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Superconducting metamaterials, which are designed and fabricated with structured fundamental
circuit elements, have motivated recent developments of exploring unconventional quantum
phenomena in circuit quantum electrodynamics (circuit-QED). We propose a method to engineer
1D Josephson metamaterial as a chiral waveguide by considering a programmed spatiotemporal
modulation on its effective impedance. The modulation currents are in the form of travelling waves
which phase velocities are much slower than the propagation speed of microwave photons. Due
to the Brillouin-scattering process, non-trivial spectrum regimes where photons can propagate
unidirectionally emerge. Considering superconducting qubits coupling with this metamaterial
waveguide, we analyze both Markovian and non-Markovian quantum dynamics, and find that
superconducting qubits can dissipate photons unidirectionally. Moreover, we show that our proposal
can be extended a cascaded quantum network with multiple nodes, where chiral photon transport
between remote qubits can be realized. Our work might open the possibilities to exploit SQUID
metamaterials for realizing unidirectional photon transport in circuit-QED platforms.

I. INTRODUCTION

The interaction between matter and quantized elec-
tromagnetic fields has been the central topic of quantum
optics for more than half a century [1–5]. The impressive
progresses in quantum electrodynamics (QED) and
quantum technologies provide solid foundations for
quantum information science [5–10]. In past two
decades, superconducting quantum circuits (SQCs) with
Josephson junctions have been developed as a well-
performed artificial platform for microwave photonics
[11–20]. The versatility of SQCs stems from the
flexibilities in both fabrication and controlling processes,
which allows to realize many exotic quantum phenomena
such as dynamical Casimir effects and ultrastrong
light–matter couplings [21–28].

In circuit-QED the boson modes of microwave photons
are routinely supported by conventional circuit elements
such as LC resonators, transmission-line resonators
and 1D open coplanar-waveguides [29–33]. Recently
exploring intriguing QED phenomena with metamaterial
structures in SQCs have attracted a lot of interests [34–
40]. Compared with standard circuit-QED elements,
superconducting metamaterials can be designed and
fabricated in various kinds of spatial structures, which
might have exotic band spectrum and nontrivial vacuum
modes [41, 42]. For example, by engineering the hopping
rates among microwave resonators or SQC qubits, the
photonic metamaterials analogue to topological lattices
and strongly correlated matters were realized [43, 44].
When the inductors and capacitors in the usual discrete
model of a 1D transmission line are interchanged, the
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left-handed metamaterials can also be fabricated, which
might work as a waveguide with an effective negative
index of refraction [45–49].

The Josephson-chain metamaterials, which inherit the
advantages of Josephson junctions such as nonlinearity
and tunability, have been widely employed for different
quantum engineering tasks [50–58]. For example,
many-body quantum optics in ultra-strong coupling
regimes was successfully demonstrated in a Josephson
chain platform by exploiting its high characteristic
impedance [59]. Moreover, given that each node junction
is replaced with a superconducting quantum interference
device (SQUID), the SQUID chain is possible to be
engineered as a tunable high-impedance ohmic reservoir
by applying position-dependent magnetic flux [60].
When the SQUID chain are biased with a space-
time varying flux, analogue Hawking radiation can be
reproduced [61–66]. To create an event horizon, the
group velocity of the modulation signals should be
comparable to the propagation velocity.

In contrast to proposals which are analogs of creating
cosmological particles [61, 65], in this study we focus
on the parameter regime where the velocity of the
modulation signals is much slower than the photon’s
propagation speed, which was rarely considered in
previous studies. The scenario is akin to realizing
nonreciprocal sound propagation in an elastic metama-
terial via spatiotemporally modulating the stiffness [67–
74], where the Brillouin-scattering process will lead
to chiral acoustic wave transport. In this work we
first derive the dispersion relation of the metamaterial
waveguide by employing the generalized Bloch-Floquet
expansion formula. We find that there are three non-
trivial dispersion regimes, which respectively correspond
to left/right chiral emission and band gaps. Then we
show that the metamaterial waveguide can be engineered
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as a chiral quantum channel when coupling it to
superconducting qubits. The chiral transport is similar
to the proposal of realizing nonreciprocal photonic
transport via acoustic modulation [75]. However, the
modulating signal in our proposal is the electromagnetic
current bias (rather than acoustic waves), which can
be tuned much faster and freely. Our proposal can be
employed for demonstrating chiral quantum optics widely
discussed in Refs. [76–85], and provide a novel method
to realize nonreciprocal transport of microwave photons
without using the bulky ferrite circulator [86, 87]. Very
recent studies with circuit-QED setups showed that
chiral emission from qubit pairs (coupled to a common
waveguide) can be realized via linear interference
process [80–83]. However, the chiral transport is
restricted at the single-photon level. Our proposal does
not have such limitations and can maintain the chiral
behaviour even in the multi-excitation regime [88–92]. In
the last part, we show that our proposal can be extended
as a chiral quantum network where remote nodes are
mediated with no information back flow.

II. MODEL

 

FIG. 1. The proposed setup where a SQUID-metamaterial
waveguide couples to a transmon qubit. The artificial
waveguide is composed by a SQUID array, which impedance
is modulated by a programmed current bias in each unit
structure. The current signal I(j, t) changing with both
SQUID’s positions j and time t will spatiotemporally
modulated the flux Φj through each SQUID via mutual
inductance Mj . The Josephson (ground) capacitance of each
SQUID is denoted as CJ (C0). The node flux φj at position j
follows the Kirchhoff current relation in Eq. (2). A transmon
qubit, which is in the form of a split junction with Josephson
capacitance Cq, interacts with the waveguide at position
x0 = 0 via a coupling capacitance Cg

J .

