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Periodic driving has a longstanding reputation for generating exotic phases of matter with no
static counterparts. This work explores the interplay between periodic driving, interaction effects,
and Z2 symmetry that leads to the emergence of Floquet symmetry protected second-order topolog-
ical phases in a simple but insightful two-dimensional spin-1/2 lattice. Through a combination of
analytical and numerical treatments, we verify the formation of corner-localized 0 and π modes, i.e.,
Z2 symmetry broken operators that respectively commute and anticommute with the one-period
time evolution operator, as well as establish the topological nature of these modes by demonstrating
their presence over a wide range of parameter values and explicitly deriving their associated topo-
logical invariants under special conditions. Finally, we propose a means to detect the signature of
such modes in experiments and discuss the effect of imperfections.

I. INTRODUCTION

Ever since the seminal work by Thouless et al. [1], topo-
logical phases of matter have attracted considerable in-
terest in the condensed matter community. One charac-
teristic feature of such phases is the presence of robust
boundary states that are insensitive to considerable per-
turbations and are therefore protected by nonlocal topo-
logical invariants. For the last two decades, a plethora
of topological systems has been theoretically and exper-
imentally investigated, which includes topological insu-
lators [2–13], topological superconductors [14–17], and
topological semimetals [18–28]. Potential technological
applications of such exotic systems have been envisioned,
e.g., for devising energy efficient electronic/spintronic de-
vices [29] and topologically-protected quantum comput-
ing [30].

While most existing works concern topological phases in
single particle systems, many-body interaction effects are
ubiquitous in nature. It has further been demonstrated
that certain topological phases, such as fractional quan-
tum Hall [31–33] and parafermionic systems [34–48], may
only exist in the presence of strong many-body interac-
tions. For these reasons, studies of topological phases in
many-body interacting systems have emerged as an ac-
tive research area [49–57]. Interacting topological phases
can generally be grouped into two different classes, i.e.,
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symmetry protected topological (SPT) phases and topo-
logically ordered systems [58]. As the name suggests,
the topological classification of SPT phases, which in-
clude the Levin-Gu [59], Haldane spin-1 [60], and Z2×Z2

cluster state model [61], relies on the presence of some
underlying symmetry. In contrast, in the topologically
ordered systems, such as the Kitaev honeycomb lattice
model [62], string-net model [63], and quantum double
model [64], such a symmetry constraint is not required.
It is worth noting that topologically ordered systems can
further be decorated by additional symmetries to yield
more exotic phases, which are usually termed symmetry
enriched topological (SET) phases [65].

In the efforts toward realizing topological phases, peri-
odic driving has been identified as a powerful technique.
Not only is periodic driving capable of turning an other-
wise normal system into a topological one [66, 67], but
it also demonstrates the possibility of generating unique
topological features with no static counterparts, such as
anomalous chiral edge states with zero net Chern number
[68–71] and boundary states pinned at half the driving
frequency [15, 72–75]. It can thus be envisioned that pe-
riodically driving a many-body interacting system may
give rise to rich topological phenomena. Indeed, previ-
ous studies on this subject have identified various ex-
otic phases such as the discrete time crystals [76–92] and
parafermion modes at fractional quasienergies [34].

Motivated by these recent developments, this work
presents a type of SPT phase in a two-dimensional (2D)
interacting spin-1/2 lattice. Its topological feature man-
ifests as the simultaneous existence of 0 and π modes at
the corners of the lattice. Here, 0 and π modes respec-
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tively refer to 0 and ω/2 quasienergy excitations (where
ω is the driving frequency) that persist over a range of
parameter values and in the presence of Z2 symmetry
preserving perturbations. The proposed system can thus
also be understood as the extension of the so-called Flo-
quet second-order topological phases [72, 93–107] to the
interacting setting.

We employ three complementary approaches to probe the
topology of our system. First, by fixing some parameters
at specific values, we analytically derive a condition for
the existence of 0 and π modes with respect to the re-
maining free parameters. Here, we further establish the
bulk-corner correspondence by showing that such a con-
dition can be consistently obtained under open boundary
conditions, i.e., by directly constructing both modes and
checking for their convergence, as well as under periodic
boundary conditions, i.e., by defining and computing ap-
propriate topological invariants. Second, at more general
parameter values we numerically evaluate the spectral
functions [37, 80, 90, 108] with respect to appropriately
chosen operators near a corner to capture the degener-
acy and quasienergy clustering induced by the 0 and π
modes respectively. Finally, we numerically identify the
simultaneous presence of 0 and π modes from the stro-
boscopic time evolution profile of a spin-1/2 particle re-
siding at a corner. In particular, the last approach also
paves the way for the experimental detection of topo-
logical corner modes in our system on superconducting
circuit platforms.

This paper is organized as follows. In Sec. II, we in-
troduce some terminology, the present our model and
briefly discuss some of its features. In Sec. III, we ver-
ify the topological nature of our model by first showing
analytically the emergence of 0 and π modes at some spe-
cial parameter values, and then numerically demonstrat-
ing their presence at more general parameter values. In
Sec. IV, we elucidate a means to detect these topological
modes experimentally, as well as discuss the effect of dis-
order and symmetry-preserving/breaking perturbations.
Finally, we summarize our work and discuss avenues for
future work in Sec. V.

II. PERIODICALLY DRIVEN INTERACTING
SPIN-1/2 LATTICE

A. Review of Floquet Theory

Let us briefly review the physics of periodically driven
(Floquet) systems. Floquet systems are described by
Hamiltonians periodic in time, i.e. H(t + T ) = H(t),
with T denoting the period. The physics of such systems
is primarily governed by the one-period time evolution
operator, also called the Floquet operator:

U ≡ U(T ; 0) = T exp

(
−i
∫ T

0

H(t)dt

)
.

Here, we have set ~ = 1. For a special class of Floquet
systems where the Hamiltonian takes on the form

H(t) = Hl for
l − 1

N
<

t

T
≤ l

N
(1)

where each Hl, 1 ≤ l ≤ N is a static Hamiltonian, U is
particularly easy to evaluate:

U =

1∏
l=N

e−iHlT/N . (2)

Of particular interest are the system’s quasienergies ε,
derived from the Floquet eigenvalues, e−iεT and the cor-
responding Floquet eigenstates |ε〉, i.e. U |ε〉 = e−iεT |ε〉.
These respectively play roles analogous to the energy
eigenvalues and eigenstates of a usual static system. As-
sociated with the Floquet operator U is the effective
Hamiltonian (also called the Floquet Hamiltonian)

HFlo = iT−1 ln U.

We can thus think of the quasienergies as eigenvalues
of the Floquet Hamiltonian. Because of the logarithm
function, quasienergies are only defined modulo 2π/T ,
i.e., |ε〉 and |ε + 2πn/T 〉, n ∈ Z represent the same
state. It is customary to let ε take on values in the range
(−π/T, π/T ], which we adopt throughout this paper.

