) +O(SQJ_VM> +} . (S25)

A general term has the form O([E — E]4[m — M]P[s, — M| /NA+B+C) In the leading term, 7*)(E, M) can be
factored out of the sum, which then equals one, by the normalization of {pq,m}. The general remaining term averages,
by the moment condition (S4), to < O(NATB+C—1/NA+B+C) — O(N—1) . Hence

<T0(k)> = T®M(E, M)+ O(N~Y), (S26)

as quoted in Eq. (19).

3. CALCULATION OF TIME AVERAGE WHEN M = O(N) AND ¢ #0

Let us upper-bound the time-averaged expectation value (18), assuming that M = O(N) and g # 0:

(TEL), = D CamsgCann (Sasm + s mi by g) TO (a2 (S27)

a,m
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When ¢ vanished (Suppl. Note 2B), we simplified the average using properties of |Cy ,|?>. We can achieve some of
that simplification here, using the Cauchy—Schwarz inequality. Once we do, the problem splits into three classes,
associated with different ¢ values. We upper-bound the time average (S27) for the classes sequentially.

Application of Cauchy-Schwarz inequality: Define the vectors @ and ¢ in terms of the components uy, ,, =
Cc: m+q\/(sa, m+ q|sa, m; k, @) T ® (Eq, 56) and vam = Cam/ (80, + q|sa, m; k, ¢)T*) (E,, so) . Any branch-cut
convention can be applied to the square root. Define the inner product 4 - v := za’m Up, mVa,m - The Cauchy—Schwarz
inequality states that |- 0] < Vi - @ VU ¥ < max{d-d, U0}, so

)

’<Tq(§5)0> ’ < max { Z |Ca,m|2}<8aam|3a7m —q; k7q>T(k)(Eom Sa)

Z |Ca,m|2}<5aam + qlSa, m; k7q>T(k)(Eaa 5a)|} . (528)

a,m

We have redefined m + ¢ — m in the first sum.
The sums are dominated by terms in which

(Eo ~E, m~ M, s, ~M) and so, by the moment condition (S4), s, —m < 54, (S29)

as when ¢ = 0 (Suppl. Note 2B). We approximate the Clebsch—Gordan coefficients under these conditions in
Suppl. Note 4. The result [Egs. (S51) and (S52)] is

o qlal/2
<smm+qlsa7m;k7q>=0<[s“ m] >+ (S30)

Sa

The ... consists of terms that contain additional powers of (s, —m)/s or 1/s,. The same asymptotic expansion
characterizes the (s,,m|sq,m — ¢; k,q) in Eq. (S28).
We substitute the expansion (S30) into Ineq. (S28). Since T (E,,s,) < O(1),

’<Tq<§g0> ’ < Z|Cam2{ ([ am]m/z) + } . (S31)

The ... consists of terms that contain additional powers of (so —m)/sq or 1/s,. We evaluate the bound for |g| > 2,
q =1, and g = —1 sequentially.

Bounding the time-averaged expectation value when |q| > 2: The moment condition (S4), together with M = O(N),
implies that ((sq — m)"/s%)diag < O(N™!) for n > 1 [Eq. (520)]. Therefore, since the C, ,,’s are normalized to one,
Ineq. (S31) implies that

](T&“}t\sow—l) if g > 2. (532)

The time average equals the thermal average (zero), to within O(N~!) corrections.

Bounding the time-averaged expectation value when ¢ = +1: We return to the bound (S31). Since ¢ = 1, the
leading term averages to ([(so —m)/8a]"?)diag = O(N~1/2) in Eq. (S28). Therefore, we cannot immediately conclude
that the time average < O(N~1).

To demonstrate the time average’s smallness, we return to Eq. (527). We expect the same terms to dominate as
when |q| > 2 [Eq. (S29)]. Accordingly, Eq. (S51) approximates the Clebsch-Gordan coefficient:

(st + 1[ses i ko 1) = — ) 2L ’”1 ) [2a [1+0< > } (333)

Substituting into Eq. (S27) yields

k+1 Sq —M Sq — M
T““ =\ "5 Z Ca i1 Camy | = — {HO( i )+...]T<’“>(Ea,sa). (S34)
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We can Taylor-expand everything except the \/sq — m about (E, = E, m = M, s, = M). Since TH)(E,, s,) =
TE(E, M)+ O(EFE) + O(2=5M) + ... [Eq. (S24)],

