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Quantum control is a ubiquitous research field that has enabled physicists to delve into the
dynamics and features of quantum systems, delivering powerful applications for various atomic,
optical, mechanical, and solid-state systems. In recent years, traditional control techniques based
on optimization processes have been translated into efficient artificial intelligence algorithms. Here,
we introduce a computational method for optimal quantum control problems via physics-informed
neural networks (PINNs). We apply our methodology to open quantum systems by efficiently
solving the state-to-state transfer problem with high probabilities, short-time evolution, and using
low-energy consumption controls. Furthermore, we illustrate the flexibility of PINNs to solve the
same problem under changes in physical parameters and initial conditions, showing advantages in
comparison with standard control techniques.

Optimal Quantum Control (QC) is crucial to exploit all
the advantages of quantum systems, ranging from entan-
gled states preparation and quantum registers to quan-
tum sensing. Nowadays, QC can be achieved by means
of controllable dissipative dynamics [1, 2], measurement-
induced backaction [3–5], Lyapunov control [6, 7], optimal
pulse sequences [8], and differentiable programming [9, 10].
These QC techniques serve multiple purposes including
state preservation, state-to-state transfer [11], dynamical
decoupling in open systems [12–14] and trajectory track-
ing [15, 16]. Furthermore, we have witnessed powerful ap-
plications across multiple platforms, including atomic sys-
tems [17, 18], light-matter systems [19, 20], solid-state de-
vices [21, 22], trapped ions [23], among others. Dynamical
QC stems from a time-dependent Hamiltonian that steers
the dynamics [24], and it is subjected to several constraints
like laser power, inhomogeneous frequency broadening, and
relaxation processes, to name a few. Therefore, finding the
optimal sequence for QC is highly cumbersome and gener-
ally depends on the system.

Complex computational calculations are at the forefront
of numerical methods to tackle down simulation of quan-
tum systems. For instance, a parametrization of quantum
states in terms of neural networks has enabled the approx-
imation of many-body wavefunctions in closed quantum
systems [25–27], and it has also been extended to approach
the density operator in open dynamics (dissipative) [28–33].
Along these ideas, other models have focused on hybrid im-
plementations [34–36], probabilistic formulations based on
positive operator-valued measure [37, 38], or data-driven
model via time-averaged generators [39]. Overall, estimat-
ing the dynamics of open quantum systems is a challenging
problem. Here, machine learning provides versatile and
promising algorithms to expand our alternatives towards
completing this task [40–46]. However, combining time
evolution and QC with artificial intelligence, being solved
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FIG. 1. PINNs architecture for solving quantum control prob-
lems. Quantum evolution can be translated into a dynamical
system ẋ(t) = A(λ,u(t))x(t), where x(t) and u(t) are the state
and control vectors, respectively, and λ are the system param-
eters. The input data (red circle) is given by the discrete time
vector t, and the outputs of the neural network (NN) are Nx(t)
and Nu(t) (blue circle). By minimizing the loss function L the
NN discover Nx,u(t) for the parameterized solutions x(t) and
u(t).

within a single deep learning method still needs to be ex-
plored.

Neural Networks (NNs) are commonly trained with data
allowing them to learn the dynamics of quantum systems.
However, NNs that preserve the underlying physical laws
without preliminary data would have practical advantages.
Hence, physics-informed neural networks (PINNs) have
been introduced as a new artificial intelligence paradigm
that only requires the model itself [47, 48]. This is a gen-
eral physics-informed machine learning framework that has
been applied to solve high-dimensional partial differential
equations [49, 50], many-body quantum systems [51, 52]
and quantum fields [53], inverse problems using sparse and
noisy data [54], and to discover underlying physics hidden
in data structures [55]. Since PINNs are coded using phys-
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ical laws, they can be applied to any quantum evolution
where the model is well known [56–62].
In this letter, we introduce a novel PINN architecture to

find optimal control functions in open quantum systems.
This is a data-free inverse modeling deep learning approach
with a target dynamical behavior instead of data. Our ap-
proach suggests smooth control functions for driving quan-
tum states to a pre-selected target state.
Let us consider the following n-dimensional non-

autonomous dynamical system:

ẋ = A(λ,u(t))x(t), x(0) = x0, u(0) = u0, (1)

where x(t) = (x1, ..., xn)
T ∈ Rn, u(t) = (u1, ..., um)T ∈

Rm, and λ = (λ1, ..., λs)
T ∈ Rs are the state, control,

and parameter vectors (with n,m, s ≥ 1 and m ≤ n2),
respectively. Here, A(λ,u(t)) is a real n × n dynamical
matrix that depends on u(t) (control) and λ (parameters).
Given λ and x(t) satisfying Eq. (1), we can apply ma-

chine learning to discover an optimal control vector u(t)
such that the system evolves from x(0) to some desired
target state xd. Techniques based on optimal control [63],
Lyapunov control theory [6] or linear control theory are
based on optimization rules to find a suitable control vec-
tor u(t). Therefore, the main idea is to construct a PINN
that minimizes a loss function to achieve optimal quantum
control.

(a) (b)

FIG. 2. (a) Open two-level system controlled by a time-
dependent modulation ξ(t). Losses are included through ab-
sorption (γabs) and emission (γem) processes. (b) Three-level
Λ system controlled by two driving fields Ωp(t) and Ωs(t). We
include pure dephasing rates γi (i = 1, 2, 3) acting on each state
|i⟩. One- (∆1,2) and two-photon (δ) detunings are considered in
our simulations.

A feed forward NN is a powerful universal approximator
for any vector function F : Rp 7→ Rq (r, q ≥ 1) (Uni-
versal Approximation Theorem) [64]. Let us consider the
NN architecture illustrated in Fig. 1 as a new paradigm to
solve quantum control problems. We use an equally dis-
tributed time array t = (t1, ..., tM ) as the input to the NN,
with M representing the dimension of the sample points.
PINNs do not require a structured mesh; thus, ti can be
arbitrarily discretized. The NN consists of multiple hid-
den layers with activation function sin(·) for the hidden
neurons. This choice of activation has been shown to im-
prove PINNs’ performance in solving nonlinear dynami-

cal systems [69] and high-dimensional partial differential
equations [50]. The outputs of the NN are the solutions
Nx(t) ∈ Rn and Nu(t) ∈ Rm. We construct a neural state
and control vectors that identically satisfy the initial con-
ditions by using a hard constraint x(t) = x(0) + f(t)Nx(t)
and u(t) = u(0) + f(t)Nu(t), where f(t) = 1 − e−t is a
function satisfying f(0) = 0 [69]. This hard constraint
approach avoids numerical errors in the initial conditions.
The network parameters, weights and biases, are randomly
initialized, and then, they are optimized by minimizing a
physics-informed loss function defined by

L = Lmodel + Lcontrol + Lconst + Lreg. (2)

The component Lmodel describes the system dynamics:

Lmodel =

M∑
i=1

||ẋ(ti)−A(λ,u(ti))x(ti)||2, (3)

with ||·|| representing a Euclidean distance. The time
derivatives in the neural solutions are computed using
the automatic differentiation method provided by PyTorch
package [66]. By minimizing the above functional, the state
vector will approximately satisfy the system dynamics and,
thus, the underlying physics. The second term on the right-
hand side of Eq. (2) represents the control, that reads