Finally, we define an ξ quasienergy excitation as an op-
erator γξ satisfying

UγξU
† = e−iξT γξ . (3)

Given any Floquet eigenstate |ε〉, γξ implies the presence
of another Floquet eigenstate |ε+ ξ〉 = γξ|ε〉, since

Uγξ|ε〉 = UγξU
†U |ε〉 = e−i(ε+ξ)T γξ|ε〉 . (4)

B. Model

We consider a system of spin-1/2 particles arranged in
a rectangular lattice and described by the time-periodic
Hamiltonian

H(t) =

{∑Nx,Ny
i,j=1 hσxij for nT < t ≤ (n+ 1

2 )T

Hx +Hy +H ′y for (n+ 1
2 )T < t ≤ (n+ 1)T

(5)
where

Hx =

Nx−1∑
i=1

Ny∑
j=1

Jxσ
z
ijσ

z
i+1,j

Hy =

Nx∑
i=1

Ny−2∑
j=2,4,6...

Jyσ
z
ijσ

z
i,j+1

H ′y =

Nx∑
i=1

Ny−1∑
j=1,3,5...

J ′yσ
z
ijσ

z
i,j+1.

(6)
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FIG. 1. A schematic of the system under study. A spin-1/2
particle lives at each site of the rectangular lattice, which ex-
periences alternate applications of an external magnetic field
in the x-direction and nearest-neighbour ZZ interactions for
a T/2 duration.

Here (σx/σy/σz)i,j are the three Pauli Matrices at lattice
site (i, j), h is the Zeeman field strength, Jx is the ZZ
interaction in the x-direction, Jy, J

′
y are the ZZ interac-

tions in the y-direction, T is the driving period, n ∈ Z,
and Nx, Ny are the lattice sizes with Ny being an even
number. This system is schematically presented in Fig. 1.

As this Hamiltonian is of the form Eq. (1), the associated
Floquet operator is obtained via Eq. (2), i.e.,

U = e−i
(Hx+Hy+H′y)T

2 × e−i

∑Nx,Ny
i,j=1

hσxi,jT

2 (7)

Note that our Hamiltonian and its associated Floquet
operator have a Z2 symmetry with respect to S =∏Nx,Ny
i,j σxij , i.e., [S,H(t)] = 0 and [S,U ] = 0. Under

this symmetry constraint, the system’s topology can be
characterized by the presence and absence of 0 and π/T
quasienergy excitations, referred to as the 0 modes (ZMs)
and π modes (PMs) respectively. These modes are local-
ized at the corners. Both ZMs and PMs anticommute
with S, which leads to a specific ordering of the even-
and odd-parity quasienergy sectors of U . Specifically,
ZMs enforce a degeneracy between the two parity sec-
tors, whereas PMs incur a π/T difference between pairs
of quasienergies from the two parity sectors (see Fig. 2).

To gain insight into this system and its ability to support
ZMs and PMs, we may first consider the case J ′y = 0. It
then follows from Fig. 1 that the top and bottom chains
are decoupled from the bulk akin to the flat band limit

FIG. 2. Typical many-body quasienergy levels in the presence
of (a) ZMs, (b) PMs, and (c) both ZMs and PMs.

0.0 0.5 1.0
h /

0.0

0.5

1.0

J x
/

FIG. 3. The phase diagram associated with Eq. (8). ZMs
exist in the purple- and yellow-colored regime, whereas PMs
exist in the peach- and yellow-colored regime. Beyond the
domain [0, 1]× [0, 1], the diagram repeats itself.

of the Su-Schrieffer-Heeger (SSH) model [109]. Each of
the boundary chains is effectively described by the one-
dimensional Hamiltonian

H(t) =

{∑N
i=1 hσxi for nT < t ≤ (n+ 1

2 )T∑Nx−1
i=1 Jσzi σ

z
i+1 for (n+ 1

2 )T < t ≤ (n+ 1)T

(8)
which support ZMs and PMs according to the well-known
phase diagram in Fig. 3 [34, 80, 108]. In this paper, we
particularly focus on h and Jx values within the yellow
regime of Fig. 3, where the system supports both ZMs
and PMs. It should be noted that each 1D chain in the
bulk is still coupled with one of its neighbors, thus result-
ing in the hybridization and absence of 0 and π modes
throughout the whole edge of the 2D system.

We now elaborate the above argument by explicitly iden-
tifying the 0 and π modes at a system’s corner and show-
ing the absence of such modes at the system’s edges. For
simplicity we shall set T = 2 - thus the fraction T/2
in Eq. (7) disappears. By setting the parameter values
to h = π/4 and Jx = π/2, exact expressions for ZMs
and PMs can be obtained. This is achieved by finding
corner-localized operators satisfying Uγ0U

† = γ0 for the
ZM candidates and UγπU

† = −γπ for the PM candi-
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dates. To do so, we begin with the operators restricted
to precisely a corner of the lattice, which, without loss of
generality, we take to be (1, 1). Any such localized op-
erator O ∈ {γ0, γπ} can generally be written as a linear
combination of the identity, and the three Pauli Matri-
ces located at (1, 1). However, by taking into account
symmetry considerations, i.e., {S, γ0} = {S, γπ} = 0,
O must necessarily only involve a linear combination of
Pauli-Y and Pauli-Z operators. By treating the candi-
date equations UOU† = ±O as eigenvalue equations on
the operator subspace spanned by {I, σx11, σ

y
11, σ

z
11}, we

then determine the appropriate coefficients required for
O to be a ZM or PM. Of course, this only works if the map
U(·)U† is closed under the set {I, σx11, σ

y
11, σ

z
11}. It turns

out that at the ideal parameter values h = π/4, Jx = π/2,
this is indeed the case: Uσy11U

† = σz11 and Uσz11U
† = σy11.

Therefore, a corner ZM and PM are respectively

γ0,ideal =
1√
2

(σy11 + σz11)

γπ,ideal =
1√
2

(σy11 − σz11) .

(9)

In a similar fashion, ZMs and PMs localized at the other
three corners can be obtained. In Appendix A, we repeat
the above procedure with respect to operators localized
at a non-corner edge site to show that ZMs and PMs are
indeed absent at the system’s edges.

The above obtained corner ZMs and PMs remain present
over a range of h and Jx values, i.e., within the yellow-
colored regime in Fig. 3. In the following section, we will
demonstrate that such ZMs and PMs survive at nonzero
J ′y values as well, thus establishing their topological na-
ture in the 2D system.

III. TOPOLOGICAL CORNER ZMS AND PMS

Since J ′y represents an intra-cell coupling in the y-
direction, understanding its interplay with the corre-
sponding inter-cell coupling Jy in the same direction is in-
sightful. It is therefore instructive to investigate the fate
of these ZMs and PMs as J ′y deviates from 0. At J ′y 6= 0,
all horizontal chains are coupled with one another. As
a result, the eigenvalue equation UγξU

† = e−iξT γξ be-
comes a genuine 2D many-body problem that is generally
analytically intractable even at moderate system sizes.
To establish their topological nature, it is however nec-
essary to verify that ZMs and PMs remain present over
a range of parameter values. To tackle this more general
scenario, we employ the following two strategies.

In Sec. III A, we first focus on the parameter values h =
π/4 and Jx = π/2 to gain enough simplification which
allows for the explicit identification of ZMs and PMs,
as well as the condition for their existence. At these
parameter values, appropriate topological invariants can
further be defined and analytically computed to establish

0.0 0.5 1.0
J ′y /

0.0

0.5

1.0

J y
/

FIG. 4. The phase diagram derived analytically from our
model, Eq. (5). This is a graph of sgn(cos 2J ′y − cos 2Jy),
which outputs 1 (yellow) when cos 2Jy < cos 2J ′y and 0 (blue)
otherwise. Both ZMs and PMs exist in the yellow-colored
regime, and do not exist in the blue-colored regime.

the bulk-corner correspondence. In Sec. III B, we then
consider more general parameter values that warrant full
numerical treatment for the characterization of ZMs and
PMs.

