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The coupling between a system and its environment (or bath) always leads to dissipation. We
show, however, that a system composed of two subsystems can have a dissipation-free mode, if the
bath is shared between the two subsystems. Reading in reverse, a shared bath does not contribute
to the dissipation of all modes. As a key example, we consider a simple model for a two-sublattice
antiferromagnet, where the environment is modeled by a bath that is shared between the two
sublattice magnetizations. In our model, we find that the Néel order parameter is a dissipation-free
mode. For antiferromagnets, our results offer an explanation for why the dissipation rate of the
Néel vector is typically much lower than that of the average magnetization. In general, our results
suggest a way to reduce dissipation (and decoherence) for some modes in composite systems, which
could have experimental and technological applications.

Introduction.—A key topic in modern science and tech-
nology is the manipulation of information. As informa-
tion carriers, various options have been proposed, includ-
ing electric charge [1], electron spin [2, 3], and nuclear
spin [4] in solid state systems. All information carriers
have in common that an interaction with their environ-
ment is inevitable. The interaction with the environment
leads to dissipation or, more specifically, to energy waste
and information loss. For example, electron transport
in transistors is accompanied by Joule heating, which
significantly increases the transistor’s energy consump-
tion and reduces its thermal stability when scaled down
to the nanoscale. As another example, consider a spin-
qubit which encodes binary quantum information and is
a building block for quantum computing and informa-
tion processing [5]. However, the interaction of spin-qubit
with surrounding electrons, lattices, and defects usually
leads to relaxation and dephasing of the quantum states
and, in turn, destroys the quantumness of the qubit [4].
As these examples illustrate, reducing the detrimental
influence of dissipation would be beneficial on the appli-
cation level as well as on the fundamental level.

In spintronics—the spin version of electronics—the
spin of electrons is usually manipulated as information
carrier [2]; the spin of localized electrons in insulating
magnets and the spin of delocalized electrons in metal-
lic magnets. In both cases, the dissipation of the spins
directly determines the speed of magnetization switch-
ing [6, 7] and the speed of magnetic texture propagation
[8, 9] and, in turn, it influences the efficiency of spin-
tronic devices that code information either in the fer-
romagnetic states or in magnetic solitons. The dissipa-
tion also determines the lifetime of magnon excitations
above the magnetic textures. So, the smaller the dissipa-
tion, the longer information will survive when coded in
magnons and the lower energy waste will be in magnon
transport [10]. The current knowledge of spin dissi-
pation is mostly based on micromagnetics (macrospin-
mesh) approximations, where all the spins inside a mag-

net interact with the environment independently [11–
16]. In two-sublattice antiferromagnets, this indepen-
dent coupling to the environment leads to simple (intra-
)sublattice Gilbert damping. However, a phenomenolog-
ical approach showed that one should also expect inter-
sublattice Gilbert damping [17–19]. As shown below, the
inter-sublattice Gilbert damping arises from the coupling
to a bath shared between the sublattice magnetizations.

In this Letter, we study the dissipation of composite
systems, where the subsystems share a common bath
(reservoir). Using the Caldeira-Leggett approach [20],
we integrate out the bath degree of freedoms. While each
subsystem becomes dissipative, we identify a dissipation-
free mode of the composite system; for illustration of the
basic idea, see figures 1 and 2. In particular, we consider
a system of two coupled oscillators and a system of two

Figure 1. Illustration of dissipative and dissipation-free modes
for two coupled oscillators (illustrated as pendulums). The
bath degrees of freedom are illustrated by the gray ball and
the linear oscillator-to-bath coupling is illustrated by springs.
The oscillation is between upper and lower figures. Oscilla-
tions of the center-of-mass coordinate (a) exert a force (black
arrows) onto the bath degrees of freedom and, in turn, dissi-
pates energy by exciting bath modes. In contrast, in relative-
coordinate oscillations (b) the forces on the bath modes bal-
ance each other and, in turn, the bath modes are not excited
and no energy is dissipated.
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coupled macrospins. In turn, we argue that dissipation-
free (or low-dissipation) modes should appear in a large
class of physical systems. Based on the dissipation-free
modes, we explain how our results could be used to en-
gineer low-dissipation information channels.