As shown in Fig 1, we consider that the Josephson-
metamaterial waveguide is composed by a SQUID array
which allows microwave photons propagating along
it [52–54]. Each node is connected to the ground with
a capacitance Cg. Two neighbor sites are separated with
distance d0. The SQUID can be viewed as a nonlinear

Josephson inductance Lj in parallel with a capacitance
CJ . A series of current biases which can be programmed
with external signals will produce site-dependent flux Φj
via mutual inductance Mj . The relation between Lj and
Φj is given by [93–98]

Lj =
L0

cos
∣∣∣πΦj

Φ0

∣∣∣ , L0 =
Φ2

0

8π2Es0
, (1)

where Es0 is the Josephson energy of one junction.
Defining the node flux as φj , we obtain the following
Kirchhoff current equation for the SQUID chain [52, 53]

φj+1 − φj
Lj+1

− φj − φj−1

Lj
=

Cgφ̈j + CJ

(
φ̈j − φ̈j−1

)
− CJ

(
φ̈j+1 − φ̈j

)
. (2)

We assume that the current biases are composed of a
static part and a time-dependent part, respectively. That
is,

Φj(t) = Mj [I0 + δIf(j, t)], (3)

where I0 (δI) is the amplitude of the DC (AC) part
satisfying δIf(j, t)� I0. We define Gj(t) as

Gj(t) =
1

Lj(t)
=

1

L0
[α0 + δαf(j, t)] , (4)

where

α0 = cos

(
πMjI0

Φ0

)
, (5)

δα = − sin

(
πMjI0

Φ0

)
πMjδI

Φ0
. (6)

As discussed in Appendix A, given that φj varies
slowly in the length scale d0 (i.e., long wavelength limit),
the difference Equation (2) can be written in a quasi-
continuous form. Defining cg = Cg/d0 (cJ = CJ/d0) as
the ground (Josephson) capacitance per unit length, the
wave function in the quasi-continuous limit becomes [98]

cg
∂2φ(x, t)

∂t2
= cJd

2
0

∂4φ(x, t)

∂t2∂x2
+

∂

∂x

[
g(x, t)

∂φ(x, t)

∂x

]
,

(7)
where g(x, t) is expressed as

g(x, t) =
1

lJ
[α0 + δαf(x, t)] , lJ =

L0

d0
, (8)

with lJ being the Josephson inductance per unit length.
The spatiotemporal modulation signal is encoded in
f(x, t). When CJ = 0, Eq. (7) is simplified as a
transmission-line equation in which the impedance is
modulated by a space-time-varying wave. A non-zero
Josephson capacitance cJ will entangle both spatial
and temporal differentials together, which will produce
a nonlinear dispersion for the SQUID waveguide. In
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d0 Cg CJ L0 α δα/α kd/(2π) v0 vd

1 µm 0.2 fF 100 fF 0.2 nH 0.3 0.15 0.25× 104m−1 2.7× 106 m/s (0.05 ∼ 0.08)v0

TABLE I. The parameters adopted for calculating the spectrum of the modulated SQUID-metamaterial waveguide.

Appendix A and following discussions, we discuss its
effects and give the conditions where cJ can be neglected.

The eigen-wave functions of the field are obtained by
adopting a generalized Bloch-Floquet expansion [68, 75,
99]

φlk(x, t) = ei(ω̃l(k)t−kx)
n=∞∑
n=−∞

uln(k)ein(Ωdt−kdx), (9)

where ω̃l is the quasi-energy of the lth band, and k
is the wave number. For convenience, we define v0 =
1/
√
lJcg as the propagation velocity of the static SQUID

metamaterial waveguide without modulation. Now we
consider the bias current g(x, t) varying periodically in
both space and time, i.e.,

g(x, t) = g(x+ λd, t+ Td).

The simplest modulation signal is a travelling wave, and
in this work we adopt f(x, t) as

f(x, t) = cos (Ωdt− kdx). (10)

The phase velocity is vd = Ωd/kd with kd = 2π/λd (Ωd =
2π/Td) being the wave number (angular frequency). By
substituting Eq. (9) into Eq. (7), the dispersion relation is
obtained by solving a quadratic eigenvalue problem [68].
Detailed derivations can be found in Appendix A.

According to the experiments in Refs. [53, 54, 59], we
list the parameters adopted for our numerical simulation
in Table I. Although we can employ the generalized
Floquet form in Eq. (9) to derive the spectrum, it
does not mean that all kinds of modulation waves can
produce stable eigenmodes in the SQUID transmission
line. As discussed in Ref. [100], when the modulation
velocity vd is faster than v0, the eigenfrequencies become
complex, indicating that the oscillations are time-growing
and unstable. The high-speed modulation signal can
be employed for conversing vacuum fluctuations into
photons, which is analog to the Hawking effect in a
gravitational system [61, 66].