A. Corner modes at h = π/4 and Jx = π/2

1. Corner modes from eigenvalue equation on operator
space

With the specific parameter values given above, it can be
verified that the Floquet operator maps a set of Pauli ma-

trices
{∏Ny

j=1(σxi,j)
pj (σyi,j)

qj : pj , qj ∈ {0, 1}
}

into itself,

i.e., any vertical chain is effectively decoupled from its
neighbors. To find explicitly the ZMs and PMs, we gen-
eralize the approach outlined at the end of Sec. II B, the
details of which are presented in Appendix A. We then
find that both ZMs and PMs exist (i.e. normalizable, and
therefore physical) if the condition cos 2Jy < cos 2J ′y is
satisfied; otherwise, neither ZMs nor PMs are present.
Our result is summarized in the phase diagram of Fig. 4.

2. Corner modes from topological invariant

The above criterion for the existence of corner modes can
alternatively be reproduced by defining and computing
appropriate topological invariants. To this end, let Ũ
be the Floquet operator acting on the projection of the
system onto the left, vertical boundary. We find that it
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can be represented as

Ũ = e
−i
(∑N/2−1

j=1 Jyσ
z
2jσ

z
2j+1+

∑N/2
j=1 [J′y+π

2 ]σz2j−1σ
z
2j

)
×e−iπ4

∑N
j=1 σ

x
j , (10)

where for notational simplicity, we have suppressed the
(first) index referencing the horizontal position, which is
always 1, and written Ny = N . Indeed, it can be directly

verified that ŨP Ũ† and UPU† yield identical results for
any P being a product of Pauli operators residing at the
leftmost chain. Importantly, Ũ only has support strictly
on the leftmost chain, i.e., it is effectively 1D. We then
construct the corresponding edge Hamiltonian that gen-
erates Ũ over one period. By applying a Jordan-Wigner
transformation with respect to such an operator, we ob-
tain an effective 1D fermionic Hamiltonian

Heff(t) =

{
H1 for 2` < t < 2`+ 1

H2 for 2`+ 1 < t < 2`+ 2,
(11)

where

H1 =

N∑
j=1

π

4

(
2a†iai − 1

)
,

H2 =

N/2−1∑
j=1...

Jy

(
a†2ia2i+1 + a†2ia

†
2i+1 + h.c

)

+

N/2∑
j=1...

(J ′y +
π

2
)
(
a†2i−1a2i + a†2i−1a

†
2i + h.c.

)
,

(12)

` ∈ Z+, and a†i is a fermionic creation operator. It is
now helpful to view our system as a lattice of composite
cells, each cell comprising sublattice sites A and B, with
intracell coupling J ′y +π/2 and intercell coupling Jy, just
like in the SSH Model. Relabelling terms gives

H1 =

N∑
j=1

π

4

(
2
(
a†i,Aai,A + a†i,Bai,B

)
− 2
)
,

H2 =

N−1∑
j=1

Jy

(
a†i,Ba

†
i+1,A + a†i,Bai+1,A + h.c.

)

+

N∑
j=1

(J ′y +
π

2
)
(
a†i,Aa

†
i,B + a†i,Aai,B + h.c.

)
,

(13)

where we have redefined N/2 → N . Under periodic
boundary conditions, we apply the Fourier Transform

a†j,A/B = 1√
N

∑
k∈BZ e

−ijkd†k,A/B (thus the momentum

numbers take on the values k = 2πn
N , n ∈ [−N2 ,

N
2 ] ∩ Z),

and make some rearrangements among the terms to en-
able the Bogoliubov-de Gennes description

Heff(t) =
1

2

∑
k∈BZ

Ψ†kHBdG(k, t)Ψk (14)

where Ψ†k = [d†k,A, d
†
k,B , d−k,A, d−k,B ]. HBdG(k, t) alter-

nates between H1,BdG(k) and H2,BdG(k) every T/2 units
of time, where

H1,BdG(k) =
π

2
σz ⊗ I

H2,BdG(k) =
(
Jycos k + (J ′y +

π

2
)
)
σz ⊗ σx

+
(
Jycos k − (J ′y +

π

2
)
)
σy ⊗ σy

+ (Jysin k)σz ⊗ σy − (Jysin k)σy ⊗ σx.
(15)

Note that both H1,BdG(k) and H2,BdG(k) respect the chi-
ral symmetry under C = σx ⊗ I, i.e., CH1,BdG(k)C† =
−H1,BdG(k) and CH2,BdG(k)C† = −H2,BdG(k). We can
then follow the prescription of Ref. [110] to define wind-
ing number invariants ν0 and νπ that respectively count
the number of 0 modes and π modes at each edge of
the 1D chain. To this end, we first write the symmetric-
timeframe Floquet operator (i.e. the Floquet operator
shifted in time by T/4) associated with HBdG(k, t) in the
form

UBdG(k) = G(k)F (k) , (16)

where

F (k) = C†G(k)†C = e−iH2,BdG(k)/2 · e−iH1,BdG(k)/2 . (17)

In the canonical basis where C is diagonal, F can be
written in matrix form as

F (k) =

[
A(k) B(k)
C(k) D(k)

]
, (18)

where A(k), B(k), C(k), and D(k) are 2×2 block matri-
ces. The exact expressions of A(k) and C(k) are unim-
portant, whereas those of B(k) and D(k) are presented
in Appendix B. Following Ref. [110], we can then find
ν0 = |ν[B]| and νπ = |ν[D]|, where

ν[M ] =
1

2πi

∫ π

−π
dk

d

dk
ln [det M(k)] (19)

is the winding number. By analytically evaluating these
winding numbers (see Appendix B for details), we find
that ν0 = νπ = 1 if and only if cos 2Jy < cos 2J ′y. Go-
ing back to the full 2D picture, we thus conclude that,
with the special h and Jx values under consideration, the
corner ZMs and PMs simultaneously exist if and only
if the vertical interaction parameters Jy and J ′y satisfy
cos 2Jy < cos 2J ′y.

Note that this is precisely the same conclusion we arrived
at through our first analysis, namely the examination of
an eigenvalue equation on operator space. This highlights
the topological nature of the corner ZMs and PMs.
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B. Corner modes at general parameter values

To determine the fate of ZMs and PMs for more gen-
eral values (but still within the yellow-colored regime in
Fig. 3) of h and Jx, we now resort to numerics. To this
end, we define spectral functions around the 0 and π/T
quasienergies:

s0 =
1

N0

∑
|ε,i〉∈χ

∫ ∆

−∆

S0(|ε, i〉 , η) dη

sπ =
1

Nπ

∑
|ε,i〉∈χ

∫ π+∆

π−∆

Sπ(|ε, i〉 , η) dη.

(20)

Here ∆ is a small real number (we have used ∆ = 0.05
throughout), N0/π =

∑
|ε,i〉∈χ

∫ π
−π S0/π(|ε, i〉 , η) dη serve

as normalization factors, and the integrands are

S0(|ε, i〉 , η) =
∑

|ε′,j〉∈X

δ(ε− ε′ − η)| 〈ε′, j| γ0 |ε, i〉 |2

Sπ(|ε, i〉 , η) =
∑

|ε′,j〉∈X

δ(ε− ε′ − η)| 〈ε′, j| γπ |ε, i〉 |2.

