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Quantum correlation of two-photon states has been utilized to suppress the environmental noise in imaging
down to the single-photon level. However, the size of the coherence area of photon pairs limits the applications
of quantum imaging based on spatial correlations. Here, we propose a quantum imaging scheme exploiting
twisted photon pairs with tunable spatial-correlation regions to circumvent this limitation. We employ a bulk-
density coincidence to enhance the imaging signal. Specifically, we introduce a re-scaled image signal, which is
immune to the background intensity distribution profile of the photon pulse. We reveal a destructive interference
between the anti-bunched photon pair and bunched photon pair in the imaging process. Our work could pave a
way for twisted-photon-based quantum holography and quantum microscopy.

The quantum correlation of photon pairs in time and space
offers a great advantage in quantum imaging [1–3] and three-
dimensional (3D) structure tomography [4–6] down to the
single-photon level. The correlated-photon imaging utiliz-
ing two-photon entanglement [7] inspired streams of research
in density-change-sensitive ghost imaging [8–15] and phase-
resolved quantum imgaing [16, 17]. In addition to quantum
imaging, the two-photon Hong-Ou-Mandel (HOM) interfer-
ence, which is sensitive to the spatial phase-amplitude struc-
ture of input single photons, has also been exploited for the
hologram of single photons [18] and high-dimensional pho-
tonic states engineering [19].

Spatial correlation is essential for correlated imaging. For
a regular Gaussian photon pair from spontaneous parametric
down-conversion (SPDC) processes, the size of its coherence
area AC = πR2/k2

0σ
2 [20], which is determined by the beam

waist σ of the pump beam, the center wave vector k0, and
the propagating distance R, limits the applications of quan-
tum correlated imaging in many cases. A larger coherence
area can be obtained by increasing the propagating distance
R. However, this will attenuate the field strength significantly
and reduce the signal-to-noise ratio (SNR). The tremendous
advances in engineering complex optical fields open the pos-
sibility to develop photonic technologies for quantum imag-
ing via precise manipulation of the transverse spatial proper-
ties of photons [21–25]. Here we propose a quantum imaging
scheme by exploiting twisted photon pairs with tunable coher-
ence regions.

Twisted photons [26] carrying quantized orbital angular
momentum (OAM) [27–29] stimulated much interest in high-
dimensional quantum communication [30–35] and quantum
computation [36–39] beyond the polarization, momentum,
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and spectral degrees of freedom. Quantum imaging and re-
mote sensing exploiting the continuous spatial correlation of
twisted photon pairs will be another important topic of inter-
est [40–43]. Usually, the field strength of a twisted photon is
of a donut shape in the transverse plane. The radius of the
donut (i.e., the coherence region of a twisted photon pair) can
be tuned by varying the OAM quantum number. Thus, sig-
nal photons can be concentrated on the target regions to avoid
SNR degradation. However, the non-uniform background in-
tensity distribution profile of the photon pulse will hamper the
imaging performance. How to resolve this difficulty remains
elusive.

Our proposed quantum imaging is based on HOM interfer-
ence with coincidence measurements between a bucket detec-
tor and an image sensor as shown in Fig. 1. Different from
previous works sensing the intensity or phase change due to a
quasi-transparent object [17, 41], our imaging system aims to
probe the texture by extracting the spatially varying phase im-
printed on the photon during the reflection. The axial symme-
try of twisted photons leads to completely destructive interfer-
ence between the anti-bunched photon pair and bunched pho-
ton pair in the imaging process. This interference results in an
effect that the texture information cannot be extracted via pho-
ton density measurements directly, but can be obtained from
the quantum correlation of the two output photons. We also
show that by retrieving the texture image via our introduced
re-scaled signal, the influence of the photon density profile on
quantum correlated imaging can be significantly eliminated.
Our work constitutes valuable resources not only for quantum
imaging or remote sensing but also for studying the unique
quantum statistical properties of twisted photon pairs [44].

Hong-Ou-Mandel interference of twisted photon
pairs—Our imaging scheme is based on HOM interfer-
ometer [45]. Here we give a general quantum theory of
HOM interference, specifically for 3D structured photons.
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FIG. 1. Schematic of the setup for our Hong-Ou-Mandel-based quantum imaging via twisted photon pairs. The two photons generated in the
spontaneous down conversion processes propagate in different paths labeled by A and B, respectively. The texture of the object is imprinted on
the phase Φ(x, y) of the photon in path-A during the reflection. Hong-Ou-Mandel interference of the two photons occurs at the beam splitter
(BS). The information about the object is extracted via the coincidence of the photon number (obtained from the bucket detector) at one output
port and the photon number density (measured via the image sensor) at the other port.

For two photons propagating in different directions, a lin-
early polarized photon pair can be described by a quantum
state [46]∣∣∣Pξ

〉
=

∫
dk

∫
dk′ξ(kA, k′B)â†kA

(t)b̂†k′B (t) |0〉 , (1)

where all the information of the photon pair is character-
ized by the spectral amplitude function (SAF) ξ(kA, k′B) [47]
and two photonic paths are labeled by A and B, respectively.
Here a two-coordinate-frame formalism [48] has been ap-
plied as shown in Fig. 2 (a). For simplicity, we will only
add the subscripts A and B in the quantum operators not
in the SAF ξ(k, k′) in the following. Different from the
co-propagating two-photon state [44], the spectral amplitude
function (SAF) is not necessarily symmetrized [46, 47], i.e.,
ξ(k, k′) , ξ(k′, k). In real space, the two-photon state can be
rewritten as∣∣∣Pξ

〉
=

∫
dr

∫
dr′ξ̃(r, r′, t)ψ̂†a(rA)ψ̂†b(r′B) |0〉 , (2)

where ψ̂a(b)(r) is the effective field operator of photons [46,
49] and the Fourier transformation of ξ(k, k′) gives the wave-
packet function (WPF)

ξ̃(r, r′, t) =
1

(2π)3

∫
dk

∫
dk′ξ(k, k′)ei(k·r−ωkt+k′·r′−ωk′ t). (3)

We note that the WPF of each photon is also expressed in its
co-moving frame [46, 48].