Lcontrol = η

M∑
i=1

||x(ti)− xd||2, 0 ≤ η ≤ 1, (4)

where the factor η regulates the relevance of the con-
trol condition compared to the leading model component
Lmodel. Note that xd could be a constant (regulation) or
time-dependent (trajectory tracking) vector depending on
the control scheme. The term Lconst could take into account
additional physical constraints for the state/control vector,
respectively, such as probability conservation or holonomic
constraints of the form H(x,u, t) = 0. Finally, Lreg is a
standard regularization loss term that encourages the net-
work parameters to take relatively small values avoiding
overfitting. We remark that imposing initial conditions into
the loss function (soft constraint) is also possible, as illus-
trated in Ref. [47]. The comparison between soft and hard
constraints are discussed in Ref. [67]. The effect of over-
fitting will be the prediction of a too complex u(t), which
might be practically unfeasible for designing a real con-
trol. We introduce Lreg as a l2-norm of the network weights
Lreg = χ

∑
i w

2
i , where χ is the regularization parameter.

The minimization of the loss function given in Eq. (2)
yields NN predictions that obey the underlying physics
and suggest optimal control functions. For the training
(minimization of Eq. (2)), we employ Adam optimizer [77].
Moreover, the points ti are randomly perturbed during
training iteration— this method has been shown to im-
prove the training and the neural predictions [49, 69]. To
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highlight the method and keep the presentation elegant, we
focused on low-dimensional Hilbert space examples. In the
Supplemental Material, we demonstrate that the proposed
PINN can successfully deal with larger systems.
We consider a two-level system (TLS) as a proof-of-

principle example to illustrate the use of PINNs for QC. We
address the problem of generating Gibbs (mixed) states of
the form ρGibbs = Z−1

∑
j e

−βEj |j⟩⟨j| with Z = Tr(e−βH)

(partition function) and β = (kBT )
−1 (inverse tempera-

ture). The preparation of mixed states is relevant for sim-
ulating high-temperature superconductivity in variational
quantum circuits [78]. In addition, QC of two-level systems
is also relevant in the context of pulse reverse engineer-
ing [79], feedback control [3], optimal control theory [63],
and controllable quantum dissipative dynamics [80]. Quan-
tum transitions can be written in terms of the operators
σij = |i⟩⟨j| (i, j = e, g) being |e⟩ (|g⟩) the excited (ground)
state. Let us consider the following Hamiltonian with a
phase damping control

H(t) = ωzσz + ωxσx + ξ(t)σee, (5)

with ωx,z representing system parameters and ξ(t) describ-
ing the unknown control field. Here, σz = σee − σgg and
σx = σeg + σge. Here, ξ(t) is the control used to gener-
ate Gibbs states. To train our PINN we use the Marko-
vian master equation ρ̇ = −i[H(t), ρ] +

∑
i=1,2 γi(LiρL

†
i −

(1/2){L†
iLi, ρ}), with [·, ·] ({·, ·}) representing the commu-

tator (anticommutator). The amplitude damping chan-
nel is described by absorption (L1 = σeg) and emission
(L2 = σge) processes with rates γ1 = γabs and γ2 = γem,
respectively, see Fig. 2-(a). In what follows, we use ωz = 2,
ωx = 1, γabs = 0.1, γem = 0.3, and ξ(0) = 0. For
ξ(t) = 0, we get the steady-state (ss) ρss = 0.2775|e⟩⟨e| +
0.7225|g⟩⟨g| + [(−0.1106 + i0.0083)|g⟩⟨e| + c.c]. Thus, we
use ξ(t) to drive the system to another ss, say, ρd =
(1/2)(|e⟩⟨e|+|g⟩⟨g|). Hence, we introduce the real state vec-
tor x(t) = (x1, x2, x3, x4)

T = (ρgg, ρee,Re(ρeg), Im(ρeg))
T ,

where ρij = ⟨i|ρ(t)|j⟩ are the elements of the density ma-
trix. The dynamics can be written as ẋ = A(λ,u(t))x(t),
with

A(λ,u(t)) =


−γabs γem 0 −2ωx

γabs −γem 0 2ωx

0 0 −Γ −2ωz − ξ(t)
ωx −ωx 2ωz + ξ(t) −Γ

 ,

(6)
where λ = (wx, wz, γabs, γem) is the set of parameters,
u(t) = ξ(t) is the control vector that needs to be discovered,
and Γ = (1/2)(γ1 + γ2) is the effective dephasing rate. We
remark that all results concerning the time evolution are
simulated from a traditional ODE solver using the control
obtained from the PINN. In Fig. 3, we plot the dynamics
using the PINN’s prediction for the control ξ(t) (inset). The
PINN discovers an optimal Gibbs state preservation with fi-
delity F (ρ(t), ρd) = [Tr([ρ1/2(t)ρdρ

1/2(t)]1/2)]2 = 0.99 (for
t ≥ 20), and the steady-state approaches to ρd within an

FIG. 3. Evolution of populations ρgg(t), ρee(t) and coherence
C(t) using the control function ξ(t) predicted by the PINN.
The architecture of the NN consists of 4 hidden layers of 200
neurons, it is trained for 4 × 104 epochs with a learning rate
10−4, χ = 10−3, and η = 1.

error of 1% for each component of the density matrix [67].
We remark that our result outperforms the analytically
optimized solution that finds ρssgg = 0.549, ρssee = 0.4510,
Re(ρeg) = 0, and Im(ρeg) = 0.049, for a constant control
ξss = −4 (see [67] for further details). The latter explains
the asymptotic behavior for ξ(t) predicted by the PINN.
Moreover, we note in Fig. 3 that the quantum coherence
C(t) = 2|ρeg(t)| is highly activated during the transient dy-
namics in order to generate an equally distributed mixed
state, but it asymptotically reaches C ≈ 0.1014.

We now focus on a Λ-configuration with two control fields
(see Fig. 2-(b)), a platform for studying electromagnetically
induced transparency [81, 82], coherent population trap-
ping [83, 84], and adiabatic population transfer [85]. The
latter has been dubbed Stimulated Raman Adiabatic Pas-
sage (STIRAP) [86]. Let’s begin with the system Hamilto-
nianH =

∑
i Eiσii+Hc(t), where Ei stands for the eigenen-

ergies, σij = |i⟩ ⟨j|, and Hc(t) is the control Hamiltonian.
In a multi-rotating frame and after the rotating wave ap-
proximation, the dynamics of the three-level system is gov-
erned by (ℏ = 1):

H(t) = δσ22 +∆1σ33 +

(
Ωp(t)

2
σ31 +

Ωs(t)

2
σ32 + h.c.