Two coupled oscillators.—At first, we focus on the sim-
pler system of two oscillators (not necessarily harmonic),
which are coupled to each other and to a shared bath; see
figure 1. The composite system of oscillators and bath
is described by the Hamiltonian Ĥ = Ĥo + Ĥc + Ĥb,
where Ĥo is the oscillators’ Hamiltonian, Ĥb is the
bath’s Hamiltonian, and Ĥc is the Hamiltonian describ-
ing the oscillator-to-bath coupling. Here the oscillators’
Hamiltonian is given by the sum of kinetic and poten-
tial energies, Ĥo = p̂21/2m + p̂22/2m + V (q̂1, q̂2), where
q̂1, p̂1 and q̂2, p̂2 are the position and momentum oper-
ators of oscillator 1 and 2 respectively and V (q̂1, q̂2) is
the oscillators’ potential energy (including their inter-
action). For simplicity, we assumed the oscillators to
have equal mass m. Following the Caldeira-Leggett ap-
proach [20], we assume a linear oscillator-to-bath cou-
pling and model the bath by harmonic oscillators. Ex-
plicitly, Ĥb =

∑
i(p̂

2
i /2mi + miω

2
i x̂

2
i /2), where x̂i, p̂i are

position and momentum operators of the i-th bath oscil-
lator [21]; correspondingly, mi and ωi are mass and fre-
quency of the i-th bath oscillator. The coupling between
the two oscillators and the bath modes is described by
Ĥc =

∑
i γi x̂iq̂1 +

∑
i γi x̂iq̂2; for simplicity, we assumed

the coupling coefficients γi to be the same for both oscil-
lators [22].

Using the Keldysh formalism in its path-integral ver-
sion [23, 24] and integrating out the (Gaussian) bath de-
grees of freedom, we obtain the Keldysh partition func-
tion Z =

∫
Dq1Dq2 exp[iS] with the action

S =

∮
K

dt
(m

2
(q̇21 + q̇22)− V (q1, q2)

)
+

∮
K

dt

∮
K

dt′
(
q1(t) + q2(t)

)
α(t− t′)

(
q1(t′) + q2(t′)

)
.

(1)

The kernel function α(t − t′) contains all the informa-
tion about the coupling to the bath; the information
about dissipation is contained in the retarded and ad-
vanced parts αR/A(t − t′), while the information about
fluctuations is included in the Keldysh part αK(t − t′).
Focusing on the noiseless dynamics, we can disregard
the Keldysh part [25]. For the retarded and advanced
parts, we find αR/A(ω) =

∫∞
−∞

dε
2π εJ(ε)/[ε2 − (ω ± iη)2]

with infinitesimal η and the bath spectral density J(ε) =
π
∑
i(γ

2
i /ωi) δ(ε− ωi); compare [23].

The form of the action, equation (1), suggests to in-
troduce the center-of-mass coordinate Q = (q1 + q2)/2
and the relative coordinate q = q1 − q2; then, only the
center-of-mass coordinate appears in the second line of
equation (1). Thus, only the center-of-mass coordinate
is affected by the coupling to the bath. In turn, the rel-
ative coordinate will be free from dissipation induced by

the coupling to the bath; that is, it is a dissipation-free
mode. Does that mean the relative coordinate, when
excited, can never relax? The answer to this question is
more subtle. To answer it, we consider the quasi-classical
dynamics of center-of-mass and relative coordinates.