T\ [k(k a—
<Tq(i)1>t = - ( ;1) Zcz,m+1ca,m i Mm

X {T(k)(E,M)—#O(EO‘NE) +0<mNM> +0(5“M> +} . (S35)

N

The leading term, involving 7(®) (E, M), is the problematic one [for proving that the time average is < O(N~1)]: The
leading term looks to be of O(N~1/2). However, this term is actually proportional to (S} ) = (S,) +1 (S, ), which van-
ishes by assumption [the sentence immediately below Eq. (9), in the main text’s setup]. To prove the proportionality,

we substitute the initial-state expansion [¢(0)) = >° ,, Ca,m|a,m) and the raising-operator equation Sy |o,m) =

V(sa = m)(sa +m+1)|a,m + 1) into the expectation value (S;) = >am Clms1Cam/(5a —m)(sa +m+1).
Taylor-expanding /s + m + 1 = v2M +1 [1+ O(225M%) + O(252) +...] yields

S oa—M - M
<S+> = 2M+1ZO;,m+1Ca,mv5a*m |:1+O(s N )‘FO(WLJV) +:| =0. (836)

The leading-order term is proportional to the leading-order term in Eq. (S35). Therefore, at leading order, <Tq(i)1> =
¢

0. The higher-order terms in Eq. (S35) can be shown to evaluate to < O(N~1!); one repeats the Cauchy—Schwarz
argument used for |g| > 2. Therefore,

<O(NTY). (S37)

Bounding the time-averaged expectation value when g = —1: The proof is almost the same as for ¢ = 1. Instead of
(S+) =0, we use (S_) = (S;) — i (Sy) = 0:

g=—1

’<T(k) >t’ <O(N7Y). (S38)

Thus, for all ¢ # 0, the time average equals the thermal average (zero), to within O(N~!) corrections.

4. APPROXIMATION OF CLEBSCH-GORDAN COEFFICIENTS

Here, we approximate the Clebsch-Gordan coefficients (s.,m + q|sq, m; k,¢) when s, > 1 and s, — m < 8,. As
throughout this paper, k, ¢ = O(1).
The general expression for Clebsch—Gordan coefficients is [83, Eq. (2.41)]

<S7m|8/’ml§k7Q> = 6m,m’+q (839)
" \/(28+ D(s+s =k (s—s+k)(s"+E=8)(s+m)(s—m) (s —m)(s"+m)(k—q)(k+q)

(s+s +k+1)!

(-
X;E!(s’+k7s76)!(s’fm’fﬂ)!(k+qf€)!(sfk+m’+€)!(sfs’fq+€)!'

The final line’s sum runs over all integer ¢ values for which every factorial’s argument is nonnegative. This expression
holds for m > 0 and s’ > k. We set s’ = s, as in the time-averaged expectation value (18). We also set m = m’ + ¢
and drop the primes:

2s+ 1) (2s — k) (ED2(s+m+ @l (s—=m =) (s—m) (s+m)! (k—¢)! (k+ q)!
<87m+q|57m;k,Q>=\/( q)(2s+k+1q))!( P

(=1)°
X;ﬂl(k—é)!(s—m—ﬂ)!(kﬁquﬁ)!(s—k+m+€)!(€—q)!'

(S40)
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This expression holds for m + ¢ > 0 and s > k. Both conditions are satisfied in the regime of interest, wherein s > 1
and s —m < s, while k, ¢ = O(1). The sum runs over the integers ¢ for which each factorial’s argument is nonnegative.
Together, the factorials imply three upper bounds and three lower bounds on /:

<k, (S41)
(<s—m, (542)
(<k+gq, (543)
(>k—s—m, (544)
£>¢q, and (S45)
£>0. (S46)
We initially assume that ¢ > 0, then generalize. Consequently, Ineq. (S41) subsumes Ineq. (S43), and Ineq. (S45)
subsumes Ineq. (S46). As s > 1 and s —m < s, Ineq. (S44) encodes a trivially negative lower bound. The constraints

on { reduce to
te{q,q+1,...,min{k,s —m}}. (547)

Let us extract the asymptotics of the Clebsch-Gordan coefficient in the limit as s — oo, assuming (s —m)/s — 0.
For convenience, we change variables from m to A := s — m. Grouping the s-dependent factors together yields

(1)K VB = QIAI Gk — @) (k + q)!
Ok—0' (A =0 (k+q— 0! (—q)

<57m+Q|57m; k7Q> = Z
y4

(S48)