The HOM interference is essentially described by the input-
output relations at the beam splitter [see Fig. 2 (a)] [48],

ĉkB =
(
Rkâ k̄A

+ Tkb̂kB

)
, (4)

d̂kA =
(
TkâkA + Rkb̂k̄B

)
, (5)

with k̄ = (kx,−ky, kz). In the frame co-moving with photon,
the y-component of wave vector changes sign under a reflec-
tion [46, 48]. This leads to an important effect that the sign

of the quantum number of photonic OAM is changed (i.e.,
m → −m) under every reflection [46, 50]. In the follow-
ing, we focus on 50 : 50 beam splitter with Tk = 1/

√
2

and Rk = i/
√

2 for paraxial quasi-single-frequency photons.
Here, we only consider the HOM interference of two photons
of the same polarization. Our formalism can be generalized to
the cases for photons with different polarizations straightfor-
wardly [51, 52].

The coincidence probability after the beam-splitter

P(2)
cd =

∫
dr

∫
dr′ 〈Ψout| ψ̂

†
c(rB)ψ̂†d(r′A)ψ̂d(r′A)ψ̂c(rB) |Ψout〉 , (6)

can be obtained from the output state [46]

|Ψout〉 =
1
2

∫
dr

∫
dr′

[
iξ̃(r, r̄′, t)ψ̂†d(rA)ψ̂†d(r′A)

+iξ̃(r̄, r′, t)ψ̂†c(rB)ψ̂†c(r′B) + ξ̃cd(r, r′, t)ψ̂†d(rA)ψ̂†c(r′B)
]
|0〉 , (7)

with r̄ = (x,−y, z) and ξ̃cd(r, r′, t) = ξ̃(r, r′, t) − ξ̃(r̄′, r̄, t). For
quasi-1D photon pairs, the WPF is axially symmetric, i.e.,
ξ̃(r̄, r̄′, t) = ξ̃(r, r′, t). Input two photons with an exchange-
symmetric WPF ξ̃(r, r′, t) = ξ̃(r′, r, t) will lead to vanish-
ing ξ̃cd(r, r′, t) in the output state. Thus, two photons always
come out from the same port due to destructive HOM inter-
ference. Input two photons with an exchange-antisymmetric
WPF ξ̃(r, r′, t) = −ξ̃(r′, r, t) lead to constructive HOM inter-
ference. Two photons always come out from different output
ports resulting in a HOM peak [48].

Different from the 1D case, the HOM interference of 3D
twisted photon pairs becomes a little bit complicated. We now
input an entangled twisted photon pair with WPF

ξ̃±(r, r′, t) = N η̃(r, t)η̃(r′, t)
[
eim(ϕ−ϕ′) ± e−im(ϕ−ϕ′)

]
, (8)

where the integer m denotes the OAM quantum number of
each photon, η̃(r) characterizes the shape of each photon pulse
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FIG. 2. (a) Transformation of the two coordinate frames at the
beam splitter. These two coordinates corresponding to the two op-
tical paths A and B are co-moving with the two photons. The input
photonic modes are denoted by annihilation operators â and b̂ and
the output modes are denoted by ĉ and d̂. (b) Imaging via Mach-
Zehnder interferometer with coherent-state input pulses. The texture
of the object is imprinted on the phase Φ(x, y) in one optical channel
and extracted via photon number density measurements directly.

and is usually independent on azimuthal angle ϕ, and N is
the normalization factor. a HOM interference dip will be ob-
tained for both the exchange-symmetric WPF ξ̃+(r, r′, t) and
the exchange-antisymmetric WPF ξ̃−(r, r′, t) due to the fact
ξ̃±(r̄′, r̄, t) = ξ̃±(r, r′, t) (note the sign change in m by r̄). For
photon pairs with WPF

ξ̃(r, r′, t) = N η̃(r, t)η̃(r′, t)
[
eim(ϕ+ϕ′) − e−im(ϕ+ϕ′)

]
, (9)

a HOM interference peak will be obtained [19], since
ξ̃(r̄′, r̄, t) = −ξ̃(r, r′, t). More details can be found in the sup-
plementary material [46].

HOM-Based quantum imaging—Originally, the HOM in-
terference was explored to measure the time delay (i.e., op-
tical path difference) between the two incident photons [45].
Later on, it has been explored for various applications, such as
quantum-optical coherence tomography [4], photon indistin-
guishability testing [53], quantum state engineering [19, 54],
as well as quantum imaging [17, 18]. We now apply the
HOM interferometer to detect the texture of an object with
twisted photon pairs. As shown in Fig. 1, the photon in path-
A is reflected once by the object. The texture of the object
is imprinted on the wave packet function of this photon by
adding a spatially varying phase factor exp[iΦ(x, y)] in the
WPF ξ̃(r, r′, t). After the HOM interference, this phase fac-
tor directly enters the WPF of output photons at both output
ports as shown in Eq. (C2).

In experiments, we can measure the photon number density
at each output port, such as

nd(r, t) = 〈Ψout| ψ̂
†

d(rA)ψ̂d(rA) |Ψout〉 , (10)

via a single-photon detector array, a CCD camera, or any
other image sensor. Intuitively, we would expect to extract

(a) (b) (c) (d)

FIG. 3. Four Hong-Ou-Mandel interference processes. (a) Both two
photons are transmitted. (b) Both two photons are reflected. In (c)
and (d), one photon is transmitted and the other is reflected.

the phase factor Φ(x, y) directly from the photon-number den-
sity nd(r, t) [3]. However, this cannot be done in HOM-based
imaging with twisted photon pairs as explained in the exam-
ple.