)
,

(7)
where ∆1 = E3 −E1 − ωp and ∆2 = E3 −E2 − ωs are the
one-photon detunings that originate from off-resonant driv-
ing fields with frequencies ωp and ωs, while δ = ∆1 − ∆2

is the two-photon detuning. Here, Ωp(t) and Ωs(t) are the
control fields to be found. A similar Hamiltonian can be
obtained from the interaction of a Nitrogen-Vacancy center
with a Carbon-13 nuclear spin [87, 88]. We aim to find the
optimal control pulses (Ωp(t) and Ωs(t)) to transfer popu-
lation from state |1⟩ to state |2⟩ via the lossy intermediary
state |3⟩. Our goal is to train a PINN that completes the
task reaching high fidelity, with (i) minimizing the popu-
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lation in the state |3⟩, and (ii) minimizing the pulse area.
We train our model using the Markovian master equation
(ℏ = 1)

ρ̇ = −i[H(t), ρ] +

3∑
i=1

γi(2σiiρσii − σiiρ− ρσii), (8)

where γi > 0 are dephasing rates. We set γ3 = 0.14
and γ1 = γ2 = 10−3 to account for larger dissi-
pation in the excited state. We use the real vector z =
(ρ11,ρ22,ρ33,Re[ρ12],Im[ρ12],Re[ρ13],Im[ρ13],Re[ρ23],Im[ρ23])

T

to write the dynamics (details are given in [67]).

In Fig. 4-(a), we show the population evolution and the
predicted NN solutions for the control fields Ωs,p(t). Note
that our PINN successfully delivers a population trans-
fer with smooth pulses. Furthermore, it attempts to im-
plement a counterintuitive sequence, turning on the Stoke
pulse Ωs (red-solid) at the same time that the pump field
Ωp (blue-dashed)— for a genuine counterintuitive sequence
like STIRAP, Stokes pulse precedes the pump pulse. This
is remarkable, considering that the PINN does not know
QC theory or the relevance of following a dark state evolu-
tion. It is worthwhile noticing that the Stoke pulse shown
in the inset of Fig. 4-(a) triggers the |2⟩ ↔ |3⟩ transition,
which in STIRAP serves the purpose of preparing a dark
state [88], since initially, all the population is in state |1⟩.
For completeness, we consider a more challenging ini-

tial state given by ρ(0) = σ11/2 + σ22/2 + ϵ(σ12 + σ21)/2.
For ϵ = 0, we end up with a fully mixed state (without
quantum coherence), while ϵ = 1 provides a balanced co-
herent state. Our PINN can handle this new task without
changing the network’s architecture, showing that PINNs
provide a general and adaptive framework for inverse de-
sign (standard methods are not designed for this task). In
Figs. 4-(b) and -(c), we show the population transfer and
the corresponding pulse sequences for ϵ = 1 and ϵ = 0.7,
respectively. Note that the PINN updates the pulses to
deliver good polarizations.

For a thorough benchmarking, we consider other con-
trol methods besides STIRAP [85, 86], such as Stimulated
Raman Exact Passage (STIREP) [89], Inverse Engineer-
ing [90, 91] and Modified Superadiabatic Transitionless
Driving (MOD-SATD) [21, 92]. For detailed calculations
of these pulses, see [67]. In Table II we show a comparison.
One can observe that PINN itself speeds up the population
transfer with a high fidelity and using a small amount of
energy. The transfer time tf is defined as the time required
to reach the highest probability in the target state (more
details in Ref. [67]). The predicted control functions have
the smallest area A compared to the other methods. We
remark that the regularization Lreg penalizes the fields for
being too large and provides smooth functions. Thus, we
can control the amplitudes of the fields and the pulse area
to achieve a less power-consuming transfer. Another im-
portant advantage of our protocol is the robustness against
changes over initial training parameters. It is known that

(a)

(b) (c)

FIG. 4. (a) Population dynamics for the Λ-system using Ωs,p(t)
predicted by the PINN. (b) The PINN allows us to polarize the
system starting from a coherent (ϵ = 1) and quasi-thermal state
(ϵ = 0.7). The architecture of the NN includes 5 hidden layers
of 150 neurons and it is optimized over 2× 104 training epochs
with learning rate 8× 10−3, η = 0.2 and χ = 2.8× 10−3 [67].

STIRAP deteriorates when increasing δ [93, 94]. Further-
more, the optimization for the other sequences with δ ̸= 0
is non trivial, and there is not much literature about it— to
our best knowledge. To compare the robustness of the ear-
lier discovered pulse sequences, we also report in Table II
the population transfer in the presence of two-photon de-
tuning δ/2π = 0.2. We stress that no training or further
optimizations have been made to account for the new δ.
Therefore, based on Table II, we conclude that: i) PINNs
can reach high fidelities in a short time under low energy
consumption, and ii) PINNs are very robust when initial
training parameters are changed, delivering better results
in comparison with standard methods. In [67], we show
that PINNs can be easily trained to counteract the adver-
sary effect of δ.

Finally, we extend our calculations to a four-level system
and show that our PINN performs well against cross-talk to
the newly added state, and also we check that our protocol
deal with larger systems [67].

In this letter, we introduced a physics-informed neural
network to find control functions in open quantum systems.
We demonstrated a data-free deep learning approach that
jointly solves the open dynamics of quantum systems and
the inverse design of control functions. First, we applied
this formalism to prepare a Gibbs state in a two-level sys-
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TABLE I. The Table shows the population p2 = Tr[ρσ22], pulse

area A =
∫ tf
0

dt
√

|Ωp(t)|2 + |Ωs(t)|2 and transfer time tf (in
arbitrary units). In parenthesis, we report the values with
∆1/2π = 0.2 and δ/2π = 0.2, the one- and two-photon de-
tuning, respectively.

PINN STIRAP STIREP Inv. Eng. MOD-SATD

p2 0.97(0.93) 0.98(0.88) 0.98(0.91) 0.97(0.79) 0.98(0.89)

A 7.3 128.6 53.3 19.8 50.0

tf 2.0 35 9.4 3.0 13

tem. Second, we applied it to state-to-state transfer in a
three-level system. We found that the PINN provides a
flexible method that adapts to different parameters, ini-
tial states, noise channels, and power consumption require-
ments. We hope that PINNs will be very attractive for
problems such as adiabatic quantum computing, quantum
gates, state preservation, manipulation in high-dimensional
Hilbert spaces, initialization of entangled states, and time-
dependent induced behavior in many-body systems.
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SUPPLEMENTAL MATERIAL FOR
“PHYSICS-INFORMED NEURAL NETWORKS

FOR QUANTUM CONTROL”

BACKGROUND OF PHYSICS-INFORMED
NEURAL NETWORKS

Physical laws are usually given in the form of differen-
tial equations. Neural Networks (NNs), on the other hand,
provide closed-form solutions allowing the computation of
analytical derivatives practically by using a technique called
automatic differentiation [68]. Having the NN’s predictions
and the derivatives in an analytical form, a physical law
can directly be encoded in the loss function, that is, when
the loss function converges to zero, the differential equa-
tion is approximately satisfied. These machine learning
models are usually called physics-based or physics-informed
NN (PINNs). For example, driven dynamical systems are
described by ordinary differential equations of the general
form:

D (t,x, ẋ, f(t)) = 0, (9)

where t is the independent time variable, and x(t) is a
vector that denotes the dependent variables subjected to
certain initial conditions x(0) = x0. In Eq. (9), D is an
arbitrary function of t, x(t), the first time derivative ẋ, and
of the forcing time-dependent function f(t). Similarly to
the systems investigated in this study, Eq. (9) describes a
non-autonomous system.
As shown in Fig. 1 of the main manuscript, we considered

that the solutions x are parameterized by a NN where t is
the input to the network, and each output corresponds to
a different variable of x. Hence, solving the differential
equations of Eq. (9) is reduced to an optimization problem
of the form:

argmin
NN parameters

(
M∑
i=0

(
D (ti,xi, ẋi, f(ti))

