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We present an exactly soluble electron trajectory that permits an analysis of the soft (deep in-
frared) radiation emitted, the existence of which has been experimentally observed during beta decay
via lowest order inner bremsstrahlung. Our treatment also predicts the time evolution and temper-
ature of the emission, and possibly the spectrum, by analogy with the closely related phenomenon
of the dynamic Casimir effect.
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Introduction. -The transmutation of a nucleus via
beta decay involves the abrupt creation of an electron
or positron, followed by its expulsion from the nucleus.
Although this process can be fully understood only in
the context of quantum field theory, there is a long his-
tory of classical treatments [1]. Viewed classically, beta
decay involves the sudden appearance of a charged parti-
cle, which has been modeled by assigning a step function
trajectory to a classical charge [2]. The resulting accel-
eration might be expected to produce electromagnetic
radiation, see Figure 1, and indeed, such radiation has
been observed [3]. The process of photon production ac-
companying beta decay is sometimes referred to as ‘inner
bremmstrahlung (IB).’

The use of a step function is unrealistic, but convenient
mathematically [4]. Fortunately, there is a smoother ac-
celeration function that nevertheless permits an exact
treatment of the radiation emission, and we give that
treatment here. By extending the period of acceleration
being modeled, we can make a connection with the well-
known Davies-Fulling-Unruh effect [5–7]: in the frame of
the charged particle, there is a thermal bath of photons
with a temperature proportional to acceleration. Closely
related is the emission of quanta by an accelerating mir-
ror (moving mirror radiation) [8–11] and the correspon-
dence to black hole radiation [12]. The interconnection
of charged particle acceleration and the above mentioned
quantum field theory effects has been the subject of much
investigation. In this paper we will not attempt to review
these linkages at a fundamental level, but instead we use
the known results phenomenologically to extend the dis-
cussion of inner bremmstrahlung.

Step function example. -If the electron is initially at
rest and imagined to be instantaneously accelerated to a

final constant speed, s = |~βf| where 0 < s < 1, then (see
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FIG. 1. Classical electrodynamics describes the origin story
of acceleration radiation as emitted by the electron, known
as inner bremsstrahlung (IB). Soft emission is the dominant
contribution to the total energy radiated.

e.g. [13]),

v(t) =

{
s, t > 0.

0, t < 0.
(1)

Working with unit charge, the angular differential distri-
bution of radiated energy is found to be [4]:

d2E

dωdΩ
=

1

16π3

(
s sin θ

1− s cos θ

)2

, (2)

where θ is the angle between the final velocity ~βf and the
observation point of the radiation. Integration of Eq. (2)
over solid angle dΩ = sin θ dθ dφ and over frequencies
IR/UV-limited by cutoffs ∆ω ≡ ωmax − ωmin gives the
energy radiated by the electron. The total energy is ren-
dered finite in this interval,

E =
1

4π2

[
1

s
ln

(
1 + s

1− s

)
− 2

]
∆ω. (3)

The detector sets the energy scale sensitivity. Eq. (3)
is lowest order IB energy [2], and has been observed to
great accuracy [3]. The foregoing treatment is sometimes
referred to as the instantaneous collision formalism [14,
15].
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Not only is it physically desirable to avoid the infinite
acceleration of Eq. (1), but the mathematical use of the
discrete step velocity limits the final results to quantities
independent of time. The radiated energy Eq. (3), is
characterized by universality and a classical limit from
a corresponding time-dependent trajectory [1]. Knowing
the continuous acceleration responsible for deep IR could
help provide a simple underlying physical connection to
gravitation via the Equivalence Principle.