(21)

Let us first clarify our notation. |ε, i〉 refers to an eigen-
state in the eigenspace associated with the quasienergy
ε, and i indexes the degeneracy of this eigenspace. X is
the set of all Floquet eigenstates, and χ ⊂ X is a subset
thereof.

Intuitively, S0(|ε, i〉 , η) [Sπ(|ε, i〉 , η)] quantifies the good-
ness of γ0 [γπ] as a ZM [PM]. The Dirac delta function ap-
pearing in Eq. (21) ensures that S0(|ε, i〉 , η) [Sπ(|ε, i〉 , η)]
is only contributed by 〈ε′, j| γ0 |ε, i〉 |2 [〈ε′, j| γπ |ε, i〉 |2]
involving two quasienergies that are sufficiently close to
each other [close to having π separation]. Indeed, if
γ0 is close to being the actual ZM (if it exists), then
γ0 |ε, i〉 = |ε′, j〉 for some ε′ ≈ ε. The integration of
S0(|ε, i〉 , η) over the small window [−∆,∆] then gives ap-
proximately 1. However, if γ0 is nowhere close to being a
ZM, then γ0 |ε, i〉 is generally ‘scattered’ throughout the
entire Hilbert Space, and has considerable support on ε′-
eigenspaces with ε′ being far from ε (|ε′− ε| > ∆). Here,
the Dirac delta function filters out all such components,
so integration over [−∆,∆] gives approximately 0.

Note that even if γ0 is nowhere close to being a ZM,
it is still possible, though very unlikely, that certain
eigenstates |ε, i〉 coincidentally give γ0 |ε, i〉 = |ε′, j〉 with
ε′ ≈ ε. The summation over χ in Eq. (20) is introduced
to avoid such a false positive. Ideally, taking χ to be the
set of all Floquet eigenstates gives the best result. How-
ever, doing so not only becomes impractical at moderate
to large system sizes, but it is also unnecessary to yield
a convincing result. In particular, as long as χ samples
a considerable number of Floquet eigenstates, the false
positive contribution due to the above event will be neg-
ligibly small. In our investigations, we chose |χ| = 30

out of the full set of size |X| = 2NxNy . (c.f. |χ| = 8 in
Ref. [37]).

The above reasoning applies, mutatis mutandis, to the
PM case, with γ0, S0, s0 −→ γπ, Sπ, sπ, and (ε′ ≈ ε) −→
(ε′ ≈ ε + π). To summarize, s0 and sπ precisely quan-
tify the tendency of the system to exhibit the spectral
properties of Fig. 2 under γ0 and γπ respectively. That
is, s0 = 1 (sπ = 1) if a ZM (PM) exists and is exactly
represented by the operator γ0 (γπ).

For general parameter values, the exact expressions of γ0

and γπ, if they exist, are not readily available in closed
forms. As such, we will be using Eq. (9) for the eval-
uation of the above spectral functions. In particular, if
ZMs and PMs remain present at a given set of parameter
values, they are localized at a corner and are expected to
have considerable overlap with those in Eq. (9). There-
fore, parameter regimes which support ZMs (PMs) are
identified by a finite, but less than unity, s0 (sπ) value.

Since our system is characterized by four parameters,
evaluating the full dependence of the spectral functions
on h, Jx, Jy, and J ′y is very challenging. In the fol-
lowing, we choose to focus on varying J ′y and Jy. This
amounts to investigating the robustness of our analyti-
cally obtained corner ZMs and PMs against the presence
of coupling between the top/bottom chain and the rest of
the bulk. While one may, in principle, also consider the
spectral functions at varying J ′y and Jx, we choose not to
pursue it in this paper due to the limitations of our com-
puter. Specifically, even if both ZMs and PMs remain
present at a given set of parameter values, their localiza-
tion length in the x-direction (y-direction) depends on Jx
(J ′y and Jy). Therefore, to accurately capture the pres-
ence of ZMs and PMs at varying J ′y and Jx, a sufficiently
large Nx and Ny is necessary. In contrast, to achieve the
same at varying J ′y and Jy, only Ny is required to be
large. Nevertheless, to ensure that our choice of parame-
ters is as nontrivial as possible, we have chosen Jx and h
to deviate from their analytically solvable values in our
numerics below.

In Fig. 5, we present the numerically calculated spectral
functions for a wide range of parameter values Jy and
J ′y. The remaining parameters h and Jx are fixed at
values within the yellow regime in Fig. 3, but (slightly)
away from the analytically solvable point, i.e. we set
(h, Jx) = (1.01π/4, 1.01π/2). Due to the computer limi-
tations for the exact diagonalization of quantum many-
body systems and the constant need to exponentiate the
Hamiltonians, only three system sizes are considered in
Fig. 5: 2×4, 3×4 and 2×6. However, even with these sys-
tem sizes, it is already clearly observed that the increase
in Ny leads to a profile closer to the analytically obtained
phase diagram of Fig. 4. Moreover, consistent with our
previous analytical results, we observe that s0 ≈ sπ.

Finally, we also see that increasing Nx while fixing Ny
(2×4 vs 3×4) does not qualitatively affect the profiles of
the spectral functions appreciably. This is due to the ZMs
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FIG. 5. Spectral functions for (a,b,c) ZMs (s0) and (d,e,f) PMs (sπ). The system size is chosen as (a,d) 2× 4, (b,e) 3× 4, and
(c,f) 2 × 6. These spectral functions are evaluated over (Jy, J

′
y) ∈ [0, π] × [0, π], while the other system parameter values are

fixed at h = 1.01π/4 and Jx = 1.01π/2.

and PMs having a sufficiently small localization length
along the x-direction under the parameters h and Jx we
considered. In this case, hybridization between modes
near the left and right corners due to their overlap is
already negligibly small even at the smallest system size
Nx we considered. As a result, increasing Nx does not
yield further improvement.

IV. DISCUSSION

The Floquet operator associated with the two-time-step
Hamiltonian studied in this paper can be naturally im-
plemented with superconducting qubits. To this end, it
is instructive to first rewrite Eq. (7) as

U =

∏
i,j

Ux,i,jUy,i,j

∏
i,j

Uh,i,j

 , (22)

where

Ux,i,j = e−iJxσ
z
i,jσ

z
i+1,j

Uy,i,j = e−i
Jy+J′y+(−1)j(Jy−J′y)

2 σzi,jσ
z
i,j+1

Uh,i,j = e−ihσxi,j

(23)

can each be viewed as a quantum gate operation. In par-
ticular, the single-qubit rotation Uh,i,j can be natively
implemented with high fidelity in a typical superconduc-
tor circuit platform [111]. The remaining two-qubit gates
can be realized through a combination of single qubit ro-
tations and iSWAP gates (iSWAP= eiπ4 (σx⊗σx+σy⊗σy)),
both of which are native within the platform of Ref. [111].
Indeed, observe that

eiπ4 I⊗σ
x

iSWAP (−1)eiθσx⊗IiSWAPe−iπ4 I⊗σ
x

= eiθσz⊗σz ,
(24)

thereby realizing the desired ZZ unitary appearing both
in Ux,i,j and Uy,i,j .

