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Abstract.
We present a simple model of composite particle tunnelling through a rectangular

potential barrier in presence of magnetic field. The exact numerical solution of the
problem is provided and the applicability to real physical situations is discussed. Some
qualitative features of tunnelling with no magnetic interaction are retained, but some
new ones are also observed. The resonance peaks in transmission spectrum generally
do not reach 100% transmission probability when the magnetic field is turned on. We
observe splitting and in some cases widening of transmission probability peaks. When
the width b of area with magnetic field is large, we observe oscillations of spin-flip
probability with energy and b which are caused by Larmor precession of spin about
the vector of magnetic field. For some values of relevant parameters we also observe
significant increase of tunnelling probability for low energies in the single particle case.
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1. Introduction

Quantum tunnelling of systems with internal structure is a process that occurs frequently
in many physical contexts. In case of particles without internal structure, resonant
tunnelling through double-humped potential barrier is a well-known phenomenon with
applications such as resonant tunnelling diodes. Tunnelling of two particles in a bound
state was first studied by Zakhariev and Sokolov [1]. Saito and Kayanuma [2] studied
tunnelling of a two particles, with infinite square well binding potential, through a
rectangular barrier, numerically and showed that resonant tunnelling of composite
particles can occur in presence of a single potential barrier. Saito and Kayanuma also
studied the tunnelling of a Wannier exciton through a single barrier heterostructure [3]
and showed similar effects as in [2]. Their work has been expanded by investigating more
general binding potentials and barriers by Pen’kov [4] [5], Flambaum and Zelevinsky [6],
Goodvin and Shegelski [7] [8], and Bacca and Feldmeier [9]. Bertulani et al. [10] showed
that tunnelling probability can be enhanced for systems with spin-like internal structure
which can transition between states of different energy.

Examples of composite particle tunnelling phenomena are tunnelling of molecules
[2] [7] [8] [11] [12] [13] [14] [15] [16] [17] [18], fusion of loosely-bound nuclei [19] [10] [20]
[21] [6] [9], tunnelling of excitons [3] [22] [23] [24] and tunnelling of Cooper pairs [6].
There are experimental studies of exciton tunnelling which show that excitons tunnel
as a whole [25] [26] and resonant tunnelling behaviour is also observed [26].

In this paper, we expand on previous works by considering tunnelling of composite
particle with two internal degrees of freedom: binding interaction between the particles
and spin. It can be expected that tunnelling of systems with two or more particles
with spin, in presence of a magnetic field will occur in various situations, such as fusion
of loosely-bound nuclei and tunnelling of excitons. Experimental studies of exciton
tunnelling in presence of the magnetic field have already been conducted [27]. The
objective of this paper is to investigate this phenomenon using a simple model, and
to expand the existing results by examining the effects of an additional spin degree of
freedom on composite particle tunnelling. In our model, we consider a one-dimensional
two-particle system where one of the particles has spin 1/2, tunnelling through a
rectangular potential barrier. The interaction between particles is modelled as an
infinite potential well, as in [2], while the magnetic field is homogeneous. Although the
results are obtained within this simple model, we expect that their qualitative properties
would be retained in a more sophisticated three-dimensional model with realistic binding
potential, as in case of composite particle tunnelling without spin.
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Fig. 1. Quantum tunnelling of a composite particle through a rectangular potential
barrier

2. Description of the problem

As in Saito and Kayanuma [2] we consider a one dimensional two-particle system
tunnelling through a rectangular barrier of width a, as in Figure 1. For a large enough
barrier quantum tunnelling will occur with some probability which we will calculate.
Each of the particles has a mass m and is point-like. One of the particles has spin 1/2.
The potential of intrinsic interaction is modelled as an infinite square potential well so
the distance of the particles is confined in range [l−d/2, l+d/2] with an average distance
of l. The strength of binding can be controlled by the parameter d. The magnetic field
is confined to a region of width b and has the same direction (the x-direction) as the
velocity of the particle.

The interaction between particles is given as:

U(x) =

{
0, l − d/2 ≤ x ≤ l + d/2

∞, otherwise
(1)

The potential barrier is defined as:

V (x) =

{
V0, |x| ≤ a/2

0, otherwise
(2)

The magnetic interaction is defined as:

f(x) =

{
u, |x| ≤ b

0, otherwise
(3)
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(a) (b)

(c)

Fig. 2. Diagrams of the potential-barrier structure are shown in (a) and (b). For (a)
l − d/2 > a and (b) l − d/2 < a. In the dotted area in (a) W (x, y) = V0, shaded area
W (x, y) = 2V0 and W (x, y) = 0 otherwise. xL = −(2a+ 2l+d)/4, xR = (2a+ 2l+d)/4.
Diagram in (c) shows the structure of the magnetic interaction potential. In the dotted
area of (c) f(x− y/2) = 2u

d
and f(x− y/2) = 0 elsewhere.

