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Quantum correlations are key information about the structures and dynamics of quantummany-body systems. There are
many types of high-order quantum correlations with different time orderings, but only a few of them are accessible to the
existing detectionmethods. Recently, a quantum-sensing approach based on sequential weakmeasurement was proposed
to selectively extract arbitrary types of correlations. However, its experimental implementation is still elusive. Here we
demonstrate the extraction of arbitrary types of quantum correlations. We generalized the original weak measurement
scheme to a protocol using synthesized quantum channels, which can be applied to more universal scenarios including
both single and ensemble quantum systems. In this quantum channel method, various controls on the sensors are
superimposed to select the sensor-target evolution along a specific path for measuring a desired quantum correlation.
Using the versatility of nuclear magnetic resonance techniques, we successfully extract the second- and fourth-order
correlations of a nuclear-spin target by another nuclear-spin sensor. The full characterization of quantum correlations
provides a new tool for understanding quantum many-body systems, exploring fundamental quantum physics, and
developing quantum technologies.

Introduction
Correlations of physical quantities are key to understand-
ing quantum many-body physics1–3, nonlinear optics4, solid-
state nuclear magnetic resonance (NMR)5,6 and open quan-
tum systems7–10, and are relevant to some quantum-enhanced
technologies11–13. Second-order correlations14,15 are the un-
derlying physical quantities measured in a broad range of fields
such as linear optics16, transport17, thermodynamics18, neu-
tron scattering19, and are directly extracted in various quantum
systems such as single solid impurities20–24, quantum dots25,26
and superconductor qubits27. Recently, it is indicated that
high-order correlations are relevant to mesoscopic quantum
many-body systems2,28,29. How to systematically characterize
these correlations then plays a central role in investigation of
various quantum systems4,30.
In general, the dynamics of a quantum system is deter-

mined by the correlations𝐶𝜂𝑁 · · ·𝜂1 = TrB
(B𝜂𝑁

𝑁 · · · B𝜂2
2 B𝜂1

1 𝜌̂
)
,

where 𝜌̂ is the initial state of the system and 𝜂𝑘 = ±1.
The super-operators of the commutator and anti-commutator
at time 𝑡𝑘 (with 𝑡1 ≤ 𝑡2 ≤ · · · 𝑡𝑁 ) are defined as B−

𝑘 𝜌̂ ≡
−i[𝐵̂ (𝑡𝑘 ) 𝜌̂ − 𝜌̂𝐵̂ (𝑡𝑘 )]/2 and B+

𝑘 𝜌̂ ≡ [𝐵̂ (𝑡𝑘 ) 𝜌̂ + 𝜌̂𝐵̂ (𝑡𝑘 )]/2,
respectively. The quantum quantities 𝐵̂ (𝑡𝑘 ) at different time
𝑡𝑘 in general do not commute, i.e., 𝐵̂ (𝑡𝑖) 𝐵̂

(
𝑡 𝑗

)
≠ 𝐵̂

(
𝑡 𝑗

)
𝐵̂ (𝑡𝑖)
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when 𝑖 ≠ 𝑗 . Therefore, the high-order quantum correlations
have a rich structure resulting from different orderings31–33.
There are 2𝑁−1 inequivalent correlations corresponding to dif-
ferent nesting of commutators and anti-commutators in time
order10,30,34. Among these numerous correlations, several
special forms have been widely investigated and play sig-
nificant roles in many subjects. For example, the nonlinear
spectroscopy13, in which the system is detected by a classi-
cal sensor, measures only one type of time-ordered correla-
tions, namely, 𝐶+−−···− = TrB

(B+
𝑁 · · · B−

2 B−
1 𝜌̂B

)
. Another

widely used tool is the noise spectroscopy9,35, in which the
target system is approximated as a classical stochastic noise
field, and it usually extracts the symmetric correlations like
𝐶++···+ = TrB

(B+
𝑁 · · · B+

2B+
1 𝜌̂B

)
. As shown in Fig. 1a, using

the quantum sensors to detect the target systems is necessary
for the full extraction of the quantum correlations, but few
studies on this subject are carried out. Recently, it is pro-
posed theoretically that the sequential weak measurements via
a quantum sensor can extract arbitrary-order correlations of a
quantum bath30. By preparing the initial state and choosing
a certain measurement basis of the sensor, one can pre- and
post-select the coupling between the sensor and the target sys-
tem to access arbitrary types and orders of correlations of the
target system. A very recent experimental work also used the
sequential weak measurement to obtain the mixed signals of
the fourth-order correlations of single nuclear spin36. Until
now, selective detection of arbitrary types of correlations has
not yet been realized in experiments.

ar
X

iv
:2

20
6.

05
88

3v
1 

 [
qu

an
t-

ph
] 

 1
3 

Ju
n 

20
22



2

a b

c d

V = f B̂ V = Ŝ ⊗ B̂
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Fig. 1. Schematics of the measurement protocol for arbitrary quantum correlations. a, Quantum sensors vs. classical sensors for
correlation measurements. Only one type of correlations is accessible to a classical probe while arbitrary types of correlations can be extracted
by a quantum sensor. b, General protocol to extract arbitrary types of quantum correlations with synthesized quantum channels on a quantum
sensor. c, Diagram representation of a designed quantum channel for measuring the second-order correlation 𝐶+−. d, Diagram representation
of a designed quantum channel for measuring the four-order correlation 𝐶+−−+. The initial state 𝜌̂S and observable 𝜎̂𝑦 are represented by the
four-vectors. The blue solid lines inside the rectangles denote the transfer paths of S±

𝑧 (e.g. the two lines in the rectangle of S−
𝑧 represent the

transfer paths like 𝜎𝑥 ↔ 𝜎𝑦 ), and the green lines denote the transfer paths of the quantum channels P𝑘 . The connected paths denoted by
solid lines represent the selected ones to measure the desired correlations. Those denoted by the dashed lines are disconnected to block the
unwanted correlations.

Here we demonstrate the extraction of arbitrary types of
quantum correlations. In stead of the original weak measure-
ment scheme30, we propose a more general protocol using
synthesized quantum channels to select the coupled evolu-
tion of the quantum sensor and target system along a specific
path, leading to a desired correlation detected by the final
measurement. This quantum channel scheme is universal, ap-
plicable to both single and ensemble quantum systems. Using
the versatility of NMR techniques, which are a powerful tool
for studying quantum many-body physics6,37 and correlation
measurements38–40, we demonstrate the scheme using nuclear-
spin targets and sensors. We extract the second-order correla-
tion𝐶+− and fourth-order correlation𝐶+−−+. It is expected that
the measurement protocol for arbitrary quantum correlations
will provide an essential tool for studying quantummany-body
physics and finding the applications in quantum technologies.

Scheme
Consider a quantum sensor S transiently coupled to a quantum
many-body target B at time 𝑡𝑘 for a short time 𝛿𝑡, the state
evolution is governed by the interaction Hamiltonian 𝑉̂ = 𝑆 ⊗
𝐵̂(𝑡𝑘 ). Then the corresponding Liouville equation 𝜕𝑡 𝜌̂ (𝑡) =
−i [𝑉̂ , 𝜌̂ (𝑡)] has the first-order approximation41
𝜌̂ (𝑡𝑘 + 𝛿𝑡) ≈ [

1 + 2 (S− ⊗ B+
𝑘 + S+ ⊗ B−

𝑘

)
𝛿𝑡

]
𝜌̂ (𝑡𝑘 ) , (1)

where S±/B±
𝑘 are the super-operators as defined before and

𝐵̂𝑘 = 𝐵̂ (𝑡𝑘 ). Suppose the sensor and target are initially sep-
arable, i.e., 𝜌̂ (0) = 𝜌̂S ⊗ 𝜌̂B. After passing through the 𝑁
transient interactions successively at 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑁 , the
final state after 𝑡𝑁 becomes

𝜌̂f ≈
∑︁

𝜂𝑘 ∈{±,0}
T

[
(2𝛿𝑡)Θ

𝑁∏
𝑘=1

(
S𝜂𝑘 ⊗ B𝜂𝑘

𝑘

)]
𝜌̂S ⊗ 𝜌̂B, (2)

where T is the time-ordering operator and Θ =
∑𝑁

𝑘=1 |𝜂𝑘 |.
Here 𝜂𝑘 ∈ {±, 0} and we define S0 = B0𝑘 ≡ 1, 𝑘 = 1, · · · , 𝑁 .
𝜂𝑘 = −𝜂𝑘 , which means S± are always adjoint with B∓

𝑘 . Then
by taking the partial trace over the target, one obtains the
reduced density of the quantum sensor:

𝜌̂S (𝑡) ≈
∑︁

𝜂𝑘 ∈{±,0}
(2𝛿𝑡)Θ 𝐶𝜂𝑁 · · ·𝜂1

(
T

𝑁∏
𝑘=1

S𝜂𝑘

)
𝜌̂S, (3)

which is completely determined by all types of quantum cor-
relations 𝐶𝜂𝑁 · · ·𝜂1 = TrB

(B𝜂𝑁

𝑁 · · · B𝜂2
2 B𝜂1

1 𝜌̂B
)
and Θ defines

the order number of the correlation𝐶𝜂𝑁 · · ·𝜂1 . In general, direct
measurement on the quantum sensor would involve all possible
kinds of quantum correlations.
To selectively extract arbitrary types of quantum correla-

tions 𝐶𝜂𝑁 · · ·𝜂1 via the quantum sensor, we insert a general
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Fig. 2. Measurement of the second-order correlations 𝐶+−. a,
Experimental diagram for measuring second-order quantum correla-
tion 𝐶+−. 𝑈̂C (𝛿𝑡) = e−i𝑉̂ 𝛿𝑡 is the coupled evolution for the case of
pure dephasing. 𝑈̂B (𝜏21) is the free evolution of the quantum target
under its Hamiltonian 𝐻̂𝐵 for time 𝜏21 = 𝑡2 − 𝑡1. The two synthesized
quantum channels are

(
𝑌 + 𝑌 ) /2 = [R𝑦 (𝜋/2) + R−𝑦 (𝜋/2)]/2 and

𝑌 = R𝑦 (𝜋/2). b, Measured values of
〈
𝜎̂C𝑦

〉
versus the time interval

𝜏21 for 𝛿𝑡 = 0.1 ms (left graph) and 𝛿𝑡 = 0.5 (right graph). c, Mea-
sured values of

〈
𝜎̂C𝑦

〉
versus 𝐽𝛿𝑡 with a fixed interval 𝜏21 = 10 𝜇s.

The inset shows the linear fitting of the logarithmic data. In b and c,
the red solid lines denote the theoretical curves of the target signals
(𝛿𝑡2𝐶+−), the black dashed lines denote the numerical simulations of
𝑆2 in equation (13) and the error bars are given based on the fitting
errors of experimental spectra (see Supplementary Note 3).

