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The two-dimensional Wigner crystal (WC) occurs in the strongly interacting regime (rs ≫ 1) of
the two-dimensional electron gas (2DEG). The magnetism of a pure WC is determined by tunneling
processes that induce multi-spin ring-exchange interactions, resulting in fully polarized ferromag-
netism for large enough rs. Recently, Hossain et al. [PNAS 117 (51) 32244-32250] reported the
occurrence of a fully polarized ferromagnetic insulator at rs ≳ 35 in an AlAs quantum well, but
at temperatures orders of magnitude larger than the predicted exchange energies for the pure WC.
Here, we analyze the large rs dynamics of an interstitial defect in the WC, and show that it pro-
duces local ferromagnetism with much higher energy scales. Three hopping processes are dominant,
which favor a large, fully polarized ferromagnetic polaron. Based on the above results, we speculate
concerning the phenomenology of the magnetism near the metal-insulator transition of the 2DEG.

The two-dimensional electron gas (2DEG) has proven
to be a rich platform for studying strongly correlated
phases of matter, despite its deceptively simple Hamilto-
nian

H =
∑

i

p⃗ 2
i

2m
+
∑

i<j

e2

4πϵ

1

|r⃗i − r⃗j |
. (1)

The important dimensionless parameter in the problem
is the ratio rs of the typical interaction and kinetic en-
ergies; rs = 1/(aB

√
πn), where n is the electron density

and aB = 4πϵℏ2/me2 is the effective Bohr radius. The
electrons form an unpolarized Fermi liquid (FL) when rs
is small, whereas a Wigner crystal (WC) phase occurs
when rs > rwc ≈ 31± 1 [1–4]. Recently, experiments on
“ultraclean” AlAs quantum wells reported the appear-
ance of a fully polarized ferromagnetic insulating phase
when rs ≳ 35 [5–7], where the WC physics may play a key
role. Ferromagnetic tendencies near the metal–insulator
transition have also been seen in a variety of other 2DEG
systems [8, 9]. In this paper we explore a new mechanism
of ferromagnetism in the large-rs regime.

There have been many previous theoretical studies of
the magnetism of the WC [10–14]. Deep within the WC
phase (in the rs → ∞ limit), a semi-classical instanton
method allows an asymptotically exact calculation of var-
ious multi-spin ring exchange energies Jwc. The result of
these calculations is that the WC (and hence the 2DEG)
is fully spin-polarized in the rs → ∞ limit [10–12]. This
result has been corroborated by a path integral Monte
Carlo calculation [13]. Therefore it is tempting to say
that the observed fully polarized ferromagnetic insulator
is the ferromagnetic WC. However, we will see that such
a mechanism provides a minuscule energy scale (i.e. tem-
perature scale T ∗) for the ferromagnetism, which is much
below those accessed in the experiments. Moreover, the
theoretical studies suggest [10–14] that the dominant ex-
change interactions are actually antiferromagnetic in the
experimentally relevant range of rs ∼ 40 of the 2DEG.

We instead propose a new mechanism for ferromag-
netism at large rs, induced by interstitial defects centered

at triangular plaquettes of the WC [15–17]. (This idea
was inspired by a related, but distinct, earlier proposal
by Spivak and collaborators [18, 19] of ferromagnetism
produced by interfacial fluctuations between a WC and
a FL.) The presence of interstitials generates additional
exchange (Ja) and hopping (ta) processes, which we cal-
culate using the semi-classical instanton method. See
Fig. 1 for a summary of the results. Three hopping pro-
cesses turn out to have (exponentially) large energy scales
compared to any exchange energy of the defect-free WC.
We prove that a single interstitial fully polarizes a large
region of the WC (i.e. produces a large ferromagnetic
polaron), and argue that a dilute concentration of inter-
stitials will lead to a fully polarized ferromagnetic ground
state. Moreover, the characteristic temperature scale of
the ferromagnet is T ∗ ∼ νint · t, where 0 ≤ νint ≤ 1 is the
filling of interstitial sites and t is an appropriate sum of
hopping energies ta. At the values of rs pertinent to the
experiments, T ∗ is in the experimentally relevant range,
even for a low concentration of interstitials.