The positions of particles are x1 and x2. We define the centre of mass coordinate
as x = (x1 + x2)/2 and the relative coordinate y = x2− x1− l+ d/2. Now we can write
the Hamiltonian of the system:

H = − h̄2

4m

∂2

∂x2
− h̄2

m

∂2

∂y2
+ U(y) + V (x− y/2) + V (x+ y/2)− f(x− y/2)σx (4)

Tunnelling of a composite particle through a single square potential barrier is
equivalent to successive tunnelling through two potential barriers [2]. The potential
is equal to V0 in the regions where 2x − a − l + d/2 ≤ y ≤ 2x + a − l + d/2 and
−2x − a − l + d/2 ≤ y ≤ −2x + a − l + d/2. Where these regions coalesce (which
happens if l− d/2 < a) the potential is 2V0. We define the potential W (x, y) with these
properties.
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Hence, the Schrödinger equation is written as:

− h̄2

4m

∂2

∂x2
Ψ(x, y)− h̄2

m

∂2

∂y2
Ψ(x, y) + U(y)Ψ(x, y)+

+W (x, y)Ψ(x, y)− f(x− y/2)

(
0 1

1 0

)
Ψ(x, y) = EΨ(x, y)

(5)

We now expand the wave function Ψ(x, y) in the basis of spin in the z-direction
and eigenfunctions of an infinite potential well:

Ψ(x, y) =

(∑∞
j=1 ψj1(x)φj1(y)∑∞
j=1 ψj2(x)φj2(y)

)
=
∞∑
j=1

(
ψj1(x)

ψj2(x)

)
φj(y) (6)

where

φj(y) =

√
2

d
sin

(
jπ

d
y

)
(7)

is the solution of the equation:

− h̄2

m

d2

dy2
φj(y) = εjφj(y) (8)

with εj = (h̄/m)(jπ/d)2 and the boundary condition φj(0) = φj(d) = 0.

By substituting the wave function in the Schrödinger equation by its expanded
form, and then multiplying by φ∗i , we obtain:

∞∑
j=1

− h̄2

4m
φ∗iφj

d2

dx2

(
ψj1

ψj2

)
− h̄2

m

(
ψj1

ψj2

)
φ∗i

d2

dy2
φj +

(
ψj1

ψj2

)
φ∗iU(y)φj+

+

(
ψj1

ψj2

)
φ∗iW (x, y)φj − φ∗i f(x− y/2)

(
ψj2

ψj1

)
φj =

∞∑
j=1

E

(
ψj1

ψj2

)
φ∗iφj

(9)

We now integrate the whole equation from −∞ to ∞ over the variable y and
by using the orthonormality of eigenfunctions

∫∞
−∞ φ

∗
i (y)φj(y)dy = δij, we obtain the

following equation by index:

− h̄2

4m

d2

dx2

(
ψi1

ψi2

)
+ (εi − E)

(
ψi1

ψi2

)
+
∞∑
j=1

(
ψj1

ψj2

)∫ ∞
−∞

φ∗iW (x, y)φjdy−

−
∞∑
j=1

(
ψj2

ψj1

)∫ ∞
−∞

φ∗i f(x− y/2)φjdy =

(
0

0

) (10)
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We now define the following functions:

Wij(x) =

∫ ∞
−∞

φ∗iW (x, y)φjdy (11)

Fij(x) =

∫ ∞
−∞

φ∗i f(x− y/2)φjdy (12)

Functions W (x, y) and f(x − y/2) are equal to zero outside of the regions [0, d]

and [2(x − b), 2(x + b)] respectively. Thus, the he real limits of the above integrals
can be determined from Figures 2a and 2b for equation (11), and from Figure 2c for
equation (8). After substituting the identity (7) into the equations, they can be solved
analytically.

After some algebraic manipulation, and by defining the wave-number kj =

2
√
m(E − εj)/h̄, the equations become:

d2

dx2

(
ψi1

ψi2

)
+ k2j

(
ψi1

ψi2

)
− 4m

h̄2

∞∑
j=1

(
ψj1Wij(x)− ψj2Fij(x)

ψj2Wij(x)− ψj1Fij(x)

)
=

(
0

0

)
(13)

From now on we will call the k-th eigenstate of the internal mode channel k. So,
for an incident wave with energy E, where εn < E < εn+1, propagating states in the
region out of the potential barrier can exist for channels up to n (for both spin up and
spin down states). The reflection amplitude Rln and the transmission amplitude Tln for
the incident wave coming in channel n and going out in channel m are calculated using
the Method of Variable Reflection Amplitude as shown in [28]. For an equation of the
form:

d2

dx2
ψn(x) + k2nψn(x)−

∞∑
m=0

vnm(x)ψm(x) = 0 (14)

which can be easily adjusted to solve our vector equation (13), by defining the
function vnm(x) accordingly and mapping the index m over both our pairs of indices
j1 and j2, thus transforming our system of vector equations (defined by index) with
equation (13), into a system of scalar equations and doubling their number.