)2)
, (10)

where xi = x(ti), and ẋi is analytically computed using
automatic differentiation. The summation in Eq. (10)
is over all the time points M . It defines a loss function
which minimization yields NN parameters (weights and bi-
ases) that construct a neural solution x that approximately
solves the differential equation (9). The initial conditions
can be identically satisfied through a hard-constraint or ap-
proximately satisfied using a soft-constraint. In the main
manuscript (in the text and in Fig. 1), it is explained
how the initial conditions are identically satisfied through
a specific parametrization. Later in Supplemental Mate-
rial, we explain the soft-constraint approach and compare
both in terms of the NN’s performance. Subsequently, dur-
ing the optimization (training) phase the NN is encouraged
to make predictions that satisfy the underlying differential
equations; thus, the predictions are approximate solutions
to the physical problem. Although data are not required in

this process, when they are available can be considered in
an extra term in the loss function— usually in the form of a
mean square error [47]. An important advantage of PINNs
over conventional numerical methods is that any known in-
formation (such as symmetries, part of the solution, conser-
vation laws, etc) can potentially be embedded in the loss
function as a soft-constraint, improving the training and
the accuracy of NN’s solutions [69].

It has been shown that NNs can learn very compact
and rich representations, making PINNs a powerful tool
for learning complex solutions, like high-dimensional many-
body wavefunctions [25–27, 70]. Moreover, PINNs scale
well in high dimensions, suffering less than conventional nu-
merical methods from the curse of dimensionality [49, 50].
In the study, we introduce a novel physics-based architec-
ture in the lines of PINNs. Our model can discover not only
the solutions x of Eq. (9) but also the forcing function when
a target final state is given. This target state plays the role
of data and is satisfied through an extra loss function (Eq.
(4) in the main manuscript). Additional constraints, like
minimizing the amplitude of the external force (the case of
this work that is discussed in the main manuscript), can be
introduced as extra terms in the loss function.

CONTROL AND DYNAMICAL ANALYSIS IN A
TWO-LEVEL SYSTEM

For the two-level system, we use the following loss func-
tion

L = ||ẋ−A(λ,u(t))x||2 + ||x− xd||2 + Lreg, (11)

where xd = (1/2, 1/2, 0, 0)T is the desired target state vec-
tor which correspond to ρd. The first, second, and third
terms on the right-hand side of the above equation im-
poses the Markovian master equation, the state preser-
vation problem (ρ(t) → ρd), and the constraint for off-
diagonal elements (ρeg → 0), respectively. From the equa-
tion of motion ẋ = Ax given in the section Two-level system
of the main text, we found:

ẋ1 = γe − 2Γx1 − 2ωxx4, (12)

ẋ3 = −Γx3 − (2ωz + ξ(t))x4, (13)

ẋ4 = −ωx + 2ωxx1 + (2ωz + ξ(t))x3 − Γx4, (14)

where we have used x1 + x2 = 1 (Tr(ρ) = 1) and Γ =
(γabs+γem)/2. First, we can analyze the steady state which
implies that solutions satisfy ẋi = 0 (i = 1, 2, 3). In what
follow, we demonstrate that the steady-state solution for
the density matrix can be analytically solved in terms of
the ξss = limt→∞ ξ(t). Then, by numerically computing
minξss(1− F (ρ(ξ), σ)) (F = 1 for a good control problem)
we can compare the theoretical and neural network pre-
dictions for the steady-state. From numerical calculations
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(a) (b) (c)

FIG. 5. Comparison between soft (λ = 1) and hard constraints used for initial conditions in terms of: (a) control function ξ(t), (b)
dynamics, and (c) quantum fidelity. We used the same set of parameters presented in the main text for the simulations.

using the PINN we found that ξ(t) converges to a stable
value, then we can asseverate that the steady state for ξ(t)
exist. Let us define xss

i and ξss as the steady-state solutions,
from equations (12)-(14), we obtain:

 2Γ 0 2ωx

0 Γ 2ωz + ξss

2ωx 2ωz + ξss −Γ


 xss

1

xss
3

xss
4

 =

 γe
0

ωx

 . (15)

By solving the above linear system, we get the following
analytical solutions for the steady-states in terms of ξss:

xss
1 =

γem
γem + γabs

+
4w2

x(γabs − γem)

(γabs + γem∆(ξss))
, (16)

xss
3 =

4wx(γabs + γem)(2wz + ξss)

(γabs − γem)∆(ξss)
, (17)

xss
4 = −2wx(γabs − γem)

∆(ξss)
, (18)

∆(ξss) = 4Γ2 + 8w2
x + 16w2

z + 16wzξ
ss + 4(ξss)2. (19)

For the particular case wx = 1, wz = 2, γabs = 0.1, and
γem = 0.3 it follow that

xss
1 =

3

4
− 25

2∆(ξss)
, (20)

xss
3 = −25(ξss + 4)

∆(ξss)
, (21)

xss
4 = − 5

2∆(ξss)
, (22)

∆(ξss) = 451 + 200ξss + 25(ξss)2. (23)

Therefore, since the target state is defined as ρd =
(1/2)(|e⟩⟨e|+ |g⟩⟨g|), or equivalently xd = (1/2, 1/2, 0, 0)T ,
we note that in order to obtain xss

3 = 0 it is necessary
to have ξss = −4, as is shown in the inset of Figure 4
in the main text. In order to corroborate this previ-
ous observations rigorously, we impose that the steady
state must minimize the function f(ξ) = 1 − F (ρ(ξ), σ),

where σ = (1/2)(|e⟩⟨e| + |g⟩⟨g|) is the target state,
F (ρ(t), σ) = [Tr([ρ1/2(t)σρ1/2(t)]1/2)]2 is the quantum fi-
delity, and ρ(ξss) is the steady state density matrix for ξss,
and is given by

ρ(ξss) =

(
xss
1 xss

3 + ixss
4

xss
3 − ixss

4 xss
2

)
, (24)

where xss
2 = 1−xss

1 . By employing a nonlinear optimization
package of MATLAB we minimize f(ξ) = 1 − F (ρ(ξ), σ)
over all possible values of ξss, and we obtain

ξss = −4, and F (ρ(−4), σ) = 0.9988. (25)

By setting the value ξss = −4, we obtain the best perfor-
mance for the steady state solution in terms of the quantum
fidelity (F ≈ 1), which implies that xss

1 = 0.549, xss
3 = 0,

and xss
4 = 0.049.