In this study, we focus on the parameter regimes with
vd � v0. The first Brillouin zone (BZ) is limited within
k ∈ (−0.5kd, 0.5kd]. There will be Brillouin-scattering
processes between modes k and k + kd (which are wave
numbers for the eigenmodes of the static waveguide)
due to the conservation of momentum. Additionally,
the conservation of energy also requires ωl(k) ± Ωd '
ωl(k+kd). Since Ωd is much smaller than ωl at k = kd/2,
the modes around k ' ±0.5kd will interact with each
other. The interactions between modes produces two

band gaps, which is similar to the appearance of an anti-
crossing point in a two-coupled-mode system.

We assume that the waveguide is long enough (L→∞)
to support the microwave photons propagating without
reflection. By quantizing the field, the root-mean-square
voltage operator V̂ (x, t) is written as [16]

V̂ (x, t) ' −i
∑
lk

√
~ω̃l(k)

2Ct

[
φ∗lk(x, t)alk − φlk(x, t)a†lk

]
,

(11)
where Ct = Lcg is the total capacitance of the waveguide,

and alk (a†lk) is the annihilation (creation) operator for
mode k in the lth quasi-energy band. We numerically
plot ωl(k) changing with wave number k in Fig. 2(a) by
adopting parameters in Table I. We find that an energy
gap emerges between the two lowest bands in the first
BZ (−0.5kd, 0.5kd]. As discussed in Appendix A, under
the following condition√

cJ
cg
� 1

(k + nkd) d0
, (12)

the nonlinear effect led by cJ can be neglected. By
adopting the parameters in Table I, one finds that kdd0 =
0.25×10−2 � 1. According to Eq. (12), even when CJ =
500Cg, the nonlinear effect of Josephson capacitance is
not apparent, and the dispersion relation is quite close
to that with CJ = 0.

Equation (9) shows that the time-dependent part of
φlk(x, t) depends on both band index l and Floquet order
n, and the distribution ratio of the nth Floquet order is
|uln(k)|2 (note that

∑
n |uln(k)|2 = 1) for a certain mode

lk. Since the modulation signal g(x, t) can be viewed as a
perturbation, |uln(k)| decreases quickly with n according
to our numerical calculations. For the parameters in
Table I, it is accurate enough to consider n = 0,±1,
and the corresponding dispersion relation is plotted in
Fig. 2(b) with |uln(k)|2 being mapped with colors.

The modulation signal g(x, t) propagates unidirection-
ally (rather than a standing wave carrying opposite
momentums ±kd), which will open two asymmetric
energy gaps located around k = ±0.5kd (see Fig. 2).
Consequently, the unconventional spectrum regime in
Fig. 2 can be divided into three parts. The gray area
between two quasi-energy bands, where |uln(k)| ' 0 are
valid for all Floquet orders {l, n}, is the conventional
band gap with no propagating mode in the waveguide.
In red (blue) area where point A (B) is located, the
dispersion relation is asymmetric and the Floquet order
{l = 1, n = 0} ({l = 2, n = −1}) possesses the
highest distribution ratio |uln(k)|. In these two regimes
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l = 1
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FIG. 2. (a) Dispersion relation between quasi-energy ωl(k) and wave number k for CJ = 500Cg and CJ = 0, respectively.
The enlarged plot of the band gap [the area inside the box in (a)] is depicted in (b). The dispersion relations for different
Floquet orders {l, n} [corresponding to time-dependent part in Eq. (9)] are shown. The distribution ratio of each Floquet order
is mapped with colors. The nontrivial spectra can be divided into three parts. In the red (blue) area, the microwave photons
propagate into the right (left) direction; In the grey area, the microwave photon will be localized due to no propagating modes.

microwave photons propagate unidirectionally, which will
be discussed below by considering a superconducting
qubit interacting with this metamaterial waveguide.

III. CHIRAL EMISSION OF
SUPERCONDUCTING QUBITS

A. Interaction Hamiltonian of metamaterial
waveguide coupling to superconducting qubits

As depicted in Fig. 1(a), we first consider the simplest
QED setup where a transmon qubit interacts with the
metamaterial waveguide via a coupling capacitance CgJ
at x0. The transom qubit is composed by two identical
junctions which form a SQUID loop, and its Hamiltonian
is written as [12, 13]

Hq = 4EC(n̂− ng)2 − 2EqJ cos

(
πΦq

Φ0

)
cos φ̂, (13)

where n̂ (φ̂) is the charge (phase) operator of the
transmon, CΣ = CqJ + Cq with Cq being the Josephson
capacitance, and EqJ (EC = e2/(2CΣ)) is the Josephson
(charging) energy of the junction. The interaction
Hamiltonian between the transmon and the waveguide
is written as [13]

Hint = 2e
CqJ
CΣ

V̂ (x, t)n̂. (14)

In the limit EC � EqJ , the transmon can be viewed
as a Duffing nonlinear oscillator. Given that only the
two lowest energy levels are considered, Hq can be

approximately written as [13]

Hq =
1

2
ωqσz, ωq = 4

√
ECE

q
J − EC , (15)

where the charge operator is

n̂ = −i 4

√
EqJ

4EC

σ− − σ+√
2

. (16)

In the rotating frame of ωqσz/2 +
∑
lk ~ω̃l(k)a†lkalk and

by adopting the rotating-wave approximation, we rewrite
Hint as

Hint = ~g0

∑
lk

eiωqtσ+alkφ
∗
lk(xc, t) + H.c.