Having established a means to realize our system with
superconducting qubits, we now discuss how its topolog-
ical signature, i.e., the presence of ZMs and PMs, can be
probed in the same setup. To this end, we first note the
following two observations. First, both ZMs and PMs are
localized near a system’s corner, and their exact expres-
sions can be obtained at special parameter values, i.e.,
Eq. (9). Second, note that a superposition of ZM and
PM, e.g., γ0 + γπ, exhibits 2T -periodicity due to the π
phase difference between γ0 and γπ. Specifically,

U2 (γ0 + γπ)
(
U†
)2

= U (γ0 − γπ)U† = γ0 + γπ . (25)
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These observations can in turn be exploited as follows.

Consider again the ideal parameter values presented in
Sec. II B, i.e., h = π/4, Jx = π/2, and J ′y = 0, so that
the ZMs and PMs are given by Eq. (9). It follows that
the corner operators σy1,1 and σz1,1 precisely represent the
superposition γ0 +γπ and γ0−γπ respectively. From the
argument above, σy1,1 and σz1,1 then turn into each other
over the course of a period. Therefore, by preparing an
initial state of the form |00 · · · 0〉z or |00 · · · 0〉y, i.e., the
+1 eigenstate of all σzi,j ’s or σyi,j ’s, the expectation value

〈Sz〉(nT ) ≡ 〈Unσz1,1U−n〉 alternates between 0 and +1.

Let us now turn to the case of more general parameter
values. Even if ZMs and PMs remain present, they no
longer take the special forms of Eq. (9). Moreover, at
finite system sizes, exact 0 and π/T quasienergy excita-
tions do not exist due to the unavoidable hybridization
among ZMs and PMs at different corners. However, pro-
vided that the ZMs and PMs remain well-localized near
a system’s corner, they are expected to yield consider-
able overlap with σz1,1. Consequently, the stroboscopic
evolution of 〈Sz〉(t = nT ) will still display the transient
oscillatory signature between values close to 0 and +1
which can be observed in experiments. For a given set
of parameter values at which the system still supports
the ZMs and PMs, the lifetime of such oscillations gener-
ally improves with an increment in the system size. On
the other hand, in the absence of ZMs and PMs, such
oscillations either exhibit extremely short and size inde-
pendent lifetimes, or may not even exist at all. A use-
ful metric for quantifying such oscillations is the power

spectrum 〈S̃z〉(Ω) = | 1L
∑L
m=`〈Sz〉e−

`ΩT
L |, obtained by

Fourier transforming 〈Sz〉. In particular, the closer 〈Sz〉
from exhibiting 2T -periodicity, the larger 〈S̃z〉(π/T ) will
be.

In Figs. 6(a,b), we numerically evaluate 〈Sz〉(nT ) at two
representative sets of parameter values, respectively cor-
responding to the presence and absence of both ZMs
and PMs. To simulate an actual superconducting cir-
cuit experiment, we evaluate such an expectation value
by preparing a quantum circuit that represents nT copies
of Eq. (22), running it via a Cirq package in Python [112],
measuring the qubit (1, 1) in the computational basis, re-
peating the previous steps 10000 times, then finally aver-
aging the measurement outcomes over these repetitions.
As expected, a strong 2T -period oscillation profile is only
observed in panel (a), further supported by a very large
Ω = π/T peak in the corresponding power spectrum plot-
ted in panel (c). In contrast, such an oscillation profile is
absent in panel (b) and its corresponding power spectrum
in panel (d) instead shows two peaks centered around,
but not at, Ω = π/T .

As the evaluation of time-evolution does not require ex-
act diagonalization, the above method enables us to ac-
cess a larger Hilbert space dimension as compared with
the spectral functions studies presented in Sec. III B. We
may thus utilize such a dynamical approach to carry out a
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FIG. 6. (a,b) Stroboscopic evolution of a spin-1/2 particle
residing at a corner of a lattice of size 4 × 4, i.e., 〈Sz〉(t),
taking |00 · · · 0〉z as the initial state. Panels (c,d) depict the
associated power spectrum. The parameter values are set to
2h = Jx = 1.01π/2, (a,c) (Jy, J

′
y) = (1.1π/2, 0.1π/2), (b,d)

(Jy, J
′
y) = (0.1π/2, 1.1π/2).

4 6 8 10
Ny

0.0
0.1
0.2
0.3
0.4
0.5

S z
(

=
/T

)

= 0.10
= 0.15
= 0.20
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FIG. 7. Finite-Size Scaling. Here 2h = Jx = 1.01π/2. We
have implemented various perturbations on Jy and J ′y away
from their ideal values (π/2, 0). These are indicated by the
parameter δ, such that the values of Jy, J

′
y used are (1+δ)π/2

and δπ/2 respectively. The lattice is of size 2×Ny.

finite-size scaling analysis with respect to several pertur-
bated Jy and J ′y values. To this end, we plot the subhar-
monic peak Ω = π/T of the power spectrum, which quan-
tifies the tendency of 〈Sz〉(t) to exhibit 2T -periodicity,
as a function of the relevant system size. In particular,
for the same reason as that elucidated in Sec. III B, we
focus on varying only Ny while fixing Nx = 2. Our re-
sults are then summarized in Fig. 7. There, we observe
that for a sufficiently small perturbation strength (e.g.

δ = 0.1), 〈S̃z〉(π/T ) is already near its maximum value
of 0.5 even at the smallest Ny we considered, so that
increasing the latter does not yield a significant effect.
However, at larger perturbations (e.g. δ = 0.20, 0.25),

〈S̃z〉(π/T ) ≈ 0 at Ny = 4, and it clearly increases with
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FIG. 8. The role of imperfections. Perturbations: (a,e) (Jy, J
′
y) = (1.1π/2, 0.1π/2) with symmetry-preserving perturbation∑Nx−1

i=1

∑Ny
j=1 spσ

z
ijσ

z
i+1,j+

∑Nx
i=1

∑Ny−1
j=1 spσ

z
ijσ

z
i,j+1, sp = 0.1, added to the Hamiltonian, and (b,f) (Jy, J

′
y) = (1.1π/2, 0.1π/2)

with symmetry-breaking perturbation
∑
i,j sbσ

y
ij , sb = 0.1, added to the Hamiltonian. Here the lattice is of size 4×4. Disorder:

(c,d) Stroboscopic evolution of 〈Sz〉(t) and (g,h) its corresponding power spectrum in the presence of (c,g) spatial disorder of
strength 0.05, averaged over 25 realizations and (d,h) temporal disorder of strength 0.05, also averaged over 25 realizations. In
panels (c,d,g,h), the means of the system parameters are set to h̄ = π/4, J̄x = π/2, J̄y = π/2, and J̄ ′y = 0 (see also the caption
in Fig. 9). Here the lattice is of size 3× 4.

Ny. This is consistent with our expectation that the lo-
calization length of our ZMs and PMs in the y-direction
depends on the perturbation δ. In particular, the satura-
tion in 〈S̃z〉(π/T ) is achieved when Ny is already larger
than such a localization length, and the overlap between
two opposite ZMs and PMs becomes negligible. That
〈S̃z〉(π/T ) does not saturate to the maximum value of
0.5 at large δ is attributed to the fact that our choice of
Sz is only approximately equal to the superposition of a
ZM and a PM at such general parameter values.