(2s4+1)(2s — k)!I(2s — A+ ¢)! (25 — A)! 1
% 25+ k+1) 25— Akt 0

The s-dependent factorials are all large in the limit of interest, so we approximate them using Stirling’s formula:
1
x!:exp(xlnx—x—l—21n(27rx)+0(1/x)+...) . (S49)

We take the s-dependent expression’s natural log, expand in powers of 1/s, and exponentiate. The s-dependent factor
is

(25)7/>¢ exp (O(A/s) ¥ ) = (25)9/2 [1 FO(A/s) + -- ] . (S50)
Therefore, the least possible ¢ value dominates the ), in Eq. (S48). By (S47), that ¢ value is ¢.

Let us approximate the ), with the £ = ¢ term, while replacing the s-dependent factor with (S50). We revert
notation from A to s —m. The result is

ok = i (G a ) [ro(E) ] ez e

Now, suppose that ¢ < 0. The bounds (S47) on ¢ become ¢ € {0, 1,...,min{k — ¢, s — m}} In Eq. (S48), £ =0

labels the sum’s dominant term. The s-dependent factor approximates to (23)‘1/2[1 + O(%) +...]. Again, we
substitute into and approximate Eq. (S48). The result is

(FE) fee(5) ] e o

(s;m+qls,mik,q) = Iq]1(25)lal/2

5. TAYLOR EXPANSION OF 7" (£,8) ABOUT S =0

The main text shows that, if the total magnetization M = 0, noncommuting charges can lead to anomalous
thermalization. Our arguments rely on a claim about the smooth function 7®*) (£, S): Suppose that k > 0 is even

and £ = O(N). Consider Taylor-expanding 7*)(£,S) about S = 0. For some Hamiltonians H and operators Tq(k) ,
the Taylor expansion can have a nonvanishing O(S/N) term:

TE(E,S) =TH®(E,0)4+O(S/N) +.... (S53)
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Furthermore, the O(1) term 7*)(£,0) vanishes whenever k > 0. Here, we argue for the claim.

Argument that T(k)(g, 0) = 0 when k > 0: When s, = 0, the system lacks spin angular momentum and so any
preferred direction. Therefore, all rotationally noninvariant operators’ expectation values must vanish. Tq(k) is rota-
tionally noninvariant for all ¢, because k > 0. To identify the implications for 7(*)(£,0), we evaluate («, m|Tq(k) |, m)
(which vanishes) on an s, = 0 eigenstate |, m). We invoke the Wigner—Eckart theorem (13) and the non-Abelian

ETH (14). The associated Clebsch-Gordan coefficient equals one. Hence <a,m|Tq(k)|a,m> = T®*)(E,,0). The LHS
vanishes, as argued above. Hence the O(1) term 7®)(£,0) = 0.

Argument for the O(S/N) term in Eq. (S53): No deductive arguments preclude the form (S53), to our knowledge.
Hence there is no reason to believe that the O(S/N) term is absent. Beyond this “everything not forbidden is
compulsory” reasoning, we also argue for the O(S/N) term’s plausibility. Bound states underlie the argument. To
provide intuition, we first address a more familiar setting, in which just particles are conserved. We then replace the
particles with spin quanta.

Bound particles: Imagine a lattice in which only the global particle-number operator, N, is conserved. Consider
a global state |¢) of uniformly distributed two-particle bound states. Wherever a particle appears, another particle
appears beside it. Denote by N the site-j particle-number operator. For an arbitrary j, we estimate the correlator
WINGN 1 [0).

The correlator equals the joint probability p(particle at site j, particle at site j + 1). Semiclassically, this joint
probability equals p(particle at site j + 1|particle at site j) x p(particle at site j). The latter probability equals
O((Y|N|Y)/N), by the state’s uniformity. The conditional probability is O(1), because the particles are bound.
Hence the joint probability p(particle at site j, particle at site j + 1) = O((Y|N|¢)/N).

Bound quanta of spin: We reason about noncommuting charges by analogy with the preceding argument. First,
suppose that & > 2. Let the Hamiltonian have a finite-energy-density eigenstate |a, m=s,) that contains bound
clusters of k z-type charges. For example, ferromagnetic couplings can cause neighboring spins to point in the same
direction. If that direction is 2, the state contains bound z-charges. If H has some degree of uniformity, so can |«, $q ).
The amount of charge in the global system is essentially s.