On the more phenomenological level, near the metal-
insulator transition, it is likely that the 2DEG forms a
spatially inhomogeneous mixture of regions that exhibit
local WC order (with slightly lower than average elec-
tron density) coexisting with puddles of FL (with slightly
higher density). This can arise as a consequence of disor-
der [20, 21] or could reflect the electronic micro-emulsion
phases expected when macroscopic phase separation is
frustrated by long-range interactions [22–25]. Conse-
quently, a finite density of extra electrons will be induced
at the boundaries of WC regions. The lowest energy de-
fect that can accommodate an extra electron is known to
be the triangle-centered interstitial [15–17].

Semi-classical derivation of the effective Hamil-
tonian. For orientation, we start by recapitulating the
semi-classical theory of magnetism in the WC. In the
rs → ∞ limit, the Coulomb interaction dominates, and
the electrons form a WC [1] with all spin states degener-
ate. The kinetic energy lifts this degeneracy by inducing
virtual tunneling processes among WC sites. The effec-
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FIG. 1. Schematic of various exchange and hopping processes
along with the corresponding dimensionless actions Sa: (a)
Exchange processes in the pure WC. (b) New exchange pro-
cesses in the WC induced by a triangle-centered interstitial.
(c) Hopping processes in the WC induced by the interstitial.
In panels b & c, dots surrounded by a circle denote initially
occupied interstitial sites, while open circles denote final in-
terstitial sites which are initially vacant. The dimensionless
actions in the panel a are quoted from Ref. [14]. Panels b & c
show the main results of this paper, calculated with a system
of size 10× 12 + 1 starting from the relaxed triangle-centered
interstitial configuration (see the main text and the Supple-
mentary Material for details). The corresponding values for
the exchange couplings, Ja, and the hopping matrix elements,
ta, are then computed using Eq. (3) and its analogue.

tive spin Hamiltonian can be written as a sum over ring
exchange terms:

Hwc
eff =

∑

a

(−1)na Ja (P̂a + P̂−1
a ). (2)

Here, a = (i1, i2, . . . , ina
) labels a ring exchange process

involving na sites, i1 → i2 → · · · → ina → i1, and P̂a

is the corresponding na-particle cyclic permutation op-
erator. P̂a can, in turn, be expressed as a product of
two-particle exchange operators, each of which can be

written in terms of spin operators as P̂(i,j) = 2(S⃗i·S⃗j+
1
4 ).

All exchange couplings Ja are positive; the signs (−1)na

are fixed by anti-symmetry of the many-body wave-
function, which implies that exchanges involving an even
(odd) number of electrons are antiferromagnetic (ferro-
magnetic) [26]. The exchange energies Ja can be calcu-
lated using the semi-classical instanton method, which is
asymptotically exact in the rs → ∞ limit:

Ja = ℏω0

(√
rs Sa

2π

)1/2

Aa exp
[
−√

rs Sa

]
. (3)

Here, ℏ√rs Sa is the classical Euclidean action along the
minimal action path that implements the particle ex-
change labelled by a, Sa is the “dimensionless action,”

which is independent of rs, and ℏω0/2 = 1.6274/r
3/2
s

is the zero-point phonon energy (per particle) of the
defect-free WC in units of the effective Rydberg energy
Ry = e2/8πϵaB [15, 27]. Aa is the dimensionless mag-
nitude of the fluctuation determinant [28, 29], which
is generally of order 1. Including all rs dependencies,

Ja = O(r
−5/4
s e−

√
rs Sa). To simplify notation, we often

suppress the full indices a in the subscripts of Ja and
Sa, and instead label these by na—if there are multi-
ple processes involving the same number of particles, we
distinguish them with primes (e.g. S4,wc and S′

4,wc, etc.).
In Fig. 1a, we illustrate the six most important ex-

change processes for the pure WC and quote the dimen-
sionless actions calculated by Voelker and Chakravarty
in Ref. [14]. Although the dimensionless actions for all
these processes are quite comparable, the (ferromagnetic)
three-particle ring exchange process has the smallest ac-
tion and hence determines the magnetism in the rs → ∞
limit [10–12, 14]. The characteristic temperature scale
for ferromagnetism, T ∗, is set by J3; evaluating Eq. (3)
at rs ≈ 40 with the parameters of AlAs and the fluc-
tuation determinant, A3 = 2.19, calculated in Ref. [14],
we find T ∗ ∼ 0.003K. This is two orders of magnitude
smaller than the temperature at which the experiments
are done (T ≳ 0.3K) [5].
In the presence of a triangle-centered interstitial in the