Smooth acceleration. -Under the above motivations,
we consider the trajectory,

dt

dr
=

1

κr
+

1

s
. (4)

The asymptotic speeds are v = (0, s) as r → (0,∞) (the
electron moves to the right by convention1 [4]), match-
ing Eq. (1). The proper acceleration, α = dγ/dr, has
time-dependence, α(t) = κβγ3(1 − β/s)2, and possesses
asymptotic inertia. See Figure 2 & 3 for illustration.
Here κ is the dimensionful acceleration parameter of the
model which corresponds to the sensitivity in frequency
range of the detector and sets the scale: κ ↔ 12∆ω/π.
With large κ, the speed of Eq. (4) approaches the step
function example, Eq. (1). However, no such approxima-
tion is needed to obtain Eqs. (2) or (3).
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FIG. 2. The proper acceleration is always finite, continuous,
and has a maximum after but near t = 0 (for illustration the
acceleration has been normalized by its maximum). For large
κ, the speed approaches the step-function form of Eq. (1) and
the smooth acceleration approaches a delta-function. Here
κ = 10, s = 0.999.

Time-distribution & power. -The time-dependent
power distribution is computed using Eq. (4) with
straightforward vector algebra (see the procedure in [17]),

dP

dΩ
=

κ2β2(β − s)4 sin2 θ

16π2s4(1− β cos θ)5
, (5)

1 In the closely related moving mirror model, (see [16]), the usual
convention is to move to the left (see Figure 3). The difference
is a sign change in the angular distribution. The energy remains
invariant.

I L
+

I R
+

I L
-

I R
-

i
0

i
0

i
+

i
-

FIG. 3. Penrose diagram of the trajectory class, Eq. (4)
demonstrating time-like asymptotic inertia, κ = 1. For left-
right visual clarity, we have plotted in (1+1) dimensions of
spacetime. The trajectory starts with asymptotic zero ve-
locity and finishes with asymptotic constant velocity. The
power, Eq. (6), is independent of whether the electron moves
to the right or left (depicted), but the angular distribu-
tion, Eq. (2), picks up a sign on the final speed when mov-
ing to the left. Here from inside-out, the final speeds are
s = 0.55, 0.65, 0.75, 0.85, 1.00.

where s again, is the final constant speed, and β = β(t) is
the time-dependent velocity. Integration over time, gives
the time-independent angular differential distribution of
energy, which turns out to be identical to result for the
step-function trajectory, Eq. (2).

Moreover, using the Lorentz-invariant proper acceler-
ation in P = α2/6π, we obtain the total power radiated,

P =
κ2γ6β2

6π

(
1− β

s

)4

. (6)

The total radiated energy for the entire trajectory is read-
ily obtained by integrating Eq. (6) over time, which again
yields an identical result to the step-function case, given
by Eq. (3). The fact that the more realistic smooth tra-
jectory recapitulates the earlier results justifies the use of
our choice of Eq. (4). However, our model has the advan-
tage that we can examine the behavior of the accelerated
charge over time.
Equilibrium emission. -Interestingly, a period of con-

stant emission is present in the power measured by a far
away observer. Best represented as the change of energy
with respect to retarded time u = t − r, and written as
P̄ = dE

du , such that

E =

∫ ∞
−∞

P̄ (u) du, (7)



3

we write P̄ = P dt
du = P/(1 − v). Formulating P̄ (u) in

terms of retarded time, gives a lengthy result, but we
plot the measure P̄ (u) at high final asymptotic speeds
s ∼ 1 and reveal a constant power plateau indicative
of thermal emission. Additionally, beta Bogolubov co-
efficients corroborates this radiative equilibrium via an
explicit Planck distribution in Eq. (10). See a plot of the
power plateau in Figure 4.
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FIG. 4. A plot of the power, P̄ (u), with a plateau demonstrat-
ing constant emission when the final speed of the electron is
extremely ultra-relativistic, s = 1 − 10−11 = 0.99999999999.
Here κ = 1. This plateau corroborates the conclusion that at
high electron speeds the photons find themselves in a Planck
distribution, Eq. (10) with temperature T = κ/2π, Eq. (12).
The vertical scale has been normalized by κ2/48π so that the
plateau is at height P̄ (u) = 1. The integral under the curve,
Eq. (7), is the experimentally observed soft IB energy, Eq. (3).

