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We revisit the application of neural networks techniques to quantum state tomography. We confirm that the
positivity constraint can be successfully implemented with trained networks that convert outputs from standard
feed-forward neural networks to valid descriptions of quantum states. Any standard neural-network architecture
can be adapted with our method. Our results open possibilities to use state-of-the-art deep-learning methods for
quantum state reconstruction under various types of noise.

I. INTRODUCTION

Modern quantum technologies exploit distinctive features
of quantum systems to achieve performances unattainable by
classical strategies. This potential advantage hinges on the
capability to create, manipulate, and measure quantum states.
Any experimental procedure in this area requires a reliable
certification of these steps: this is precisely the province of
quantum state tomography (QST) [1].

The goal of QST is to estimate the unknown quantum state
through measurements performed on a finite set of identical
copies of the system. If the state is described by the density
matrix o, living in a d-dimensional Hilbert space, O(d/¢)
copies are required to obtain an estimate of o with an error
(understood as total variation distance) less than & [2]. This
clearly illustrates the resource requirements of QST for large-
scale systems.

In a broad sense, QST is an inverse problem [3-5]. As such,
the linear inversion [6] is probably the most intuitive approach
to the topic. Yet it has some cons too: it might report a non-
physical state and the mean squared error bound of the estimate
cannot be determined analytically. To bypass these drawbacks
a variety of useful QST methods, such as Bayesian tomog-
raphy [7, 8], compressed sensing [9, 10], or matrix-product
states [11, 12], are at hand, although the maximum-likelihood
estimation (MLE) is still the most common approach [13, 14].

From a modern perspective, QST is fundamentally a data
processing problem, trying to extract information from as few
noisy measurements as possible. Therefore, the estimation
algorithms used in QST can be easily translated into tasks in
machine learning (ML) [15-17]. Actually, neural networks
(NN5s) have been used to address data-driven problems: exam-
ples in quantum information include identifying phase transi-
tions [18], detecting nonclassical features [19-21], quantum
error correction [22-25], calibrating quantum devices [26, 27],
speeding up quantum optimal control [28], and designing
quantum experiments [29-31], to cite only but a few.

Recently, ML has been applied to QST with very promising
results [32—-40]. In particular, generative models [41, 42],
usually restricted Boltzmann machines, have been used to treat
the measurement outcomes on a quantum state [43]. These are
NN containing two layers, visible and hidden, with all-to-all
connections between the neurons in different layers and none

inside each layer. This technique, although powerful, suffers
from difficulties with sampling and a lack of straightforward
training for larger models.

The use of feed-forward architectures, including recurrent
NNs, has been recently advocated [44, 45] because these
architectures are easier to train without any need for sam-
pling steps, using gradient-based optimization with backprop-
agation. However, generative tasks in ML often use varia-
tional autoencoders [46] and generative adversarial NNs [47].
These are now being actively explored for learning quantum
states [48-51].

Our motivation in this paper is to address the benefits of
NN-based reconstruction over standard techniques. To fairly
benchmark the performance we pick three representative es-
timators, namely linear inversion, its positivized version, and
MLE, and compare them with a typical NN estimator, obtained
with a feed-forward architecture. As measurement, we choose
the so-called square root measurement, which was introduced
as a “pretty good measurement” [80] for distinguishing possi-
bly nonorthogonal states. Using the Hilbert-Schmidt distance
between the true and the reported states as our main indicator,
our results suggest that NNs predict unknown quantum states
about three orders of magnitude faster compared to linear and
MLE estimates. Interestingly, the average errors are similar for
all the estimators considered in all dimensions. This confirms
the power of deep-learning-based tools for the quantum realm.

This paper is organized as follows. In Sec. II, we briefly
discuss the basic tools of QST we need for our purposes.
In Sec. III we describe the details of our NN architecture
and training methods. Then, we present the performance of
the different estimators in Sec. IV, while our conclusions are
summarized in Sec. V.

II. BACKGROUND

We first set the stage for our model. We shall be considering
a d-dimensional quantum system, described by a d X d density
matrix o, which requires n = d* — 1 independent real numbers
for its specification.