WC, new tunneling processes are introduced (Figs. 1b &
c). The semi-classical expression (3) can be used to calcu-
late both exchange interactions involving an interstitial,
Ja, and interstitial hopping processes, ta (where again a
labels a particular process). The dimensionless action Sa

is calculated numerically by minimizing the Euclidean

action ℏ√rs S =
∫Xf

Xi
dX
√

2m(V − E0) on a supercell

containing 10 × 12 + 1 electrons (including the intersti-
tial) with periodic boundary conditions. Here, V is the
Coulomb interaction, E0 is the energy cost of introducing
one interstitial in the WC, and Xi and Xf are the initial
and the final relaxed interstitial configurations, respec-
tively. We discretize the tunneling path to 7 intermediate
configurations and allow up to 30 electrons to adjust their
positions during the minimization. For exchange pro-
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FIG. 2. Visualization of multiparticle tunneling trajectories involving a (relaxed) triangle-centered interstitial: (a–c) The three
dominant interstitial hopping processes. (d) The most important exchange process involving an interstitial. The corresponding
dimensionless actions are (a) S1,hop = 0.138, (b) S2,hop = 0.032, (c) S′

2,hop = 0.141 and (d) S2,ex = 0.536, as shown in Fig. 1.
The colors indicate seven intermediate configurations, indexed by k, along with the initial and the final configuration.

cesses, all the remaining electrons are fixed at their ini-
tial positions, whereas for hopping processes, they move
in linearly interpolating paths connecting the initial and
the final positions. For the minimization, we used the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) algorithm [30]. Coulomb interactions are treated
with the standard Ewald method. See Supplementary
Material for more details of the calculations.

Fig. 1b schematically shows various multi-particle ex-
change processes that involve an interstitial (circled),
along with the corresponding dimensionless actions Sa,ex.
Interstitial hopping processes are shown schematically
in Fig. 1c, along with the dimensionless actions Sa,hop.
Among these, one cooperative hopping term, t2, clearly
dominates, as its action, S2,hop = 0.032, is more than
an order of magnitude smaller than most others. (Recall
that

√
rs Sa appears in the exponent of the expressions

for Ja or ta!) However, the t2 term does not connect all
the WC sites in the presence of one interstitial, so by it-
self, it cannot fully lift the ground state spin degeneracy
(see Fig. S2 of the Supplementary Material). The next
dominant terms are t1 and t′2 (corresponding to S1,hop

and S′
2,hop in Fig. 1c). Together with t2, these terms

fully determine the magnetism of the WC in the pres-
ence of a small density of interstitials. We visualize the
tunneling paths corresponding to these three processes,
along with one exchange process, in Fig. 2. Keeping these
three dominant terms results in an effective Hamiltonian:

Heff = − t2
∑

(n,j,n′)
∈(t2 path)

∑

σ,σ′=↑,↓
c†n,σ′f

†
j,σfj,σ′cn′,σ

− t′2
∑

(n,j,n′)
∈(t′2 path)

∑

σ,σ′=↑,↓
c†n,σ′f

†
j,σfj,σ′cn′,σ

− t1
∑

⟨n,n′⟩

∑

σ=↑,↓
c†n,σcn′,σ + [U = ∞] . (4)

Here, f†
jσ is the creation operator of localized electrons

that live on the triangular lattice sites j, and c†n,σ is the
creation operator of itinerant electrons that live on the
triangular plaquette centers n. The last U = ∞ condi-
tion precludes any doubly occupied sites. One can check
explicitly that all these ta’s are positive.
The remaining tunnelling terms that we have omitted

from Heff , including the exchange terms Ja, are expo-
nentially smaller than those we have kept. We have also
omitted direct (elastic) interactions between interstitials
which are small only in proportion to powers of 1/rs.
These are negligible both because we are interested in
the situation with a dilute concentration of interstitials,
and because they turn out to be small in the experimen-
tally relevant range of rs [31].

A single interstitial. In the presence of one in-
terstitial in the WC, we prove the following theorem—
reminiscent of the proof of Nagaoka ferromagnetism in
the U = ∞ Hubbard model—using the Perron-Frobenius
theorem [26, 32, 33]:

Theorem: The ground state of Heff in any finite sys-
tem in the presence of a single interstitial (i.e., for ν =

N−1
∑

j,σ f
†
j,σfj,σ = 1 and

∑
n,σ c

†
n,σcn,σ = 1, where N

is the number of WC sites j) is the fully polarized ferro-
magnet; it is unique up to global spin rotations.