The above dynamical approach can further be exploited
to investigate the effect of perturbations on the system’s
topology. In particular, we shall consider two types of
perturbations, those that preserve and break the under-
lying Z2 symmetry of the system. In Figs. 8(a,e), we
find that the system demonstrates considerable robust-
ness against symmetry-preserving perturbations, i.e., 2T -
oscillation pattern persists up to t/T ≈ 100 under the
chosen perturbation strength. On the other hand, the
presence of symmetry-breaking perturbations proves to
be detrimental; ZMs and PMs are no longer pinned at
0 and π/T quasienergy excitations respectively, so their
superpositions no longer yield a relative phase difference
of π over a period. This in turn results in a trivial os-
cillation profile observed in Figs. 8(b,f), whose periodic-
ity depends sensitively on some system parameters and
is thus non-topological. These observations are consis-
tent with the expectation that our system represents a
symmetry-protected topological phase rather than a true
topologically ordered phase.

0.00 0.05 0.10 0.15 0.20
Disorder Strength, P

P

0.1

0.2

0.3

0.4

0.5

S z
(

=
/T

) Spatial
Temporal

FIG. 9. Disorder Scaling. Here the lattice is of size 3 × 4,
as in Figs. 8(c,d,g,h). Two types of disorder - spatial and
temporal - implemented for all h, Jx, Jy, J

′
y are shown sepa-

rately. Specifically, except for J ′y, each parameter is drawn

from the uniform distribution as P ∈ [P − δP, P + δP ] under
the same disorder strength δP/P ≡ c, where (h, Jx, Jy) =
(π/4, π/2, π/2). On the other hand, J ′y is taken from the uni-
form distribution [−cπ/2 + cπ/2], which is of the same size as
that of Jy.

Finally, we note that in actual experiments, the perfect
implementation of Eq. (22) is generally impossible. In
particular, any single- and two-qubit gate realizable with
the superconducting circuit platform of Ref. [111] gen-
erally has a high but less than unity fidelity, which in
turn results in a disordered version of our system. To
investigate how such imperfections potentially affect the
experimental observation of ZMs and PMs in our sys-
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tem, we explicitly carry out another dynamical study
of our system in the presence of spatial and temporal
disorder. In the implementation of spatial disorder, all
system parameters are made site-dependent, the values
of which are drawn from a uniform distribution, i.e.,
Pi,j ∈ [P̄ − δP, P̄ + δP ] for P = h, Jx, Jy, J

′
y. On the

other hand, temporal disorder amounts to keeping all
system parameters site-independent, but with values dif-
fering over different Floquet cycles. In this case, the
time evolution operator over n periods takes the form∏n
m=1 Um, where each Um satisfies Eq. (22) with all

system parameters drawn from a uniform distribution,
Pm ∈ [P̄ − δP, P̄ + δP ] for P = h, Jx, Jy, J

′
y. In both

cases of spatial and temporal disorder, δP/P is referred
to as the disorder strength. Our results, as summarized
in Figs. 8(c,d,g,h) and Fig. 9, demonstrate that ZMs
and PMs are in fact robust against both disorder effects.
Consequently, the dynamical approach proposed in this
section indeed serves as a feasible means to detect our
system’s topology.

V. CONCLUDING REMARKS

We have constructed a relatively simple interacting and
periodically driven 2D spin-1/2 system which supports an
anomalous symmetry-protected second-order topological
phase. The latter leads to the simultaneous presence of
corner localized ZMs and PMs that spontaneously break
the system’s underlying Z2 symmetry. Despite being a
genuinely interacting system, analytical topological char-
acterizations of these ZMs and PMs can be made in some
special cases. We further numerically computed the ap-
propriate spectral functions to determine the presence of
corner ZMs and PMs in the regime inaccessible by ana-
lytical treatment.

We have discussed the potential implementation of our
system in existing superconducting circuit platforms. In
addition, we also proposed a means to probe the signa-
ture of ZMs and PMs in such experiments by inspecting
the dynamics of a qubit residing at a corner. Finally,
we demonstrated the robustness of these ZMs and PMs
against symmetry-preserving perturbations and disorder
effects.

There are several interesting avenues for future work.
First, incorporating longer-range interactions in the
present system is expected to yield richer physics. In-
deed, many interesting phenomena, such as those ex-
pected from black-hole physics [113], disorder-free dis-
crete time crystals [114], and low-density parity-check
quantum error correction codes [115], have been proposed
to arise in strictly long-range systems. Second, replacing
the spin-1/2 Pauli matrices in the present system with
their higher-spin generalizations [35, 116] may lead to a
family of exotic Floquet Zn symmetry-protected topo-
logical phases. In particular, such systems are expected
to support the more elusive 2π/n modes [37] at their

corners, generalizing the corner PMs achievable in the
present system. Finally, the coexistence of ZMs and PMs
in the present system may be exploited for quantum com-
puting applications, e.g., in the spirit of [93, 117].
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Appendix A: Analytical Derivation of the Phase
Diagram

Here, we elaborate the detailed derivation of the phase di-
agram in Fig. 4 of the main text. To this end, we remind
the readers that we fix (h, Jx) = (π/4, π/2) throughout
this section.

Let us first set up some notation and terminology. Let f
be a function with domain A and codomain B. We shall
denote the space of all such functions as Func(A,B). If
f : A −→ B is a linear map on vector spaces, we shall
also write Func(A,B) as Hom(A,B). Next denote our
spin lattice as L = {(i, j) | i ∈ {1 . . . Nx}, j ∈ {1 . . . Ny}},
and its Hilbert Space as HL. At each site, the operator
space is spanned by the four standard Pauli Matrices
σ0/1/2/3, where as usual, the convention is σ1/2/3 ←→
σx/y/z and σ0 = I. The operator space of the lattice
OL = Hom(HL,HL) is then spanned by the (generalized)
Pauli Basis ∏

(i,j)∈L

σ
p(i,j)
i,j | p ∈ Func(L, {0, 1, 2, 3})


where the map p : L −→ {0, 1, 2, 3} assigns to each lattice
site a Pauli Matrix.

A general element of OL, i.e. a linear operator O acting
on L can be written as

O =
∑

p∈Func(L,{0,1,2,3})

cp
∏

(i,j)∈L

σ
p(i,j)
i,j

In particular, if O is Hermitian, cp are all real. An ex-
ample of such operators is our system Hamiltonian. A
priori, all elements of OL that do not commute with the
system’s Z2 symmetry S are possible candidates for 0/π-
modes. However, for such modes to be topological in
nature, they must be localized near a corner, i.e., cp con-
verges exponentially to zero at sites away from the cor-
ner. In the following, we specifically look for such corner-
localized operators, that further satisfy UOU† = O or
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UOU† = −O for ZMs or PMs respectively. To begin, we
define the superoperator F ∈ Hom(OL,OL) by

F : O −→ UOU†,

which represents the action of conjugating O by the
Floquet operator. By diagonalizing F , the ZMs and
PMs thus correspond precisely to the eigenvectors of F
with corresponding eigenvalues of +1 and −1 respec-
tively. Finally, we also define the shorthand notations
cy ≡ cos(2Jy), sy ≡ sin(2Jy), c′y ≡ cos(2J ′y), and
s′y ≡ sin(2J ′y) throughout this section.