‘quantum channel’ (denoted by a super-operator P𝑘 ) before
each short-time (𝛿𝑡)-coupling evolution, as shown in Fig. 1b.
Such a set of quantum channels can be realized by some unitary
or non-unitary operations applied on the quantum sensor, such
as rotation, measurement or polarization (see Supplementary
Note 2). Then the final state of the quantum sensor turns into

𝜌′S (𝑡) ≈
∑︁

𝜂𝑘 ∈{±,0}
(2𝛿𝑡)Θ 𝐶𝜂𝑁 · · ·𝜂1

(
T

𝑁∏
𝑘=1

S𝜂𝑘P𝑘

)
𝜌̂S. (4)

After measuring the observable 𝑂̂ on the final state of the

quantum sensor, the obtained signal is

𝑆𝑁 = TrS
[
𝑂̂𝜌′S (𝑡)

] ≈ ∑︁
𝜂𝑘 ∈{±,0}

𝛿𝑡Θ𝐴𝜂𝑁 · · ·𝜂1𝐶𝜂𝑁 · · ·𝜂1 , (5)

where the coefficient is

𝐴𝜂𝑁 · · ·𝜂1 = 2ΘTrS

[
𝑂̂

(
T

𝑁∏
𝑘=1

S𝜂𝑘P𝑘

)
𝜌̂S

]
. (6)

In order to selectively extract arbitrary types of quan-
tum correlations, we can design a set of quantum channels
{P𝑘 } (𝑘 = 1 · · · , 𝑁) together with an observable 𝑂̂, so that
only one term of equation (5) is reserved, e.g.,that associated
with the correlation 𝐶𝛾𝑁 · · ·𝛾1 . To achieve this goal, the chan-
nel sequence {P𝑘 } and observable 𝑂̂ have to make sure the
coefficient 𝐴𝛾𝑁 · · ·𝛾1 ≠ 0, while all other 𝐴𝜂𝑁 · · ·𝜂1 vanish for
𝜂𝑁 · · · 𝜂1 ≠ 𝛾𝑁 · · · 𝛾1. Fig. 1b visualizes this idea. When
passing through each 𝛿𝑡 slice, the quantum target has three
evolution options: B+

𝑘 , B−
𝑘 and 1. If the designed quantum

channels P𝑘 are inserted between the neighbouring 𝛿𝑡 slices,
only one connected path that leads to the desired correlation is
reserved while other evolving paths of the quantum target are
blocked. The extraction of arbitrary correlations in the case
of more general coupling interaction (𝑉̂ =

∑3
𝛼=1 𝑆𝛼 ⊗ 𝐵̂𝛼) can

be achieved by a generalized method, where the problem is re-
duced to solve the indefinite linear equations. It can be proved
that it is always possible to find a solution because that the
number of the linear equations is always less than the control
elements (see Supplementary Note 2).
Next we will take the second-order correlation 𝐶+− and the

fourth-order correlation 𝐶+−−+ as examples, where a spin-1/2
system is chosen as the quantum sensor coupled to a quantum
target by pure dephasing spin model 𝑉̂ (𝑡) = 1

2 𝜎̂𝑧 ⊗ 𝐵̂(𝑡). Here
1
2 𝜎̂𝑧 is the 𝑧 component of the sensor’s spin operator, which
corresponds to the super-operators of commutatorS−

𝑧 and anti-
commutator S+

𝑧 . The initial state of the quantum sensor is
𝜌̂S = (1 + 𝑝𝜎̂𝑧) /2 (𝑝 is the polarization of the sensor) and
the final observable is 𝑂̂ = 𝜎̂𝑦 . The quantum channels are
constructed by synthesizing the spin rotations of the quantum
sensor.
Formeasuring𝐶+−, two channelsP2nd1 ,P2nd2 are designed to

reserve the coefficient 𝐴−+ whilemaking other coefficients like
𝐴+− and 𝐴−− vanish (seeMethods). The scheme can be clearly
illustrated by the channel diagram as shown in Fig. 1c. Since
{1, 𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧} constitutes a complete basis for the Liouville
space of spin-1/2 system, the initial state 𝜌̂S and observable
𝑂̂ can be represented by four-vectors. The super-operators
like S𝜂𝑘

𝑧 and P𝑘 are the 4 × 4 matrices in this representation.
S±
𝑧 are always adjoint with B∓

𝑘 . Consequently, the only non-
vanishing coefficient 𝐴−+ associated with the correlation 𝐶+−
corresponds to the connected path (in solid line) that starts
from 1 of the initial state and ends at 𝜎̂𝑦 measurement of the
final state (see Fig. 1c). As given in Methods, the coefficient
𝐴−+ = 1, thus themeasurement signals of

〈
𝜎̂𝑦

〉
on the quantum

sensor give the information of second-order correlation 𝑆2 for
𝑛 = 2 in equation (5)].
The measurement of𝐶+−−+ can be realized by four quantum

channels P4nd1 ,P4nd2 ,P4nd3 ,P4nd4 (see Methods). As shown in
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Fig. 3. Measurement of the fourth-order correlations 𝐶+−−+. a, Experimental diagram for measuring the fourth-order correlation𝐶+−−+. The
symbols are the same as Figure 2a. 𝑋/𝑋̄ = R±𝑥 (𝜋/2) and 𝑌/𝑌 = R±𝑦 (𝜋/2). The quantum channel [(𝑋 + 𝑋̄)/2]𝑛 is designed to be robust to
the pulse errors by repeating the quantum channel (𝑋 + 𝑋̄)/2 for 𝑛 times. b, Measured values of

〈
𝜎̂C𝑦

〉
versus 𝜏21 for 𝑛 = 1 (blue scatters) and

𝑛 = 3 (black scatters) when 𝛿𝑡 = 0.5 ms and 𝜏32 = 𝜏43 = 10 𝜇s. The green dash-dotted line denotes the ideal simulated signal. c, Measured
values of

〈
𝜎̂C𝑦

〉
versus 𝐽𝛿𝑡 for the fixed 𝜏21 = 10 𝜇s. The inset is the linear fitting of the logarithmic data. In b and c, the red solid lines denote

the theoretical curves of the target signals (𝛿𝑡4𝑝C𝐶+−−+). The black and blue dashed lines denote the corresponding numerical simulations of
𝑆4 for 𝑛 = 1 and 𝑛 = 3 with 𝜋/2 pulse error. The error bars are given based on the fitting errors of experimental spectra.

Fig. 1d, the non-vanishing coefficient 𝐴−++− associated with
𝐶+−−+ corresponds to the connected path (in solid line) that
starts from 𝜎̂𝑧 of the initial state and ends at 𝜎̂𝑦 measurement of
the final state. The other irrelevant paths are blocked because
the coefficients related to them all vanish. Since 𝐴−++− = 𝑝
(see Methods), the final measurement signals of

〈
𝜎̂𝑦

〉
on the

quantum sensor give the information of fourth-order correla-
tion 𝑆4 for 𝑁 = 4 in equation (5).
It is worth noting that some quantum correlations are inac-

cessible to the synthesized spin rotations of a spin-1/2 quantum
sensor. For instance, the extraction of the third-order correla-
tion 𝐶+−+ or any correlation like C+−···−+ with an odd number
of commutators (B−

𝑘 ) requires the quantum channels that con-
nect 1 with 𝑥/𝑦/𝑧, which can’t be synthesized by the rotations
of a single spin-1/2 system. To measure them then, quan-
tum channels beyond synthesized spin rotations or multi-spin
quantum sensors are required.

Experimental demonstration
The scheme above is experimentally demonstrated by using
nuclear spins at room temperature on a Bruker Avance III
400 MHz nuclear magnetic resonance (NMR) spectrometer.
The sample is carbon-13 labeled acetic acid (13CH3COOH)
dissolved in heavy water (D2O). The methyl group (-13CH3)
in acetic acid can be seen as a central spin system, where the

13C nucleus is the central spin as the sensor while three 1H
nuclei constitute the quantum many-body target. The natural
Hamiltonian of the system in doubly rotating frame is the
coupling term 𝐻̂NMR = 𝜋

2 𝐽CH𝜎̂
C
𝑧 ⊗∑3

𝑖=1 𝜎̂
H
𝑖,𝑧 with the coupling

constant 𝐽CH = 129.6 Hz, and directly generates the pure
dephasing Hamiltonian 𝑉̂ = 1

2 𝜎̂𝑧 ⊗ 𝐵̂ between the sensor and
the target, where the target operator is 𝐵̂ = 1

2 𝐽
∑3

𝑖=1 𝜎̂
H
𝑖,𝑧 with

𝐽 = 2𝜋𝐽CH.

Figure 2a and Figure 3a show the experimental procedures
for measuring the second-order correlation𝐶+− and the fourth-
order correlation 𝐶+−−+, respectively. The system is initially
prepared in a separable equilibrium state 𝜌̂ (0) = 𝜌̂S ⊗ 𝜌̂B with
𝜌̂S =

(
1 + 𝑝C𝜎̂

C
𝑧

) /2 and 𝜌̂B =
(
1 + 𝑝H

∑3
𝑖=1 𝜎̂

H
𝑖,𝑥

)
/8, where

1 is the unit operator and 𝑝C, 𝑝H are the thermal polarizations
(∼ 10−5) for the 13C and 1H spins, respectively. A continuous
radio frequency (RF) field on resonance along 𝑥 axis is applied
on the 1H spins to create the local Hamiltonian of the target:
𝐻̂B = 𝜋𝜈

∑3
𝑖=1 𝜎̂

H
𝑖,𝑥 , where 𝜈 ≈ 24000 Hz is the nutation fre-

quency of 1H spins. The quantum channels are constructed
by the synthesis of 𝜋/2 pulses R𝛼 (𝜋/2) with different phases
𝛼. In experiments, they can be well realized by the phase cy-
cling technology in NMR42. Finally, the signals are recorded
by measuring the magnetizations of central spins (13C) along
𝑦 axis, i.e.,

〈
𝜎̂𝐶
𝑦

〉
, from which arbitrary correlations can be
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extracted by different quantum circuits with suitable phase
cycling schemes.
Figure 2b presents the measured values of

〈
𝜎̂𝐶
𝑦

〉
versus the

evolving time 𝜏21 = 𝑡2 − 𝑡1 for 𝛿𝑡 = 0.1 & 0.5 ms (black
scatters), from which the second-order correlation 𝐶+− [equa-
tion (15)] is extracted. The target signals 𝛿𝑡2𝐶+− (𝑡2, 𝑡1) (solid
red lines) and the numerical results of 𝑆2 [equation (13)] (black
dashed lines) are also presented. As theoretically expected, the
measured signals show oscillatory behavior with 𝜏21. The rel-
ative deviation (defined in Methods) between the measured
signals and the target signals is Δ = 32.3% for 𝛿𝑡 = 0.1 ms and
Δ = 18.8% for 𝛿𝑡 = 0.5 ms. We also plot the dependence of〈
𝜎̂𝐶
𝑦