Proof: Heff commutes with the total spin operator
S⃗total, so its spectrum consists of degenerate multiplets
with definite S2

total. We show that the ground state mul-
tiplet has maximal S2

total. We restrict attention to the
sector of Hilbert space with Sz

total = 0 for N+1 even and
Sz
total =

1
2 for N+1 odd, since these lowest |Sz

total| sectors
contain one representative state from each multiplet. We
define basis states

|n, τ, {σ}⟩ ≡ c†n,τf
†
1,σ1

· · · f†
N,σN

|0⟩ , (5)

where n is the position of the interstitial electron, τ is



4

its spin, and the σj ’s specify the spins of the WC sites,
which we number in an arbitrary manner from j = 1 to
N . All the basis states in Eq. (5) can be reached from
any starting state by repeated application of the hopping
operators in Heff [Eq. (4)]—we say that the hoppings
satisfy the “connectivity condition” [34].

We now consider matrix elements of Heff in this basis:
It is easy to see that any state that has a non-zero matrix
element with |n, τ, {σ}⟩ must be of the form

|n′, σj , {σ1, · · · , σj−1, τ, σj+1, · · · , σN}⟩ or |n′, τ, {σ}⟩ .

Moreover, it is a simple algebra to show that

⟨n′, σj , {σ1, · · · , σj−1, τ, σj+1, · · · , σN}|Heff |n, τ, {σ}⟩
= −t2 or − t′2, (6)

and

⟨n′, τ, {σ}|Heff |n, τ, {σ}⟩ = −t1, (7)

depending on which of the three hopping terms con-
nect the two states. Since Heff satisfies the connectiv-
ity condition and all matrix elements are non-positive,
the Perron-Frobenius theorem implies that the ground
state is unique and is a superposition of all the basis
states |n, τ, {σ}⟩ with positive coefficients. This state
is necessarily a maximal spin state, i.e. has total spin
Stotal = (N + 1)/2. □

Note that, in the Sz
total = (N + 1)/2 sector, Heff is a

non-interacting Hamiltonian, whose ground state is the
state where the interstitial electron is in a Bloch state
with k⃗ = 0⃗; the state we have found in the minimal
|Sz

total| sector is thus related to this state by repeated
applications of the global spin-lowering operator.

Phase diagram. Although the exchange terms omit-
ted in Eq. (4) are exponentially smaller than those we
have kept, the former terms can be important when con-
sidering the thermodynamic limit, N → ∞. In particu-
lar, whenever the bulk exchange couplings Ja favor any-
thing other than the ferromagnetic state, a single inter-
stitial can only polarize a finite number of WC sites to
become a ferromagnetic polaron [35]. (Note that a Monte
Carlo study found that for the pure WC, antiferromag-
netic correlations are favored for rs ≲ 175 [13].) The
size of the ferromagnetic polaron is determined by the
competition between the energy gain to delocalize the in-
terstitial within a region of radius R, t · (a/R)2, and the
energy cost, J ·(R/a)2, to destroy the antiferromagnetism
there, where J is an appropriate sum of the microscopic
antiferromagnetic exchange interactions, and a is a lat-
tice constant of the WC. Minimizing the free energy, we
obtain the size of the ferromagnetic polaron:

R2
polar ∼ a2

√
t/J ∼ a2 exp

(
1
2

√
rs αpolar

)
, (8)

where t is an appropriate sum of t2, t
′
2 and t1. (When

t > T > J , J is substituted by T in the estimate of

the polaron size.) By comparing the results for Ja and ta
summarized in Fig. 1, it is to be expected that αpolar ≈ 1.

The properties of Heff with a finite filling of intersti-
tials, νint > 0, are non-trivial, and the complexity is in-
creased if we include the effect of antiferromagnetic in-
teractions, J > 0. However, for t/J ≫ 1, certain general
features of the phase diagram can be inferred by anal-
ogy with the behavior of the ordinary Hubbard model
at large U/t in the presence of a dilute concentration
of holes [19, 35–38]: It is likely that at T = 0, for a
range of dopings νint ∈ (0, νc), there is two-phase coexis-
tence between an insulating antiferromagnetic phase and
a half-metallic ferromagnetic phase, with νc ∼ a2/R2

polar.
The fully polarized ferromagnetic phase then likely ap-
pears for a range of fillings, νint > νc. Furthermore,
the temperature scale for the onset of ferromagnetism
can be estimated to be proportional to the Fermi energy,
T ∗ ∼ νint · t.
Quantitative considerations in AlAs. To flesh

out the general discussion, we evaluate various quanti-
ties with the parameters relevant to AlAs (ϵ = 10 ϵ0 and
m = 0.46me, where ϵ0 is the vacuum permittivity andme

is the electron mass) in the insulating phase close to the
metal-insulator transition, i.e. with rs ≈ 40. The zero-
point phonon energy in the presence of an interstitial is