We will now present our construction of a ZM and PM
localized near (1, 1). The same steps can be repeated
straightforwardly to construct ZMs and PMs near the
other three corners. Our strategy is to first evaluate how
F acts on a corner Pauli operator P11. Under the spe-
cial parameter values of h and Jx under consideration,
F (P11) only involves a linear combination of Pauli ma-
trices residing at sites (1, 1) and (1, 2). We then further
evaluate how F acts on each of these Pauli matrices, the
results of which can be written down as linear combina-
tions of Pauli matrices residing at the sites (1, 1), (1, 2),
and (1, 3). By repeating this procedure, we identify a set
of Pauli matrices residing at sites (1, 1), (1, 2), (1, 3), ...
, (1, Ny) that are closed under F . Restricting F to the
subspace spanned by the specific set of Pauli matrices
we have identified then yields a 2Ly× 2Ly matrix that is
possible to diagonalize. Finally, the ±1 eigenvalues and
eigenvectors of such a matrix provide information on the
existence of ZMs and PMs.

We will now mathematically elaborate the above argu-
ment. First, note that I11, σ

x
11 can be discarded immedi-

ately from the initial choice of P11, since [S, I] = [S, σx] =
0. On the other hand, applying F to σy11 and σz11 gives

F (σy11) = σz11

F (σz11) = c′yσ
y
11 − s′yσx11σ

z
12.

According to our outlined strategy, we then apply F to
σx11σ

z
12 to obtain F (σx11σ

z
12) = −cyσx11σ

y
12 + syσ

x
11σ

x
12σ

z
13.

We further evaluate F (σx11σ
y
12) and F (σx11σ

x
12σ

z
13) and so

forth. We see that there is a recurring pattern:

1. n odd (n+ 1 even)

F

[(
n∏
i=1

σx1i

)
σy1,n+1

]
=− c′y

(
n∏
i=1

σx1i

)
σz1,n+1

− s′y

(
n−1∏
i=1

σx1i

)
σy1n

F

[(
n∏
i=1

σx1i

)
σz1,n+1

]
=− cy

(
n∏
i=1

σx1i

)
σy1,n+1

+ sy

(
n∏
i=1

σx1i

)
σx1,n+1σ

z
1,n+2

2. n even (n+ 1 odd)

F

[(
n∏
i=1

σx1i

)
σy1,n+1

]
= cy

(
n∏
i=1

σx1i

)
σz1,n+1

+ sy

(
n−1∏
i=1

σx1i

)
σy1n

F

[(
n∏
i=1

σx1i

)
σz1,n+1

]
= c′y

(
n∏
i=1

σx1i

)
σy1,n+1

− s′y

(
n∏
i=1

σx1i

)
σx1,n+1σ

z
1,n+2

Note that the Pauli Operators involved are
propagated down vertically, and take on only
the form (

∏
σx)(σy/z). Finally, we also have

F ((
∏Ny−1
i=1 σxi )σzNy ) = −(

∏Ny−1
i=1 σxi )σyNy .

We identify that the set

B = {σy11, σ
z
11,

σx11σ
y
12, σ

x
11σ

z
12,

σx11σ
x
12σ

y
13, σ

x
11σ

x
12σ

z
13,

...

σx11...σ
x
1,Ny−1σ

y
1Ny

, σx11...σ
x
1,Ny−1σ

z
1Ny}

is closed under F . The restriction of F to the subspace
spanned by B can then be written (in matrix representa-
tion) as (taking Ny = 8, say)
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F =



· c′y −s′y · · · · · · · · · · · · ·
1 · · · · · · · · · · · · · · ·
· · · −cy sy · · · · · · · · · · ·
· −s′y −c′y · · · · · · · · · · · · ·
· · · · · c′y −s′y · · · · · · · · ·
· · · sy cy · · · · · · · · · · ·
· · · · · · · −cy sy · · · · · · ·
· · · · · −s′y −c′y · · · · · · · · ·
· · · · · · · · · c′y −s′y · · · · ·
· · · · · · · sy cy · · · · · · ·
· · · · · · · · · · · −cy sy · · ·
· · · · · · · · · −s′y −c′y · · · · ·
· · · · · · · · · · · · · c′y −s′y ·
· · · · · · · · · · · sy cy · · ·
· · · · · · · · · · · · · · · −1
· · · · · · · · · · · · · −s′y −c′y ·



. (A1)

Given a general linear combination of elements in B, x =
a1σ

y
11+b1σ

z
11+a2σ

x
11σ

y
12+b2σ

x
11σ

z
12+... , we let its column

vector representation be x:

x =



a1

b1
a2

b2
...

aNy
bNy


.

A ZM is then found by solving the eigenvalue equation
Fx = +x, i.e.



· c′y −s′y · · · · · · · · · · · · ·
1 · · · · · · · · · · · · · · ·
· · · −cy sy · · · · · · · · · · ·
· −s′y −c′y · · · · · · · · · · · · ·
· · · · · c′y −s′y · · · · · · · · ·
· · · sy cy · · · · · · · · · · ·
· · · · · · · −cy sy · · · · · · ·
· · · · · −s′y −c′y · · · · · · · · ·
· · · · · · · · · c′y −s′y · · · · ·
· · · · · · · sy cy · · · · · · ·
· · · · · · · · · · · −cy sy · · ·
· · · · · · · · · −s′y −c′y · · · · ·
· · · · · · · · · · · · · c′y −s′y ·
· · · · · · · · · · · sy cy · · ·
· · · · · · · · · · · · · · · −1
· · · · · · · · · · · · · −s′y −c′y ·





a1

b1
a2

b2
a3

b3
...
...
...
...
...

aNy
bNy



= +



a1

b1
a2

b2
a3

b3
...
...
...
...
...

aNy
bNy



. (A2)

Let us evaluate this matrix multiplication one term at a
time. First, the top boundary terms yield

c′yb1 − s′ya2 = a1

a1 = b1.
(A3)

In the bulk, we have two recurring sets of equations col-
ored by blue and red. When n is even (blue),

−cybn + syan+1 = an

−s′ybn−1 − c′yan = bn,
(A4)
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and when n is odd (red),

c′ybn − s′yan+1 = an

sybn−1 + cyan = bn.
(A5)

Finally, at the bottom of the lattice,

−bNy = aNy

−s′yaNy − c′ybNy = bNy .
(A6)

Equations (A4) and (A5) can be arranged into the matrix
equations

[
an
bn

]
=

[
s′y 0
c′y 1

]−1 [−1 c′y
0 −s′y

] [
an−1

bn−1

]
=

1

s′y

[
−1 c′y
c′y −1

]
︸ ︷︷ ︸

Meo

[
an−1

bn−1

]
(A7)

and [
an+1

bn+1

]
=

[
sy 0
−cy 1

]−1 [
1 cy
0 sy

] [
an
bn

]
=

1

sy

[
1 cy
cy 1

]
︸ ︷︷ ︸

Moe

[
an
bn

]
, (A8)

where n is an even number. The matrices Meo and
Moe are the transition matrices from the odd-to-even and
even-to-odd sites respectively. Combining the two equa-
tions above, we have[

an
bn

]
=

1

sys′y

[
cyc
′
y − 1 c′y − cy

c′y − cy cyc
′
y − 1

]
︸ ︷︷ ︸

Mo

[
an−2

bn−2

]
, (A9)

where Mo := MoeMeo and n > 1 is odd. For convenience,

we let xn denote [an, bn]T , i.e., xn = Moxn−2 = M
n−1

2 x1.

Since eigenvectors are unique up to a scaling parameter,
we can fix a1 = 1. The second line of Eq. (A3) then
yields b1 = 1 too. Observe that x1 = [a1, b1]T = [1, 1]T

is an eigenvector of M with eigenvalue

λ =
1

sys′y
(cy + 1)(c′y − 1).