If a plane wave form approaches the barrier from the left, in the l-th channel, the
formal solution of the equation (14) is:

ψln(x) = eiknxδln +
∞∑

m=0

∫ ∞
−∞

eikn|x−t|vnm(t)ψlm(t)dt (15)
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From [28], the reflection an transmission amplitudes can be written in the following
form:

Rln =
1

2ikn

∞∑
m=0

∫ ∞
−∞

eikntvnm(t)ψlm(t)dt (16)

Tln = δln +
1

2ikn

∞∑
m=0

∫ ∞
−∞

e−ikntvnm(t)ψlm(t)dt (17)

and further transformed into a system of differential equations:

d

dx
Rln(x) = −

∞∑
j=0

1

2ikj

(
eikjxδjn +Rjn(x)e−ikjx

) ∞∑
m=0

vjm(x)
(
eikmxδlm +Rlm(x)e−ikmx

)
(18)

d

dx
Tln(x) = −

∞∑
j=0

1

2ikj
Tjn(x)eikjx

∞∑
m=0

vjm(x)
(
eikmxδlm +Rlm(x)e−ikmx

)
(19)

with the following boundary conditions:

Rln(x→∞)→ 0, Rln(x→ −∞)→ Rln (20)

Tln(x→∞)→ δln, Tln(x→ −∞)→ Tln (21)

By solving these equations for permitted channels (the sums will go from 0 to
n instead of ∞) and in the specified range for the coordinate x (the centre of mass
coordinate in range [−(2a+ 2l+ d)/4, (2a+ 2l+ d)/4]), the probability of reflection and
transmission from channel l to channel n can be calculated as follows:

Pr,l→n =
kn
kl
|Rln(−∞)|2 (22)

Pt,l→n =
kn
kl
|Tln(−∞)|2 (23)

These expressions can be generalised to take into account the different spin states
for each channel as explained before. Thus, there are 2n possible incoming states and
2n possible outgoing states, and the probabilities for every combination of those states
can be calculated accordingly.
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(a) (b)

(c) (d)

Fig. 3. The graphs show transmission probabilities from the first channel for a = 1,
b = 1, d = 5, l = 5 and (a) u = 0, (b) u = 0.05, (c) u = 0.15, (d) u = 0.05. P++

t,11 denotes
a particle incoming in spin up state from channel 1 and outgoing in the same state, P+−

t,11

denotes a particle incoming in spin up state from channel 1 and outgoing in spin down
state. The probabilities P−−t,11 and P−+t,11 are the same as P++

t,11 and P+−
t,11 , respectively. The

last graph shows the lowest energy peak of graph (b) in greater detail.

3. Results

Equations (18) and (19) are solved numerically using the Runge-Kutta method of order
8 for various values of parameters: width of the potential barrier a, strength of the
magnetic field u and mean distance between the particles l, width of the potential well
d and width of the area where the magnetic field is present b. In all cases we used fixed
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(a) (b)

Fig. 4. The graphs show transmission probabilities around the lowest energy peak for
the same parameters as in Figure 3a, except that for graph (a) u = 0.001 and for (b)
u = 0.005.

values of parameters: m = 1, h̄ = 1, V0 = 1. Python code that calculates transmission
and reflection probabilities as functions of energy is provided in the appendix.

We checked the convergence of numerical results by reducing the maximum step
used in the Runge-Kutta algorithm by a factor of 5. As expected, the results for spin
up and spin down are symmetric and the sum of all probabilities of transmission and
reflection for any given entry channel is 1.

In Figure 3a we reproduce one of the results shown in [2] when the magnetic field
is absent, using the variable reflection amplitude method. In Figures 3b and 3c effects
of the magnetic field are observed with other parameters kept the same as in Figure 3a.
Resonances are wider and do not reach 100% transmission probability. It is visible that
peaks are divided due to splitting of energy levels in presence of the magnetic field. This
is more pronounced for the lowest energy peak. However, the splitting of the second
peak is also clearly visible for stronger magnetic fields. As shown in Figure 3d spin
transition is enhanced in the area of resonances.

In Figure 4 we examine the case of weak magnetic fields in the area of lowest
energy resonance, wtih b = a. Bertulani et al. conclude in [10] that an extremely
strong magnetic field is necessary to observe significant effects in the single particle
case. If we examine composite particle tunnelling such effects are visible for much
weaker fields in the area of resonances. In Figure 4a the lowest energy resonance peak
at u = 0.001 already does not reach 100% transmission probability as it does when there
is no magnetic field present in Figure 3a. Figure 4b shows that splitting of energy levels
happens for magnetic fields as low as u = 0.005.