The essence of the HOM interference lies in the beam-
splitter-generated quantum entanglement between the two
output photons. We now utilize the quantum correlation func-
tion 〈Ψout| ψ̂

†

d(rA)ψ̂†c(r′B)ψ̂c(r′B)ψ̂d(rA) |Ψout〉 to extract the spa-
tially dependent phase Φ(x, y). To obtain a larger signal and
to speed up the imaging process, we perform the following
coincidence signal detection

〈Ĉd(r, t)〉 =

∫
dr′ 〈Ψout| ψ̂

†

d(rA)ψ̂†c(r′B)ψ̂c(r′B)ψ̂d(rA) |Ψout〉 . (11)

As shown in Fig. 1, a bucket detector is employed to collect
the photon number

∫
dr〈ψ̂†c(rB)ψ̂c(rB)〉 at port-c and an image

sensor is used to measure the photon number density nd(r, t)
at port-d. The quantum imaging of the texture of the object is
achieved via the coincidence signal 〈Ĉd(r, t)〉.

In practice, we cannot measure the true photon number den-
sity at a single point. Instead, we measure the accumulated
signal at a finite small volume ∆V determined by the pixel
area and measuring time. Thus, the measured signal from the
pixel labeled by X will be the mean value of the operator

Ĉd(X) =

∫
∆VX

dr
∫

dr′ψ̂†d(rA)ψ̂†c(r′B)ψ̂c(r′B)ψ̂d(rA), (12)

where the integral over r is limited in the small volume
∆VX corresponding to the pixel-X. This also removes
the divergence in the density correlation at the same point
〈Ψout|[ψ̂

†

d(rA)ψ̂d(rA)]2|Ψout〉 [28]. The SNR for two-photon-
state imaging after N independent measurements is defined
as [15, 46]

SNRTPS(X) =

√
N〈Ĉd(X)〉√
〈∆Ĉ2

d(X)〉
=

√
N〈Ĉd(X)〉√

〈Ĉd(X)〉 − 〈Ĉd(X)〉2
, (13)

where 〈Ĉd(X)〉 � 1, since it characterizes the probability of
detecting a photon by pixel-X.

The object texture can also be extracted via the Mach-
Zehnder interference with coherent-state laser pulses [see
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Fig. 2 (b)]. The image signal is obtained by the pixelated pho-
ton number density operator D̂d(X) =

∫
∆VX

drψ̂†d(rA)ψ̂d(rA).
The SNR for coherent-state imaging is

SNRCS(X) =
〈D̂d(X)〉√
〈∆D̂2

d(X)〉
=
〈D̂d(X)〉√
〈D̂d(X)〉

. (14)

For a coherent-state pulse with a large photon number N, the
well-known

√
N-factor enhancement in SNRCS(X) will be ob-

tained. Comparing SNRTPS(X) and SNRCS(X), we see that
the quantum imaging based on two-photon HOM interference
enhance the SNR slightly at the single-photon level. How-
ever, due to technological limitations, the dark-counting re-
lated noise dominates in quantum correlated imaging instead
of the quantum noise in SNRTPS(X) [55]. In the following,
we focus more on the theoretical exploration of exploiting
twisted photon pairs in quantum imaging. Additionally, we
show twisted photon pairs can be used for the quantum en-
cryption of images via HOM interference.

Quantum imaging with twisted photon pairs—We now ap-
ply our quantum imaging approach to specific twisted photon
pairs. The input two photons in a product state are described
by Eq. (A9) with WPF

ξ̃(r, r′, t) = N η̃m(ρ, z, t)η̃−m(ρ′, z′, t)ei[m(ϕ−ϕ′)+Φ(ρ,ϕ)]. (15)

Here, the two photons have opposite OAM quantum numbers.
Only the photon in path-A has been reflected by the object.
Thus, the texture information of the object is imprinted on
the WPF of this photon via the phase Φ(ρ, ϕ) re-expressed in
a cylindrical coordinate. Even for a product input state, the
HOM interferometer generates quantum entanglement in the
output photons, which plays an essential role in the imaging
process.

The photon number density (10) measured from output
port-d is given by

nd(r, t) =
1
4
|η̃m(ρ, z, t)|2

{
4 +

[
(I1 − I2)eiΦ(ρ,ϕ) + c.c.

]}
, (16)

where the overlap integrals I1 =
∫

dr′ |η̃m(ρ′, z′, t)|2 e−iΦ(ρ′,ϕ′)

and I2 =
∫

dr′ |η̃m(ρ′, z′, t)|2 e−iΦ(ρ′,−ϕ′) come from the first
term (bunched photon pair) and third term (anti-bunched pho-
ton pair) of the output state (C2), respectively. For an axisym-
metric function η̃m(ρ, z, t), we can prove I1 = I2 [46], thus the
corresponding terms carrying texture information in nd(r, t)
cancel out. Interference between the anti-bunched pair [pro-
cesses (a) and (b) in Fig. 3] and bunched pair [process (c) in
Fig. 3] occurs. This destructive interference leads to a strik-
ing effect that the texture of the object cannot be extracted
via simply measuring nd(r, t). We note that this completely

m = 0 m = 1 m = 2

& $
((
)

⟨+ ,
$
(
⟩

. $
(

FIG. 4. Photon number density nd(X) (the top row), coincidence
signal 〈Ĉd(X)〉 (middle row), and the rescaled signal Sd(X) (bottom
row) for product-state photon pairs described by Eq. (15). Different
columns correspond to twisted photon pairs with different orbital an-
gular momentum quantum numbers m. Here, the accumulated signal
on a pixel [see Eq. (12)] not the density at a single point has been
shown. More details about the numerical simulation can be found in
supplementary material [46].

destructive interference is essentially due to the axial sym-
metry of twisted photons and it is significantly different from
the well-known interference resulting in the HOM dip or peak
in P(2)

cd , which occurs only between the anti-bunched photons
[the process (a) and the process (b) in Fig. 3]. The numeri-
cal simulation of nd(r, t) is shown by the top row in Fig. 4.
Only the donut-structure of twisted light has been observed.
This also shows a fundamental departure from the interference
of two coherent-state pulses in a Mach-Zehnder experiment,
where the photon number density at the output port will be
∝ | exp[imϕ + iΦ(x, y)] + exp(imϕ)|2.

The coincidence signal is given by

〈Ĉd(r, t)〉 =
1
4
|η̃m(r, t)|2

[
2 −

(
I2eiΦ(ρ,ϕ) + c.c.