ℏω0/2 = 1.034/r
3/2
s in units of the effective Rydberg en-

ergy, Ry = 731K [15]. Using the same value for the fluc-
tuation determinant as for J3 of the pure WC, A3 = 2.19,
Eq. (3) gives t2 ∼ 1.9K, t′2 ∼ 2K, t1 ∼ 2K, and hence
t ∼ t2 + t′2 + t1 ∼ 6K, a much higher energy scale than
that of the pure WC for which J ∼ 0.003K. (The latter
is in the same ball-park as estimates of J from the path
integral Monte Carlo calculation [13].) This means that
for νint ≈ νc, the temperature scale for ferromagnetism
is T ∗ ∼

√
Jt ∼ 0.1K.

Phenomenological considerations. While our cal-
culations show that an interstitial in a WC generates a
large ferromagnetic polaron, the relevance of this obser-
vation to any experimental system turns on other consid-
erations. The existence of a finite concentration of inter-
stitials is surely not a universal feature of a WC phase.

Let us first consider the scenario in which a small den-
sity of interstitials are introduced from nearby coexisting
(higher-density) Fermi-liquid (FL) regions, as discussed
earlier. If the interstitial density is sufficiently large, and
if the WC regions percolate throughout the sample, it
can result in a ferromagnetic phase in which the WC re-
gions are fully polarized. Given that the FL at large rs
has a large ferromagnetic susceptibility, it is also possi-
ble to imagine circumstances in which the FL puddles, as
well, are driven ferromagnetic by their interactions with
the ferromagnetic WC. We propose that such a picture
may apply to the fully polarized insulating phase found
in AlAs quantum wells [5].

We can also imagine cases in which interstitials are
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induced by extrinsic sources even in the absence of FL
regions: e.g. due to a slowly varying disorder potential
and/or a weak commensurate locking of the WC to the
potential from the underlying semiconductor (especially
when this period is large, as in a Moiré system). We note
that, in contrast to the AlAs system, a fully-polarized in-
sulating phase is not observed in a recent experiment on
another 2DEG in a MgZnO/ZnO heterostructure [39].
What material-specific aspect of these systems is respon-
sible for this dichotomy is presently unclear. These are
all issues we hope to address in future work.
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1. DETAILS OF SEMICLASSICAL CALCULATIONS IN THE rs → ∞ LIMIT

The energy splitting ∆ϵ (hence the corresponding matrix elements) due to particle exchanges or hopping processes
can be calculated using the semi-classical instanton method to yield [1, 2]:

∆ϵ = A · ℏω0

√
S0

2πℏ
e−S0/ℏ, (1)

where A is a fluctuation determinant that we will approximate to be 1, ℏω0/2 is a zero-point (phonon) energy above
a classical ground-state energy, and S0 is a one-instanton action for the exchange/hopping process. The action in
imaginary time is expressed as

S =

∫
dτ

N∑

i=1

m

2
ẋ2
i +

e2

4πϵ

∑

i<j

1

|xi − xj|
≡
∫

dτ (T + V ) . (2)

We will collectively denote the coordinates of N particles as X ≡ (x1, ...,xN): this covers a 2N -dimensional configu-

ration space. The instanton action S0 is obtained by solving the classical equation of motion, md2Xcl

dτ2 = ∇V (Xcl):

Scl/ℏ =

∫ Xf

Xi

dX
√

2m(V − E0)/ℏ =
√
rs

∫ X̃f

X̃i

dX̃

√
2(Ṽ − Ẽ0), (3)

where the integration is over the classical path Xcl(τ), the energy

E0 ≡ −1

2
m(

dXcl

dτ
)2 + V (Xcl) = V (Xi) (4)

is the Coulomb energy of the classical minima, X̃ = X/a is a normalized coordinate, a = 1/
√
πn is a typical distance

between electrons in the WC, and rs = a
aB

= me2a
4πϵℏ2 is the ratio of the typical interaction strength to kinetic energy.