The quasi-classical dynamics of the center-of-mass co-
ordinate Q and the relative coordinate q are found as
follows: we start from the action, equation (1); then, we
rewrite the coordinates as q1 = Q+q/2 and q2 = Q−q/2;
finally, we demand that the variations of the action with
respect to quantum components of Q and q both van-
ish [23]. Taking the variation with respect to quantum
components in Keldysh formalism corresponds to varying
the action in classical Lagrangian mechanics. In turn, we
obtain the quasi-classical equations of motion,

mQ̈ = −1

2

∂

∂Q
V̄ (Q, q)− α0Q̇ , (2a)

mq̈ = −2
∂

∂q
V̄ (Q, q) ; (2b)

for compact notation, we introduced V̄ (Q, q) = V (Q +
q/2, Q− q/2) and, for simplicity, we assumed the bath to
be ohmic J(ε) ≈ α0 εΘ(ε), where Θ(ε) is the Heaviside-
theta function and α0 is some damping constant.

For the center-of-mass coordinate, the quasi-classical
equation of motion (2a) contains a friction term α0Q̇;
thus, Q is a dissipative coordinate. In contrast, for the
relative coordinate, the quasi-classical equation of mo-
tion (2b) contains no friction term; in turn, we call q a
dissipation-free coordinate. Note, however, that via the
potential V̄ (Q, q) the dissipation-free relative coordinate
q can be coupled to the dissipative center-of-mass coor-
dinate Q. So, energy stored in the relative coordinate q
can be dissipated into the bath indirectly by exciting the
center-of-mass coordinate Q which, in turn, dissipates
some of its energy into the bath.

In the important special case of two identical linearly-
coupled harmonic oscillators V (q1, q2) = mω2

0q
2
1+γq1q2+

mω2
0q

2
2 , the center-of-mass and relative coordinates de-

couple V̄ (Q, q) = (2mω2
0 + γ)Q2 + (mω2

0/2 − γ/4)q2. In
turn, the coordinates Q and q describe the eigenmodes of
the systems and the relative coordinate becomes a truly
non-dissipative mode. This result of having a truly non-
dissipative mode is not restricted to the case of identical
linearly-coupled harmonic oscillators but holds in more
general case, when center-of-mass motion and relative
motion decouple; that is, for V̄ (Q, q) = VQ(Q) + Vq(q)
with arbitrary potentials VQ(Q) and Vq(q). While this
case might seem artificial at first, a similar situation natu-
rally arises in two-sublattice antiferromagnets as we shall
see below.
Two-sublattice antiferromagnet.—Antiferromagnets

are conventionally modeled as a composite system of
ferromagnetic sublattices [13–16, 26, 27]. Here, we
focus on a two-sublattice antiferromagnet, where the
sublattice magnetizations are coupled to a shared bath.

The composite system of sublattice magnetizations
and bath is described by the Hamiltonian Ĥ = Ĥs +
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Ĥc + Ĥb, where Ĥs is the Hamiltonian for the sublattice
magnetizations, Ĥb is the bath Hamiltonian, and Ĥc is
the Hamiltonian describing the coupling between the sub-
lattice magnetizations and the bath. We model the sub-
lattice magnetizations by two large spins (macrospins)

with corresponding spin operators Ŝ1 = (Ŝx1 , Ŝ
y
1 , Ŝ

z
1 ) and

Ŝ2 = (Ŝx2 , Ŝ
y
2 , Ŝ

z
2 ). The coupling between the two sublat-

tice magnetizations is then described by the exchange in-
teraction J Ŝ1 · Ŝ2, where the exchange constant J is pos-
itive to favor the antiferromagnetic order (anti-aligned
macrospins). Also including a Zeeman-energy term to
describe the coupling to an external magnetic field H,
the Hamiltonian for the sublattice magnetizations be-
comes ĤS = J Ŝ1 · Ŝ2 − H · (Ŝ1 + Ŝ2). Following the
Caldeira-Leggett approach [20] again, we model the bath
by harmonic oscillators and assume a linear coupling
between the macrospins and the bath degrees of free-
dom. Explicitly, Ĥb =

∑
i(p̂

2
i /2mi + miω

2
i x̂

2
i /2), where

x̂i, p̂i are position and momentum operators of the i-
th bath oscillator; correspondingly, mi and ωi are mass
and frequency of the i-th bath oscillator. The coupling
between the two macrospins and the bath modes is de-
scribed by Ĥc =

∑
i γi x̂i · Ŝ1 +

∑
i γi x̂i · Ŝ2, where we

assumed the coupling coefficients γi to be the same for
both macrospins.