= ~
∑
lk

glkσ+alke
iωqt

×

[
e−iω̃l(k)t

n=∞∑
n=−∞

u∗ln(k)e−inΩdt

]
+ H.c., (17)

where the coupling position is set at x0 = 0 without loss
of generality, and glk is the coupling strength which is
derived as

glk =
√

2
eCqJ
~CΣ

4

√
EqJ

4EC

√
~ω̃l(k)

2Ct
. (18)

Here we take the transmon as an example. As discussed
in experimental work in Refs. [59, 60, 98], the SQUID-
metamaterial waveguide can also interact with a flux or
charge qubit, and all these circuit-QED setups can be
employed to demonstrate the unconventional emission
behaviors discussed in this work.
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B. Chiral emission in Markovian regime

Similar to the standard spontaneous emission process,
the intensity of radiation field should be narrowly
centered around the atomic transition frequency ωq.
Therefore, by replacing ω̃l(k) in Eq. (18) with ωq, glk
becomes mode-independent, i.e., glk ' g0. We assume
that a single excitation is initially in the transmon qubit,
while the waveguide is in vacuum state |0〉. Due to the
conservation of excitation number for the Hamiltonian in

Eq. (17), the system’s state at time t can be expressed in
the single-excitation subspace as

|Ψ(t)〉 = ce(t)|e, 0〉+
∑
l,k

clk(t)|g, 1lk〉, (19)

where |1lk〉 represents a single photon being excited in
mode alk. The evolution governed by Hint can be derived
from the following coupled differential equations

∂ce(t)

∂t
= −ig0

∑
lkn

clkuln(k)e[i∆l(k)−inΩd]t, (20)

∂clk(t)

∂t
= −ig0ce(t)e

−i∆l(k)t
∑
n

u∗ln(k)einΩdt, (21)

where ∆l(k) = ωq − ω̃l(k) is the frequency detuning between the qubit and the mode alk. By substituting the
integration form of Eq. (21) into Eq. (20), we obtain

∂ce(t)

∂t
= −g2

0

∫ t

0

dt′G(t, t′)ce(t
′), (22)

G(t, t′) =
∑
lknn′

e−i(n−n
′)Ωdtuln(k)u∗ln′(k)ei[∆l(k)−nΩd](t−t′), (23)

where G(t, t′) is the time-delay correlation function.

Given that n 6= n′, e−i(n−n
′)Ωdt are fast oscillating

terms, and their contributions to the evolution will be
significantly suppressed when the decaying time scale is
much longer than the oscillating period Ω−1

d . Under these
conditions, we can only keep the resonant term n = n′,
which is similar to the rotating-wave approximation [75].
Finally we obtain

G(t, t′) =
∑
lkn

|uln(k)|2ei[∆l(k)−nΩd](t−t′)

=
∑
ln

L

2π

∫
dk|uln(k)|2ei[∆l(k)−nΩd](t−t′).(24)

In the emission spectrum, the intensity of the field will
center at the modes satisfying the resonant condition

∆l(k)− nΩd = 0, (25)

which solutions of k are denoted as kln. For example,
in Fig. 2(b) for the frequency at the dashed position in
the red regime, we mark the resonant positions (green
dot A) for {l = 1, n = 0}. Around each kln, one can
approximately derive the dispersion relation as

∆l(k) = ∆l(kln) + vln(k − kln), (26)

where

vln =
∂∆l(kln)

∂k

∣∣∣
kln

is the group velocity. When the qubit transition
frequency is far away from the band edges, G(t, t′) can
be written as

G(t, t′) '
∑
ln

L

2π
|uln(kln)|2

∫ ∞
−∞

d(δk)e−ivlnδk(t−t′)

=
∑
ln

L|uln(kln)|2

|vln|
δ(t− t′). (27)

The delta function in Eq. (27) is valid given that the
bandwidth of the waveguide’s spectrum is approximately
infinite compared with the interaction strength. By
substituting Eq. (27) into Eq. (23), we obtain

∂ce(t)

∂t
= −ΓT

2
ce(t), ΓT = (ΓR + ΓL), (28)

ΓR(L) = Γ0

∑
ln

|uln(kln)|2Θ(±vln), (29)

where Θ(x) is the Heaviside step function, ΓR(L)

corresponds to the decay rate to the right (left) hand
of the waveguide, and Γ0 is the characteristic decay rate
for the qubit which is derived as

Γ0 =
g2

0L

v0
=

1

~vJ

(
eCqJ
CΣ

)2
2

√
EqJ

4EC

ωq
2cg

. (30)

In the single-excitation subspace expressed in Eq. (19),
the photonic wave function in real space is [2]

ψγ(x, t) =
∑
lkn

clk(t)eikxu∗ln(k)e−in(Ωdt−kdx). (31)
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0

3 0 0
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0

3 0 0
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3 0 0
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x/λ
d

t  ( µs )

FIG. 3. (a) The time-dependent evolution |ce(t)|2 for different transmon frequencies, and the field distributions are shown in
(b-e), respectively. The corresponding relations are (b) bidirectional emission → ωq = 2.70 GHz, (c) right emission → ωq =
3.02 GHz, (d) trapped bound state → ωq = 3.34 GHz and (e) left emission → ωq = 3.64 GHz. The system’s parameters are
adopted from Table I with vd = 0.05v0.