In Figure 5 we show the effect of varying width of the area where the magnetic field
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(a) (b) (c)

(d) (e) (f)

Fig. 5. The graphs show transmission probabilities from the first channel for a = 1,
d = 5, l = 3, u = 0.05 and (a) b = 1, (b) b = 3.5, (c) b = 8, (d) b = 15, (e) b = 100, (f)
b = 200.

is present. In the limit of small values of b the results tend towards the case when there
is no magnetic field, i.e. the transmission probabilities P+−

t,ij tend to zero, which is to be
expected. However, as can be seen from the progression of results in Figures 5a-5f, as
the range of the field expands, P+−

t,ij and P++
t,ij exhibit oscillatory behaviour that will later

be examined more closely. The graph of total transmission probability retains roughly
the same shape. There are also smaller oscillations on the curves visible in Figures 5e
and 5f.

In Figure 6 we can see a situation with multiple open channels. A discontinuity
is observed in P++

t,11 when the second channel becomes available. This is consistent
with results from previous works [7]. We also observe that the total probability of
transmission is reduced when higher channels open up, as in the case with no magnetic
interaction [7].

In Figure 7 the case when the dimensions of the particle are smaller than dimensions
of the barrier is examined. When l and a are of the same order of magnitude the effects
of internal structure are clearly seen and in the case when l << a the single particle
limit is reproduced, as expected.
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(a) (b)

(c) (d)

Fig. 6. The graphs show transmission probabilities for a = 1, d = 7, l = 5, b = 1 and
(a) u = 0.05 from the first channel, (b) u = 0.15 from the first channel, (c) u = 0.05

from the second channel, (d) u = 0.15 from the second channel. The second channel
opens at the energy of around 0.6 units for the given parameters.

In Figure 8 we show the effects of widening of the magnetic field in the single
particle limit. There are two distinct oscillatory behaviours present for transmission
probabilities with and without spin-flip, with respect to energy. The one with larger
period doubles its frequency when the width of the field is doubled and this behaviour
continues for every value of b. This effect can be explained by Larmor precession.
Smaller oscillations also shorten their period when b increases. We can see that the
overall transmission probability Pt,11 = P++

t,11 + P+−
t,11 remains roughly the same as in the

single particle case (Figure 7b) invariant to b, except for the small oscillations visible
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(a) (b)

Fig. 7. The graphs show transmission probabilities from the first channel for a = 1,
b = 1 (a) d = 0.5, l = 0.5, u = 0.05, (b) d = 0.05, l = 0.05, u = 0.05.

(a) (b)

Fig. 8. The graphs show transmission probabilities from the first channel for a = 1,
u = 0.05, d = 0.05, l = 0.05 (a) b = 100, (b) b = 200.

along the green line. There are also beats present in Figure 8b along the graph of total
transmission probability which indicate a superposition of two oscillatory behaviours.

Finally, in Figure 9 we can see the remarkable properties of oscillatory behaviours
in the single particle case when the ratio b/a is very large. There is a peak in total
transmission probability for very low energies and it is not isolated, but accompanied
by a large number of similar peaks, as shown in a more detailed look of the low energy
region in Figure 9b. This behaviour, however is highly dependent upon the ratio b/a
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(a) (b)

Fig. 9. The graphs show transmission probabilities from the first channel for a = 0.3,
u = 0.05, l = 0.05, d = 0.05, b = 100 for different energy ranges.

and is not always enhanced by increasing it, however, for lower values it is always less
pronounced.

4. Discussion

The results show that the additional magnetic interaction has several noticeable effects
on tunnelling probability. When dimensions of the composite particle are larger than
dimensions of the barrier, the effects of magnetic field and spin are most clearly observed
around the transmission probability resonances. In case with no magnetic field, the
resonances reach 100% transmission probability, which is no longer the case when the
magnetic field is turned on. Also, with the magnetic field present, the resonance peaks
split and each forms two peaks close to each other. The structure of these peaks is
generally nearly symmetric and depends on values of parameters u and b, as seen in
Figures 3, 5 and 6a. In realistic physical situations we can expect that the interaction
with magnetic field will either be present in the whole space, i.e. an area much larger
than the potential barrier, or localised in the area of the potential barrier.

When we set the width of area with magnetic field b = a ∼ 1, effects of magnetic
field are relatively small for field strengths u < 10−2V0, which can be expected in most
situations. The splitting of transmission probability peaks can be observed if u ∼ 10−2V0
or larger, but even with u ∼ 10−3V0 the lowest energy transmission probability peak no
longer reaches 1. Probability of transmission with spin-flip P+−

t is much larger relatively
to P++

t in the resonance area. With the opening of higher channels, the structure of
plots becomes more complicated, but no qualitatively new effects are observed.

In cases with l < a, the magnetic field has small effects on total tunnelling
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probability, except for very large values of u ∼ V0 which are not realistic, or very large
values of b. Generally, the effects of magnetic field are more pronounced for smaller
values of a which is expected because when the barrier is smaller, small splitting of
energy levels becomes more important. The effects of internal structure are observed
when l < a if l and a are of the same order of magnitude because the effective barrier as
seen by particle’s centre of mass is different than in the single particle case: the barrier
effectively becomes wider and lower.