Again, using Keldysh formalism [23, 24], we integrate
out the bath and obtain the Keldysh partition function
Z =

∫
Dg1Dg2 exp[iS] with the action

S = −
∮
K

dt
(
i 〈ġ1|g1〉+i 〈ġ2|g2〉+JS1 ·S2−H·(S1+S2)

)
+

∮
K

dt

∮
K

dt′
(
S1(t) + S2(t)

)
α(t− t′)

(
S1(t′) + S2(t′)

)
,

(3)

where the spin vectors are given by S1(t) = 〈g1|Ŝ1|g1〉
and S2(t) = 〈g2|Ŝ2|g2〉 with the spin-coherent states
|g1〉 and |g2〉; compare [24]. As in the previous section,
the kernel function α(t− t′) contains all the information
about the coupling to the bath; the expression of the dis-
sipative parts αR/A(t−t′) is the same as above and again
we disregard the fluctuation part αK(t− t′).

As before, the structure of the action, equation (3),
suggests to introduce different coordinates irrespective of
the precise form of αR/A(ω). Explicitly, the dissipative
part of the action (second line of equation (3)) suggests
to introduce the average (per-sublattice) magnetization
M = (S1 + S2)/2 and the Néel vector N = S1 − S2 ;
then, only the magnetization appears in the second line
of equation (3). So, intuitively, one can already expect
from the action that only the magnetization will experi-
ence dissipation, while the Néel vector will be free from
dissipation; see figure 2. This time, however, the situa-
tion is more complicated than for the two coupled oscilla-
tors. The reason is that the Berry-phase terms i 〈ġ1|g1〉
and i 〈ġ2|g2〉, which take the role of the kinetic energy
for the two macrospins [28], cannot easily be written in
terms of the spin vectors S1 and S2 [29]; in turn, the

Berry-phase terms cannot be expressed in terms of M
and N. Nevertheless, as we will show, the intuitive ex-
pectation still holds: the magnetization is dissipative; the
Néel vector is a dissipation-free mode.

To determine the Berry-phase terms i 〈ġ1|g1〉 and
i 〈ġ2|g2〉, it is easiest to use the Euler-angle representation
of spin-coherent states [30]. This representation is quite
intuitive, as it describes the spins as vectors in spheri-
cal coordinates S1 = S1 (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1)
and S2 = S2 (sin θ2 cosφ2, sin θ2 sinφ2, cos θ2) with spin
lengths S1 and S2 and spherical angles θ1, φ1 and θ2, φ2.
For the Berry-phase terms, we find i 〈ġ1|g1〉 = S1 (1 −
cos θ1)φ̇1 and i 〈ġ2|g2〉 = S2 (1 − cos θ2)φ̇2. We can then
derive quasi-classical equations of motion by varying the
action [31].

After varying the action, we obtain for the quasi-
classical equations of motion Ṡ1 = S1 × (H − JS2 −
α0Ṡ1 − α0Ṡ2) and, analogously, Ṡ2 = S2 × (H − JS1 −
α0Ṡ2 − α0Ṡ1), where for simplicity we assumed the bath
to be ohmic J(ε) ≈ α0 εΘ(ε) again. These two equa-
tions are Landau-Lifshitz-Gilbert equations for each sub-
lattice. In both equations, the first term describes the
precession around the external field, the second term de-
scribes the precession around the other spin due to the
exchange interaction, the third term describes the usual
(intra-sublattice) Gilbert damping [32], and the fourth
term describes the inter-sublattice Gilbert damping that
was previously described phenomenologically [18]. We
can now combine the sublattice-Landau-Lifshitz-Gilbert