A local operator of interest has the form 5!

k
TO( N Sj1,2 Sja,z -+ - S,z - (854)

Recall that s;. denotes qubit j’s z-type spin operator. This To(k) has an expectation value, in a joint eigenstate
|a, m=s,), that is essentially a k-point correlator:

k
(v, sa\TO( )\a, Sa) ~ (@, Sa|Sj,.2 Sja.z - - - Sjr, 2|, Sau) - (S55)
Similarly to in the particle-number example, this correlator is essentially the joint probability

p(site j; contains a quantum of z-type charge, site jo contains a quantum of z-charge, ...,
site jx contains a quantum of z-charge) . (S56)

Semiclassically, this joint probability equals

p(site jo contains a quantum of z-charge, ..., site ji contains a quantum of z-charge

|site j1 contains a quantum of z-charge) x p(site j; contains a quantum of z-charge). (S57)

The final probability is O(s,/N), by the state’s uniformity. The conditional probability is O(1), if j; lies close to
the other j’s, because the charges form bound clusters. Hence the joint probability is O(s,/N). So, semiclassically,
<a,sa|T0(k)|a,sa> = O(84/N). The LHS is essentially T (E,, s,), by the Wigner-Eckart theorem (13) and the
non-Abelian ETH (14). Hence T (E,, s4) = O(54/N).

S1 To produce a Té ) operator, one would begin with the right-hand operators. For example, the main text features a quadrupole
side (RHS) of (S54), multlpl}{ it by a constant, and subtract operator. This TéQ) results from subtracting the T(EO) operator
off terms to make the expression orthogonal to all the lower-k §; - §; from 3s; .s;.. However, the RHS of (S54) forms the

essence of Tém .
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If £k = 0, a similar argument concerns a local operator TO(O) = —5; - §p. Start with a “resonating valence bond”
(RVB) state, a superposition of local dimer coverings (local pairings of the qubits into singlets). This state has zero
total spin (s, = 0). The expectation value <T0(0)> = (—§; - §;) quantifies the probability that qubits j and j’ form a
singlet. This probability is O(1) in the RVB state, if j lies close to j’. Imagine that a few of the singlets are broken—a
small fraction p. Furthermore, the broken singlets are distributed uniformly throughout the system. The resulting
state has nonzero but small total spin: so/N ~ p. The expectation value <T(§0)> = (=§;-8;) = O(1) + O(so/N).
The second term equals the probability that the j-and-j’ singlet is broken. Hence, by the same logic as for k > 2,
TONE,,84) = O(1) + O(s4/N).

6. OPPORTUNITY FOR ANOMALOUS THERMALIZATION OF
ROTATIONALLY NONINVARIANT OPERATORS 722 WHEN M =0

The main text illustrates potential anomalous thermalization with a rotationally noninvariant operator Tq(k>0).

This supplementary note covers the topic in greater depth. To illustrate the generality of such potential anomalous
thermalization, we focus on operators Tq(i?), rather than the main text’s T52)7 here.
The strategy is as follows. We construct a time-independent state [1(t)) = |¢(0)) V¢ that has the properties

stipulated in our setup, as well as M = 0. Then, we focus on operators Tq(i)l, for an even k > 2. The time average

<T1(k)>t , we show, differs from the thermal average (Tl(k)>th at the anomalously large O(N~'/2). The argument relies
on the smooth function 7*)(E,, s4)’s having a term ~ s, /N in its Taylor expansion about s, = 0 (Suppl. Note 5).

Consider an initial state |[1(0)) in a Hamiltonian eigenspace labeled by o = A. Let the eigenenergy E4 = O(N)
and spin quantum number s4 = O(Nl/z) . For some to-be-specified magnetic spin quantum number m € [—s4, $a],

%(0)) = %(IA,TW +[A,m+1) + |4, —m) — [A,—m —1)). (S58)

One can check directly that M = (S.) = 0 and var(S.) = 3[m? + (m + 1)?] = O(N). That (S,,) = 0 follows
from (i) the decompositions of S, and Sy in terms of S+ and (ii) the ladder operators’ actions on an S, eigenstate,
Si|A,m) = /sa(sa+1) —m(m £ 1)|A,m=£1). The same ingredients imply that (S2,) = 0(s%) +0(m?) = O(N);
hence var(Sg,,) = O(N). The energy variance, var(H), vanishes by construction. Hence [¢(0)) has the properties
stipulated in the main text’s setup section, including the variance conditions (10)—(12).