)]
. (17)

During the calibration by replacing the object with a mirror
(i.e., Φ = 0), the optical paths of the two photons have been
carefully matched and no coincidence signal will be obtained
P(2)

cd = 0. The texture of the object introduces extra phase dif-
ference Φ(ρ, ϕ) resulting in non-vanishing coincidence signal
〈Ĉd(r, t)〉. As shown by the middle row of Fig. 4, the texture of
the object looms up in 〈Ĉd(r, t)〉. By varying the OAM quan-
tum number m, the imaging region can be tuned gradually.

To remove the influence of the background density distribu-
tion profile of twisted photons, we introduce a re-scaled signal

Sd(r, t)≡
〈Ĉd(r, t)〉−nd(r, t)/2

nd(r, t)/2
=−

1
2

[
I2eiΦ(ρ,ϕ)+c.c.

]
. (18)

As shown by the bottom row of Fig. 4, a texture image of the
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object with a much higher contrast is obtained. Due to the
perfect destructive interference, no texture information of the
object is contained in the photon number density nd(r, t). The
imaging signal has been completely extracted via Sd(r, t). In
this work, only the quantum imaging with product-state pho-
ton pairs has been investigated. Our approach can be directly
applied to the entangled twisted photon pairs, such as the
two-photon states in Eqs. (8) and (9). Helical-phase-modified
quantum coherence of entangled twisted photon pairs [44]
will manifest in the texture image as shown in our following
work.

Our discovered destructive interference effect in the imag-
ing process can be exploited for the quantum encryption of
images with twisted photon pairs. Similar to our imaging pro-
cess, we first encode an image in one of the photon’s phase
and then perform a HOM interference. Based on our results,
the information of the photo cannot be extracted via the pho-
ton number density at either output. Retrieval of the photo
can only be achieved via the coincidence signal. In our the-
oretical simulation, we only take a twisted pair with WPF
in a product form for simplicity. Two photons generated in
an SPDC process are entangled in frequency degrees of free-
dom [20, 56, 57]. However, the frequency entanglement does
not change the main features of a HOM interference [51]. In

experiments, spectral filters can be used to ensure spectral in-
distinguishability of the two photons and to remove the fre-
quency entanglement [58, 59].

Discussion.—We conduct a theoretical exploration of quan-
tum imaging with twisted photon pairs in this letter. In
our numerical simulation, diffraction-free Bessel pulses with
micrometer-scale cross-sections have been taken. However,
our quantum imaging approach is not limited to microscopy.
Laguerre-Gaussian-mode twisted photons can be used for
imaging a macroscopic object. The advances in single-
photon-level image sensors [60, 61] lay a solid hardware foun-
dation for our proposed experiment. To suppress the imag-
ing noise in experiments, we can replace the bucket detector
with a superconducting nanowire single-photon detector with
an extremely low dark-counting rate [62]. The new genera-
tion of Megapixel single-photon avalanche photodiode image
sensors with smaller pitch size (< 10 µm), higher frame rate
and time resolution will enable more exciting applications of
quantum imaging at single-photon level [60, 63].

Acknowledgements.—The authors thank H. Dong, D. Z.
Xu, and S. W. Li for fruitful discussions. This work is sup-
ported by National Key R&D Program of China (Grant No.
2021YFE0193500), NSFC Grant No.12275048, and NSFC
Grants No. 12175033.
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In this supplementary, we give the details in the evaluation of photon number densities and photon number density correlation
functions in the Hong-Ou-Mandel (HOM) interference with twisted photon pairs.

Appendix A: Two-coordinate-frame description of photon pairs

In this section, we give a detailed introduction to the two-coordinate-frame formalism, which provides a convenient way to
handle two-channel interference processes, such as the Mach-Zehnder interference and Hong-Ou-Mandel (HOM) interference.
The quantum state of a photon pair can be generally expanded with plane-wave modes∣∣∣Pξ

〉
=

1
√

2

∫
dk

∫
dk′ξ(k, k′)â†kâ†k′ |0〉 , (A1)

where ξ(k, k′) is the spectral-amplitude function (SAF) and we do not consider the polarization degrees of freedom in this work.
Due to the bosonic commutations relation [â†k, â

†

k′ ] = 0, the quantum state
∣∣∣Pξ

〉
does not change under the permutation k → k′.

Thus, the two-photon is required to be symmetric

ξ(k, k′) = ξ(k′, k). (A2)

The normalization constraint for the SAF
∫

d3k
∫

d3k′ |ξ(k, k′)|2 = 1 is obtained via [âk, â
†

k′ ] = δ(k − k′).
We note that the plane-wave expansion of the quantum state of a photon pair in (A1) has been performed in the same coordinate

frame. However, for two photons propagating in two different directions, the SAF ξ(k, k′) will become extremely complicated
usually. For paraxial photon pulses, the probability of two photons having the same wave vector k will be negligibly small,
|ξ(k, k)|2 → 0. Thus, it will be much more convenient to introduce the two-coordinate-frame formalism [48]. In this case, the
two-photon a quantum state can be approximated as∣∣∣Pξ

〉
≈

∫
dk

∫
dk′ξ(kA, k′B)â†kA

b̂†k′B |0〉 , (A3)

the two photonic paths are labeled by A and B, respectively. For each path, we establish a separate coordinate co-moving with
the photon as shown in Fig. 5 (a), i.e., kA = kxeA,x + kyeA,y + kzeA,z and kB = kxeB,x + kyeB,y + kzeB,z. We also use different ladder
operators to denote the two photons, because the corresponding ladder operators commutes, i.e., [âkA , b̂

†

k′B
] = [b̂kB , â

†

k′A
] = 0. For

simplicity, we only add the subscripts A and B to the wave vectors in the ladder operators not in the SAF in the following. As
shown in Sec. B, the coupling between plane wave modes at a beam splitter can be well described by the indices of the ladder
operators. The SAF ξ(k, k′) still satisfies the normalization constraint

∫
dk

∫
dk′ |ξ(k, k′)|2 = 1.
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Usually, the SAF ξ(k, k′) does not satisfy the symmetry requirement ξ(k, k′) = ξ(k′, k), because these two photons can be
distinguished via their propagating paths. As pointed out by Leggett [64]: “It is crucial to appreciate that the mere fact that a
given system of particles shows substantial effects of quantum mechanics such as the quantization of energy are not enough to
guarantee that it will automatically show the effects of indistinguishability; it is necessary, in addition, for the particles to be able
to “find out” that they are indistinguishable, and they can do this only if they can change places (otherwise, we can as it were
“tag” them by their physical location).” Only when the two photons meet at the beam splitter, the effect of indistinguishability
manifests again that we can not tell the output photon from which input port. This indistinguishability plays an essential role in
the quantum description of a beam splitter as shown in the following.