〉
on 𝐽𝛿𝑡 with a fixed interval 𝜏21 = 10 𝜇s in Fig. 2c. From

this we find that with the increase of 𝛿𝑡, the experimental data
show increasing deviation from the target signals (red solid
line), but agree well with the numerical simulation (dashed
line). The deviation between the numerical simulation and the
target signals comes from the theoretical approximation due
to the finite value of 𝛿𝑡. Moreover, we fit the measured signals〈
𝜎̂𝐶
𝑦

〉
with a power law of (𝐽𝛿𝑡)𝑘 and find 𝑘 ≈ 1.856, which

is close to the ideal value 𝑘 = 2. A little smaller 𝑘 is mainly
caused by the higher-order contribution in 𝑆2 due to the finite
value of 𝛿𝑡 [see equation (13)]. As expected, we can see from
Fig. 2c that the deviation is negligible when 𝐽𝛿𝑡 → 0 while
it becomes remarkable when 𝐽𝛿𝑡 → 1. Meanwhile, we can
also find from the inset that the fitting increasingly deviates
from the linearity and the fitting parameter 𝑘 becomes unstable
due to the lower signal-to-noise ratios (SNRs) when 𝐽𝛿𝑡 → 0.
Therefore, there exists a trade-off between the theoretical ap-
proximation and the SNR of the measured signals resulting
from 𝛿𝑡. The optimal value of 𝛿𝑡 can be obtained with the
aid of the numerical simulations (see Methods and Supple-
mentary Note 4), and 𝛿𝑡 = 0.5 ms is a relatively suitable time
to extract the second-order correlations. Besides the errors
from the theoretical approximation, other error mechanisms
leading to the deviation between the experimental data and the
numerical simulation include the control imperfection of the
𝜋/2-pulses, the evolution error of the quantum target caused
by the RF inhomogeneity and the readout error from the final
measurement. We numerically analyze the contributions of
these errors, where the error from the 𝜋/2-pulse imperfection
is very small in the measurement of the second-order correla-
tions (see Supplementary Table 3).
It is more difficult to measure the fourth-order correlations

since the target signals will be much weaker than those of
the second-order correlations. As shown in equation (19), the
signal related to 𝐶+−−+ is proportional to 𝛿𝑡4, which leads to
higher requirements for the experiments, including the higher
sensitivity of the quantum sensor and the higher control ac-
curacy of the quantum channels. While the 𝜋/2-pulse imper-
fection (about 2% ∼ 3% relative error) is negligible in the
measurement of the second-order correlations, it will bring a
considerable impact on the measurement of the fourth-order
correlations. As analyzed in Methods, the non-ideal channel
P4nd3 will result in a severe leakage of lower-order correlations
to the measurement of the four-order correlations and over-
whelm the desired signal 𝐶+−−+, which brings a challenge in
measurements. Hence the scheme as shown in Fig. 1d is prac-
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Fig. 4. Experimental measurement of the 2D structure of the
fourth-order correlations 𝐶+−−+. a, Measured signals 𝑆4 (𝜏21, 𝜏43)
with the robust quantum channel. b, Spectral density of the fourth-
order correlation 𝐶+−−+ ( 𝑓𝑥 , 𝑓𝑦), which is obtained from the 2D
Fourier transform of 𝑆4 (𝜏21, 𝜏43).

tically infeasible in experiments. To overcome this problem,
we design an error-resilient channel by repeating the non-ideal
P4th3 for 𝑛 times to weaken the unwanted low-order correla-
tions (see Fig. 3a). As demonstrated in equation (23), the
robust channel

(
P4th3

)𝑛
exponentially approaches to the ideal

channel with an error of order 𝛿𝜃𝑛 as 𝑛 increases. Therefore,
the unwanted lower-order signals (𝛿𝑡2𝐶+00+) can be effectively
suppressed.
Figure 3b presents the measurement values of

〈
𝜎̂𝐶
𝑦

〉
versus

the evolving time 𝜏21 = 𝑡2−𝑡1, including both the cases of 𝑛 = 1
and 𝑛 = 3. Here 𝜏32 = 𝑡3−𝑡2 and 𝜏43 = 𝑡4−𝑡3 are fixed at 10 𝜇s,
and 𝛿𝑡 = 0.5 ms. The target signal 𝛿𝑡4𝑝C𝐶+−−+ (𝑡4, 𝑡3, 𝑡1, 𝑡1)
(solid red line) and the numerical results of 𝑆E4 [equation (23)]
with (i.e., n = 3, black dashed line) and without (i.e., n=1, blue
dashed line) the robust channels for the pulse imperfections, are
also presented. For the robust channels (𝑛 = 3), the measured



6

signals (black scatters) agree well with the target signals, and
the relative deviation between them isΔ = 23.5%. By contrast,
for the non-robust channels (𝑛 = 1), the measured signals
(blue scatters) show serious deviation from the target signals
(Δ = 112.2%), which makes the data almost untrusted for
measuring 𝐶+−−+. For the robust channels, we also plot the
dependence of

〈
𝜎̂𝐶
𝑦

〉
on 𝐽𝛿𝑡 with a fixed interval 𝜏21 = 10

𝜇s in Fig. 3c. Similar to the results of measuring 𝐶+−, the
experimental data (black scatters) are in good agreement with
the numerical simulations (dashed black line), but gradually
deviate the target signals (red solid line) when 𝐽𝛿𝑡 → 1. As
shown in the inset, the power law fitting of the measured
signals

〈
𝜎̂𝐶
𝑦

〉 ∝ (𝐽𝛿𝑡)𝑘 gives the exponent 𝑘 = 3.492, where
the deviation from the ideal prediction 𝑘 = 4 is also mainly
caused by the higher-order contributions to 𝑆4 due to the finite
value of 𝛿𝑡. Besides the approximation errors from 𝛿𝑡, themain
experimental errors of measuring the fourth-order correlations
by using the robust channels are the evolution error of the
quantum target caused by RF inhomogeneity and the readout
error, while the control error caused by 𝜋/2-pulse imperfection
is almost negligible (see Supplementary Table 4). We also
analyze the trade-off between the theoretical approximation
and the SNR of the measured signals resulting from 𝛿𝑡, and
𝛿𝑡 = 0.5ms corresponds to relatively low errors (seeMethods).

To achieve the complete fourth-order quantum correlation
𝐶+−−+ (𝑡4, 𝑡3, 𝑡2, 𝑡1), we measure the signals of 𝑆4 versus the
evolving time 𝜏21 and 𝜏43 (note that C+−−+ doesn’t depend on
𝜏32) using the robust quantum channels (see Fig. 4a). The
measured signals show two-dimensional oscillatory behavior
along with 𝜏21 and 𝜏43, and the spectral density are obtained
from the 2D Fourier transform of 𝑆4 as shown in Fig. 4b.

Conclusion

We demonstrate selective measurement of arbitrary types and
orders of quantum correlations via the synthesized quantum
channels with a quantum sensor. The correlation-selection ap-
proach based on synthesized quantum channels is more univer-
sal than the previously proposed weak measurement scheme in
that the former is also applicable to ensemble systems. We suc-
cessfully extract the second- and fourth-order correlations in a
system of nuclear spins with a spin-1/2 sensor. The experiment
can be generalized to the quantum sensors of higher or multi-
ple spins, as well as bosonic or fermionic systems. Compared
with the conventional nonlinear spectroscopy, this scheme ex-
ponentially broadens the accessible correlations. Higher order
correlations provide new important information about quan-
tummany-body systems that is not available from conventional
nonlinear spectroscopy2. Our work offers a new approach to
understanding quantum many-body physics (e.g., many-body
localization43,44 and quantum thermalization45,46), to exam-
ining the quantum foundation (e.g., quantum nonlocality47),
and to providing key information for quantum technologies
(e.g., the characterization of quantum computers and quan-
tum simulators, the optimization of quantum control and the
improvement of quantum sensing24).
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Methods
Measuring 𝐶+−. According to equation (5), the second-order
correlation 𝐶+− corresponds to the target signal

𝑆
target
2 = 𝛿𝑡2𝐴−+𝐶+−, (7)

with the coefficient

𝐴−+ = 22 TrS
(
𝑂̂S−

𝑧 P2nd2 S+
𝑧P2nd1 𝜌̂S

)
. (8)

To selectively extract the second-order correlation 𝐶+− under
the current experimental setup, we need to make 𝐴−+ become
the only non-vanishing coefficient. Then with the help of the
channel diagram in Fig. 1c, the quantum channels P2nd1,2 are
designed to be

P2nd1 =
[R𝑦 (𝜋/2) + R−𝑦 (𝜋/2)

] /2,
P2nd2 = R𝑦 (𝜋/2) ,

(9)

whereR𝛼 (𝜋/2) is the 𝜋/2 spin rotation along 𝛼-axis and P2nd1
is realized by the combination of two 𝜋/2 rotations.
In the representation of {1, 𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧}, the matrix forms of

S±
𝑧 are

2S+
𝑧 =

©­­­«

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

ª®®®¬
, 2S−

𝑧 =
©­­­«

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

ª®®®¬
, (10)

and the matrix representation of R𝑎 (𝜃) is

R𝛼 (𝜃) =
(
1 0
0 R (𝜃, n𝛼)

)
. (11)

Here R (𝜃, n𝛼) is the 3D rotation along the axis n𝛼. The
matrix elements (𝑅𝑖 𝑗 ) of R (𝜃, n) for n =

(
𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧

)
are

𝑅𝑖 𝑗 (𝜃, n) = 𝛿𝑖 𝑗 cos 𝜃+𝑛𝑖𝑛 𝑗 (1−cos 𝜃)+sin 𝜃
3∑︁
𝑙=1

𝜖𝑖 𝑗𝑘𝑛𝑘 , (12)

where 𝑖, 𝑗 , 𝑘 ∈ {𝑥, 𝑦, 𝑧}, and 𝜖𝑖 𝑗𝑘 is the Levi-Civita symbol.
Since a spin-1/2 quantum sensor has the vector form of density
matrix ®𝜌 =

(
1, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧

) /2, whose measurement result of
𝜎̂𝑖 is Tr (𝜎̂𝑖𝜌) = 2𝑝𝑖 . Then with 𝜌̂S = (1 + 𝑝𝜎̂𝑧)/2 and
𝑂̂ = 𝜎̂𝑦 , the coefficient is calculated to be 𝐴−+ = 1, while
other coefficients such as 𝐴0± and 𝐴±0 vanish. Hence the
measurement signal is

𝑆2 = 𝛿𝑡2𝐶+− (𝑡2, 𝑡1) +𝑂
(
𝛿𝑡4

)
. (13)

Considering the 𝜋/2-pulse imperfection with the angle error
(𝜋/2→ 𝜋/2 + 𝛿𝜃), the measurement signal becomes

𝑆E2 = cos (𝛿𝜃) 𝛿𝑡2𝐶+− (𝑡2, 𝑡1) +𝑂
(
𝛿𝑡4

)
≈

(
1 − 𝛿𝜃2

)
𝛿𝑡2𝐶+− (𝑡2, 𝑡1) +𝑂

(
𝛿𝑡4

)
.