INITIAL CONDITIONS THROUGH HARD AND
SOFT CONSTRAINTS

In this section we compare two different approaches to in-
corporate initial conditions in our neural network architec-
ture. In general terms, we have two possibilities to impose
initial conditions, namely, i) use the parametric solution
x(t) = x(0) + f(t)Nx(t) and u(t) = u(0) + f(t)Nu(t) with
f(0) = 0 (hard constraint) or ii) impose initial conditions
into the loss function (soft constraint). To implement the
soft constraint (without using the parametrization), we in-
troduce the following loss function

Lsoft = Lmodel + Lcontrol + Lconst + Lreg + Lic = L+ λLic,
(26)

where λ controls the soft constraint contribution, L =
Lmodel + Lcontrol + Lconst + Lreg is the same loss function
presented in the main text, where we only added the term
Lic to take into account the initial conditions in the loss
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function. In the soft constraint approach, the term Lic is
defined as:

Lic =
[
||x(t1)− x(0)||2 + ||u(t1)− u(0)||2

]
, (27)

where x(t) and u(t) are the vector and control functions,
respectively, and t1 is the initial time. To make a fur-
ther comparison, we now solve the two-level system using
these two different approaches (hard and soft). In Fig. 5
we plot a comparison between the soft (for λ = 1) and hard
constraints for the neural network solution of the two-level
system presented in the main text. In Fig. 5(a), we observe
that both control functions ξ(t) are very similar leading a
temporal behavior shown in Fig. 5(b). We note that both
methods work equally well in terms of quantum fidelity,
see Fig. 5(c). However, by changing the parameter λ we
observe that the convergence of the soft loss function de-
creases when λ increases, as shown in Fig. 6.

ENERGY EFFICIENCY OF THE CONTROL
SCHEME

Let us consider a general Markovian open quantum sys-
tem described by the master equation (ℏ = 1)

ρ̇ = −i[H0 +Hc(t), ρ] + L(ρ), (28)

where H0 and Hc(t) are the bare and control Hamiltoni-
ans, respectively. Here, L(ρ) describes the loss term in
the Lindblad master equation. Then, the average energy
of the system can be defined as ⟨E⟩ = Tr(H(t)ρ), with
H(t) = H0 +Hc(t). The average power can be written as

dU

dt
= Tr(Ḣc(t)ρ(t)) + Tr(H(t)ρ̇)

= Ẇ (t) + Q̇. (29)

The term Ẇ = Tr(Ḣc(t)ρ(t)) is the power done by the
system and Q̇ = Tr(H(t)ρ̇) is the rate of heat induced by
the reservoir of the two-level system. Thus, by direct in-
tegration we obtain the expression for the work W (t) and
heat Q(t):

W (t) =

∫ t

0

Tr(Ḣc(t)ρ(t)) dτ, (30)

Q(t) =

∫ t

0

Tr(H(t)ρ̇) dτ. (31)

The time-dependent Hamiltonian competes with the
heat flow induced by the environment. Therefore, we
define η = |W (t)/Q(t)| as the fraction of work done over
the system compared to the internal heat that enters the
system.

100 101 102 103 104

0.03

0.1

1

10

100

FIG. 6. Comparison between soft and hard constraints in terms
of the convergence of the loss function.

For the particular case of the two-level system presented
in the main text, the work is given by

W (t) =

∫ t

0

ξ̇(τ)ρee(τ) dτ, (32)

where ξ(t) is the control field. In Figure 7(a) we plot
the ratio the quantities Q(t) and W (t) for the two-level
system. Also, in Figure 7(b) we show the temporal
behavior of η(t) = |W (t)/Q(t)| for the same parameters
used in Figure. 3 of the main text. We note that we must
apply a large quantity of work to overcome the effect of
the internal heat. However, as time increases, the ratio η
converges to 1, showing that the applied work compensates
for undesired heat effects. Consequently, the system
reaches a stable and free-losses state, which is required to
preserve the state over time.

Now, we shall elaborate on a measure to quantify the ef-
ficiency of the control protocol in terms of energy consider-
ations. By analyzing Figure 7(b), we note that an efficient
quantum control solution can be recognized as the one that
minimizes the colored area for the curve η − 1 for η > 1.
In other words, if we control a quantum system without
inverting a large quantity of energy, then Wapp ≈ Q, and
therefore η > 1 only in a short time domain. Let us define
the integral, I1 =

∫
η>1

(η(τ) − 1) dτ as a measure of the
region where η > 1. In the best scenario, I1 = 0, implying
that the energy efficiency will be equal to one. In addi-
tion, the total area of the curve η will be represented by
I2 =

∫
η(τ) dτ . Based on these observations, we define the

energy efficiency over the whole process as Eff = 1− I1/I2,
or equivalently
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(a) (b) (c)

FIG. 7. (a) Heat and work as a function of time for the two-level system. (b) Parameter η = |Q(t)/W (t)| as a function of time. (c)
Efficiency parameter defined in Eq. (33) for parametrized initial states |Ψ(0)⟩ = p|g⟩⟨g|+ (1− p)|e⟩⟨e|, where 0 ≤ p ≤ 1.

Eff = 1−

∫
η>1

(η(τ)− 1) dτ∫
η(τ) dτ

, 0 ≤ Eff ≤ 1. (33)

Since of I1 < I2 (by construction) and I1 = 0 is
the minimum value, it follow that 0 ≤ Ef ≤ 1. Using
this definition we have that Eff = 0 (Eff = 1) is the
worst (best) scenario. For the two-level system, we ob-
tain that Ef = 0.5249. Now, if we consider the initial state
parametrization ρ(0) = p|g⟩⟨g|+(1−p)|e⟩⟨e|, we can calcu-
late the energy efficiency in terms of the mixing parameter
0 ≤ p ≤ 1. In Figure 7(c), we plot the efficiency of the
PINN for p = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Note that the efficiency is not reported for p = 0.5 since in
such a case, the initial state is equal to the target state.

CONTROL AND DYNAMICAL ANALYSIS IN A
THREE-LEVEL SYSTEM

As it was stated in the main text, our PINN only
handles real-valued functions. Therefore, we rewrite
the master equation using the state vector z⃗ =
(ρ11,ρ22,ρ33,Re[ρ12],Im[ρ12],Re[ρ13],Im[ρ13],Re[ρ23],Im[ρ23])

T .
Hence, the dynamical equations reads,

0 = ż1 +Ωp(t)z7,

0 = ż2 +Ωs(t)z9,

0 = ż3 − Ωp(t)z7 − Ωs(t)z9,

0 = ż4 + δz5 + (γ1 + γ2)z4 +
Ωp(t)

2
z9 −

Ωs(t)

2
z7,

0 = ż5 − δz4 + (γ1 + γ2)z5 +
Ωp(t)

2
z8 −

Ωs(t)

2
z6,

0 = ż6 +∆1z7 + (γ1 + γ3)z6 +
Ωs(t)

2
z5,

0 = ż7 −∆1z6 + (γ1 + γ3)z7 +
Ωp(t)

2
z3 −

Ωp(t)

2
z1

− Ωs(t)

2
z4,

0 = ż8 − δz9 +∆1z9 + (γ2 + γ3)z8 −
Ωp(t)

2
z5,

0 = ż9 + δz8 −∆1z8 + (γ2 + γ3)z9 −
Ωp(t)

2
z4 −

Ωs(t)

2
z2

+
Ωs(t)

2
z3. (34)

We can define the loss function that accounts for the
model as Lmodel =

∑9
i=1 ∥Li∥2, where Li are given by the

right-hand side in Eq. (34). The control loss function comes
from the target state, such that