The photonic energy decaying into the right (left) hand
side is expressed as

ΦR/L =

∣∣∣∣∫ ±∞
0

|ψγ(x′, t)|2dx′
∣∣∣∣ , t→∞. (32)

By neglecting the local decoherence and dephasing of the
transmon, the chiral factor is defined as [78]

β± =
ΓR(L)

ΓR + ΓL
=

ΦR(L)

ΦR + ΦL
. (33)

As indicated in Eq. (29), the directional emission
rates depend on both distributions ratios |uln(kln)| and
group velocities vln. For example, given that the qubit
frequency lies in the red regime of Fig. 2(b), the Floquet
order {l = 1, n = 0} has the largest |uln(kln)| (see point
A), and the corresponding vln is positive. Consequently,
the photon will be chirally emitted to the right direction.
In the blue regime (point B), the emission chirality will be
reversed. Below we will numerically discuss the emission
behaviors in different frequency regimes.

C. Numerical discussions

The chiral spontaneous emission process can well
be described by the master equation, which however
discards much information due to a lot of approxima-
tions. For example, master equation cannot describe
the directional field distribution and Non-Markovian
dynamics led by band-edge effects. To avoid those
problems, we numerically simulate the unitary evolution
governed by Hamiltonian in Eq. (17) by discretising the
modes of the modulated waveguide in the momentum
space. The photonic field in the waveguide is recovered
from Eq. (31). The details about numerical methods are
presented in Appendix B.

By changing the transmon’s frequency, we plot the
evolutions of |ce(t)|2 in Fig. 3(a). When ωq is in the
conventional dispersion regime [ωq/(2π) = 2.70 GHz],
the transmon exponentially decays its energy, and the
photonic field is symmetrically emitted into both left and
right side [see Fig. 3(b)]. In the right chiral regime with
ωq/(2π) = 3.02 GHz [see red horizontal line in Fig. 2(b)],
the solutions for Eq. (25) correspond to the intersection
points with the dispersion curves of different Floquet
orders. The intersection point A with the Floquet
order {l = 1, n = 0} has the largest distribution ratio
|uln(k)| ' 1, while the other |uln(k)| are of extremely
low amplitudes. The group velocity for point A is
positive. Therefore, the transmon will chirally emit
photons into the right part of the waveguide, as indicated
by Eq. (29). Similarly, when transmon frequency is
in the blue regime, most of the emitted photonic field
will distribute on its left hand side. The chiral field
distributions changing with time are shown in Fig. 3(c,
e), respectively. Moreover, the chiral factor is about
β± ' 0.95, indicating that this SQUID-metamaterial
waveguide can be implemented as a well-performance
directional quantum bus.

When the qubit frequency lies within the band gap
[the gray regime in Fig. 2(b)], the distribution ratios for
all Floquet orders are around zero, i.e., |uln(k)| ' 0,
indicating that there is no resonant mode which can lead
to exponential decay of the transmon qubit. In this
scenario, the transmon only decays its partial energy into
the waveguide [see Fig. 3(a) for ωq/(2π) = 3.34 GHz],
and the field is localized around the coupling position
without propagating outside, as shown Fig. 3(d)].
This unconventional evolution can be understood from
Fig. 2(b): in the gray regime, the coefficients of all the
Floquet orders are around zero, i.e., |uln(kln)| ' 0. Due
to no resonant mode, only the modes which are of large
detuning will contribute significantly to the dynamics.
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FIG. 4. (a) The chiral factor β+ changes with ωq by setting
modulation group velocities as vd = 0.05vg and vd = 0.08vg.
(b) The corresponding dispersion relation of the quasi-energy
ωl(k) of the waveguide.

Those modes are of large density due to band edge effects,
and the field will be localized in the form of bound state.
The scenario is akin to an emitter being prevented from
spontaneous emission when it is trapped by the band gap
of a photonic crystal waveguide [101–103].

In this proposal the modulation signal is pro-
grammable. Therefore, the dispersion relation of the
waveguide can be tailed freely, which enables us to
control the qubit dynamics on demand. For example,
given that the modulation phase velocity vd is switched
oppositely, the chiral direction with a certain qubit
frequency is also reversed. In Fig. 4(a), we plot the chiral
factor β+ changing with transmon frequency by setting
modulation velocity as vd = 0.05vg and vd = 0.08vg,
respectively. When vd = 0.05vg, the quasi-energy band
l = 1 and l = 2 are separated by a finite band gap [see
gray area in Fig. 2(b)]. The gap leads to the trapped
bound state when the qubit frequency lies within this
regime [see Fig. 3(d)]. As discussed in Ref. [68], when
increasing the modulation velocity, the gap disappears,
which can be found from the dispersion relation for
vd = 0.08vg depicted in Fig. 4(b). The chirality will be
smoothly switched from left to right without any gaps
when increasing the qubit frequency. With a larger vd
the chirality is enhanced and the directional bandwidth
becomes wider [see Fig. 4(a)], which is due to that the
Brillouin-scattering process emerges between the modes
with a large energy difference. However, as discussed
in Refs. [68, 100], when the modulation velocity vd
is comparable to v0, the waveguide’s eigenfrequencies
become complex, indicating the field is time-growing
and unstable. Due to this, the modulation velocity vd
should be much smaller than v0 to avoid the unstable
phenomena emerging in the whole setup.