Having prescribed an initial state, we shift focus to an operator Tq(k) . Let ¢ = 1. To calculate the time-averaged
expectation value, we substitute the Cy ,’s from Eq. (S58) into Eq. (18):

1
(1) = 5 (s 1fsa,msk, 1) = (s, ~mlsa, i = 15k, 1)) T (EBa5a) (59)

The Clebsch—Gordan coefficients obey the symmetry relation
(S0, m 4 180, m5 k, 1) = (=1)" (s, —m|sq —m — 1;k,1) (S60)

[83, Eq. (2.42)]. Consequently, if k is odd, the time average (S59) vanishes. Since the Sy are Tj(tll) operators, we
have corroborated our earlier conclusion that (S, ,) = 0. Suppose, instead, that k£ > 2 is even. The symmetry (S60)
reduces the time average (S59) to

<T1(k)> - %<5A, m+1sa,mik, 1) TH (Ea,s4). (S61)
t

We now Taylor-expand the smooth function 7*)(E4, s4) about s4 = 0. Generally, the Taylor expansion can have
the form 7" (Ea,54) = O(1) + O(s4/N) + ... . We argued in Suppl. Note 5 that the O(1) term vanishes if k > 0,
but that the O(sa/N) term is nonzero under a physically reasonable assumption. This term is O(N~/2), by our
choice of s4 = O(N'/?). Hence Eq. (S61) has the form

1
<T1(k)> = S (sa,m+ 1sa,mik, 1) x O(N /2. (S62)
t
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We can choose m to make the Clebsch—Gordan coefficient be O(1). {In fact, the Clebsch—Gordan coefficient is O(1)
for most choices of m € [—s4, s4] that are not too close to +s4.} Substituting into Eq. (S62) yields

<T1(k)>t = O(N~1/2). (S63)

The thermal average (Tl(k))th vanishes, because g # 0, by Eq. (16). Hence the time average differs from the thermal
average at O(N~1/2).

7. OPPORTUNITY FOR ANOMALOUS THERMALIZATION OF
ROTATIONALLY INVARIANT OPERATORS Téo) WHEN M =0

The main text illustrated potential anomalous thermalization with a rotationally noninvariant operator T§k>0).
Here, we show that rotationally invariant operators TO(O), too, may thermalize anomalously if M = 0.

Consider an arbitrary T(go). The corresponding Clebsch—Gordan coefficients (so, m|sq, m;0,0) = 1. Hence the
thermal average (16) and time average (18) reduce to

<T0(O)>th = % Z e PP TONE,, 5,) and (S64)
(T3, = Y |Casm* TO(Ea, 50) - (S65)

We outline the rest of the argument here, then detail it in Suppl. Note. 7 A.

In each of Egs. (S64) and (S65), we Taylor-expand the smooth function 79 (E,, s,) about (Eq = E, sq = 0),
then average term by term. In the expansion, a general term is a moment ((E, — E)4 (s54)€) times a corresponding
derivative of 7(®. The leading (A = C' = 0) term averages to 7% (F,0) in both (S64) and (S65): The thermal and
time averages equal each other to zeroth order. Terms with A > 1 or C' > 2 all average to < O(N~1), as when
M = O(N). The remaining (A = 0, C = 1) term is linear in the spin density, so/N.

This O(sq/N) term, we have argued, can be nonzero for suitable Hamiltonians and operators. See the main text
and Suppl. Note 5 for an argument based on bound states. The O(so/N) term, in the thermal average (S64), evaluates
to O(N~1/2) (Suppl. Note 7 A).

In contrast, consider the time average (S65). We can engineer Cy, ,, to be large only when s, = O(1). The O(s/N)
term will then time-average to O(N~1). The time average will deviate from the thermal average by

<T(§°)>th - <T0(0)>t —O(N"Y2) > O(NY). (S66)

A. Thermal average of rotationally invariant operators at M =0

Here, we evaluate in greater detail the thermal average (S64). The calculation proceeds as follows: Upon ap-
proximating the sum as an integral, we use Laplace’s method (similar to the saddle-point approximation). We
Taylor-expand the smooth 7(°)(E,, s,) near the peak, then integrate term by term.