Lcontrol = η

M∑
i=1

∥z2(ti)− 1∥2. (35)

It is well-known that the master equation in the Lindblad
form ensures that the density matrix will be Hermitian,
positive, semi-definite, and Tr[ρ] = 1. However, we found
that enforcing the last constraint helps the PINN to find
the best solution. Therefore, we add the following term to
the loss function

Lconst = ηc

M∑
i=1

(∥z1(ti)∥2 + ∥z3(ti)∥2), (36)
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which together with Lcontrol enforces Tr[ρ] = 1. Finally, we
added a l2-norm regularization Lreg = χ

∑
i Ω

2
i that penal-

izes the control fields being too large and delivers smooth
functions. Henceforth, the PINN tries to minimize the over-
all loss function:

L = Lmodel + Lcontrol + Lconst + Lreg, (37)

with a learning rate that amounts to 8 × 10−3. The
weights in Lcontrol, Lconst and Lreg (η = 0.2, ηc = 0.1 and
χ = 2.8× 10−3, respectively) regulate the relevance of the
control, constraint, and smoothness conditions comparing
to the leading loss component Lmodel. These hyperparame-
ters were adjusted manually. In Figure 8 we show the Loss
function of the training process corresponding to Figure 4-
(a) in the main text, where we also show the convergence
of Lmodel, Lcontrol and Lconst.

We now focus on the transfer time. We numerically ob-
serve that the PINN reduces the time for having a success-
ful population transfer as compared to the other sequences,
see Table I in the main text. This particular feature of the
PINN naturally shows up when enforcing the control and
constraining loss functions upon each time point (ti). In
other words, the PINN itself minimizes the transfer time.
To realize this, we compute the PINN with only the con-
trol and constraint loss functions enforced by the last thirty
points. We found that the population transfer slows down,
and the probability slightly decreases. Nevertheless, the
PINN can still handle this scenario if we randomly sample
the time grid for each epoch and then pick thirty points (or
even ten) to enforce the control and constrain loss func-
tions. We remark that this is only possible because PINNs
do not require a structured mesh; thus, ti can be arbitrarily
discretized.

PULSE SEQUENCES FOR CONTROLLING A
Λ-SYSTEM.

In this section, we detail some control protocols that ex-
ploit adiabaticity, shortcuts to adiabaticity, or inverse en-
gineering. We aim to efficiently transfer population from
an initially polarized state (|1⟩) to a target state (|2⟩) via
an intermediary state (|3⟩). To achieve this state-to-state
transfer, two radiation fields are used to induce transi-
tions |1⟩ ↔ |3⟩ and |2⟩ ↔ |3⟩, as shown in Fig. 2(b). In
what follows, we provide a detailed derivation of each of
these methods— some of them already addressed by us
in Ref. [87] and included here to make the present pa-
per self-contained. We remark that the optimization can
be improved by increasing the control fields for most of
these methods and our PINN. However, we restrict them
to Ωs,p ≤ 10 to fairly compare the methods. In Fig. 9 we
compare all methods for the population transfer between
the states |1⟩ and |2⟩.

FIG. 8. Convergence of different components of the loss function
for the three-level system defined in Eq. (37).

Stimulated Raman Adiabatic Passage (STIRAP)

First, we consider a well-known protocol for adiabatic
transfer dubbed Stimulated Raman Adiabatic Passage
(STIRAP) [85, 86, 94]. Under the rotating wave approxi-
mation, the Hamiltonian for this system is given by,

H(t) = δσ22 +∆1σ33 +

(
Ωp(t)

2
σ31 +

Ωs(t)

2
σ32 + h.c.

)
.

(38)
Hereafter, we set to zero the two-photon detuning δ = 0

(∆1 = ∆2 = ∆). The eigenstates of the Hamiltonian are:

|Φ+⟩ = sin θ sinϕ |1⟩+ cosϕ |3⟩+ cos θ sinϕ |2⟩ ,
|Φ−⟩ = sin θ cosϕ |1⟩ − sinϕ |3⟩+ cos θ cosϕ |2⟩ ,
|Φd⟩ = cos θ |1⟩ − sin θ |2⟩ , (39)

with instantaneous eigenvalues Ed = 0 and E±(t) = ∆/2±(
∆2 +Ω2

p(t) + Ω2
s(t)

)1/2
/2. The mixing angles are defined

through the relations

tan θ(t) =
Ωp(t)

Ωs(t)
, tan 2ϕ(t) =

√
Ω2

p(t) + Ω2
s(t)

∆
. (40)

We note that the dark state (|Φd⟩) has no contribution
from the excited state |3⟩, so the population transfer from
state |1⟩ to state |2⟩ is driven by the variation of the mixing
angle θ(t). The latter implies that the Rabi frequencies
Ωp(t) and Ωs(t) must be correlated. First, we note that
|Φd⟩ coincides with |1⟩ when θ(t) = 0, which is obtained
from Ωp(t)/Ωs(t) −→ 0. Second, the population transfer is
completed when |Φd⟩ coincides with |2⟩ (θ(t) = π/2), that is
obtained from Ωp(t)/Ωs(t) −→ ∞. Hence, the population
transfer is attained with a counterintuitive pulse order, i.e.
Ωs(t) precedes Ωp(t).

As mentioned above, the STIRAP protocol follows an
adiabatic evolution, usually slower than superadiabatic
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control protocols. Therefore, we now focus on three differ-
ent modifications to STIRAP that use superadiabatic cor-
rections [71–73, 75], inverse engineering [90, 91] and coun-
teradiabatic approach [92].

Inverse Engineering

Inverse engineering is one of the protocols that achieves
high fidelity in shorter times. The main goal is to design
the optimal control pulses Ωp(t) and Ωs(t). To determine
these control fields, an invariant operator I(t) is used, which
satisfies the equation [90, 91],

∂I(t)

∂t
+

1

iℏ
[I(t), H0(t)] = 0. (41)

The condition ∆1 = 0 yields the following operator (ℏ =
1),

I(t) =
Ω0

2

 0 Ξ(t) Υ (t)

Ξ(t) 0 Ξ(t)

Υ ∗(t) Ξ(t) 0

 , (42)

with Ξ(t) = cos γ(t) sinβ(t) and Υ (t) = −i sin γ(t). The
time-dependent auxiliary parameters γ(t) and β(t) satisfy
the following equations [74],

dγ(t)

dt
=

1

2
(Ωp(t) cosβ(t)− Ωs(t) sinβ(t)),

dβ(t)

dt
=

1

2
tan γ(t)(Ωs(t) cosβ(t) + Ωp(t) sinβ(t)). (43)

From the above equations one can find the optimal con-
trol fields as

Ωs(t) = 2(
dβ(t)

dt
cot γ(t) cosβ(t)− dγ(t)

dt
sinβ(t)),

Ωp(t) = 2(
dβ(t)

dt
cot γ(t) sinβ(t) +

dγ(t)

dt
cosβ(t)). (44)

Henceforward, we shall consider different Ansatzs for
the auxiliary parameters γ(t) and β(t).