IV. CHIRAL PHOTON FLOW BETWEEN TWO
QUANTUM NODES

 

FIG. 5. By mediating remote nodes, the metamaterial
waveguide can work as a common quantum bus in a chiral
quantum network. The metamaterial waveguide is placed
in a tube which is below the superconducting temperature
(see experiments in in Ref. [104]). To suppress the thermal
microwave noise, each node is placed in a dilution refrigerator
which temperature is around T ∼ 10 mk.

By considering multiple nodes interacting with the
same metamaterial waveguide, our proposal in Fig. 1
can be extended as a chiral quantum network. The
schematic cascaded network is depicted in Fig. 5, where
nodes are placed in separated dilution refrigerators with
temperature ∼ 10 mK to suppress the thermal noise.
As discussed in Ref. [104], the metamaterial waveguide
can be inside a multi-sleeve tube which is below the
superconducting critical temperature. This experimental
method allows to connect transmons located in different
cryogenic refrigerators. Given that the transmons’
frequencies are identical, the interaction Hamiltonian can
be written as

Hint,2 = ~g0

∑
i

∑
lk

eiωqtσ+
i alkφ

∗
lk(xi, t) + H.c., (34)

where xi is the coupling position of the ith node. As
discussed in Appendix C, we can derive the cascaded
master equation for multiple nodes by tracing over
the waveguide’s freedoms. Taking that two transmons
chirally decay/absorb the right propagating photons for
example, the evolution is governed by

ρ̇s(t) = −iHeffρs + iρsH
†
eff + LρsL†,

Heff = −i
∑
i

ΓR
2
σ+
i σ
−
i − i

∑
i>j

ΓRσ
+
i σ
−
j . (35)

where ρs is the reduced density matrix operator for two
transmons, ΓR is the decay rate to the right side, and L =√

ΓR(σ−1 + σ−2 ) is the collective jump operator. The last
term in Heff is unique to the cascaded quantum system,
and describes the irreversible process that a photon
emitted by transmon j will be reabsorbed by transmon
i, while the information back flow is prevented [78]. As
discussed in Appendix C, when deriving the cascaded
master Eq. (35), we assume that the propagating time
τij = (xi − xj)/vln between two nodes is much smaller
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than the decaying time scale Γ−1
R . Therefore, we can

adopt the Markovian approximation t − τ ' t, and
the evolution becomes independent of time delay. This
approximation is valid only when the separation distance
xij is much shorter than the wavepacket’s size.

In cascaded master equation (35), the evolution
information, such as the field distribution and time-
decay effects, has been discarded due to taking a trace
over waveguide’s freedoms. To proceed beyond those
limitations, our simulation is based on the unitary
evolution governed by the Hamiltonian in (34), which
can well describe the time-delay effects [85]. Numerical
details can be found in Appendix B. In Fig. 6(a), by
assuming a single excitation initially in transmon 1, we
plot the evolution of two transmons with a separation
distance x2 − x1 = 125λd. At the frequency adopted
in Fig. 3(c), the group velocity is around vln ' 0.83v0,
which is slower than v0 due to the nonlinear dispersion
relation around the band edge. Consequently the wave
front arriving at transmon 2 is calculated as τij =
125λd/0.83v0 ' 0.022ms [see Fig. 6(a)]. The field
distribution |ψγ(x, t)|2 is depicted in Fig. 6(b), where one
finds that the photon emitted by transmon 1 propagates
unidirectionally, and the field absorbed by transmon 2
(inside the box) is aslo re-emitted to the right side.
Due to no photonic energy back flow, transmon 1 will
not be re-excited. Those numerical results show that
our proposal can behave as a well-performed cascaded
quantum network.

V. SUMMARY AND OUTLOOKS

In this work, we propose how to employ the Josephson
array as chiral metamaterial waveguide for circuit-QED.
The waveguide is in the form of SQUID chain which
impedance is modulated with bias currents. When
the bias signals are programmed as travelling waves,
the symmetry between the left and right propagating
modes is broken due to the Brillouin-scattering process.
We also discuss the quantum optical phenomena by
considering superconducting qubits coupling to this
metamaterial waveguide. By applying the optimized
modulating parameters, the qubit will emit photons
unidirectionally, and chiral factor can approach 1. Last
we extend our proposal as a multi-node quantum

network, and demonstrate that the chiral transport
between remote nodes can be realized. Compared with
routing microwave photons unidirectionally with the
bulky ferrite circulators, our proposal does not require
strong magnetic field, and the direction can be freely
tuned by the programmed bias signals.

Note that we only focus on slow travelling waves
to modulate the SQUID-chain’s impedance. Exploring
other modulating parameters or forms, such as standing-
wave modulations and pulses with different shapes, might
allow us to observe more intriguing QED phenomena in
this metamaterial platform. As discussed in experimental
studies in Refs. [56, 59], the SQUID number in a single
metamaterial waveguide can be around 103 ' 104,
indicating that our proposal is within the capability
of current technology. We hope that our work can
inspire more efforts being devoted to exploiting SQUID
metamaterials for controlling microwave photons in SQC
setups.
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APPENDICES

Appendix A: Deriving the dispersion relation of the
modulated SQUID-metamaterial waveguide

We start from the left side of Eq. (2), i.e., the difference
terms related to time-dependent inductance Lj(t). To
derive the corresponding quasi-continuous differential
form, we first rewrite it as