In the Schrödinger picture, the state of the photon pair
∣∣∣Pξ(t)

〉
at time t can be obtained by replacing the ladder operators with

e−iĤt/~â†kA
eiĤt/~ = â†kA

e−iωkt, (A4)

e−iĤt/~b̂†kB
eiĤt/~ = b̂†kB

e−iωkt. (A5)

We now introduce two effective field operators in the real-space

ψ̂a(rA) =
1√

(2π)3

∫
dkâkA eikA·rA , (A6)

ψ̂b(rB) =
1√

(2π)3

∫
dkb̂kB eikB·rB , (A7)

where rA = xeA,x + yeA,y + zeA,z and rB = xeB,x + yeB,y + zeB,z. We rewrite the quantum state of a photon pair as∣∣∣Pξ(t)
〉

=

∫
dr

∫
dr′ψ̂†a(rA)ψ̂†b(r′B)

1
(2π)3

∫
dk

∫
dk′ξ(kA, k′B)ei(kA·rA−ωkt+k′B·r

′
B−ωk′ t) |0〉 (A8)

=

∫
dr

∫
dr′ξ̃(r, r′, t)ψ̂†a(rA)ψ̂†b(r′B) |0〉 , (A9)

with the wave-packet function of the photon pair

ξ̃(r, r′, t) =
1

(2π)3

∫
dk

∫
dk′ξ(k, k′)ei(k·r−ωkt+k′·r′−ωk′ t). (A10)

We note that this two-coordinate-frame formalism only works for paraxial pulses, in which photons can be well distinguished
via their propagating axes.

Examples

The SAF of a photon pair generated via spontaneous parametric down-conversion (SPDC) processes is given by [48, 56, 57]

ξ(k, k′) =
1
π

√
2L
K
η(k + k′)sinc

(
L|k − k′|2

4K

)
, (A11)

where k and k′ can be used to denote the wave vectors of the signal and idler photons respectively, η(k) is the normalized
spectrum function of the pump beam, L is the length of the nonlinear crystal in the propagating direction, K is the magnitude of
the wave vector of the pump field, amd sinc(x) = sin(x)/x.

In the following, we focus on twisted photon pairs carrying non-vanishing orbital angular momentum (OAM). Without loss
of generality, we assume the SAF of the two-photon states

∣∣∣∣P±ξ 〉 to be a simple form, such as

ξ±(k, k′) = N
[
ηs(k)ηi(k′)ei(msϕk+miϕ

′
k) ± ηi(k)ηs(k′)ei(miϕk+msϕ

′
k)
]
. (A12)

Here, ηs(k) and ηi(k) determine the pulse length and pulse shape of the two photons, the integers ms and mi are the OAM
quantum numbers of the two photons, and N is a normalization factor. We note that photon pairs generated from SPDC must
satisfy the energy conservation condition ωk + ωk′ = ωp (ωp the pump frequency). Thus, the two photon are also entangled in



10

(!
)"

#̂
+$

⨂
" !,#

"!,$

"%,# ⨂ #! = %", 0, %# → )#$ = %", 0, %#

(a) (b) (c)

#% = 0, %&, %# → )#$ = 0,−%&, %#⨂

⨂

"!,$

" %,$ " !,#

"%,# " %,$

FIG. 5. (a) The transformation between the plane-wave modes and the change of the two coordinate frames at the beam splitter. The modes
at the input ports are denoted by the annihilation operators â and b̂. The modes at the output ports are denoted by annihilation operators ĉ and
d̂. (b) Conversion of a plane-wave mode with a wave vector kA = (0, ky, kz) in the yz-plane from frame-A to frame-B after the reflection. The
reflection occurs in the yz-plane as shown in (a). (c) Conversion of a plane-wave mode with a wave vector kA = (kx, 0, kz) in the xz-plane from
frame-A to frame-B after the reflection.

frequency degrees of freedom as shown in Eq. (A12). However, this spectral entanglement only modifies the HOM interference
curve slightly [51] and it is not of much significance in our concerned problem. In experiments, spectral filters can be used
to ensure spectral indistinguishability of the two photons and to remove the frequency entanglement [58, 59]. For degenerate
photon pairs generated by a pump without OAM, we have ms = −mi = m and ηs(k) = ηi(k) = η(k) with normalization constraint∫

d3k
∣∣∣η(k)e±imϕk

∣∣∣2 = 1. In this case, the SAF ξ±(k, k′) reduces to

ξ±(k, k′) = Nη(k)η(k′)
[
eim(ϕk−ϕk′ ) ± e−im(ϕk−ϕk′ )

]
, (A13)

with N = 1/
√

2. We note that the function η(k) will be assumed to be independent on ϕk in the following [49].
The wave-packet function in the real space is given by

ξ̃±(r, r′, t) = N
[
η̃m(r, t)η̃−m(r′, t)eim(ϕ−ϕ′) ± η̃−m(r, t)η̃m(r′, t)e−im(ϕ−ϕ′)

]
(A14)

= N η̃m(r, t)η̃m(r′, t)
[
eim(ϕ−ϕ′) ± e−im(ϕ−ϕ′)

]
, (A15)

with

η̃±m(r, t) =
i±m

√
2π

∫ ∞

−∞

dkz

∫ ∞

0
ρkdρkη(kz, ρk)J±m(ρρk)ei(kzz−ωkt), (A16)

where ρk =
√

k2
x + k2

y . We have used the fact that Jm(x) = (−1)mJ−m(x) and η̃m(r, t) = η̃−m(r, t) in the last step. We note that the

function η̃m(r, t) is independent on ϕ. The normalization constraint in real space is given by
∫

d3r
∣∣∣η̃±m(r, t) exp (±imϕ)

∣∣∣2 = 1.