Ansatz 1: For simplicity, we choose γ(t) = ϵ and β(t) =
πt/2tf [90], that leads to

Ωs(t) =
π

tf
cot ϵ cos

(
πt

2tf

)
,

Ωp(t) =
π

tf
cot ϵ sin

(
πt

2tf

)
. (45)

For the numerical calculations we set ϵ = 0.05 and
tf = 10.

Ansatz 2: We choose the polynomial solution introduced
in Ref. [90],

β(t) =

3∑
j=0

bjt
j , γ(t) =

4∑
j=0

ajt
j , (46)

where the coefficients bj and aj are determined from the
initial conditions

γ(0) = ϵ, γ̇(0) = 0, γ(tf ) = ϵ, γ̇(tf ) = 0, γ(tf/2) = δ,

β(0) = 0, β̇(0) = 0, β(tf ) =
π

2
, β̇(tf ) = 0. (47)

To obtain an optimal and fast population transfer we
set ϵ = 0.02, δ = π/10 and tf = 3. We show our results for
this ansatz in Table I in the main text.

Ansatz 3: We choose the solution proposed in Ref. [76],
that achieves successful population transfer in the presence
of unwanted transitions. The parameters are,

γ(t) = −8(π − 2d0)

T 4
t4 +

2(7π − 16d0 + T )

T 3
t3

−5π − 16d0 + 3T

T 2
t2 + t, (48)

β(t) = −π

(
t

T

)3

+
1

2
(2πd1 + 3π)

(
t

T

)2

+

(
−1

2
(2πd1 + 3π +

3π

2
)

)
t

T
+ d1 sin

(
πt

T

)
,(49)

where d0 = 1.8, d1 = 0.1 and T = 1. While this ansatz
works fine, we did not include it in Table I due to the large
control field, which we could not decrease below 10 with a
successful transfer rate.

Stimulated Raman Exact Passage (STIREP)

Recently, a new protocol combines inverse engineering
and optimization methods [89]. Here, the control pulses
are determined by trajectories ϕ̃ and read,

Ω̃s = Ωs(t)/2η̇ = cos ϕ̃ sin θ̃ − ˙̃
ϕ cos θ̃,

Ω̃p = Ωp(t)/2η̇ = − cos ϕ̃ cos θ̃ − ˙̃
ϕ sin θ̃, (50)

with ϕ̃ = ϕ[η(t)]. The trajectory ϕ̃ is obtained by applying
robust inverse optimization (RIO) [89], which optimizes a
cost function represented by the total area of the two pulses

and is given by At = 2
∫ ηf

ηi
|η̇|
√

˙̃
ϕ2 + cos2 ϕ̃ dη. By using

the Euler-Lagrange equations and the Lagrange Multipliers
method we obtain the following differential equations for
the trajectory,,

ẏ1 =
˙̃
ϕ± = y2,

ẏ2 =
¨̃
ϕ± = −(2y22 + cos2 ϕ̃±) tan ϕ̃±

±(λ0 sec ϕ̃
±λ1 sin η − λ2 cos η)

(
y22 + cos2 ϕ̃±

)3/2
= 0.

(51)

For the initial condition
˙̃
ϕ = 0 we end up with the La-

grange Multipliers λ0 = 0.394, λ1 = −0.064 and λ2 =
0.283.



13

FIG. 9. Comparing all methods for population transfer from state |1⟩ to |2⟩.

Modified Superadiabatic Transitionless Driving (MOD-SATD)

The MOD-SATD [92] protocol is a different alternative,
which bypasses the adiabatic condition while counteract-
ing the effect of the loss of adiabaticity. The fields in this
protocol are parameterized according to [92]

Ωp(t) = −Ω′(t) sin θ′(t),

Ωs(t) = Ω′(t) cos θ′(t), (52)

where θ′(t) = θ(t) − arctan[gx(t)/(Ω(t) + gz(t))], Ω
′(t) =√

[Ω(t) + gz(t)]2 + g2x(t), µ(t) = − arctan[θ̇/(Ω(t) +

g(t)/σm)], gx(t) = µ̇, gz(t) = −Ω(t) − θ̇/ tan(µ), g(t) =
A/ cosh(ζt) with A = 1/40, ζ = 9/(10σm) and σm = 2.0 µs.
For the Gaussian fields considered in STIRAP one finds
that [92]

θ(t) = arctan
[
exp

(
tdt/σ

2
)]

,

Ω(t) = Ω0 exp

(
− t2 + t2d/4

2σ2

)√
2 cosh

(
tdt

σ2

)
, (53)

with td = 6/5σ and Ω0/2π = 1 MHz.

Superadiabatic STIRAP (SA-STIRAP)

For completeness, we also show the SA-STIRAP se-
quence. However, we do not consider it in the main text
(Table I) because it relies on a pulse connecting states |1⟩
and |2⟩, which we have not allowed for our PINN.
The superadiabatic approximation requires an external

control Hamiltonian Hc(t) [72, 73, 75], such that

Hsa(t) = H(t) +Hc(t), (54)

where H(t) is the original Hamiltonian in Eq. (38). The
superadiabatic correction reads (ℏ = 1),

Hc(t) = i
∑

n=±,d

[|∂tΦn(t)⟩ ⟨Φn(t)|

− ⟨Φn(t)| ∂tΦn(t)⟩ |Φn(t)⟩ ⟨Φn(t)|] , (55)

where |Φn⟩ are the eigenstates H(t), as given in Eq. (39).
After straightforward calculations we obtain the superadi-
abatic correction

Hc(t) =
1

2
(iΩa(t)σ21 − iΩ∗

a(t)σ12) , (56)

with Ωa(t) ≡ 2dθ(t)/dt, and θ(t) given in Eq. (40). In-
stead of Gaussian fields (as we used in the STIRAP proto-
col), here we use Ωp(t) = Ω0 sin

4(π(t− τ)/T ) and Ωs(t) =
Ω0 sin

4(πt/T ), with Ω0/2π = 1, τ = 0.1T and T = 4.

OPTIMIZATION WITH TWO-PHOTON
DETUNING

The one-photon detuning does not have a detrimental
role in the transfer protocol. For instance, it is known that
it does not affect STIRAP in the adiabatic limit [94] (We
performed numerical simulations and observed no differ-
ence with the one-photon detuning. ). In contrast, the
two-photon detuning (δ) hurts the success in the popula-
tion transfer [93, 94]. Back to STIRAP, neither the dark
state nor the null eigenvalue are available, forcing variations
in the sequence (or a total departure from it) to achieve a
successful transfer. Our PINN, on the other hand, can be
easily trained to counteract this effect. It only requires set-
ting the new value of δ before the training process, and
then the PINN automatically updates the weights in the
optimization and delivers a population transfer with a fi-
nal probability p2 = 0.94, see Fig. 10. Furthermore, it
is worth noticing that the pulse sequence found by the
PINN does not experience a significant change. This means
the sequence is robust without a subsequent optimization
(p2 = 0.93 in the main text). It is important to note that
along the manuscript with have fixed the regularization pa-
rameter χ = 2.8 × 10−3. However, decreasing it down to
χ = 1 × 10−3 will increase the control fields and deliver a
population transfer with p2 = 0.97.
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FIG. 10. Training the PINN considering one- (∆1/2π = 0.2)
and two-photon (δ/2π = 0.2) detuning can easily improve the
population transfer from p2 = 0.93 to p2 = 0.94.