If the magnetic field is present in a wide area (b >> a), several interesting effects can
be seen. The effects of magnetic interaction can be observed with field strength which is
an order of magnitude smaller than in case b = a. The splitting of resonances becomes
more pronounced, and the new peaks are farther apart on the energy scale. Energy
difference between the peaks is approximately 2u, which is equal to the energy difference
between the eigenstates of spin in the x-direction. Total transmission probability does
not change significantly compared to the case when b = a, but probability of spin-flip
does. When we calculate transmission and reflection probabilities for large values of b,
the obtained results do not converge to a constant value for each probability with given
parameters. Instead, the results for P++

t and P+−
t exhibit a sort of oscillatory behaviour

when we examine the results for different values of parameter b, as seen in Figures 5,
8 and 9. This behaviour is observed even more clearly when we examine the single
particle limit, with l << a. In that limit, the oscillations of spin-flip probability with
energy are also clearly seen. An additional effect possible for some values of parameters
in the single particle case is seen in Figure 9 where we observe multiple transmission
probability peaks in the low energy range which can significantly increase the total
tunnelling probability.

Perhaps the most interesting effect of magnetic interaction are these oscillations of
spin-flip probability. They are caused by Larmor precession of spin. We expanded the
composite particle spin in the σz eigenbasis, and the magnetic field is pointing in x-
direction. Because of that choice, we can set ~A = 0 along the path of composite particle
which simplifies the Schrödinger equation, and we also have transitions from spin-up
to spin-down state and vice versa. Spin-up and spin-down states in z-direction are not
the eigenstates of σx, so Larmor precession of spin happens when the magnetic field
is present. We solved the time-independent Schrödinger equation, but we can always
think of its solution as a limit of a time-dependent wave packet initially travelling in +x-
direction incident on a potential barrier and area with magnetic field. It is clear that the
total angle of spin rotation is proportional to time spent in the area with magnetic field,
which means it is proportional to b when b >> a, i.e. the only interaction is magnetic
and kinetic energy are constant for most of the time spent travelling through the field.
Also, for different energies, time of travel through the area with field is different, so the
total angle of rotation is different. A nice confirmation of this is halving of the "period"
of oscillations in energy when b is doubled in the single particle case, as seen in Figure
8.

We give no direct explanation for smaller oscillations seen in Figures 5e, 5f, 8 and
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9. They appear when the ratio of width of magnetic field and width of potential barrier
becomes large enough, roughly of the order of magnitude 102, and when other effects (i.e.
resonant tunnelling) become less noticeable. Hence, they are best visible in the single
particle limit, but can also appear when the compositeness of the particle is relevant
(Figures 5e and 5f). In some cases, those oscillations can significantly influence total
tunnelling probability as showed in Figure 9. This behaviour is reminiscent of some sort
of "nutation" superposed on Larmor precession, however, this effect is yet to be studied
more closely.

We also see that the effects of magnetic interaction are the greatest around
transmission resonances. In some cases, apart from splitting, widening of resonances
is also observed. The most likely explanation for this is that the coupling between the
magnetic interaction, the internal interaction of the particle (infinite potential well in
this case) and the interaction with potential barrier has the strongest effects when the
coupling between the latter two interactions produces transmission resonances.

As noted in the introduction, tunnelling of composite particles occurs in various
physical contexts, and this simple model should be qualitatively applicable to those
situations where splitting of energy levels in magnetic field is large enough. If we take a
particle with magnetic moment µB as an example, with V0 and a of order 10−1 eV and
nm, respectively, for magnetic field strength of 1 T we get u ∼ 10−4 eV. This means that
the effects of magnetic field presence could be observable for realistic field strengths and
barriers for particles with large enough magnetic moment, for example in experiments
with exciton tunnelling and possibly in some molecule tunnelling situations. The effects
should be more apparent if splitting of energies is very large, example of which is the
giant Zeeman effect.

5. Conclusion

We have studied tunnelling of a composite particle in presence of a magnetic field.
The exact numerical solution is provided within the context of a simple model we
used. Further work could include studying more realistic binding potentials, three-
dimensional version of the problem, and magnetic field pointing in a general direction.
These expansions would make the problem significantly more complicated because
orbital angular momentum and presence of a magnetic vector potential would have
to be taken into account. However, we expect that qualitative features of our results
would be retained as shown in e.g. [8] for the case of composite particle tunnelling
with no magnetic field, but it is also possible that additional degrees of freedom would
significantly alter the results. Effects originating from Larmor precession and splitting
of energy levels in magnetic field would certainly be present in more realistic models, but
because of complexity of the results it is hard to predict whether additional translational
and rotational degrees of freedom would result in some new effects which are not present
in our one-dimensional case. A topic of further research could also be the explanation
of smaller oscillations which are noticed when b >> a.