Appendix B: Quantum description of a beam splitter

In the one-dimensional (1D) case, the quantum description of a beam splitter is given by [47]

ĉk = Rkâk + Tkb̂k, (B1)

d̂k = Tkâk + Rkb̂k, (B2)

where Rk and Tk are the reflection and transmission coefficients, respectively. Usually, these two coefficients are approximated
as wave-vector-independent constants for a non-dispersive beam splitter. However, for the three-dimensional (3D) case, the
theoretical description of the beam splitter becomes much more complicated, because the incident angles for different modes
could be different. Thus, the reflection and transmission coefficients are usually dependent on k. On the other hand, the wave
vector k = (kx, ky, kz) of a plane-wave mode in one coordinate frame is converted to k̄ = (kx,−ky, kz) in the other frame after a
reflection in the two-coordinate-frame formalism as shown in Fig. 5 (b) and (c).
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The input-output relations for a beam splitter with 3D incident pulses are given by

ĉkB =
(
Rkâ k̄A

+ Tkb̂kB

)
, (B3)

d̂kA =
(
TkâkA + Rkb̂k̄B

)
. (B4)

Here, we see the helical phase factor exp(imϕk) = [(kx + iky)/ρk]m changes to exp(−imϕk) = [(kx − iky)/ρk]m in each reflection.
Thus, the OAM quantum number of a vortex pulse changes its sign m → −m after a reflection. In the paraxial ray limit, the
reflection and transmission coefficients for the 50 : 50 beam splitter can still be approximated as Tk = 1/

√
2 and Rk = i/

√
2. In

the following, we will use the inverse transformations

âkA =
1
√

2

(
d̂kA − iĉ k̄B

)
, (B5)

b̂kB =
1
√

2

(
ĉkB − id̂ k̄A

)
. (B6)

Appendix C: Hong-Ou-Mandel interference of twisted photon pairs

Now we consider the HOM interference for an arbitrary input two-photon pulse described by the state in Eq. (A3) (or its
equivalent expression (A9) in the real space). After the beam splitter, the output state is given by

|Ψout〉 =
1
2

∫
dk

∫
dk′ξ(k, k′)

[
id̂†kA

d̂†
k̄′A

+ iĉ†
k̄B

ĉ†k′B + d̂†kA
ĉ†k′B − d̂†

k̄′A
ĉ†

k̄B

]
|0〉 , (C1)

=
1
2

∫
dr

∫
dr′

[
iξ̃(r, r̄′, t)ψ̂†d(rA)ψ̂†d(r′A) + iξ̃(r̄, r′, t)ψ̂†c(rB)ψ̂†c(r′B) + ξ̃cd(r, r′, t)ψ̂†d(rA)ψ̂†c(r′B)

]
|0〉 , (C2)

where we have used the relation

d̂ k̄A
=

1√
(2π)3

∫
d3rψ̂(rA)e−i k̄A·rA =

1√
(2π)3

∫
d3rψ̂(rA)e−ikA·r̄A (C3)

with r̄ = (x,−y, z) and

ξ̃cd(r, r′, t) = ξ̃(r, r′, t) − ξ̃(r̄′, r̄, t). (C4)

The reversed sign of the y coordinate leads to the well-known result that an image will be reversed by a mirror. The spiral phase
in the real space also changes its sign, i.e., exp(imϕ)→ exp(−imϕ).

In HOM interference experiments, we usually measure the following quantities: the two-photon-event probability at each
output port

P(2)
cc =

1
2

∫
dr

∫
dr′ 〈Ψout| ψ̂

†
c(rB)ψ̂†c(r′B)ψ̂c(r′B)ψ̂c(rB) |Ψout〉 =

1
2

∫
dk

∫
dk′ 〈Ψout| ĉ

†

kB
ĉ†k′B ĉk′B ĉkB |Ψout〉 , (C5)

P(2)
dd =

1
2

∫
dr

∫
dr′ 〈Ψout| ψ̂

†

d(rA)ψ̂†d(r′A)ψ̂d(r′A)ψ̂d(rA) |Ψout〉 =
1
2

∫
dk

∫
dk′ 〈Ψout| d̂

†

kA
d̂†k′A d̂k′A d̂kA |Ψout〉 , (C6)

and the coincident probability of the two output ports

P(2)
cd =

∫
dr

∫
dr′ 〈Ψout| ψ̂

†

d(rA)ψ̂†c(r′B)ψ̂c(rB)′ψ̂d(rA) |Ψout〉 =

∫
dk

∫
dk′ 〈Ψout| d̂

†

kA
ĉ†k′B ĉk′B d̂kA |Ψout〉 . (C7)

For a photon pair described by Eq. (A3) as the input state of a 50 : 50 beam splitter, we have

P(2)
cc =

1
4

+
1
8

∫
dk

∫
dk′

[
ξ∗(k̄, k′)ξ( k̄′, k) + ξ∗( k̄′, k)ξ( k̄, k′)

]
, (C8)

P(2)
dd =

1
4

+
1
8

∫
dk

∫
dk′

[
ξ∗(k, k̄′)ξ(k′, k̄) + ξ∗(k′, k̄)ξ(k, k̄′)

]
, (C9)
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and

P(2)
cd =

1
2
−

1
4

∫
dk

∫
dk′

[
ξ∗(k, k′)ξ( k̄′, k̄) + ξ∗( k̄′, k̄)ξ(k, k′)

]
. (C10)

Next, we apply these results to different input twisted photon pairs.
(i) Photon pairs in a product state: We first consider a simple case, in which the input photon pair is in a product state with

SAF

ξ(k, k′) = Nξ(k)ξ(k′). (C11)

Here the normalization constraint is given by
∫

dk|ξ(k)|2 = 1 and N = 1. We note that two photons described by the SAF in
Eq. (C11) have been perfectly aligned at the beam splitter and their optical path difference has also been carefully matched.