(14)

Then the pulse imperfection consequently introduces an error
of order 𝛿𝜃2 to the amplitude of the measured signal, which is
usually small.
For the initial state of the quantum target in experiment 𝜌̂B =(
1 + 𝑝H

∑3
𝑖=1 𝜎̂

H
𝑖,𝑥

)
/8, the target operator 𝐵̂ = 1

2 𝐽
∑3

𝑖=1 𝜎̂
H
𝑖,𝑧

and the local Hamiltonian 𝐻̂B = 𝜋𝜈
∑3

𝑖=1 𝜎̂
H
𝑖,𝑥 , the specific

form of 𝐶+− is
𝐶+− = Tr

[B+ (𝑡2)B− (𝑡1) 𝜌̂B
]

=
3
4
𝐽2𝑝H sin [2𝜋𝜈 (𝑡2 − 𝑡1)] ,

(15)

Obviously, the target signal 𝛿𝑡2𝐶+− quadratically depends on
𝐽𝛿𝑡.

Measuring𝐶+−−+. According to equation (5), the fourth-order
correlation 𝐶+−−+ corresponds to the target signal

𝑆
target
4 = 𝛿𝑡4𝐴−++−𝐶+−−+, (16)

with the coefficient

𝐴−++− = 24 TrS
(
𝑂̂S−

𝑧 P4th4 S+
𝑧P4th3 S+

𝑧P4th2 S−
𝑧 P4th1 𝜌̂S

)
. (17)

To selectively extract the fourth-order correlation𝐶+−−+ under
the current experimental setup, we need tomake 𝐴−++− become
the only non-vanishing coefficient. Then with the help of the
channel diagram in Fig. 1d, the quantum channels P4th1,2,3,4 are
designed to be

P4th1 = P4th4 =
[R𝑦 (𝜋/2) − R−𝑦 (𝜋/2)

] /2,
P4th2 = [R𝑥 (𝜋/2) − R−𝑥 (𝜋/2)] /2,
P4th3 = [R𝑥 (𝜋/2) + R−𝑥 (𝜋/2)] /2.

(18)
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With 𝜌̂S = (1 + 𝑝C𝜎̂𝑧)/2 and 𝑂̂ = 𝜎̂𝑦 , the only non-vanishing
coefficient is calculated to be 𝐴−++− = 𝑝. Then the measure-
ment signal is

𝑆4 = 𝛿𝑡4𝑝C𝐶
+−−+ (𝑡4, 𝑡3, 𝑡2, 𝑡1) +𝑂

(
𝛿𝑡6

)
. (19)

Similar to the case ofmeasuring𝐶+−, the non-ideal quantum
channels caused by 𝜋/2-pulse imperfection (𝜋/2→ 𝜋/2+ 𝛿𝜃)
will introduce an overall coefficient cos (𝛿𝜃) to P4th1,2,4, i.e.,
P4th1,2,4 → cos (𝛿𝜃) P4th1,2,4. However, the error mechanism of
P4th3 is totally different because two extra matrix elements
proportional to sin (𝛿𝜃) are introduced:

P4th3 →
©­­­«

1 0 0 0
0 1 0 0
0 0 − sin (𝛿𝜃) 0
0 0 0 − sin (𝛿𝜃)

ª®®®¬
. (20)

In this situation, an extra path related to lower-order correlation
𝐶+00+ will be connected and get mixed with 𝐶+−−+ in the final
measurement signals, i.e.,

𝑆E4 = 𝑝C cos (𝛿𝜃)3 𝛿𝑡4𝐶+−−+ (𝑡4, 𝑡3, 𝑡2, 𝑡1)
+ 𝑝C sin (𝛿𝜃) 𝛿𝑡2𝐶+00+ (𝑡4, 𝑡1) +𝑂

(
𝛿𝑡6

)
.

(21)

Consequently, the non-ideal channels P4th1,2,4 only bring a total
scaling factor cos (𝛿𝜃)3 ≈ 1 to the fourth-order correlation
𝐶+−−+, which can be easily corrected by the error calibration.
But the imperfection of P4th3 has greater impact on measuring
𝐶+−−+ for two reasons: On the one hand, the non-ideal P4th3
introduces the lower-order correlation signals of 𝛿𝑡2 scale,
which are much larger than the signals of 𝐶+−−+ (∼ 𝛿𝑡4). On
the other hand, the error order of sin (𝛿𝜃) ≈ 𝛿𝜃 is also lower
than cos (𝛿𝜃) ≈ (

1 − 𝛿𝜃2/2) .
To deal with the major error source, an error-resilient quan-

tum channel is constructed by repeating the non-ideal P4th3 for
𝑛 times, whose matrix form is

(
P4th3

)𝑛
=

©­­­«

1 0 0 0
0 1 0 0
0 0 − sin (𝛿𝜃)𝑛 0
0 0 0 − sin (𝛿𝜃)𝑛

ª®®®¬
. (22)

As shown in Figure 3, for 𝜌̂S = (1 + 𝑝C𝜎̂𝑧)/2 and 𝑂̂ = 𝜎̂𝑦 ,
the non-vanishing coefficients are calculated to be 𝐴−++− ≈
𝑝C

(
1 − 𝛿𝜃2/2)3 and 𝐴−00− ≈ 𝑝C (−𝛿𝜃)𝑛. So the measured

signal using the robust channel becomes

𝑆E4 ≈ 𝑝C

(
1 − 𝛿𝜃2/2

)3
𝛿𝑡4𝐶+−−+ (𝑡4, 𝑡3, 𝑡2, 𝑡1)

+ 𝑝C (−𝛿𝜃)𝑛𝛿𝑡2𝐶+00+ (𝑡4, 𝑡1) +𝑂
(
𝛿𝑡6

)
,

(23)

which reduces to equation (19) without 𝜋/2-pulse error (𝛿𝜃 =

0). Since the robust channel
(
P4th3

)𝑛
exponentially approaches

to the ideal channel with an error of order 𝛿𝜃𝑛 as 𝑛 increases,

the unwanted low-order contribution (𝛿𝑡2𝐶+00+) in the mea-
sured signals can be effectively suppressed.
With the same experimental setup as measuring 𝐶+−, the

specific form of 𝐶+−−+ is

𝐶+−−+ = Tr
[B+ (𝑡4)B− (𝑡3)B− (𝑡2)B+ (𝑡1) 𝜌̂B

]
=
3
16

𝐽4 sin [2𝜋𝜈 (𝑡2 − 𝑡1)] sin [2𝜋𝜈 (𝑡4 − 𝑡3)] ,
(24)

which means the target signal (𝛿𝑡4𝐶+−−+) quartically depends
on 𝐽𝛿𝑡. Moreover, the specific form of the lower-order error
term 𝐶+00+ is

𝐶+00+ = Tr
[B+ (𝑡4)B− (𝑡1) 𝜌̂B

]
=
3
4
𝐽2 cos [2𝜋𝜈 (𝑡4 − 𝑡1)] .

(25)

Therefore, to eliminate the major error source from the com-
ponent of 𝐶+00+ in equation (23), we need to ensure

1
4

(
1 − 𝛿𝜃2/2

)3
(𝐽𝛿𝑡)2 � |𝛿𝜃 |𝑛 . (26)

For the angle error 𝛿𝜃 = 0.04 rad from experimental error
calibration and 𝛿𝑡 = 0.5 ms, we can deduce that 𝑛 > 1 is
required to eliminate the lower-order signals.

Error analysis. To quantify the deviation between the exper-
imental data array ®𝑥 = {𝑥(𝜏𝑖)} and the theoretical data array
®𝑦 = {𝑦(𝜏𝑖)} (𝜏𝑖 is the sampling time point), we use the absolute
error ®𝐸 and relative error Δ defined as:

®𝐸 = | ®𝑥 − ®𝑦 | , Δ =



 ®𝐸


/‖®𝑦‖, (27)

where ‖®𝑥‖ =
√︁∑

𝑖 |𝑥(𝜏𝑖) |2 is the Euclidean norm. The theo-
retical approximation error of finite 𝛿𝑡 can be measured by

®𝐸 th =
��� ®𝑆sim − ®𝑆target

��� , (28)

where ®𝑆target is the target signals, and ®𝑆sim is the simulated
signals of 𝑆2 or 𝑆4. Besides that, other errors in experiments
include the control error caused by 𝜋/2-pulse imperfection
( ®𝐸 𝜋/2), the evolution error of the quantum target caused by RF
inhomogeneity ( ®𝐸evo), and the experimental readout error ( ®𝐸 r).
After characterizing the deviation of 𝜋/2-pulse, the decay rate
of the oscillatory signals, as well as the strength of spectral
ground noise, these imperfect signals with only one type error
can be numerically simulated, which are defined as ®𝑆𝜋/2, ®𝑆evo
and ®𝑆r respectively. Then these error contributions can be
investigated separately by calculating the deviations between
these imperfect signals and the ideal signals ®𝑆sim, i.e.,

®𝐸 𝜋/2 =
��� ®𝑆𝜋/2 − ®𝑆sim

��� , ®𝐸evo = ��� ®𝑆evo − ®𝑆sim
��� , ®𝐸 r = ��� ®𝑆r − ®𝑆sim

��� .
Therefore, their relative errors, i.e., Δ𝜋/2,Δevo and Δr, are
presented in Supplementary Table 3 and 4 according to the
definition (27).
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Optimal coupling-evolution time. The scheme in experi-
ments requires a relatively small 𝛿𝑡 for a high enough the-
oretical approximation. However, as the Θ-order-correlation
signals are proportional to 𝛿𝑡Θ, smaller 𝛿𝑡 will lead to lower
SNRs in practical measurement. Therefore, a trade-off be-
tween the theoretical approximation and the SNR of the mea-
sured signals can be described by the total relative error of the
target correlation signals (see Supplementary Note 4):