Tunnelling of a composite particle in presence of a magnetic field 16

This work shows that, based on results obtained within a simple framework, the
main effects of additional magnetic interaction on composite particle tunnelling are
splitting and in some cases widening of resonance transmission probability peaks which
do not reach 100% transmission probability when the magnetic field is turned on, and
oscillations of spin-flip probability with energy and width of the magnetic field. It
can also be expected that these effects could be observed in realistic experiments with
exciton tunnelling, where composite particle tunnelling in presence of a magnetic field
has already been studied. When the splitting of energy levels caused by magnetic field
is more than 4 orders of magnitude smaller than barrier height, with realistic barrier
widths, the magnetic interaction can be neglected, which would be the case in situations
from nuclear physics.

We have also given a physical explanation for the fact that probabilities of
transmission P++

t and P+−
t do not converge to a single value in the limit b >> a. It is

interesting that spin-flip probability depends strongly on width of an area with magnetic
field presence, independently of ratio b/a. This is a clear manifestation of Larmor
precession in a time-independent model. The splitting of transmission probability peak
is expected as a consequence of splitting of energy levels in a magnetic field. The
fact that new peaks do not reach 100% transmission probability can be explained as a
consequence of the specific nature of coupling between magnetic interaction with other
interactions, so the conditions for 100% transmission probability are no longer satisfied
when it is present.
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6. Appendix

6.1. Python code for generating graphs seen in the figures

from s c ipy . i n t e g r a t e import so lve_ivp
import math
import cmath
import matp lo t l i b . pyplot as p l t
import numpy as np

a = 1 .
b = 1 .
d = 5 .
l = 5 .
u = 0.05
dot = 800
ran = 1

h = 1 .
m = 1 .
V0 = 1 .
konst = (4 ∗ m / (h ∗ h ) )

def W_funk(W0, g1 , g2 , n1 , n2 ) :
i f n1 == n2 :

return W0 ∗ ( ( g2 / d) − (1 / ( n1 ∗ math . p i ) ) ∗ (
math . s i n ( n1 ∗ math . p i ∗ g2 / d) ∗
math . cos ( n1 ∗ math . p i ∗ g2 / d ) ) ) − W0 ∗ (

( g1 / d) − (1 / ( n1 ∗ math . p i ) ) ∗ (
math . s i n ( n1 ∗ math . p i ∗ g1 / d) ∗
math . cos ( n1 ∗ math . p i ∗ g1 / d ) ) )

else :
return (W0 / (math . p i ∗ ( n1 − n2 ) ) ) ∗ (

math . s i n ( (math . p i ∗ ( n1 − n2 ) ∗ g2 ) / d) −
math . s i n ( (math . p i ∗ ( n1 − n2 ) ∗ g1 ) / d ) ) − (

W0 / (math . p i ∗ ( n1 + n2 ) ) ) ∗ (
math . s i n ( (math . p i ∗ ( n1 + n2 ) ∗ g2 ) / d) −
math . s i n ( (math . p i ∗ ( n1 + n2 ) ∗ g1 ) / d ) )
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def W( cnt1 , cnt2 , y ) :
y1 = 2 ∗ y − a − l + d / 2
y2 = 2 ∗ y + a − l + d / 2
y3 = −2 ∗ y − a − l + d / 2
y4 = −2 ∗ y + a − l + d / 2
Y = [ y1 , y2 , y3 , y4 ]
for pom in range ( 4 ) :

i f Y[pom] < 0 : Y[pom] = 0
i f Y[pom] > d : Y[pom] = d

W = 0
i f Y[ 0 ] == Y[ 1 ] and Y[ 2 ] == Y[ 3 ] :

W = 0
e l i f Y[ 0 ] == Y[ 1 ] :

W = W_funk(V0 , Y[ 2 ] , Y[ 3 ] , cnt1 + 1 , cnt2 + 1)
e l i f Y[ 2 ] == Y[ 3 ] :

W = W_funk(V0 , Y[ 0 ] , Y[ 1 ] , cnt1 + 1 , cnt2 + 1)
e l i f Y[ 0 ] == Y[ 2 ] and Y[ 1 ] == Y[ 3 ] :

W = W_funk(2 ∗ V0 , Y[ 0 ] , Y[ 1 ] , cnt1 + 1 , cnt2 + 1)
e l i f (Y[ 1 ] > Y[ 0 ] >= Y[ 3 ] > Y[ 2 ] ) or (Y[ 3 ] > Y[ 2 ] >= Y[ 1 ] > Y[ 0 ] ) :