Radiation reaction. -Having computed the power, P =
α2/6π, we now turn to the self-force, F = α′(τ)/6π. It is
analytically tractable, and a concise expression is given
in terms of speed β,

F =
κ2γ6β2

6π

(
1− β

s

)3(
2β +

1

β
− 3

s

)
. (8)

The self-force is zero at maximum power. Integrating
over distance gives the work done,

W =

∫ ∞
0

F (r) dr = −
∫ ∞
−∞

P (t) dt = −E. (9)

That is, taking Eq. (8) over dβ using, dβ/dr = κ(1 −
β/s)2, where β ranges from (0, s), one obtains the en-
ergy associated with the self-force. The resulting work
is W = −E, the equal and opposite of Eq. (3). This
demonstrates consistency between the radiation reaction
and conservation of energy.

Universality, spectra & temperature. -The preceding
results derived in the context of IB are the same for
the scattering of Faddeev-Kulish electrons in QED where
a cloud of soft photons exist in the dressed state [18].
Moreover, the same results hold true for the perfectly
reflecting moving mirror [16] of the dynamical Casimir
effect. In turn, the accelerated boundary correspondence

between mirrors and black holes [19], demonstrates tra-
jectory Eq. (4) induces an exact analog of black hole evap-
oration leading to a remnant [20]. The unexpected syn-
thesis of IB, clouds, mirrors, and remnants corroborate
the universality of the deep infrared.

Since accelerating boundaries radiate soft particles
whose long wavelengths lack the capability to probe the
internal structure of the source [21], we compute, in the
spirit of analogy, the moving mirror spectrum (scaled by
κ) as an illustration of what the soft-spectrum for IB
might look like. Combining the results for each side of
the mirror [16] by adding the squares of the beta Bogol-
ubov coefficients, the overall spectrum is

|βωω′ |2 =
2ωω′

(
ω2
s̄ + ω2

s

)
πκω2

sωTω2
s̄

(
e

2π
κ ωT − 1

) . (10)

Here ωs =
(

1
s − 1

)
ω′+

(
1
s + 1

)
ω, and ωs̄ =

(
− 1

s − 1
)
ω′+(

1− 1
s

)
ω. The total frequency is ωT = ω + ω′. A nu-

merical integration of

E =

∫ ∞
0

∫ ∞
0

ω|βωω′ |2 dω dω′, (11)

confirms the total energy radiated, Eq. (3). Given
the close association between accelerating mirrors and
charges, we postulate that the IB spectrum in beta de-
cay is likely to be of the same form as Eq. (10). We have
plotted the spectrum of the moving mirror radiation in
Figure 5. If experiment confirms our prediction, then one
could regard soft IB from beta decay as an analogue of
the dynamical Casimir effect.

The explicit Planck factor demonstrates the particles,
N(ω) =

∫
dω′|βωω′ |2, are distributed with a temperature,

T =
κ

2π
=

6

π2
∆ω, (12)

in the high frequency approximation ω′ � ω [12]. Recall
∆ω ≡ ωmax − ωmin, is the scale set by the sensitivity of
detection. Thermal emission is not surprising considering
the power plateau (Figure 4) and the close analogy for
quantum and classical quantities of powers [22, 23] and
self-forces [24, 25] between mirrors and electrons.
Conclusion. - We have calculated the deep infrared ra-

diation emitted by a rapidly accelerating classical point
charge using a smooth trajectory that permits exact so-
lution of all relevant quantities. We have derived novel
time-dependent power and angular distribution formula.
The soft self-force was computed, universality was high-
lighted across several distinct systems, and Bogolubov
coefficient spectra were obtained, demonstrating consis-
tency with the observed energy. The temperature of the
light is found via a Planck distribution. The key result,
from which the others flow, is an analytic continuous
equation of motion for infrared acceleration radiation.
Acknowledgements. -We thank Stephen Fulling for

useful discussion. Funding comes in part from the
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FIG. 5. The |βωω′ |2 spectrum of Eq. (10). Here ω′ = κ = 1
and s = 1/2. The vertical axis has been scaled by 105 for
visual clarity. The qualitative black-body shape is indicative
of the explicit Planck factor in Eq. (10).
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