Δtot (𝛿𝑡) =




 ®𝐸 th (𝛿𝑡)


 + 


 ®𝐸 𝜋/2 (𝛿𝑡)



 + 


 ®𝐸evo (𝛿𝑡)


 + 


 ®𝐸 r





 ®𝑆target (𝛿𝑡)




≈
𝛿𝑡Θ+2




 ®𝐶𝜂𝑁+2 · · ·𝜂1



 + 


 ®𝐸 r




𝛿𝑡Θ



𝐴𝜂𝑁 · · ·𝜂1 ®𝐶𝜂𝑁 · · ·𝜂1




 + Δ𝜋/2 (𝛿𝜃) + Δevo

Here ®𝑆target (𝛿𝑡) = 𝛿𝑡Θ𝐴𝜂𝑁 · · ·𝜂1 ®𝐶𝜂𝑁 · · ·𝜂1 is the target signals of
the desired correlations. Δ𝜋/2 (𝛿𝜃) is the relative error caused
by the 𝜋/2-pulse imperfection (𝜋/2 → 𝜋/2 + 𝛿𝜃), which is
derived from equations (14) and (23):

Δ𝜋/2 (𝛿𝜃) ≈
{
𝛿𝜃2, for 𝐶+−,

𝑝C

[
1 − (

1 − 𝛿𝜃2/2)3] , for 𝐶+−−+.
(29)

Note that the lower-order leakage in equation (23) is greatly
suppressed when equation (26) is satisfied. Δevo is the relative
error caused by RF inhomogeneity, i.e.,

Δevo =




(1 − e−𝑘 ®𝜏 ) · ®𝐶𝜂𝑁 · · ·𝜂1






 ®𝐶𝜂𝑁 · · ·𝜂1




 . (30)

Here 𝑘 = 2.76 × 103 denotes the decay rate of the free evo-
lution of the quantum target and ®𝜏 is the sampling time list.
®𝐸 r is determined by the ground noise of spectra and totally
independent of 𝛿𝑡. Therefore, the 𝜋/2-pulse imperfection and
rf inhomogeneity together contribute a constant relative error.
Then, by taking 𝜕ΔtotΘ (𝛿𝑡) /𝜕Δ𝑡 = 0, the optimal evolution

time is obtained:

𝛿𝑡opt ≈
©­­«
2



 ®𝐶𝜂𝑁+2 · · ·𝜂1





Θ



 ®𝐸 r




ª®®¬

1/(Θ+2)

. (31)

With the experimental estimations of the parameters of the
error sources (see Supplementary Note 3), all of these error
sources can be simulated individually. Supplementary Fig-
ure 4 presents the simulated total relative error Δtot (𝛿𝑡) versus
𝛿𝑡 of measuring 𝐶+− and 𝐶+−−+. Then, the optimal 𝛿𝑡 with
the smallest relative error can be obtained, i.e., 𝛿𝑡opt = 0.35
ms and 0.38 ms for 𝐶+− and 𝐶+−−+ respectively. The coupling
time 𝛿𝑡 = 0.5 ms used in experiments also corresponds to
relatively low errors.
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The supplementary information contains some theoretical details about the construction methods of arbitrary quantum
channels, the analyses of the main experimental error sources and their contributions, as well as some additional
experimental data and details.

Supplementary Note 1. Construction of arbitrary quantum channels

The super-operator P can be constructed by arbitrary physical processes, which is described by CPTP (Completely Positive
Trace Preserving) mapM and satisfies

(M 𝜌̂)† = M 𝜌̂, M 𝜌̂ ≥ 0, TrM 𝜌̂ = Tr 𝜌̂. (1)

HereM 𝜌̂ can always be expanded as

M 𝜌̂ =
𝐷∑︁

𝑛,𝑚=1
𝐶𝑛,𝑚 𝐴̂𝑛 𝜌̂ 𝐴̂

†
𝑚, (2)

where 𝐷 is the dimension of Hilbert space and 𝐴̂𝑛 is complete (
∑

𝑛 𝐴̂𝑛 𝐴̂
†
𝑛 = 1) and orthogonal (Tr 𝐴̂†

𝑚 𝐴̂𝑛 = 𝛿𝑚𝑛) operators
to expand the density matrix. For the case of spin-1/2 system (𝐷 = 2), there are four 𝐴̂𝑛 which can be four Pauli matrices
{1, 𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧}. IfM is CPTP, 𝐶𝑛𝑚 must be Hermite (𝐶† = 𝐶) and positive matrix (𝐶 ≥ 0). The elements of the super-operator
𝐴̂𝑛𝜌𝐴̂

†
𝑚 can in principle be constructed by combination of a complete set of variousM with different 𝐶𝑛,𝑚. This indicates that

the super-operator P can be constructed arbitrarily through combination of a complete set of CPTP mapM.
Taking spin 1/2 system for example, there are sixteen basic super-operators 𝜎̂𝑖 𝜌̂𝜎̂𝑗 (𝑖 = 0, 𝑥, 𝑦, 𝑧). For convenience, we regroup

it into symmetric and anti-symmetric form

J0 = 𝜎̂0 𝜌̂𝜎̂0,

J+
𝛼 𝜌̂ = (𝜎̂𝛼 𝜌̂ + 𝜌̂𝜎̂𝛼)/2, 𝛼 = 𝑥, 𝑦, 𝑧,

J−
𝛼 𝜌̂ = −i(𝜎̂𝛼 𝜌̂ − 𝜌̂𝜎̂𝛼)/2, 𝛼 = 𝑥, 𝑦, 𝑧,

J+
𝛼𝛽 = J+

𝛽𝛼 = (𝜎̂𝛼 𝜌̂𝜎̂𝛽 + 𝜎̂𝛽 𝜌̂𝜎̂𝛼)/2, 𝛼 < 𝛽 = 𝑥, 𝑦, 𝑧,

J−
𝛼𝛽 = −J−

𝛽𝛼 = −i(𝜎̂𝛼 𝜌̂𝜎̂𝛽 − 𝜎̂𝛽 𝜌̂𝜎̂𝛼)/2, 𝛼 < 𝛽 = 𝑥, 𝑦, 𝑧.

(3)

We consider how to construct these generators through the physical process. Firstly, we consider the unitary evolution. Unitary

a)These authors contribute equally
b)Electronic mail: xhpeng@ustc.edu.cn
c)Electronic mail: rbliu@cuhk.edu.hk
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Symbol\ Operation The physical meaning Matrix form

R0 rotation around any axis by angle 0 R(0, n)
R 𝜋/2
𝑥 rotation around axis 𝑥 by angle 𝜋/2 R(𝜋/2, e𝑥)

R 𝜋/2
𝑦 rotation around axis 𝑦 by angle 𝜋/2 R(𝜋/2, e𝑦)

R 𝜋/2
𝑧 rotation around axis 𝑧 by angle 𝜋/2 R(𝜋/2, e𝑧)

R−𝜋/2
𝑥 rotation around axis 𝑥 by angle −𝜋/2 R(−𝜋/2, e𝑥)

R−𝜋/2
𝑦 rotation around axis 𝑦 by angle −𝜋/2 R(−𝜋/2, e𝑦)

R−𝜋/2
𝑧 rotation around axis 𝑧 by angle −𝜋/2 R(−𝜋/2, e𝑧)
R 𝜋/2
𝑥𝑦 rotation around axis 𝑥+𝑦√

2
by angle 𝜋/2 R(𝜋/2, e𝑥+e𝑦√

2
)

R 𝜋/2
𝑦𝑧 rotation around axis 𝑦+𝑧√

2
by angle 𝜋/2 R(𝜋/2, e𝑦+e𝑧√

2
)

R 𝜋/2
𝑧𝑥 rotation around axis 𝑧+𝑥√

2
by angle 𝜋/2 R(𝜋/2, e𝑧+e𝑥√

2
)

M𝑥 Measure along the 𝑥 axis | + 𝑥〉〈+𝑥 | 𝜌̂ | + 𝑥〉〈+𝑥 | − | − 𝑥〉〈−𝑥 | 𝜌̂ | − 𝑥〉〈−𝑥 |
M𝑦 Measure along the 𝑦 axis | + 𝑦〉〈+𝑦 | 𝜌̂ | + 𝑦〉〈+𝑦 | − | − 𝑦〉〈−𝑦 | 𝜌̂ | − 𝑦〉〈−𝑦 |
M𝑧 Measure along the 𝑧 axis | + 𝑧〉〈+𝑧 | 𝜌̂ | + 𝑧〉〈+𝑧 | − | − 𝑧〉〈−𝑧 | 𝜌̂ | − 𝑧〉〈−𝑧 |
P𝑧 Polarizing the state to | − 𝑧〉 |0〉〈0|𝜌 |0〉〈0| + |0〉〈1|𝜌 |1〉〈0| = 14

[
J0 − 2J+

𝑧 +
(
J+
𝑥𝑥 + J+

𝑦𝑦 + J+
𝑧𝑧

)
− 2J−

𝑥𝑦

]
𝜌̂

P𝑥 Polarizing the state to | − 𝑥〉 R 𝜋/2
𝑦 P𝑧R−𝜋/2

𝑦 𝜌̂ = 14

[
J0 − 2J+

𝑥 +
(
J+
𝑥𝑥 + J+

𝑦𝑦 + Σ+𝑧𝑧
)
− 2J−

𝑦𝑧

]
𝜌̂

P𝑦 Polarizing the state to | − 𝑦〉 R−𝜋/2
𝑥 P𝑧R 𝜋/2

𝑥 𝜌̂ = 14

[
J0 − 2J+

𝑦 +
(
J+
𝑥𝑥 + J+

𝑦𝑦 + J+
𝑧𝑧

)
− 2J−

𝑧𝑥

]
𝜌̂

Supplementary Table 1. The definition of the sixteen operations. The red symbols indicate the operations beyond the NMR control.

evolution can be written as 𝑈̂ = cos 𝜃𝜎̂0 − i sin 𝜃𝑛𝛼𝜎̂𝛼

𝑈̂ 𝜌̂𝑈̂† = (cos 𝜃𝜎̂0 − i sin 𝜃𝑛𝛼𝜎̂𝛼) 𝜌̂ (cos 𝜃𝜎̂0 + i sin 𝜃𝑛𝛼𝜎̂𝛼)

= cos2 𝜃𝜎̂0 𝜌̂𝜎̂0 + 2 cos 𝜃 sin 𝜃𝑛𝛼−i (𝜎̂𝛼 𝜌̂𝜎̂0 − 𝜎̂0 𝜌̂𝜎̂𝛼)
2

+ sin2 𝜃𝑛𝛼𝑛𝛽
𝜎̂𝛼 𝜌̂𝜎̂𝛽 + 𝜎̂𝛽 𝜌̂𝜎̂𝛼

2
=

[
cos2 𝜃J0 + 2 cos 𝜃 sin 𝜃𝑛𝛼J−

𝛼 + sin2 𝜃𝑛𝛼𝑛𝛽J+
𝛼𝛽

]
𝜌̂.