FOUR-LEVEL SYSTEM

The optimization of control pulses is, in general, system-
dependent. This means that once we have the optimal pulse
sequence for a Λ-system, the extension to a four-level sys-
tem is not straightforward. For instance, the new system
involves more non-linear equations and the possibility of
cross-talk to the newly added state. Henceforth, any ana-
lytical approach for optimization becomes a hard task. In
this section we show that our PINN can handle a four-level
system without modification to the architecture of the net-
work. Then, we feed the PINN with the new set of differen-
tial equations, and we add a new constraint in Lconst (36)
for the population in the fourth state ∥z4∥2. Our goal is
to train a PINN that succeeds in transferring population
from state |1⟩ to state |2⟩, with, (i) minimizing the popu-
lation in the lossy intermediary state (|3⟩), (ii) minimizing
the pulse area, and (iii) minimizing cross-talk to state |4⟩.
Note that the last condition guarantees selectivity and it
was not required for the three-level system.

To begin with, we consider the Hamiltonian of the system
in a multi-rotating frame and in the eigenstate basis (ℏ =
1),

Ĥ = δσ22 +∆3σ33 +∆4σ44 +
Ωp(t)

2
(σ13 + σ14)

+
Ωs(t)

2
(σ23 − σ24) + h.c., (57)

where Ωp(t) and Ωs(t) are the Rabi frequencies of the con-
trol fields and σij the ladder operators. The one-photon
detunings are ∆2 = (E3 −E2 − ωs), ∆3 = (E3 −E1 − ωp),
∆4 = (E4 − E1 − ωp) and the two-photon detuning is
δ2 = (∆3 − ∆2). Ei are the eigenenergies and ωp and ωs

are the frequency of the control fields. This Hamiltonian
can be obtained from the interaction of a Nitrogen-Vacancy
center with a Carbon-13 nuclear spin [87, 88]. In Fig. 11
we show the results for our population transfer method.

FIG. 11. PINN delivers a successful population transfer method
that can be scaled to a four-level system without changing the
network’s architecture. We set ∆2 = ∆3 = δ = 0 and ∆4 = 6.79.

LARGE QUANTUM SYSTEMS

Non-interacting qubits

Let us consider the following Hamiltonians

H0 = −ωx

2

N∑
j=1

σx,j , Hp =
ωz

2

N∑
j=0

(1− σz,j). (58)

where σx,j and σz,j are the Pauli matrices for S = 1/2 of
the jth qubit. Here, N is the number of qubits, and 2N is
the dimension of the Hilbert space. All qubits are identical
with ωx, ωz > 0. Now, the target of this control problem is
to minimize the expectation value of the final Hamiltonian.
For that reason, we define

Lcontrol = ⟨Hp⟩ = ⟨Ψ(t)|Hp|Ψ(t)⟩, (59)

Let us consider that u1(t) = g0(t) and u2 = gp(t) are
two control functions that defines a real control vector
u(t) = (u1(t), u2(t))

T . The whole system satisfies the
Schrödinger equation iℏ∂t|Ψ(t)⟩ = H(t)|Ψ(t)⟩, where |Ψ(t)⟩
is the wavefunction. By using the decomposition into real
and imaginary parts, i.e., |Ψ(t)⟩ = |Ψ(t)⟩R + i |Ψ(t)⟩I and
H(t) = HR(t) + iHI(t) (H = H†), we get the following
non-autonomous dynamical system (ℏ = 1)

ẋ = A(t)x(t), A(t) =

(
HI(t) HR(t)

−HR(t) HI(t)

)
, (60)

where x(t) = (|Ψ(t)⟩R , |Ψ(t)⟩I)T ∈ R2N+1

is the real
state vector required for the artificial neural network,
and A(t) is the dynamical matrix that depends on the
control vector. Thus, we can apply our methodology to
the dynamical system and find optimal control functions
to reach the ground state of the final Hamiltonian.
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FIG. 12. (a) Expectation value ⟨Hp⟩ as a function of time. (b) Control functions obtained from our PINN approach. (c) Fidelity
of the protocol.

For illustration, let’s consider the case of five qubits
(N = 5), where the dynamical system is highly non-trivial
since we have 64 coupled equations of motion for the real
vector x(t) (25+1 = 64) or equivalently 25 = 32 energy lev-
els. For the simulation, we can fix ωx = ωz = 1, and the
simulation time is chosen as T = 10/ωz = 10. Also, we
choose 100 neurons and three hidden layers for the neural
network architecture. In figure 12, we plot the solution of
this control problem for five qubits and two independent
control functions g0(t) and gp(t). We observe that the effi-
ciency of the PINN approach in terms of the final fidelity
amounts to 99.8%, demonstrating that our approach works
even in larger quantum systems without interaction. At the
simulation time T , our PINN yields an expectation value
⟨Hp⟩ that amounts to 0.004, which is close to the theoretical
value min|Ψ⟩⟨Hp⟩ = 0.

Interacting qubits

Let us consider the following Hamiltonians

H0 = −ωx

2

N∑
j=1

σx,j , (61)

Hp =
ωf

2

N∑
j=0

(1− σz,j)− J

N−1∑
i=1

σz,jσz,j+1 (62)

For the simulation, we consider the same quantum con-
trol problem explained in the previous section but us-
ing N = 3 qubits (23 = 8 energy levels). In this case,
we use ωx = ωf = 1 and J = ωf/4 with a simula-
tion time T = 10/ωf = 10. Also, we use the constraint
g0(t) = 1− gp(t) to solve this problem.

In figure 13, we plot the solution of this control problem
for three interacting qubits and two control functions g0(t)
and gp(t) with the constraint g0(t) = 1− gp(t). We observe
that the efficiency of the PINN approach in terms of the fi-
nal fidelity amounts to 99.1%. Moreover, our PINN scheme
reaches an expectation ⟨Hp⟩ value of −0.4839, close to the
theoretical value min|Ψ⟩⟨Hp⟩ = −0.5. These results demon-
strate that our approach performs well in larger quantum
systems with interactions.

SUMMARY OF PINNS PARAMETERS

To summarize our results concerning the application of
PINNs for quantum control, in Table II, we show the rel-
evant information about how we implemented our method
for different systems. In particular, we show the value for
the hidden layers, epochs, neurons, control (η) and regu-
larization (χ) weights, and learning rate (λ).
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FIG. 13. (a) Expectation value ⟨Hp⟩ as a function of time. (b) Control functions obtained from our PINN approach using
g0(t) = 1− gp(t). (c) Fidelity of the protocol.
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TABLE II. The Table displays relevant information about the PINNs. Our PINNs are feed-forward neural networks with hard
constraints on the initial conditions. η and χ stand for the control and regularization weights, respectively. λ accounts for the
learning rate.

System Hidden Layers Epochs Neurons η χ λ

4 4× 104 200 0.1 10−3 10−4

5 2× 104 150 0.2 2.8× 10−3 8× 10−3

5 2× 104 150 0.2 2.8× 10−3 8× 10−3

1 105 3 0.05 10−5 10−3

4 5× 105 100 0.01 10−4 10−3
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