The summand is a smooth function of E,/N and s,/N when N > 1, by assumption [see the text immediately
above the non-Abelian ETH (14)]. Therefore, we can replace the sum over states with an integral over energy and

spin quantum numbers (treated as continuous variables), weighted by the density of states etn:
1 Emax Smax
<Téo)> ~ dé‘/ dS e5m(&:8)=BE 7(0) (£,S). (S67)
th Z’ Emin 0

The normalization condition (1), = 1 fixes the effective partition function Z’.

We evaluate the integral using Laplace’s method (the saddle-point approximation, but for real variables). For most
fixed values of £/N and S/N, the exponent Sin(€,S) — BE = O(N), so the integrand peaks steeply about this
function’s global maximum. The exponent is stationary where its first derivatives vanish:

6Sth _ aSth
—p =0, and S

= 0. (S68)
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The first condition is the usual thermodynamic definition of the inverse temperature 5. The thermodynamic entropy’s
concavity suggests that (S68) has a unique solution (£,8) = (&i,Ss), at which the exponent attains its global
maximum. We Taylor-expand the exponent about this maximum:

1
Sin(€,S) = BE ~ S(E.,8) = B+ 5 (€ = £, S = 8) [VhSu], (€~ &, 5= 8.) . (S69)

[V&Sin], denotes the Hessian matrix of Sin(€,S), evaluated at (€, S.). Equation (S67) reduces to

1 Emax
<T(O)> N —
0 th AL B

We have absorbed into the effective partition function Z” the leading term in the expansion (S69). Again, Z” is fixed
by the normalization condition (1), = 1.

We can approximate, and assess the scalings of, several components of the integral (S70). First, according to conven-
tional thermodynamics, —9%S,/0E? o 1/(heat capacity) is positive and O(N~!). Therefore, we expect [—V S|,
to be a positive-definite matrix whose elements are O(N 1) . Therefore, the Gaussian factor in (S70) has a peak width
of O(N'/2). Second, by evaluating the LHS of (H),,, = F, using Eq. (S70), we obtain &, ~ E. Third, by evaluating
the LHS of (52);, = O(N),52 also using Eq. (S70), we infer that S, € [0, O(N'/2)]. Fourth, by the foregoing obser-
vations, the Gaussian peaks far from the integration limits & = Ein, Fmin and S = Spax - Therefore, we can extend
these limits to oo . Applying these conclusions to Eq. (S70) yields

(1) h~ zi / ae / T 4S ¢ HEB S-S [-VhSu] (6B S8 10 (g 5 (S71)
t 00 0

dE /Smax dS ¢ 2(E—E,8-8)T[-ViiSu] (£-¢£.,5-5.) TO(E,S). (S70)
0

min

Whereas the exponential peaks sharply, T(O)(f) ,&) is smooth and varies slowly, by assumption [see the text imme-
diately above the non-Abelian ETH (14)]. We therefore Taylor-expand 7% (£, S) about £ = E and S = 0:5

TOE,8) ~TY (E,0) + 0(“”_NE) + o@) +.. (S72)

We argue for the nonzero O(S/N) term’s presence, for suitable Hamiltonians and suitable operators 7(® | in
Suppl. Note 5.

We substitute the Taylor expansion (S72) into Eq. (S71), then perform standard multivariate Gaussian integration.
The zeroth-order term in Eq. (S72) integrates to 7(?)(F,0), by the integral’s normalization. The O([€ — E]/N) term
integrates to zero, by the £ integral’s symmetry. The O(S/N) term does not integrate to zero similarly, because the
S integral ends at S = 0. However, the Gaussian has a width of O(N'/?). Hence S averages to O(N'/?), and the
O(S/N) term in Eq. (S72) averages to O(N~'/2). The higher-order terms average to < O(N~1), so

<T(§°>>th ~ T (E,0) + O(N~V/2) (S73)

52 We evaluate (S?)y, by replacing the 7(9)(€,8) in Eq. (S70) M = 0 in this Supplementary Note. Hence (32}, = O(N).
with S(S + 1). We can understand the O(N) through the ther- S3 Strictly speaking, one should Taylor-expand 7 (&, S) about the
m_gl state’s §haring of scaling behaviors with the initial state: maximum, S = S,, rather than about S = 0. However, 7(9 is
(S%)en ~ (S%)o = (S5 + 55 + S§>0 = varg(Sz) + varo(Sy) + sufficiently smooth, and S € [0, O(N'/2)] is sufficiently close to
varg(Sz) + (S2)2 . Each of the first three terms is O(N), by the 0, that the two expansions yield identical results.
variance conditions (11)—(12). The final term vanishes because
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