W = W_funk(V0 , Y[ 0 ] , Y[ 1 ] , cnt1 + 1 , cnt2 + 1) +
W_funk(V0 , Y[ 2 ] , Y[ 3 ] , cnt1 + 1 , cnt2 + 1)

e l i f Y[ 1 ] >= Y[ 3 ] > Y[ 0 ] >= Y[ 2 ] :
W = W_funk(2 ∗ V0 , Y[ 0 ] , Y[ 3 ] , cnt1 + 1 , cnt2 + 1) +
W_funk(V0 , Y[ 3 ] , Y[ 1 ] , cnt1 + 1 , cnt2 + 1) +
W_funk(V0 , Y[ 2 ] , Y[ 0 ] , cnt1 + 1 , cnt2 + 1)

e l i f Y[ 3 ] >= Y[ 1 ] > Y[ 2 ] >= Y[ 0 ] :
W = W_funk(2 ∗ V0 , Y[ 2 ] , Y[ 1 ] , cnt1 + 1 , cnt2 + 1) +
W_funk(V0 , Y[ 1 ] , Y[ 3 ] , cnt1 + 1 , cnt2 + 1) +
W_funk(V0 , Y[ 0 ] , Y[ 2 ] , cnt1 + 1 , cnt2 + 1)

return W

def F_funk( cnt1 , cnt2 , y ) :
f = 0

i f ( l − d / 2) < 2 ∗ (y − b) < 2 ∗ (y + b) < ( l + d / 2 ) :
f += W_funk(u , 2 ∗ (y − b ) , 2 ∗ (y + b ) , cnt1 + 1 , cnt2 + 1)

e l i f ( l − d / 2) < 2 ∗ (y − b) < ( l + d / 2) < 2 ∗ (y + b ) :
f += W_funk(u , 2 ∗ (y − b ) , ( l + d / 2) , cnt1 + 1 , cnt2 + 1)

e l i f 2 ∗ (y − b) < ( l − d / 2) < 2 ∗ (y + b) < ( l + d / 2 ) :
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f += W_funk(u , ( l − d / 2) , 2 ∗ (y + b ) , cnt1 + 1 , cnt2 + 1)
e l i f 2 ∗ (y − b) < ( l − d / 2) < ( l + d / 2) < 2 ∗ (y + b ) :

f += W_funk(u , ( l − d / 2) , ( l + d / 2) , cnt1 + 1 , cnt2 + 1)

return f

def G( cnt1 , cnt2 , y ) :
i f cnt1 < c and cnt2 < c :

return konst ∗ W( cnt1 , cnt2 , y )
i f cnt1 < c <= cnt2 :

return −konst ∗ F_funk( cnt1 , cnt2 − c , y )
i f cnt1 >= c > cnt2 :

return −konst ∗ F_funk( cnt1 − c , cnt2 , y )
i f cnt1 >= c and cnt2 >= c :

return konst ∗ W( cnt1 − c , cnt2 − c , y )

def sys (y , R) :
F = [0 j ] ∗ 8 ∗ c ∗ c

Fa = np . array (F)
Ra = np . array (R)

Rm = Ra . reshape (4 ∗ c , 2 ∗ c )
Fm = Fa . reshape (4 ∗ c , 2 ∗ c )

y1 = 2 ∗ y − a − l + d / 2
y2 = 2 ∗ y + a − l + d / 2
y3 = −2 ∗ y − a − l + d / 2
y4 = −2 ∗ y + a − l + d / 2
Y = [ y1 , y2 , y3 , y4 ]
for pom in range ( 4 ) :

i f Y[pom] < 0 : Y[pom] = 0
i f Y[pom] > d : Y[pom] = d

for i in range (2 ∗ c ) :
for j in range (2 ∗ c ) :

for cnt1 in range (2 ∗ c ) :
konst1 = (−1 / (2 j ∗ k [ cnt1 % c ] ) )
konst2 = cmath . exp(−1 j ∗ k [ cnt1 % c ] ∗ y )
konst3 = cmath . exp (1 j ∗ k [ cnt1 % c ] ∗ y )
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for cnt2 in range (2 ∗ c ) :
konst4 = cmath . exp(−1 j ∗ k [ cnt2 % c ] ∗ y )
konst5 = cmath . exp (1 j ∗ k [ cnt2 % c ] ∗ y )

Fm[ i ] [ j ] += konst1 ∗ ( konst3 ∗ ( i == cnt1 ) + konst2 ∗
Rm[ i ] [ cnt1 ] ) ∗ (G( cnt1 , cnt2 , y ) ∗ (

konst5 ∗ ( j == cnt2 ) + konst4 ∗ Rm[ cnt2 ] [ j ] ) )

Fm[2 ∗ c + i ] [ j ] += konst1 ∗( konst2 ∗ Rm[2 ∗ c + i ] [ cnt1 ] ) ∗
(G( cnt1 , cnt2 , y ) ∗ (

konst5 ∗ ( j == cnt2 ) + konst4 ∗ Rm[ cnt2 ] [ j ] ) )

return Fm. f l a t t e n ( )