The goal of QST is to estimate o from measurements per-
formed on identically prepared copies of the system. These
measurements are, in general, represented by positive operator-



valued measures (POVMs) [52]: they are a set of positive
Hermitian operators {I1,}, with the properties
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Each POVM element represents a single output of the mea-
suring apparatus. We take every measurement as yielding m
distinct outcomes (which we assume to be discrete). Accord-
ing to Born’s rule, the probability of detecting the ¢th output
is given by

M, >0, II=I, (2.1)

pe =Tr(olly) . (2.2)

To invert this equation, it is convenient to map both o and
{I1,} into a suitable vector form. To this end, we use a traceless
Hermitian operator basis {I'x} (k = 0,...,n) and Ty = 1,
satisfying Tr(I";) = 0 and Tr(I";I"x) = ¢ j«. In this way, we get
the parametrization

n n
o=rolo+ Y reTx My =we+ Y G Ti. (23)
k=1 k=1

Although the condition Tr o = 1 sets ro = 1/d, we leave rg as
a parameter to keep the same number of unknowns as for the
approach using Cholesky decomposition to be described later.
The important point is that the state is characterized by the
Bloch vector [53-56] rx = Tr(ol'x), whereas Cgx = Tr(I1,T'%)
is a m X n real matrix describing the explicit relation between
the theoretical probabilities p and the state parameters r.

In consequence, the inverse problem we have to solve turns
out to be the linear system

p=Cr, 2.4)
where we have omitted an unessential constant term that can be
incorporated into the following discussion in a straightforward
way.

In presence of noise and with a finite number of copies the
collected data, we will denote by f, deviates from the expected
values p. The ultimate goal of QST is to infer the signal
parameters r from the measured noisy data f. A naive solution
is to use the estimator

T =C f, (2.5)
where the C~ stands for pseudoinverse [57-59] and the sub-
script LI reminds us that this is a linear inversion approach.

This T is also known as the ordinary least squares estima-
tor [60]. As heralded before, the resulting T 1 is no longer guar-
anteed to represent a positive semidefinite operator. One might
ensure positivity by setting the negative eigenvalues to zero,
which has been called the “quick and dirty" approach [61],
although this performs poorly.

Another alternative is to use instead the generalized least-
square estimator [62], defined as 7grs = (X~'C)*X~1)f, where
X is such that CCT is the data covariance matrix. Under the
Gauss-Markov assumptions [63] it is the best linear unbiased
estimator (usually known as BLUE) [64]. However, for small
and medium sized data sets, a reliable estimation of the data

covariances is not possible, and then Ty turns out to be a handy
estimator.

To circumvent these obstructions we might follow yet an-
other route, introducing instead a semidefinite program that
solves (2.4), together with the positivity constraint. The re-
sulting estimator, denoted by Tspp, is thus a solution of

minimize ||f — Cr||
(2.6)
subjectto 0 >0 and Trp=1.

Finally, to make our analysis complete and consider a non-
linear estimator, we also incorporate the MLE, which guaran-
tees positivity of the resulting quantum state. Although there
is a vast literature on the subject, the MLE estimate gy g can
be seen as the fixed point of the iterative map [65]

Ok+1 < A ROk R, 2.7

with

(2.8)

and Ay is a normalization constant. The resulting Bloch-
vector Ty g estimate is asymptotically unbiased as f; — p;.
Usually, a few thousands of iterations are needed to observe
the stationary point of the map (2.7).

From a numerical point of view, an efficient way to deal with
the positivity constraint is to directly decompose the density
operator using the famous Cholesky factorization [66]

AAT

= m N (29)
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where A is a complex lower triangular matrix and A" its Her-
mitian conjugate. Born’s rule then turns to a set of nonlinear
equations, which are rather complicated to solve. For this
purpose, we adopt ML techniques.

III. NEURAL-NETWORK ESTIMATORS

Our goal is to built a NN that links the input observed
frequencies f to either an output true Bloch vector Tyy or a
Cholesky matrix Ann. The sampled frequencies f serve as
input to the NN, which transforms them into an output Bloch
vector or a Cholesky matrix via a series of linear transforma-
tions, each followed by evaluation of some nonlinear function.
The structure of such transformations is represented by neu-
rons ordered into deep layers. More precisely, the values z*)
of the neurons in kth layer are

A9 = 7 (y0),

y(B) = Wk=1=k) g (k=) L p(k=1)

@3.1)

where W is a matrix of weights connecting neighboring layers
that together with the vector of biases b forms a set of trainable
parameters. The nonlinear activation scalar function f can be
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FIG. 1. Sketch of a NN for estimating the Bloch parameters or the
elements of the Cholesky matrix from the sampled statistics f. The
filled blue ovals represent neurons in deep layers, representing about
2x107 trainable parameters. The output layer has a hyperbolic tangent
as an activation function since it has the same bounds as the Bloch
parameters and theelements of the Cholesky matrix. In the hidden
layers, the rectified linear unit is used as an activation function. The
structure of the NN is the same, independently of the dimension or
specific parametric representation of quantum states.

chosen arbitrarily, depending on the problem. In our case, the
rectified linear unit function frepy(x) := max(0,x) is used
in every deep layer except at the output layer, where we take
f(x) = tanh(x). The hyperbolic tangent function maps real
numbers into the (—1, 1) interval which coincides with restric-
tion on elements of both Bloch vector and Cholesky matrix.
Symbolically, we can express the Bloch vector (and similarly
the elements of the Cholesky matrix) as

NN = fanh o WO 0o frap o WD of, (3.2)
where W is a shortcut for {W, b}.