The two-photon-event probability in each output port is given by

P(2)
cc =

1
4

[
1 +

∫
dkξ∗( k̄)ξ(k)

∫
dk′ξ∗(k′)ξ(k̄′)

]
, (C12)

P(2)
dd =

1
4

[
1 +

∫
dkξ∗( k̄)ξ(k)

∫
dk′ξ∗(k′)ξ(k̄′)

]
. (C13)

The coincidence probability is given by

P(2)
cd =

1
2
−

1
4

∫
dk

∫
dk′

[
ξ∗(k)ξ( k̄)ξ∗( k̄′)ξ(k′) + ξ∗( k̄)ξ(k)ξ∗(k′)ξ(k̄′)

]
. (C14)

If the SAF of the input pulse has the symmetry ξ( k̄) = ξ(k) (e.g., the fundamental Gaussian mode [65]), then we will obtain the
perfect normal HOM interference with P(2)

cd = 0 and P(2)
cc = P(2)

dd = 1/2. A HOM interference dip can be obtained by adding a
delay phase factor exp(−iωkτ) to one of the input port [51].

Now we consider a twisted photon pair in a product state with SAF

ξ(k, k′) = Nη(k)η(k′) exp[im(ϕk − ϕ
′
k)], (C15)

where the two photons carry an equal amount of OAM with the opposite sign. Using the fact that η(k) = η(kz, ρk) is independent
on ϕk, we have P(2)

cc = P(2)
dd = 1/2 and P(2)

cd = 0. If the two photons carry the same amount of OAM,

ξ(k, k′) = Nη(k)η(k′) exp[im(ϕk + ϕ′k)], (C16)

we have P(2)
cc = P(2)

dd = (1 + δm,0)/4 and P(2)
cd = (1 − δm,0)/2. This is similar to the HOM interference for two photons with

orthogonal polarizations (distinguishable photons) [51].
(ii) Entangled two photons with opposite OAM quantum number: We consider the HOM interference of symmetrically

and anti-symmetrically entangled twisted photon pairs described by the SAF in Eq. (A13)

ξ±(k, k′) = Nη(k)η(k′)
[
eim(ϕk−ϕ

′
k) ± e−im(ϕk−ϕ

′
k)
]
. (C17)

This type of entangled twisted photon pair has previously been denoted as |Ψ±m〉 = (|m,−m〉 ± | − m,m〉)/
√

2 for short [19]. Our
evaluations give the three probabilities P(2)

cc = P(2)
dd = 1/2 and P(2)

cd = 0. No coincidence events will be observed in experiments
if the two optical paths have been perfectly matched. A normal HOM dip will be obtained by varying the optical path in one of
the input ports.

(iii) Entangled two photons with the same OAM quantum number: We consider two entangled twisted photons with the
same OAM quantum number as the input. The corresponding SAF is given by

ξ±(k, k′) = Nη(k)η(k′)
[
eim(ϕk+ϕ′k) ± e−im(ϕk+ϕ′k)

]
, (C18)

with N = 1/
√

2. This type of entangled twisted photon pair has previously been denoted as |Φ±m〉 = (|m,m〉 ± | −m,−m〉)/
√

2 in
Ref. [19]. For the input state |Φ+

m〉, we have P(2)
cc = P(2)

dd = 1/2 and P(2)
cd = 0. Thus a normal HOM dip will be observed. For the

input state |Φ−m〉, we have P(2)
cc = P(2)

dd = 0 and P(2)
cd = 1. Thus a HOM peak will be observed [19]. We note that some special care

should be paid to the number of reflections in each optical channel.
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Appendix D: Quantum imaging based on the HOM interference

In this section, we show how quantum imaging with HOM interference works. In our quantum imaging method, the photon
in path-A is the imaging photon and the one in path-B is the reference photon. The target object reflects the imaging photon once
and imprints its texture information onto the phase factor exp[iΦ(ρ, ϕ)] of the imaging photon. The texture information can be
extracted via HOM interference as shown in the following.

It is more convenient to handle the quantum imaging process via our formalism in real space. The photon pair at the input
ports of the HOM interferometer is described by the state in Eq. (A9) and the output state is given by Eq. (C2). The phase factor
exp[iΦ(ρ, ϕ)] is contained in the wave-packet function ξ̃(r, r′, t) as shown in the following. In experiments, we can directly
measure the photon number density at each output

nc(r, t) = 〈Ψout| ψ̂
†
c(rB)ψ̂c(rB) |Ψout〉 , (D1)

nd(r, t) = 〈Ψout| ψ̂
†

d(rA)ψ̂d(rA) |Ψout〉 , (D2)

via a single-photon-detector array, a CCD camera, or other highly sensitive cameras. The correlation function

G(2)
cd (r, r′, t) = 〈Ψout| ψ̂

†

d(rA)ψ̂†c(r′B)ψ̂c(r′B)ψ̂d(rA) |Ψout〉 , (D3)

can also be measured via coincidence counting.
To simplify the coincidence process and enhance the coincidence signal, we can measure the following signals

〈Ĉc(r, t)〉 =

∫
dr′ 〈Ψout| ψ̂

†
c(rB)ψ̂†d(r′A)ψ̂d(r′A)ψ̂c(rB) |Ψout〉 , (D4)

〈Ĉd(r, t)〉 =

∫
dr′ 〈Ψout| ψ̂

†

d(rA)ψ̂†c(r′B)ψ̂c(r′B)ψ̂d(rA) |Ψout〉 , (D5)

by replacing the detector array at one of the output port with a bucket detector. From the output state in Eq. (C2), we have

〈Ĉc(r, t)〉 =
1
4

∫
dr′ξ̃∗cd(r′, r, t)ξ̃cd(r′, r, t), (D6)

〈Ĉd(r, t)〉 =
1
4

∫
dr′ξ̃∗cd(r, r′, t)ξ̃cd(r, r′, t). (D7)