(4)

The multiply algebra of J0, J−
𝛼 and J+

𝛼𝛽 is self-closing and is not enough to generate the elements J+
𝛼 ,J−

𝛼𝛽 . This means that
unitary evolution is not complete to generate all the generator in equation ((3)).
If dissipation process is introduced, the generator can be constructed completely. For example, if we can do measurement of

𝜎̂𝑧 , the density matrix will collapse to 𝜌̂ → | ± 𝑧〉〈±𝑧 | with probability 𝑝± = 〈±𝑧 | 𝜌̂ | ± 𝑧〉. Then we can construct the process

𝜌̂ →
∑︁
𝑢=±

𝑝𝑢 |𝑢𝑧〉〈𝑢𝑧 | ≡ M𝑧 𝜌̂ = | + 𝑧〉〈+𝑧 | 𝜌̂ | + 𝑧〉〈+𝑧 | − | − 𝑧〉〈−𝑧 | 𝜌̂ | − 𝑧〉〈−𝑧 |. (5)

UsingM𝑧 , we can construct the process J+
𝑧 . Combined with the unitary rotation, J+

𝑥/𝑦 can also be generated. The element can
be introduced by polarization process as shown in (Supplementary Table 1). As a result, all the sixteen basic elements can be
generated via the set of complete operations shown in (Supplementary Table 1) (Note: these operations is not unique).
Since G′ = {R0,R±𝜋/2

𝑥/𝑦/𝑧 ,R 𝜋
𝑥𝑦 ,R 𝜋

𝑦𝑧 ,R 𝜋
𝑧𝑥 ,M𝑥/𝑦/𝑧P𝑥/𝑦/𝑧} constitute a complete but non-orthogonal basis for any quantum

channel P, then our aim is the construction of P though the above set of physical operations G′, namely,

P =
16∑︁
𝑖=1

𝑝𝑖G′
𝑖 . (6)

The central work is the calculation of the weight 𝑝𝑖 . We discuss the problem in the basis of 1, 𝜎̂𝑥 , 𝜎̂𝑦 , 𝜎̂𝑧 and the matrix form of
super-operator is denoted by blackboard bold

P =
∑︁
𝑖

𝑝𝑖G
′
𝑖 . (7)

Then we project the above equation in the basis {G𝑛+4(𝑚−1) = |𝑚〉〈𝑛| , 1 ≤ 𝑛, 𝑚 ≤ 4}, which is complete ∑
𝑖 G𝑖G

†
𝑖 = 1 and
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sparse elements\ operation R0 R 𝜋/2
𝑥 R 𝜋/2

𝑦 R 𝜋/2
𝑧 R−𝜋/2

𝑥 R−𝜋/2
𝑦 R−𝜋/2

𝑧 R 𝜋
𝑥𝑦 R 𝜋

𝑦𝑧 R 𝜋
𝑧𝑥 M𝑥 M𝑦 M𝑧 P𝑥 P𝑦 P𝑧

P00 − 12 1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0

P0𝑥 1
2 − 14 − 14 − 14 − 14 − 14 − 14 0 0 0 1 0 0 1 0 0

P0𝑦 1
2 − 14 − 14 − 14 − 14 − 14 − 14 0 0 0 0 1 0 0 1 0

P0𝑧 1
2 − 14 − 14 − 14 − 14 − 14 − 14 0 0 0 0 0 1 0 0 1

P𝑥0 − 12 1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0 0 0 −1 0 0

P𝑥𝑥
1
2

1
4 − 14 − 14 1

4 − 14 − 14 0 0 0 0 0 0 0 0 0
P𝑥𝑦

1
2 − 14 − 14 − 14 − 14 − 14 1

4
1
2 0 0 0 0 0 0 0 0

P𝑥𝑧
1
2 − 14 1

4 − 14 − 14 − 14 − 14 0 0 1
2 0 0 0 0 0 0

P𝑦0 − 12 1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 −1 0

P𝑦𝑥
1
2 − 14 − 14 1

4 − 14 − 14 − 14 1
2 0 0 0 0 0 0 0 0

P𝑦𝑦
1
2 − 14 1

4 − 14 − 14 1
4 − 14 0 0 0 0 0 0 0 0 0

P𝑦𝑧
1
2 − 14 − 14 − 14 1

4 − 14 − 14 0 1
2 0 0 0 0 0 0 0

P𝑧0 − 12 1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 −1

P𝑧𝑥
1
2 − 14 − 14 − 14 − 14 1

4 − 14 0 0 1
2 0 0 0 0 0 0

P𝑧𝑦
1
2

1
4 − 14 − 14 − 14 − 14 − 14 0 1

2 0 0 0 0 0 0 0
P𝑧𝑧

1
2 − 14 − 14 1

4 − 14 − 14 1
4 0 0 0 0 0 0 0 0 0

Supplementary Table 2. Expansion of the basic sparse matrix on the representation of sixteen operations. The red operations can not be
accessible by unitary operations because it need the incoherent operations as indicated by blue color.

orthogonal TrG†
𝑖G 𝑗 = 𝛿𝑖 𝑗 . For example

G2 =

©­­­­«

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®¬
, (8)

so we find

A = T · p, (9)

where 𝑇𝑗𝑖 = TrG†
𝑗G

′
𝑖 and 𝐴 𝑗 = TrG†

𝑗 · P. The weight is calculated to be

p = T−1 · A. (10)

For example, the quantum channel P𝑥𝑥 = |2〉〈2| can be expanded to

P𝑥𝑥 =

©­­­­«

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

ª®®®®¬
=
1
2
R0 + 1

4
R

𝜋/2
𝑥 − 1

4
R

𝜋/2
𝑦 − 1

4
R

𝜋/2
𝑧 + 1

4
R
−𝜋/2
𝑥 − 1

4
R
−𝜋/2
𝑦 − 1

4
R
−𝜋/2
𝑧

=
1
2
R0 + 1

4

(
R

𝜋/2
𝑥 + R−𝜋/2𝑥

)
− 1
4

(
R

𝜋/2
𝑦 + R−𝜋/2𝑦

)
− 1
4

(
R

𝜋/2
𝑧 + R−𝜋/2𝑧

)
.

(11)

The weight 𝑝𝑖 for other sparse quantum channel has been calculated in (Supplementary Table 2).

Supplementary Note 2. Extraction of arbitrary correlations in the case of general interaction

The protocol in the main text can also been generalized to extracting the correlations for general interaction form as following

𝑉̂ (𝑡) =
𝑑∑︁

𝛼=1
𝑆𝛼 (𝑡) ⊗ 𝐵̂𝛼 (𝑡). (12)
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We consider the weighted signal

𝑆𝑁 =
𝐷4∑︁

𝜷𝑁=1
𝑝𝜷𝑁

𝑆𝑁 ,𝜷𝑁
, (13)

where 𝜷𝑁 = {𝛽𝑁 , · · ·, 𝛽2, 𝛽1} is the index collective. 𝑝𝜷𝑁
is the weight for signal 𝑆𝑁 ,𝜷𝑁

defined as

𝑆𝑁 ,𝜷𝑁
= Tr

[
𝑂̂U𝑁C𝛼𝑁 · · · C𝛼𝑖+1U𝑖C𝛼𝑖 · · · C𝛼2U1C𝛼1

(
𝜌̂𝑆 ⊗ 𝜌̂B

) ]
, (14)

where each of the quantum channel is assigned to one element of the complete basis C𝛼 (𝛼 = 1, · · ·, 𝐷4) for quantum channel (𝐷
is the dimension of Hilbert space of sensor).
We expandU𝑖 to the first order of 𝛿𝑡 and find that

U𝑖 = T 𝑒
∫ 𝑡𝑖+𝛿𝑡
𝑡𝑖

L(𝑡)𝑑𝑡
=

∑︁
𝛼𝑖 ,𝜂𝑖

(2𝛿𝑡) |𝜂𝑖 | S𝜂𝑖
𝛼𝑖
B𝜂𝑖

𝛼𝑖
, (15)

where 𝜂𝑖 = 0,±1 and S𝜂𝑖
𝛼𝑖
are defined as

S𝜂𝑖
𝛼𝑖

=

{
1 𝜂𝑖 = 0,
S−/+
𝛼𝑖

𝜂𝑖 = +/−. (16)

If 𝜂𝑘 = 0, the index 𝛼𝑘 takes no value and it denotes that the sensor is assigned to the super-operator 1. If 𝜂𝑘 = +/−, the index
𝛼𝑖 takes the values 1, 2, · · ·, 𝑑. Then the signal 𝑆𝑁 becomes

𝑆𝑁 =
𝐷4∑︁

𝜷𝑁=1
𝑝𝜷𝑁

∑︁
𝜼𝑁 ,𝜶𝑁

(2𝛿𝑡)
∑𝑁

𝑖=1 |𝜂𝑖 | 𝐴𝜼𝑁

𝜶𝑁 ,𝜷𝑁
𝐶
𝜼𝑁
𝜶𝑁

+𝑂 (𝛿𝑡𝑁+1). (17)

𝐶
𝜼𝑁
𝜶𝑁

≡ 𝐶
𝜂𝑁 · · ·𝜂1
𝛼𝑁 · · ·𝛼1 is the correlation defined as

𝐶
𝜼𝑁
𝜶𝑁

= TrB
[
B𝜂𝑁

𝛼𝑁
(𝑡𝑁 ) · · · B𝜂2

𝛼2 (𝑡2)B𝜂1
𝛼1 (𝑡1) 𝜌̂B

]
, (18)

where

B𝜂𝑘
𝛼𝑘

(𝑡𝑘 ) =
{
1 𝜂𝑘 = 0,
B+/−

𝛼𝑘
(𝑡𝑘 ) 𝜂𝑘 = +/−.