φj − φj−1

Lj(t)
− φj+1 − φj

Lj+1(t)
=
φj − φj−1

Lj(t)
− φj+1 − φj

Lj(t)
+
φj+1 − φj
Lj(t)

− φj+1 − φj
Lj+1(t)

. (A1)

In this work we assume that each SQUID’s size is much
smaller than wavelengths of both modulation wave and
microwave photons. Therefore, we replace φj(t) →

φ(x, t) and f(j, t)→ f(x, t). Note that Gj(t) becomes

G(x, t) =
1

L0
[α0 + δαf(x, t)] . (A2)
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FIG. 6. (a) The directional photon flow from transmon 1 (x = 0) to transmon 2 (x = 125kd). Due to the time-delay effect,
transmon 2 is excited with a retardation time t = x12/v0. (b) The field distribution along the waveguide changes with t. At
x = 125kd, the emitted photon is scattered by transmon 2. Due to directional transport, the scattered field only propagates
into the right direction. The adopted parameters are the same with those in Fig. 3(c).

By replacing x = id0, Eq. (A1) is changed as

φj − φj−1

Lj(t)
− φj+1 − φj

Lj(t)
+
φj+1 − φj
Lj(t)

− φj+1 − φj
Lj+1(t)

= −G(x, t)
∂2φ(x, t)

∂x2
d2

0 −
∂G(x, t)

∂x

∂φ(x, t)

∂x
d2

0. (A3)

Similarly, the left side in Eq. (2) which contains capacitance terms can also be written in quasi-continuous differential
form. Finally, the nonlinear wave function of the modulated SQUID waveguide is derived as

Cg
∂2φ(x, t)

∂t2
− CJ

∂4φ(x, t)

∂t2∂x2
d2

0 = G(x, t)
∂2φ(x, t)

∂x2
d2

0 +
∂G(x, t)

∂x

∂φ(x, t)

∂x
d2

0, (A4)

which is equivalent to the form in Eq. (7).
Given that the modulation is of the travelling wave form, one can decompose the wave function in Eq. (2) as

a matrix form by employing the orthogonal relations. The dispersion relation is obtained by solving the following
quadratic eigenvalue problem [

ω2
l (k)M̂2 + ωl(k)M̂1 + M̂0

]
Û(k) = 0, (A5)

where M1,2 are diagonal matrices and expressed as

M̂2 = diag
[
...,−cJ(d0)2 (k + nkd)

2 − cg, ...
]
, (A6)

M̂1 = diag
[
...,−2nΩd[cJ(d0)2 (k + nkd)

2
+ cg], ...

]
. (A7)

The matrix M̂0 is

M̂0 =


. . .

. . .
. . . 0 0 0

...
... Tn−1,n−2 Tn−1,n−1 Tn−1,n 0 0 ...
... 0 Tn,n−1 Tn,n Tn,n+1 0 ...
... 0 0 Tn+1,n Tn+1,n+1 Tn+1,n+2 0
... 0 0 0

. . .
. . .

. . .

 , (A8)

where

Tn,n = − (nΩd)
2
[
cJ(d0)2 (k + nkd)

2
+ cg

]
+
α0

l0
(k + nkd)

2
, (A9)

Tn,n±1 =
δα

2l0

{
(k + (n± 1) kd)

2
+ (k + (n± 1) kd) kd

}
. (A10)
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We find that the Josephson capacitance cJ only
appears in the diagonal terms of M̂0,1,2, from which
on can easily find that cJ can be neglected under the
following condition

cJ(d0)2 (k + nkd)
2 � cg. (A11)

Further discussions of nonlinear dispersion led by cJ can
be found in Sec. II of the main text.

Appendix B: Numerical methods for simulating
spontaneous emission and non-Markovian dynamics

Although the master equation can well describe the
spontaneous emission of emitters, the Born-Markovian
approximation is not valid when the interaction strength
is comparable to the band width of baths. Moreover,
the information of emitted photons will be traced off
when deriving the master equation. To avoid those, our
simulation is based on the unitary evolution governed

by the original Hamiltonian in Eqs. (17, 34). In the
single-excitation subspace and taking for the case of two
transmons for example, the system’s state is written as

|ψ(t)〉 =
∑
lk

clk(t)|g, g, 1lk〉+ce1(t)|e, g, 0〉+ce2(t)|g, e, 0〉,

where |1lk〉 represents the single excitation being in
lkth mode, and |0〉 corresponds to the waveguide in
its vacuum. Since the Hamiltonian is expressed in
momentum space, we first need to calculate waveguide’s
eigen-frequencies and wavefunctions by employing the
method presented in Appendix A. Next we discretise
modes in the first BZ k ∈ (−0.5km, 0.5km] with a large
number N , which is equal to considering a waveguide
with a length L = Nλm. A similar method can be
found in Ref [85]. In the single-excitation subspace, the
Hamiltonian in Eq. (17) [Eq. (34)] can be mapped into a
matrix with dimension N + 1 (N + 2) when the system
contains a single emitter (two emitters). Taking two
emitters (Q = 2) for example, the corresponding matrix
is written as

Hint =



wlk1 0 ... 0 g0φlk1(x1, t) g0φlk1(x2, t)

0 wlk2
. . . ... g0φlk2(x1, t) g0φlk2(x2, t)

...
. . . ... 0

...
...