In following, we focus more on 〈Ĉd(r, t)〉.
Our quantum imaging method is mainly based on the coincidence signal 〈Cd(r, t)〉. Now we define the corresponding signal-

to-noise ratio (SNR). We note that in practice we can never measure the ideal density at a single point. Instead, we measure the
accumulated signal at a finite small volume ∆V determined by the pixel area and measuring time. Thus, the measured signal for
the pixel labeled by X will be

〈Ĉd(X)〉 =

∫
∆VX

dr
∫

dr′ 〈Ψout| ψ̂
†

d(rA)ψ̂†c(r′B)ψ̂c(r′B)ψ̂d(rA) |Ψout〉 =
1
4

∫
∆VX

dr
∫

dr′ξ̃∗cd(r, r′)ξ̃cd(r, r′), (D8)

where the integral over r is limited in the small volume ∆VX determined by the pixel-X. The SNR for the pixel-X under N
independent measurements is defined as

SNRHOM(X) =

√
N〈Ĉd(X)〉√
〈∆Ĉ2

d(X)〉
=

√
N〈Ĉd(X)〉√

〈Ĉd(X)〉 − 〈Ĉd(X)〉2
. (D9)

where we have used the fact that 〈Ψout|
[
Ĉd(X)

]2
|Ψout〉 = 〈Ĉd(X)〉. Next, we apply our quantum imaging approach to specific

twisted photon pairs.

1. Example for quantum imaging with twisted photon pairs

In this section, we show quantum imaging with twisted photon pairs in a product state, which is described by the wave-packet
function

ξ̃(r, r′, t) = N η̃m(r, t)η̃m(r′, t)ei[m(ϕ−ϕ′)+Φ(ρ,ϕ)], (D10)
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with N = 1. As pointed out previously, the extra phase Φ(ρ, ϕ) is due to the texture of the object in channel A. In this case, we
have

nc(r, t) =
1
4
|η̃m(r, t)|2

{
4 +

[
(I2 − I1)eiΦ(ρ,−ϕ) + c.c.

]}
, (D11)

nd(r, t) =
1
4
|η̃m(r, t)|2

{
4 +

[
(I1 − I2)eiΦ(ρ,ϕ) + c.c.

]}
, (D12)

with

I1 =

∫
dr′

∣∣∣η̃m(r′, t)
∣∣∣2 e−iΦ(ρ′,ϕ′), (D13)

I2 =

∫
dr′

∣∣∣η̃m(r′, t)
∣∣∣2 e−iΦ(ρ′,−ϕ′). (D14)

Since η̃m(r, t) is independent on ϕ, we can verify that

I2 =

∫ ∞

−∞

dz′
∫ ∞

0
ρ′dρ′

∣∣∣η̃m(r′, t)
∣∣∣2 ∫ 0

−2π
dϕ′e−iΦ(ρ′,ϕ′) = I1. (D15)

Now, we see that the texture information of the target object cannot be directly extracted from photon number density measured
at each output port

nc(r′, t) =
∣∣∣η̃m(r′, t)

∣∣∣2 , nd(r, t) = |η̃m(r, t)|2 . (D16)

The texture information can be extracted via the coincidence signal

〈Ĉd(r, t)〉 =
1
4
|η̃m(r, t)|2

[
2 − I2eiΦ(ρ,ϕ) − I∗2e−iΦ(ρ,ϕ)

]
, (D17)

or

〈Ĉc(r, t)〉 =
1
4
|η̃m(r, t)|2

[
2 − I1eiΦ(ρ,−ϕ) − I∗1e−iΦ(ρ,−ϕ)

]
. (D18)

We note that our imaging system has been carefully calibrated such that if Φ(ρ, ϕ) = 0 then no coincidence signal will be
observed. A normal image and a reversed image will be obtained via Cd(r, t) and Cc(r, t), respectively. Usually, the magnitude
of the two integrals is smaller than one, |I1| = |I2| ≤ 1. To increase the contrast of the image, we can remove the background
radial distribution due to the twisted photons themselves by defining the following re-scaled signal, i.e.,

Sd(r, t) =
〈Ĉd(r, t)〉 − nd(r, t)/2

nd(r, t)/2
= −

1
2

[
I2eiΦ(ρ,ϕ) + I∗2e−iΦ(ρ,ϕ)

]
. (D19)

2. Numerical simulation

In the main text, we take a Bessel pulse as an example to show the coincidence images. The SAF of Bessel pulse with
Gaussian envelop can be approximated as [49]

η(k) =

(
2σ2

z

π

)1/4

exp[−σ2
z (kz − kz,c)2] ×

 2σ2
ρ

πk2
⊥,c

1/4

exp[−σ2
ρ(ρk − ρk,c)2]. (D20)

The first (second) Gaussian function with center value kz,c = kc cos θc (ρk,c = kc sin θc) describes the envelope of the pulse in
the propagating direction (transverse plane). In the real space, the pulse length in z-direction is characterized by σz and the size
in the transverse plane is characterized by σρ. Here, θc is the polar angle of a Bessel pulse and kc is determined by the center
frequency of the pulse ωc = c|kc|. From Eq. (A16), we have

η̃(r) ≈ im
√

kc sin θc

πσzσρ
Jm(ρkc sin θc) exp

[
−

(ct − z cos θc)2

4σ2
z cos θ2

c
+ i(kz,cz − ωct)

]
. (D21)
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In the main text, we numerically simulate the imaging with a single-photon avalanche diode (SPAD) image sensor consisting
of 50 × 50 pixels. We take the center wavelength as λc = 2π/kc = 500 nm, the size of pulse σz = 1000λc (corresponding to
pulse length in time 1.67 ps) and σρ = 1000λc. The pitch size of the SPAD is assumed to be 10 µm = 20λc. We only take the
diffraction-free Bessel pulse as an example for theoretical demonstration. To obtain a larger cross-section, we set a very small
polar angle θc = 0.001π. In practice, Laguerre-Gaussian or Bessel-Gaussian modes will be used. The cross-section of the pulse
increases when leaving the focal plane. A series of photographic lenses are needed to re-focus the photons on the SPAD array.
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