The NN learns by minimizing the loss function. We chose
to work with mean squared error, which takes the form

5

k=0

~ 2
= (W, £)| > : (3.3)

where (-) denotes the average value in the state 0. Optimiza-
tion in the NN is done by backpropagating the error. This is
arguably the workhorse of most ML algorithms and definitely
the standard approach in most situations, which is working
with batches of data. The term and its general use in NNs was
coined in [67] and a modern overview is given in textbook [68].

We minimize the value of the loss function .£ over all com-
ponents of a given dataset to update weights and biases W,
using a stochastic gradient-based optimization, which is of
core practical importance in many fields [69]. A widely
accepted algorithm is Adam [70], which is straightforward
to implement, computationally efficient, and has little mem-
ory requirements. We use an improved version that incor-
porates Nesterov-accelerated adaptive momentum estimation
(Nadam) [71], since recent results indicate that it has better
performance [72]. At the step ¢, the Nadam procedure updates
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Here, n represents the learning rate, u the exponential de-
cay rate for the first moment estimates 1, v the exponential
decay rate for the weighted norm g7, and € is a parameter
that ensures the numerical stability of the Nadam optimiza-
tion procedure. We set the numerical values {7, i, v, €} to
{0.001,0.9,0.999, 1077}.

All the above is implemented in Keras [73] and Tensor-
flow [74] libraries for Python. The corresponding code can
be found in Ref. [75]. In every epoch, the training dataset
is divided into 100 batches. The number of epochs needed
to find a global minimum of the loss function varies across
different deep NNs. In general, the training stopped after
400 — 2000 epochs, depending on the dimension in which we
estimate quantum states. We defined an early stopping after
not finding the better minimum of the loss function in the 200
consecutive epochs. We stress that both Ty and Ty estimates
and the ensuing quantum states are Hermitian matrices but do
not incorporate the positivity constraint, in contradiction with
Tspp and Ty k.

IV. RESULTS

Our deep NN is built as follows: The input layer is fed by
observed frequencies f for different quantum states, followed
by eight layers consisting of (200, 180%2, 160%*, 100) neurons
with the ReLLU activation function. The output layer, with a
hyperbolic tangent activation function, serves as an estimate
of Bloch vector or the elements of Cholesky matrix.

The structure of the NN was adjusted heuristically, after
having tried multiple settings with differing number of free
parameters and deep layers. In terms of the distance between
estimated and true quantum states, we got on average the same
accuracy for a NN with two layers. However, it was observed
that NNs are more likely to return parameters corresponding
to positive semidefinite matrices, compared to, e.g., the LI
method.

The NN sketch is presented in Fig. 1. We trained in total
eight NNs, each with the same structure, for the inference of
quantum states in dimensions d = 3,5,7, and 9. As our target
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FIG. 2. Average Hilbert-Schmidt distance for different estimating strategies on the number of trials with which we sampled the true probability
distribution p in dimension 3 (upper left panel), 5 (upper rigt panel), 7 (lower left panel), and 9 (upper right panel). The insets indicate
the corresponding estimators. The average errors for both NN in the undersampled regime are of the same order for SDP and MLE in all
dimensions. When using highly sampled statistics, number of trials > 107, MLE starts to outperfonm both NN approaches. Confidence

intervals of 80% are depicted in respective colors.

states, we use random density matrices o distributed according
to [76]

_oxxt
T Tr(XXT)’

with X pertaining to the Ginibre ensemble [77], thatis, with real
and imaginary parts of each matrix entry being independent
normal random variables. These are implemented in Python
using QuTiP [78].

As heralded in the Introduction, as our measurement
scheme, we choose the square root measurement, defined by
the rank-one POVM

I, = G2 () (] G2,

o 4.1)

G =) 1¢e) (9el (42)
€

where |¢,) are randomly generated Haar-distributed pure
states [79] (¢ = 0,...,n). This POVM is known to be op-
timal, in the sense that the measurement vectors are the closest
in the squared norm to the given states [81, 82].

For each dimension, the training (validation) dataset con-
tains 8 x 10° (2 x 10°) points. One quarter of the data in

the training dataset are probabilities p, = Tr(oIl,) sampled
with a random number of trials, ranging from d? up to 10°,
the rest are theoretical probabilities. Each input vector, con-
taining either theoretical or sampled statistics, corresponds to
different randomly generated quantum states (4.1), whereas
the measurement (4.2) is fixed for all states in each dimension.