0 ... 0 wlkN g0φlkN (x1, t) g0φlkN (x2, t)
g0φ
∗
lk1

(x1, t) g0φ
∗
lk2

(x1, t) ... g0φ
∗
lkN

(x1, t) wqa 0
g0φ
∗
lk1

(x2, t) g0φ
∗
lk2

(x2, t) ... g0φ
∗
lkN

(x2, t) 0 wqb


, (B1)

where φlki(xj , t) is numerically obtained via methods in
Appendix A. After obtaining the matrix form in Eq. (B1),
we can numerically solve the evolution governed by the
Schrödinger equation. At certain time t = ti, the
amplitude ckl(t) of each mode is recorded, and the field
distribution can be recovered by substituting them into
Eq. (31). Employing this method, we obtained both
transmon’s and waveguide’s evolution shown in the main
text.

Appendix C: Cascaded master equation for
multi-nodes system

In this part we will derive the cascaded master equa-
tion for multiple emitters mediated by the metamaterial
waveguide. By expanding the Schrödinger equation to
the second order, the evolution of the system is expressed
as [2]

ρ̇s(t) = − i
~

TrR[Hint,2(t), ρ(t)]− (C1)

1

~2
TrR

∫ t

t0

[Hint,2(t), [Hint,2(t′), ρ(t′)]]dt′,(C2)

where ρ (ρs) is the density matrix operator of the whole
system (the emitters), and TrR represents taking a trace
over the waveguide’s freedoms. We assume that the
waveguide is always approximately in its vacuum state.
Therefore, the correlation relations for the waveguide’s

modes satisfy 〈alk〉 = 〈a†lk〉 = 〈a†lkalk〉 = 0 and 〈alka†lk〉 =
1. By substituting those relations into Eq. (C2), we
obtain

ρ̇s(t) = −g2
0

L

2π

∑
i,j

∫ t

t0

dt′A (xi, xj , t, t
′)

[
σ+
i σ
−
j ρs(t

′)− σ−j ρs(t
′)σ+

i

]
+ H.c., (C3)

where the correlation function A (xi, xj , t, t
′) is defined

as [75]

A (xi, xj , t, t
′) = eiωq(t−t′)

∑
lk

φ∗lk(xi, t)φlk(xj , t)

=
∑
ln

|uln(kln)|2
∫ ∞
−∞

d(δk)e
−iδkvln

[
(t−t′)−

xij
vln

]

=
∑
ln

2π

|vln|
|uln(kln)|2δ

[
(t− t′)− xij

vln

]
, (C4)
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with xij = xi − xj being the distance between
two emitters. We have neglected the phase terms
ei(kln+kd)(xi−xj) in A (xi, xj , t, t

′). Note that the integral
regime is within t′ ∈ [t0, t]. Therefore, the δ-funtion
will produce non-zero value in Eq. (C3) only under the
condition t − xij/vln ≤ t. The delay-time τij = xij/vln
(i 6= j) corresponds to the propagating time between two
separated emitters. When xi > xj (xi < xj), the non-
zero time-delay correlation is mediated by the right (left)
propagating modes with vln > 0 (vln < 0). Given that
τij is much smaller than the time scale of spontaneous
emission, we can replace t − τ → t, and Eq. (C3) is
simplified as

ρ̇s(t) =
{ΓR + ΓL

2

∑
i

[
σ+
i σ
−
i ρs(t)− σ

−
i ρs(t)σ

+
i

]
−
∑
i>j

ΓR
[
σ+
i σ
−
j ρs(t)− σ

−
j ρs(t)σ

+
i

]
+

∑
i<j

ΓL
[
σ+
i σ
−
j ρs(t)− σ

−
j ρs(t)σ

+
i

]}
+H.c.,(C5)

where ΓR(L) is the decay rate into right/left side, which
are expressed in Eq. (29). In Eq. (C5) we have employed
the properties of δ-function

∫ t

t0

δ

(
t− t′ − xij

vln

)
ρs(t

′)dt′ =


1
2ρs(t) xij = 0,
ρs(t) xij/vln = 0+,
0 xij/vln < 0.

When the chiral factor of the whole system approaches
β± ' 1, we obtain the cascaded master equation in the
main text.
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[24] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J.

Hakonen, “Dynamical Casimir effect in a Josephson
metamaterial,” PNAS 110, 4234 (2013).

[25] F. Beaudoin, J. M. Gambetta, and A. Blais,
“Dissipation and ultrastrong coupling in circuit QED,”
Phys. Rev. A 84, 043832 (2011).

[26] A. F. Kockum, A. Miranowicz, S. De Liberato,
S. Savasta, and F. Nori, “Ultrastrong coupling between
light and matter,” Nat. Rev. Phys. 1, 19 (2019).

[27] J. Bourassa, J. M. Gambetta, A. A. Abdumalikov,
O. Astafiev, Y. Nakamura, and A. Blais, “Ultrastrong
coupling regime of cavity qed with phase-biased flux
qubits,” Phys. Rev. A 80, 032109 (2009).

[28] T. Niemczyk et al., “Circuit quantum electrodynamics
in the ultrastrong-coupling regime,” Nat. Phys. 6, 772
(2010).

[29] J. Majer et al., “Coupling superconducting qubits via a
cavity bus,” Nature (London) 449, 443 (2007).
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