Thus

||xn||2 = xTnxn = xT1 (M
n−1

2 )TM
n−1

2 x1

= xT1 λ
n−1

2 λ
n−1

2 x1

= (λ2)
n−1

2 ||x1||2
n→∞−−−−→ 0

if and only if λ2 < 1.

That is, since a physical corner ZM is obtained if an and
bn converge exponentially to zero away from n = 1, the
following condition must hold:

λ2 =
1

(sys′y)2
(cy + 1)2(c′y − 1)2 =

(1 + cy)(1− c′y)

(1− cy)(1 + c′y)
< 1.

This is equivalent to the condition cy < c′y, i.e.
cos(2Jy) < cos(2J ′y), as claimed in the main text.

At this point, the analysis above is not entirely complete
since Eq. (A9) only relates an and bn with odd n. Nev-
ertheless, a similar recurrence matrix equation involving
an and bn with even n can be easily constructed. In
this case, the base point x2 can be obtained by applying
Eq. (A7). A similar analysis as above then yields the
same condition for the convergence of a ZM. Thus, the
analysis for corner ZMs is complete.

A similar procedure can be applied to find the condition
for the existence of PMs. We now solve the eigenvalue
equation for Fx = −x instead. A similar recurrence
matrix equation of the form xn = Moxn−2 is obtained,
where we now have

Mo =
1

sys′y

[
cyc
′
y − 1 cy − c′y

cy − c′y cyc
′
y − 1

]
, x1 =

[
1
−1

]
.

By noting that the base point x1 is again an eigenvector
of Mo, the same analysis as above leads to the conclusion
that cos(2Jy) < cos(2J ′y) is again both a necessary and
sufficient condition for corner PMs to exist.

To show that we only have corner modes, i.e. there are
actually no modes along the edges of the lattice, we again
employ the same strategy. Without loss of generality, let
us begin with operators restricted to the lattice site (1, 2)
on the edge. As before, (h, Jx) = (π/4, π/2), and here
we further set J ′y = 0. Evaluating F :

F (σy12) = σz12

F (σz12) = cyσ
y
12 − syσx12σ

z
13

F (σx12σ
y
13) = −cyσx12σ

z
13 − syσ

y
12

F (σx12σ
z
13) = −σx12σ

y
13.

Thus with respect to the basis {σy12, σ
z
12, σ

x
12σ

y
13, σ

x
12σ

z
13},

the corresponding matrix analogous to that in A1 is sim-
ply

F =

0 cy −sy 0
1 0 0 0
0 0 0 −1
0 −sy −cy 0


(note that there is no endless propagation down the lat-
tice). Solving for the characteristic equation det(λI −
F ) = 0 gives λ4−2cyλ

2+1 = 0. Thus we see that λ = ±1
are solutions if and only if cy = 1, i.e. Jy = 0/π. That
is, a 0 (π) mode, which corresponds to λ = +1 (λ = −1),
only exists at site (1,2) in the case where all the horizontal
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chains are effectively decoupled (at Jy = π, the vertical
coupling only introduces a phase factor of −1 to all hori-
zontal chains in the bulk), and the system indeed reduces
to Ny independent 1D chains. However, in the presence
of even the slightest nontrivial coupling Jy 6= 0, π, such
a 0 (π) mode is no longer present. The same is true if
J ′y 6= 0 instead. This is consistent with the intuition elu-
cidated in the main text that the coupling between two
neighboring 1D chains in the bulk causes these edge 0
and π modes to hybridize and disappear, leaving only
those at the corners that are truly topological.

Appendix B: Evaluation of ν0 and νπ

First we define the unitary operator

R = e
−i π

3
√

3
(σx+σy+σz)⊗I

e−i
π
4 σ

xσz . (B1)

The transformed BdG Hamiltonians H̃1,BdG(k) =

RH1,BdG(k)R† and H̃2,BdG(k) = RH2,BdG(k)R† re-
spect a chiral symmetry under C = σz ⊗ I. In this case,
the F (k) matrix defined in the main text can be written
in the form

F (k) = e−i
H2,BdG(k)

2 e−i
H1,BdG(k)

2 =

[
A(k) B(k)
C(k) D(k)

]
,

(B2)
where A(k), B(k), C(k), and D(k) are 2×2 matrices. In
particular,

B(k) =
1√
2

[
−cy −sysk − isyck
−ic′y −s′y

]
D(k) =

1√
2

[
−s′y −ic′y

−sysk + isyck cy

]
,

(B3)

where now we use the shorthand notation cy = cos(Jy),
sy = sin(Jy), c′y = cos(J ′y), and s′y = sin(J ′y). Note
that this is different from the shorthand notation used in
Appendix A.

According to Ref. [110], ZMs and PMs can re-
spectively be evaluated from the winding numbers
ν[B] = 1

2πi

∫ π
−π dk

d
dk ln [det B(k)] and ν[D] =

1
2πi

∫ π
−π dk

d
dk ln [det D(k)]. We now evaluate these in-

tegrals analytically.

Consider det B(k). This function of k can be viewed as
a composition of functions f and z, where f : C −→ C is
a complex function and z : R −→ C traces a path in the
complex plane parametrized by k. That is, det B(k) =
(f ◦ z)(k). Here, f(z) = z0,B + z, where z0,B = cys

′
y and

z(k) = syc
′
ye
−ik. We have ignored the 1

2 -factor, which

FIG. 10. The winding number ν[B] is only nonzero if the
integration contour encloses the origin.

does not affect the integral. So,

ν[B] =
1

2πi

∫ π

−π
dk

d

dk
ln [det B(k)]

=
1

2πi

∫ π

−π
dk

d

dk
ln f(z(k))

=
1

2πi

∫ π

−π

f ′(z(k))

f(z(k))
z′(k)dk

=
1

2πi

∮
C

f ′(z)

f(z)
dz,

(B4)

where C is the (negatively oriented) contour centered at
the origin and with radius |syc′y|. Next we apply the Ar-
gument Principle from Complex Analysis, which asserts
that so long f is meromorphic within C, the value of the
integral above is given simply by Z − P , where Z,P are
respectively the number of zeros and poles of f within C.

Now clearly f is analytic everywhere, so there are no
poles. On the other hand, there is a single zero if z0,B ∈
G0 ≡ {z | |z| < |syc′y|}, i.e., the integration contour
encloses the origin (see Fig. 10), and no zero otherwise.
Therefore, we find

ZMs exist⇐⇒ ν[B] = 1⇐⇒ z0,B ∈ G0

⇐⇒ |cys′y| < |syc′y|
⇐⇒ |tan Jy| > |tan J ′y|
⇐⇒ cos 2Jy < cos 2J ′y,

(B5)

where the last equivalence was obtained using the
trigonometric identity tan2 θ + 1 = sec2 θ.

To determine the presence of PMs, we repeat the same
analysis above to find ν[D]. In particular, noting that
det D(k) = z0,D + z(k), where z0,D = −cys′y and z(k) =

−syc′yeik, we obtain

PMs exist⇐⇒ ν[D] = 1⇐⇒ z0,D ∈ Gπ(= G0)

⇐⇒ |cys′y| < |syc′y|
⇐⇒ |tan Jy| > |tan J ′y|
⇐⇒ cos 2Jy < cos 2J ′y.

(B6)
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