Hence, the WC lattice constant in the normalized coordinate X̃ is l̃a =
√

2π√
3
. Finally, Ṽ (X̃) =

∑
i<j

1
|x̃i−x̃j| is the

dimensionless Coulomb energy. We can now work in dimensionless coordinates and action:

S̃[X̃] =

∫
dτ


1
2
Ẋ2 +

∑

i<j

1

|x̃i − x̃j|


 . (5)

(We will drop the tildes henceforth.) The problem is now reduced to finding the path X(τ) that minimizes the action

S0 =
∫Xf

Xi

√
2∆V (X) dX for various processes, where

∆V (X) ≡ V(X)−E0 =
∑

i<j

1

|xi − xj|
−
∑

i<j

1

|x(0)
i − x

(0)
j |

. (6)

Here, X(0) denotes an initial configuration corresponding to a certain classical minimum of V (X). For example,
for exchange processes in a pure WC, X(0) is the triangular lattice WC configuration and for interstitial tunneling
processes, it is the relaxed interstitial configuration.

2. EWALD METHOD

The numerical calculation is done using a supercell containing M = 10 × 12 + 1 electrons (the +1 corresponding
to one interstitial) with periodic boundary conditions. In calculating the Coulomb energy V , we used the standard
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2

Ewald method (see e.g. [3]). We briefly summarize the method here: The interaction energy between an electron at

site r⃗i and another electron at r⃗j together with its periodic images r⃗j + R⃗l, where R⃗l are supercell lattice vectors, can
be expressed as

∑

l

1

|r⃗ − R⃗l|
=

2√
π

∫ ∞

0

du
π

su2

∑

G⃗

eiG⃗·r⃗e−
|G⃗|2
4u2

=
2√
π

∫ ϵ

0

du
π

su2

∑

G⃗

eiG⃗·r⃗e−
|G|2
4u2 +

2√
π

∑

l

∫ ∞

ϵ

due−u2|r⃗−R⃗l|2

=
2π

s

∑

G⃗

1

|G⃗|
erfc

(
|G⃗|
2ϵ

)
eiG⃗·r⃗ +

∑

l

1

|r⃗ − R⃗l|
erfc

(
ϵ|r⃗ − R⃗l|

)
. (7)

Here r⃗ = r⃗i − r⃗j , G⃗ are the reciprocal lattice vectors of the supercell, erfc is the complementary error function, and

s =
√
3
2 l̃2a is the area of the unit cell of the pure WC (again, l̃a =

√
2π√
3
). In the first identity, the integral transfomation

1

|r⃗−R⃗l|
= 2√

π

∫∞
0

du e−u2|r⃗−R⃗l|2 and the Poisson summation formula were used. In the second identity, the integral

domain was split into two parts (0, ϵ) and (ϵ,∞) where ϵ is called the Ewald parameter. The second term in the final
expression can be understood as the short-range part of the Coulomb interactions, whereas the first term deals with

the long-range part in the Fourier space. However, this expression is divergent because of the term
(

1

|G⃗|

)
G⃗=0

, which

can be remedied by adding the contribution due to the compensating uniform positive background charges:

EB = −
∫

d2r⃗
1/s

|r⃗| = −2π

s

(
1

k

)

k⃗=0

. (8)

Therefore, the sum of the two contributions gives

Vpair(r⃗i − r⃗j) =
∑

l

1

|r⃗ − R⃗l|
− 2π

s

(
1

G

)

G⃗=0

. (9)

By choosing an appropriate Ewald parameter ϵ =
√
π/s and by using the fact that G⃗ are obtained from R⃗l via

π
2

rotation followed by 2π/s scaling , it is possible to express Vpair(r⃗i − r⃗j) in terms of the summation over the lattice

vectors R⃗l:

Vpair(r⃗i − r⃗j) =
∑

l ̸=0

{
1

|Rl|
erfc

(√
π

s
|R⃗l|

)
cos

[
2π

s
(Rx

l r
y +Ry

l r
x)

]
+

1

|r⃗ − R⃗l|
erfc

(√
π

s
|r⃗ − R⃗l|

)}
+

1

|r⃗|erfc
(√

π

s
|r⃗|
)
− 2√

s
. (10)

Here, the superscripts x and y on Rl and r denote the x and y coordinates of the corresponding vectors. Also, the
interactions between the electron at the position r⃗i and its image charges must be dealt with separately:

Vself =
∑

l ̸=0

1

|R⃗l|
− 2π

s

(
1

|G⃗|

)

G⃗=0

= lim
r→0

(V (r⃗)− 1

|r| )

= − 4√
s
+
∑

l ̸=0

2

|Rl|
erfc

(√
π

s
|R⃗l|

)
. (11)

Finally, the total Coulomb energy (the sum of interaction energies between r⃗i and r⃗j along with its periodic images)
is

V ({r⃗i}) =
M∑

i<j

Vpair(r⃗i − r⃗j) +
M

2
Vself . (12)
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FIG. S 1. (a) The centered interstitial before relaxation. (b) The interstitial configuration after relaxation. The interstitial
sites is emphasized by a circle around them.

3. EXCHANGE AND HOPPING PROCESSES INVOLVING AN INTERSTITIAL

We first obtained the relaxed interstitial configuration as shown in Fig. S1. The energy of an interstitial in the WC
with the lattice constant 1 for the system size M = 10× 12 + 1 is 0.13555, in agreement with Ref. [4].

We have calculated 10 different tunneling processes involving an interstitial, as shown in Fig. 1 (b & c) of the main
text. For the exchange processes, the initial and the final configurations are identical, Xi = Xf . In minimizing the
action Eq. 3, we discretize the path into 7 points and use the standard trapezoidal method to evaluate the integral,
and allow up to 30 electrons to adjust their positions in the exchange paths. All the other electron positions are fixed
in the initial interstitial configuration. We used the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm for the minimization [5]. For the hopping processes, the final interstitial configuration Xf is obtained by a
suitable translation or reflection of the initial configuration Xi. Now that Xi and Xf are different, we start from the
trial path that linearly interpolates the two Xk = k

mXi +
m−k
m Xf where m = 8 and k = 0, 1, ..., 8, and again allow up

to 30 electrons to adjust their positions away from the trial paths.
In Table. S 1, we summarize the results of the calculation for 4 different parameters nmove. We checked that the

results do not change qualitatively for larger values of nmove and mpath. The results summarized in the Fig. 1 (b &
c) of the main text are the ones with nmove = 30 and mpath = 7. In Figures S2 & S3, we show the tunneling processes
involving an interstitial for nmove = 30 and mpath = 7.

Finally, in Fig. S 2, we show the WC sites (red) that are connected from the initial interstitial site (a circled black
dot) through a t2 hopping term. The black WC sites are not connected by t2 term from the the initial interstitial

site. Therefore, the ground state manifold of the Hamiltonian, Heff = −t2
∑

(n,j,n′)
∈(t2 path)

∑
σ,σ′=↑,↓ c

†
n,σ′f

†
j,σfj,σ′cn′,σ, in

the presence of a single interstitial consists of fully polarized red WC sites and an interstitial, with the spin states of
the black WC sites remaining arbitrary.

Table. S 1. Results of the calculations of Sa for 10 processes as summarized in Fig. 1 (b & c) of the main text. nmove denotes
the number of electrons that are allowed to adjust their positions away from the trial path. mpath is the number of intermediate
points in the discretization of the path integral.
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FIG. S 2. The sites connected by the t2 hopping
term defined in the main text. A black dot sur-
rounded by a circle is an initial triangle-centered
interstitial. Other solid dots (black and red) are
WC sites. Red WC sites can be reached by the ini-
tial interstitial by repeated applications of the t2
hopping term, whereas black WC sites cannot be.
Empty circles are the interstitial sites that can be
reached from the initial interstitial site.

FIG. S 3. (a-d) The interstitial hopping processes for t1, t2, t
′
2 and t′′2 , respectively. The corresponding classical actions are

S1,hop = 0.138, S2,hop = 0.032, S′
2,hop = 0.141 and S′′

2,hop = 0.321, respectively. The color scheme indicates seven intermediate
configurations indexed by k along with the initial and the final configuration.
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FIG. S 4. (a-f) The interstitial exchange processes for J2, J3, J
′
3, J

′′
3 , J4 and J ′

4, respectively. The corresponding classical actions
are S2,ex = 0.536, S3,ex = 0.848, S′

3,ex = 0.782, S′′
3,ex = 1.001, S4,ex = 1.093 and S′

4,ex = 0.603, respectively. The color scheme
indicates seven intermediate configurations indexed by k along with the initial configuration. The final configuration is the
same as the initial configuration.
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