Tgg11 = [ 0 ] ∗ dot
Tgg12 = [ 0 ] ∗ dot
Tgd11 = [ 0 ] ∗ dot
Tgd12 = [ 0 ] ∗ dot
T11 = [ 0 ] ∗ dot
en = [ 0 ] ∗ dot
uk = [ 0 ] ∗ dot

for cnt in range ( dot ) :
n = 7
c = 0

E = (h ∗ h ∗ math . p i ∗ math . p i / (m ∗ d ∗ d ) ) + ( cnt + 1) ∗ ran ∗ V0 / dot

x l = −1 ∗ (2 ∗ max(b , a ) + 2 ∗ l + d) / 4
xr = (2 ∗ max(b , a ) + 2 ∗ l + d) / 4

ep = [ 0 ] ∗ n
k = [ 0 ] ∗ n
for i in range (1 , n + 1 ) :

ep [ i − 1 ] = h ∗ h ∗ i ∗ i ∗ math . p i ∗ math . p i / (m ∗ d ∗ d)
i f ep [ i − 1 ] < E:

c = i
k [ i − 1 ] = (2 / h) ∗ math . s q r t (m ∗ (E − ep [ i − 1 ] ) )

en [ cnt ] = (E − ep [ 0 ] ) / V0
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in i t_ar = np . z e r o s (8 ∗ c ∗ c ) + 0 j

init_m = in i t_ar . reshape (4 ∗ c , 2 ∗ c )

for red in range (2 ∗ c ) :
init_m [2 ∗ c + red ] [ red ] += 1

i n i t = init_m . f l a t t e n ( )

r e s = solve_ivp ( sys , ( xr , x l ) , i n i t , method=’DOP853 ’ , max_step=0.3)
f_moment = len ( r e s . t ) − 1

res_f = [0 j ] ∗ len ( r e s . y )
for pom in range ( len ( r e s . y ) ) :

res_f [ pom] += re s . y [ pom ] [ f_moment ]

res_a = np . array ( res_f )
res_m = res_a . reshape (4 ∗ c , 2 ∗ c )

Tgg11 [ cnt ] += abs ( res_m [2 ∗ c ] [ 0 ] ) ∗ abs ( res_m [2 ∗ c ] [ 0 ] )
i f c > 1 :

Tgd11 [ cnt ] += abs ( res_m [2 ∗ c + 2 ] [ 0 ] ) ∗
abs ( res_m [2 ∗ c + 2 ] [ 0 ] )
Tgg12 [ cnt ] += abs ( res_m [2 ∗ c + 1 ] [ 0 ] ) ∗
abs ( res_m [2 ∗ c + 1 ] [ 0 ] ) ∗ k [ 1 ] / k [ 0 ]
Tgd12 [ cnt ] += abs ( res_m [2 ∗ c + 3 ] [ 0 ] ) ∗
abs ( res_m [2 ∗ c + 3 ] [ 0 ] ) ∗ k [ 1 ] / k [ 0 ]

else :
Tgd11 [ cnt ] += abs ( res_m [2 ∗ c + 1 ] [ 0 ] ) ∗
abs ( res_m [2 ∗ c + 1 ] [ 0 ] )

T11 [ cnt ] = Tgd11 [ cnt ] + Tgg11 [ cnt ]

for pom in range (2 ∗ c ) :
uk [ cnt ] += k [pom % c ] / k [ 0 ] ∗ (abs ( res_m [pom ] [ 0 ] ) ∗
abs ( res_m [pom ] [ 0 ] ) + abs (

res_m [2 ∗ c + pom ] [ 0 ] ) ∗ abs ( res_m [2 ∗ c + pom ] [ 0 ] ) )

print ( cnt )

f i g , ax = p l t . subp lo t s ( f i g s i z e =[7 , 7 ] )
p l t . p l o t ( en , Tgg11 , l a b e l=r ’$P_{t , ␣11}^{++}$ ’ )
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p l t . p l o t ( en , Tgg12 , l a b e l=r ’$P_{t , ␣12}^{++}$ ’ )
p l t . p l o t ( en , Tgd11 , l a b e l=r ’$P_{t , ␣11}^{+−}$ ’ )
p l t . p l o t ( en , Tgd12 , l a b e l=r ’$P_{t , ␣12}^{+−}$ ’ )
# p l t . p l o t ( en , T11 , l a b e l=r ’$P_{t , 11}$ ’)
# p l t . p l o t ( en , uk , l a b e l="uk ")

p l t . x l ab e l ( r ’ $ (E−\eps i lon_1 )/V_0$ ’ , f o n t s i z e =18)
p l t . y l ab e l ( r ’ $P_t$ ’ , f o n t s i z e =18)
p l t . x t i c k s ( f o n t s i z e =15)
p l t . y t i c k s ( f o n t s i z e =15)
p l t . l egend ( f o n t s i z e =18)
p l t . show ( )
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