The index follows the same convention as S𝜂𝑘
𝛼𝑘

(𝑡𝑘 ). If there is one index in 𝜂1, 𝜂2, · · ·, 𝜂𝑁 being 0, 𝐶𝜂𝑁 · · ·𝜂1
𝛼𝑁 · · ·𝛼1 is a correlation

with order less than 𝑁 . For example, 𝐶+−0+
12·3 = TrB

[B+
1 (𝑡4)B−

2 (𝑡3)1B+
3 (𝑡1) 𝜌̂B

]
= TrB

[B+
1 (𝑡4)B−

2 (𝑡3)B+
3 (𝑡1) 𝜌̂B

]
is the third order

correlation.
After summation over 𝜷𝑁 , the signal is simplified to be

𝑆𝑁 =
∑︁

𝜼𝑁 ,𝜶𝑁

(2𝛿𝑡)
∑𝑁

𝑖=1 |𝜂𝑖 | 𝐴𝜼𝑁
𝜶𝑁

𝐶
𝜼𝑁
𝜶𝑁

+𝑂 (𝛿𝑡𝑁+1), (19)

where

𝐴
𝜼𝑁
𝜶𝑁

=
𝐷4∑︁

𝜷𝑁=1
𝑝𝜷𝑁

𝐴
𝜼𝑁

𝜶𝑁 ,𝜷𝑁
(20)

and 𝐴𝜼𝑁

𝜶𝑁 ,𝜷𝑁
is the coefficient

𝐴
𝜼𝑁

𝜶𝑁 ,𝜷𝑁
= TrS

[
𝑂̂S𝜂𝑁

𝛼𝑁
C𝛽𝑁 · · · C𝛽𝑖+1S𝜂𝑖

𝛼𝑖
C𝛽𝑖 · · · C𝛽2S𝜂1

𝛼1C𝛽1 𝜌̂S

]
. (21)

It is a constant if the observable 𝑂̂ and 𝜌̂S are fixed.
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If we can design the weight 𝑝𝜷𝑁
to make the coefficient 𝐴𝜼𝑁

𝜶𝑁
[see equation (20)] satisfies

𝐴
𝜼𝑁
𝜶𝑁

∝
{
1 𝜼𝑁 = 𝜼0𝑁 ,𝜶𝑁 = 𝜶0𝑁 ,

0 else.
(22)

Since some correlations 𝐶𝜼𝑁
𝜶𝑁
vanish naturally because the trace of commutator always gives vanishing result (for example,

the correlations 𝐶−𝜂𝑁−1 · · ·𝜂1
𝛼𝑁 𝛼𝑁−1 · · ·𝛼1 , 𝐶

0−···𝜂1
𝛼𝑁 𝛼𝑁−1 · · ·𝛼1 , · · ·, 𝐶00· · ·0−𝛼𝑁 𝛼𝑁−1 · · ·𝛼2𝛼1 ), the coefficients 𝐴

𝜼𝑁
𝜶𝑁
associated with these correlations are

irrelavant. The number of these coefficients is

𝑑 (2𝑑)𝑁−1 + 𝑑 (2𝑑)𝑁−2 + · · ·𝑑 (2𝑑)0 ≡ (2𝑑)𝑁+1 − 𝑑

2𝑑 − 1 . (23)

When these coefficients are excluded, the number of equations in equation (22) is (2𝑑 + 1)𝑁 − (2𝑑)𝑁+1−𝑑
2𝑑−1 . There are totally 𝐷4𝑁

for the control parameters 𝑝𝜷𝑁
in equation (20). If 𝐷4 ≥ 2𝑑 + 1, then the solution of equation (22) always exists. For the spin

Hamiltonian, 𝑑 = 3 and 𝐷 ≥ 2 always satisfie the condition 𝐷4 ≥ 2𝑑 + 1 and hence the extraction of any correlation is always
possible.
The signal equation (13) will reduce to the special case in the main text if 𝜂𝛼𝑁 ,𝛼𝑁−1 , · · ·,𝛼2 ,𝛼1 takes the following form

𝑝𝜷𝑁
=

𝑁∏
𝑖=1

𝑝𝛼𝑖 . (24)

By inserting it into equation (13), we find

𝑆𝑁 = Tr
[
𝑂̂U (𝑁 )

I P𝑁 · · · P𝑖+1U (𝑖)
I P𝑖 · · · P2U (1)

I P1
(
𝜌̂𝑆 ⊗ 𝜌̂B

) ]
, (25)

where

P𝑖 =
𝐷4∑︁
𝛼𝑖=1

𝑝𝛼𝑖C𝛼𝑖 (26)

are the quantum channels used in the main text.

Supplementary Note 3. Experimental errors and data analysis

The error sources in the experiments include the control error caused by the 𝜋/2-pulse imperfection (𝐸 𝜋/2), the evolution
error of the quantum target caused by the RF inhomogeneity (𝐸evo), and the experimental readout error (𝐸 r). After calibrating
the deviation of 𝜋/2-pulse, the decay rate of the oscillatory signals, as well as the spectral fitting uncertainty, these noise impact
can be investigated separately by numerically simulating the relative deviation between the signals ®𝑥e with only one error source
and the signals ®𝑥 without any error. The contributions of these error sources are presented in Supplementary Table 3 and 4.
It is worth noting that the second and fourth order correlations we measured in experiment both decay much faster than the

𝑇2 relaxation rate. Suppose that the signal amplitudes decay exponentially, i.e., 𝐴 = 𝐴0e−𝑘𝑡 . By fitting the experimental data,
we get the decay rate of the second-order correlation: 𝑘 = 2.8 × 103 s-1 (see Supplementary Figure 2a), corresponding to the
mean lifetime 𝜏 = 1/𝑘 = 4 × 10−4 s. In contrast, the 𝑇2 relaxation time of the quantum target in our experiment, i.e., the protons
in acetic acid, is typically about 0.3 s, which is much longer than 𝜏. Thus the 𝑇2 relaxation must not be the main cause of the
rapid decay. It is indeed caused by the inhomogeneity of the radio-frequency field (𝐵1). To further demonstrate this, we directly
measured the NMR nutation spectroscopy of 1H as shown in Supplementary Figure 2b. By changing the length (𝑡) of the RF
pulse along 𝑦 axis, we obtain the integral values of the corresponding thermal equilibrium 1H spectra of different flip angles.
The fitting result tells that the decay rate of the nutation spectroscopy is 𝑘 = 2.76 × 103 s-1, which is about the same rate as the
second-order correlation.
The radio-frequency field (𝐵1) that varies along the NMR tube axis (𝑧 axis) is assumed to be the main cause of the RF

inhomogeneity1,2. To theoretically describe the quantum dynamics under the inhomogeneous pulse, we suppose the strength
of radio-frequency field applied on the sample is a function of the 𝑧 coordinate: 𝐵 (𝑧) (in Hz), and the coordinate range of the
sample column is −𝐿 ≤ 𝑧 ≤ 𝐿. Then the general state evolution under the inhomogeneous RF pulse is

𝜌̂ (𝑡) =
∫ 𝐿

−𝐿
d𝑧e−i2𝜋𝐵 (𝑧)𝜎𝑦 𝑡 𝜌̂0ei2𝜋𝐵 (𝑧)𝑡/Tr

[∫ 𝐿

−𝐿
d𝑧e−i2𝜋𝐵 (𝑧)𝑡 𝜌̂0ei2𝜋𝐵 (𝑧)𝜎𝑦 𝑡

]
, (27)
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𝛿𝑡 (ms) Δtot Δth Δexp Δr Δevo Δ𝜋/2

0.1 32.3% 0.2% 32.3% 7.5% 13.1% 0.0%
0.5 18.8% 5.4% 15.8% 0.4% 13.1% 0.1%
1 29.6% 20.2% 15.3% 0.1% 13.1% 0.1%

Supplementary Table 3. Main deviations of second-order correlation

Δtot Δth Δexp Δr Δevo Δ𝜋/2

Robust 23.5% 10.5% 18.3% 1.0% 16.0% 0.4%
Non-robust 112.2% 10.5% 121.5% 2.6% 16.0% 109.1%

Supplementary Table 4. Main deviations of fourth-order correlation

where 𝜌̂0 is the initial state of the 1H spin ensemble. The representation is actually the same as the state evolution of the phase
damping process, which is a nonunitary map of the quantum state and is determined by the field distribution along the 𝑧 axis.
A typical model is that the rotation angle 𝜔 = 2𝜋𝐵 (𝑧) represented as a random variable which has a Gaussian distribution with
mean 𝜆 and variance 𝑠. Then the final state from this process is given by the density matrix obtained from averaging over 𝜃:

𝜌̂f =
1√
2𝜋𝑠

∫ ∞

−∞
d𝜔 exp

{
− (𝜔 − 𝜆)2

2𝑠

}
e−i𝜎𝑦 𝑡𝜔/2 𝜌̂iei𝜎𝑦 𝑡𝜔/2. (28)

If 𝜌̂i = (1 + 𝜖𝜎𝑧) /2, using the Gaussian integral formulas:
1√
2𝜋𝑠

∫ ∞

−∞
d𝑥 sin 𝑥 exp

{
− (𝑥 − 𝑥0)2

2𝑠

}
= sin 𝑥0e−𝑠/2,

1√
2𝜋𝑠

∫ ∞

−∞
d𝑥 cos 𝑥 exp

{
− (𝑥 − 𝑥0)2

2𝑠

}
= cos 𝑥0e−𝑠/2, (29)

we have

𝜌̂f =
1
2

(
1 + 𝜖 cos (𝜆𝑡) e−𝑠𝑡/2 𝜖 sin (𝜆𝑡) e−𝑠𝑡/2
𝜖 sin (𝜆𝑡) e−𝑠𝑡/2 1 − 𝜖 cos (𝜆𝑡) e−𝑠𝑡/2

)
. (30)

Therefore the quantum coherence terms of the density matrix decay exponentially to zero with time. If using the Gaussian model
in our experiment, we have 𝑠 ≈ 5 × 103 s-1.
Besides the RF inhomogeneity, there are other errors in our experiments including the decoherence, the error of 𝜋/2 pulse

and the readout error. The coherence time of the sample is 𝑇2 ≈ 0.3 s, which is much longer than the time scale of the quantum
correlations whose period is 𝑇 ≈ 40 𝜇s. So the errors from 𝑇2 decoherence are negligible compared to the errors contributed by
the RF inhomogeneity. By fitting the NMR nutation spectroscopy, the relative error of 𝜋/2 pulse is characterized (2% ∼ 3%),
which directly reduces the fidelity of the quantum channels. As analyzed in the main text (including Methods), the pulse error
has a great impact on the extraction of high order correlations because of the lower-order signal leakage, and we have used
the error-resilient quantum channel by repeating the non-ideal for 𝑛 times to suppress the unwanted low-order correlation. The
readout error in the experiments refers to the fitting uncertainty of the NMR spectrum that determine the signals of quantum
correlations. As shown in Supplementary Figure 3 and Supplementary Figure 5, by fitting the spectrum with Lorentzian
function, the spectral integration corresponding to the expectation value

〈
𝜎𝑦

〉
is obtained. The fitting uncertainty, which is solely

determined by the absolute intensity of the spectral ground noise (white noise), can be obtained by using the cftool toolbox in
Matlab. The error bars presented in the figures of main experimental results are also from the fitting uncertainty.