Ideally, all data points in the training dataset should consist
of only theoretical probabilities so that the NN can extract the
appropriate transformation. However, in the undersampled
regime, it turns out to be beneficial for the NN to see examples
of the sampled statistics. In this case, with a training dataset
containing only theoretical probabilities, the NN would lose
the ability to predict positive matrices, while with only sampled
probabilities in the training dataset, the NN would have a hard
time in correctly learning the mapping from probabilities to
the Bloch vector or the Cholesky matrix.

The output layer consists of true values of the Bloch vector
or elements of the Cholesky matrix. All NNs are trained for at
most 2000 epochs, which takes about 12 hours for every NN
when estimating density matrices in dimension 9. After the
training procedure, we compared estimates of quantum states
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FIG. 3. Average time per state estimation for different tomographical
methods, as indicated in the inset. The NN approach is about three
orders faster than SDP and about four order faster than MLE.

based on NNs with standard methods, namely LI, SPD, and
MLE.

Results are shown in Fig. 2. For each dimension d, we
generated 10° random density matrices and, using the same
measurement scheme as for the training, we obtained a set
of 10% probability distributions, often called a test set. After
getting the test set, we sampled each probability distribution
with a number of trials depicted on the horizontal axis. Then,
we used trained NNs, LI, MLE and the SDP to reconstruct
density matrices from the sampled statistics. We plot the
average Hilbert-Schmidt distance between true and inferred
quantum states as a function of the number of trials. As we
can see, NNs outperform the Ty estimator and are better or
give errors in the same order of magnitude as Tspp.

For a fixed number of trials, the NN-based Bloch vector has
a better average error compared to the Cholesky one, but tends
to report Hermitian matrices with nonpositive least eigenval-
ues. Moreover, NNs work relatively well in the undersampled
regime. Interestingly, NNs show the ability to extrapolate be-
yond the number of samples on which they were trained. This
can be appreciated in the lower Hilbert-Schmidt distance for
10° trials, when only up to 10° trials were used to sample the
true statistics.

The combination of theoretical and sampled probabilities in
the training set was balanced in such a way that the NNs work
well in the undersampled regime, but also provide accurate
estimates when the number of trials is high. Of course, when
the number of trials goes to infinity; i.e, when working with
theoretical probabilities, the Ty 1 and Ty g estimators converge
to the true state of the system.

Figure 3 shows an analysis of the performance of different
estimators. We depict the average time per single evaluation of
TLI, Tspp, TMLE, and both NNs. For the NNs, the times shown
are only those associated with the prediction phase, not the
training (which takes a lot longer). The semidefinite program
infers the quantum state from sampling statistics at around 10~

seconds. MLE turns out to be the most time-consuming proce-
dure. Compared to linear inversion and both NN approaches,
MLE predicts quantum states about 10* slower. Akin to linear
inversion, NN predicts unknown quantum state from the data
about three orders faster compared to SPD estimates and about
four orders faster compared to the MLE estimates.

Figure 4 summarizes our performance analysis. We com-
pare the quality of Trj and Tny in terms of the quantumness
of the inferred states. We show the mean of the largest neg-
ative eigenvalues and ratio of positive semidefinite quantum
states among the set of estimated Hermitian matrices on the
measured statistics sampled with given number of trials. Note
that we have excluded results from MLE and SDP, for those
estimators always reconstruct a positive matrix.

As one can see in Fig. 4, NNs can learn the positivity con-
straint. For example, in dimension 9, considering Ty 1, only 1%
of all Hermitian matrices are positive semidefinite, compared
to 17% using NN, estimated from statistics sampled with 10°
trials. In the undersampled regime, where the number of trials
is in the order of the number of projectors, NNs in each di-
mension predict the higher number of positive quantum states
compared to the T | estimator.

The issue with predicting quantum states with negative
eigenvalues is that it is more prevalent for states that are sin-
gular (i.e., with vanishing determinant), as these are the states
that sit on the boundary in the generalized Bloch representa-
tion. As such, the results in Fig. 4 depend on the purity of the
states to be reported.

V. CONCLUDING REMARKS

In summary, we have shown how NN can assist in the re-
construction of quantum states. The NN maps the input ex-
perimental data to a valid density matrix up to three orders of
magnitude faster than the standard QST. This presents a sig-
nificant advantage for data postprocessing during tomography.
The NN learns to represent the state in a way that is well suited
for the problem.

Our results confirm how some of the latest ideas from deep
learning can be quite easily adapted and applied to quantum
information tasks with just a few tweaks to incorporate the
rules of quantum physics. This opens up a wealth of possible
applications, which are the object of intense investigation.
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