Supplementary Note 4. Optimal coupling-evolution time

As discussed in the main text, there is a trade-off between the theoretical approximation and the SNR of the measured signals
resulting from finite value of 𝛿𝑡. Here we discuss in detail about the trade-off and numerically find the optimal evolution time
both for the measurement of second- and fourth-order correlations. The trade-off between the theoretical approximation and the
SNR of the measured signals resulting from 𝛿𝑡 can be described by the total relative error of the target correlation signals:

Δtot (𝛿𝑡) =




 ®𝐸 th (𝛿𝑡)


 + 


 ®𝐸exp (𝛿𝑡)





 ®𝑆target (𝛿𝑡)


 . (31)
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Here ®𝐸 th =
��� ®𝑆sim − ®𝑆target

��� is the theoretical approximation error from finite 𝛿𝑡. As defined in the main text, the target signals
®𝑆target for second- and fourth-order correlations are 𝛿𝑡2𝐶+− and 𝛿𝑡4𝑝C𝐶+−−+ respectively. ®𝑆sim is the simulated signals of 𝑆2 or
𝑆4. ®𝐸exp is the total absolute deviation caused by the three main experimental error sources discussed above, i.e.,


 ®𝐸exp


 = 


 ®𝐸 𝜋/2




 + 


 ®𝐸evo


 + 


 ®𝐸 r


, (32)

where ®𝐸 𝜋/2, ®𝐸evo and ®𝐸 r present the control error caused by 𝜋/2-pulse imperfection, the evolution error of the quantum target
caused by RF inhomogeneity, and the experimental readout error, respectively. With the error parameters measured in experiment
(see Supplementary Note 3), all of these error mechanisms can be simulated individually.
Here is the simulation process of each error mechanism:

• ®𝐸 th: The theoretical approximation error can be simulated from the analytical formulas of second- and fourth-order
correlations without any approximation:

𝑆2 = −i TrB
{
sin

[
𝛿𝑡B+ (𝑡2)

]
sin [i𝛿𝑡B− (𝑡1)] 𝜌̂B

}
𝑆4 = −𝑝C Tr

{
sin

[
𝛿𝑡B+ (𝑡4) sin [i𝛿𝑡B− (𝑡3)] sin [i𝛿𝑡B− (𝑡2)] sin

[
𝛿𝑡B+ (𝑡1)

] ]
𝜌̂B

} (33)

Define B±
𝑘 ≡ B± (𝑡𝑘 ), then by Taylor expansion we get the high order errors

®𝐸 th2nd =
��� ®𝑆2 − ®𝑆target2

���
=
1
6
𝛿𝑡4

[
TrB

(B+
2B+
2B+
2B−
1 𝜌̂B

) − TrB (B+
2B−
1 B−
1 B−
1 𝜌̂B

) ] +𝑂
(
𝛿𝑡6

)
,

®𝐸 th4th =
��� ®𝑆4 − ®𝑆target4

���
=

𝑝C
6
𝛿𝑡6

[
TrB

(B+
4B+
4B+
4B−
3 B−
2 B+
1 𝜌̂B

) − TrB (B+
4B−
3 B−
3 B−
3 B−
2 B+
1 𝜌̂B

)
− TrB

(B+
4B−
3 B−
2 B−
2 B−
2 B+
1 𝜌̂B

) + TrB (B+
4B−
3 B−
2 B+
1B+
1B+
1 𝜌̂B

) ] +𝑂
(
𝛿𝑡8

)
,

(34)

with which ®𝐸 th2nd and 𝐸 ®𝐸 th4th can be obtained numerically.

• ®𝐸 𝜋/2: The control error caused by 𝜋/2-pulse imperfection is simulated by replacing the error-free channel matrices into
the non-ideal channel matrices. The analytical signal formulas of the non-ideal channels are available in Methods (𝑆𝐸2 and
𝑆𝐸4 ), where the angle deviation 𝛿𝜃 is determined in experiment. For the second-order case and the fourth-order case with
robust channels, the relative error from 𝜋/2-pulse imperfection (Δ𝜋/2) is almost negligible (∼ 0.1%).

• ®𝐸evo: The evolution error caused by RF inhomogeneity is simulated by adding an exponential decay coefficient e−𝑘𝑡 before
the simulated signal 𝑆sim, where 𝑡 is the evolution time and 𝑘 = 2.76×103 s-1 is the decay rate of the nutation spectroscopy.
Obviously, for the Θ−th order correlations, ®𝐸evo is the error mainly dependent of 𝛿𝑡Θ. Thus, the relative error Δevo is
independent of 𝛿𝑡.

• ®𝐸 r: The signal readout error is simulated by adding a random Gaussian fluctuation on the final signals. The mean is 𝜇 = 0
and the standard deviation 𝜎 is the fitting error determined by Matlab cftool toolbox. ®𝐸 r is totally independent of 𝛿𝑡.

Then equation (31) becomes

Δtot (𝛿𝑡) =




 ®𝐸 th (𝛿𝑡)


 + 


 ®𝐸 𝜋/2 (𝛿𝑡)



 + 


 ®𝐸evo (𝛿𝑡)


 + 


 ®𝐸 r





 ®𝑆target (𝛿𝑡)




≈
𝛿𝑡Θ+2




 ®𝐶𝜂𝑁+2 · · ·𝜂1



 + 


 ®𝐸 r




𝛿𝑡Θ



𝐴𝜂𝑁 · · ·𝜂1 ®𝐶𝜂𝑁 · · ·𝜂1




 + Δ𝜋/2 (𝛿𝜃) + Δevo

(35)

Here ®𝑆target (𝛿𝑡) = 𝛿𝑡Θ𝐴𝜂𝑁 · · ·𝜂1 ®𝐶𝜂𝑁 · · ·𝜂1 is the target signals of the desired correlations. Δ𝜋/2 (𝛿𝜃) is the relative error caused by
the 𝜋/2-pulse imperfection (𝜋/2→ 𝜋/2 + 𝛿𝜃), which is derived from equation (14) and (23) in Methods:

Δ𝜋/2 (𝛿𝜃) ≈
{
𝛿𝜃2, for 𝐶+−,

𝑝C

[
1 − (

1 − 𝛿𝜃2/2)3] , for 𝐶+−−+.
(36)
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Note that the lower-order leakage in Methods-equation (23) is greatly suppressed when Methods-equation (26) is satisfied. Δevo
is the relative error caused by RF inhomogeneity, i.e.,

Δevo =




(1 − e−𝑘 ®𝜏
)
®𝐶𝜂𝑁 · · ·𝜂1







 ®𝐶𝜂𝑁 · · ·𝜂1



 . (37)

Here 𝑘 = 2.76 × 103 denotes the decay rate of the free evolution of the quantum target and ®𝜏 is the sampling time list. ®𝐸 r
is determined by the ground noise of spectra and totally independent of 𝛿𝑡. Therefore, the 𝜋/2-pulse imperfection and rf
inhomogeneity together contribute a constant relative error. Then, by taking 𝜕ΔtotΘ (𝛿𝑡) /𝜕Δ𝑡 = 0, the optimal evolution time is
obtained:

𝛿𝑡opt ≈
©­­«
2



 ®𝐶𝜂𝑁+2 · · ·𝜂1





Θ



 ®𝐸 r




ª®®¬

1/(Θ+2)

. (38)

The numerical simulation results of the total relative error versus 𝛿𝑡 are presented inSupplementary Figure 4. Supplementary
Figure 4a displays the simulated result of the relative error of the second-order correlation. As shown in the figure, the total
error becomes relatively large because of the first term for the small 𝛿𝑡. And for a large 𝛿𝑡, the second term contributes a lot,
which also leads to a large total error. Therefore, we can find that the optimal 𝛿𝑡 is around 0.35 ms, which has the smallest error,
and the value 𝛿𝑡 = 0.5 ms we choose in the experiment also corresponds to a relatively small error. Supplementary Figure 4b
simulates the relative error of the fourth-order correlation. As we can see in the figure, the total error has a similar trend with that
of the second-order correlation, and the optimal 𝛿𝑡 with the smallest error also lies between around 0.4 ms. Our choice 𝛿𝑡 = 0.5
ms in the experiment is also appropriate.
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Supplementary Figure 1. The NMR pulse sequences for extracting the 2nd- and 4th-order correlations. a, The pulse sequence of the
second-order correlation measurement. b, The pulse sequence of the fourth-order correlation measurement. The pulses labeled with (𝜋/2)𝑥/𝑦
mean the 𝜋/2 rotation along the 𝑥/𝑦 axis, and the pulses labeled with (𝜋/2)±𝑥/𝑦 mean the phase cycling

(
𝑋 + 𝑋̄

) /2 or
(
𝑌 + 𝑌 ) /2. The shaded

regions labeled with 𝛿𝑡 are the short time interaction processes.
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Supplementary Figure 2. The amplitude decay caused by the RF inhomogeneity. a, The experimental data of the second-order correlation
and the fitting curve. The fitting result is 𝑦 ∼ sin

(
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)
exp

(
−2.8 × 103𝑡

)
b, the NMR nutation spectroscopy of 1H and the fitting curve.
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Supplementary Figure 3. The typical spectra from the experiments and their fitting curves. a, The thermal equilibrium spectrum of 13C.
b, One of the spectra of the 2nd-order correlation measurement. The curve fitting equation is the Lorentzian function.
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Supplementary Figure 4. Numerical simulation of the total relative error versus 𝛿𝑡. a, The simulated relative measurement error of the
second-order correlation versus 𝛿𝑡. b, The simulated relative measurement error of the fourth-order correlation versus 𝛿𝑡.

a

b

⟨σ̂
y
⟩(

a.
u.

)
Ty

pi
ca

ls
pe

ct
ra

-2

2

×10−4

10 30
τ21 (µs)

δt = 0.1 ms

τ21 = 12 µs

-1

1

×10−3

20 60
τ21 (µs)

δt = 0.3 ms

τ21 = 12 µs

0

1

×10−2

20 60
τ21 (µs)

δt = 0.5 ms

τ21 = 12 µs

Robust
Not robust

Supplementary Figure 5. Additional experimental data of the 4th-order correlation measurement. a, The signal-to-noise ratios (SNR) of
the typical spectra of different 𝛿𝑡. b, The corresponding 4th-order correlation signals in different 𝛿𝑡.
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Supplementary Figure 6. Additional results of the non-robust 4th-order correlation measurement. a, The simulated result (red solid
curve) and the experimental result (red stars) of the non-robust design versus 𝛿𝑡 compared with those of the robust design (black solid curve for
the simulated result and black triangles for the experimental result) and the analytical result (solid blue curve). b, The corresponding fitting curve
of the non-robust experimental result, which has a slope of 3.059.