Figure 2. Illustration of dissipative and dissipation-free modes
for two coupled spins; for z-components only. The bath de-
grees of freedom are illustrated by the grey ball and the linear
spin-to-bath coupling is illustrated by springs. The motion of
the average magnetization (a) exerts a force (grey arrows)
onto the bath degrees of freedom and, in turn, dissipates en-
ergy by exciting bath modes. In contrast, the motion of the
Néel vector (b) does not excite the bath, as forces exerted
onto the bath degrees of freedom always balance each other;
in turn, the Néel vector is a dissipation-free mode.
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equations into equations of motion for the average mag-
netization and the Néel vector [33]

Ṁ = M× (H− 2α0Ṁ) , (4a)

Ṅ = N× (H− 2α0Ṁ− 2JM) . (4b)

For the average magnetization M, the quasi-classical
equation of motion (4a) contains a Gilbert-damping term

−2α0M×Ṁ; thus, it is a dissipative coordinate. In con-
trast, Néel vector is a dissipation-free coordinate. Al-
though the term −2α0N × Ṁ is clearly induced by the
coupling to the bath, it is not dissipative, as can be under-
stood from the dynamics. As described by equation (4a),
the magnetization precess around the magnetic field but,
due to the Gilbert-damping term, it will relax towards it.
After some time, the magnetization will be aligned to the
magnetic field and will not move anymore, Ṁ = 0. Then,
as described by equation (4b), the Néel vector continues
to precess around H− 2JM; it will not stop precessing,
as it cannot dissipate into the shared bath.

Comparison and generalizations.—In both cases, cou-
pled oscillators and coupled macrospins, we found
one dissipative and one dissipation-free mode. The
dissipation-free modes are those modes that do not excite
the bath because of the forces exerted on the bath modes
balance each other; see figures 1 and 2. The dissipation-
free modes we found are: the relative coordinate for two
coupled oscillators; and the Néel vector for two coupled
spins.

The existence of dissipation-free modes can be traced
back to the linear coupling between the subsystems
and the shared bath. Explicitly, we can rewrite Ĥc =∑
i γi x̂iq̂1 +

∑
i γi x̂iq̂2 =

∑
i γi x̂i(q̂1 + q̂2), which makes

it clear that only the center-of-mass coordinate Q cou-
ples to the shared bath but not the relative coordinate
q. Similarly, for the antiferromagnet, we can rewrite
Ĥc =

∑
i γi x̂i · Ŝ1 +

∑
i γi x̂i · Ŝ2 =

∑
i γi x̂i · (Ŝ1 + Ŝ2),

which makes it clear that only the magnetization M but
not the Néel vector N couples to the shared bath. Note
that, the dissipation-free modes are not affected by the
bath type (ohmic or non-ohmic); it only affects the dis-
sipation of the other mode. So, we can expect to find
dissipation-free modes in a large class of systems; namely,
whenever identical subsystems couple to only a single
bath that is shared between all them [34].

While the described class of systems with dissipation-
free modes is already large, the existence of dissipation-
free modes is not restricted to that class. As one example,
consider two coupled spins, where |S1| = 2|S2| but the

spin-bath coupling γ
(1)
i = γ

(2)
i /2; then, S1+S2 is dissipa-

tive, whereas S1 − S2 is dissipation free. For spintronics
this example is particularly interesting, because it might
explain why certain ferrimagnets have a low dissipation.

Application.—To understand how our results can be
applied, note at first that baths are not necessarily shared
between subsystems of a composite system. For non-
shared baths, the subsystems cannot compensate each
other’s ”force” onto the bath modes and, in turn, one

cannot expect a dissipation-free mode. So, a mode that
would be dissipation-free for a shared bath becomes dis-
sipative in real systems in two ways: indirectly insofar it
couples to the dissipative mode; or directly insofar the
subsystems couple to separate baths. As a result, in a
composite system we can reduce the dissipation of some
modes also in two ways: either by engineering the system
to manipulate the coupling between its eigenmodes; or by
engineering the baths (with the subsystem-to-bath cou-
plings) such that the subsystems mostly share the same
bath.

Our results even suggest a way to engineer a low-
dissipation mode in composite systems: first, the baths
and the subsystem-to-bath couplings must be engineered
in such a way that the subsystems mostly share one bath;
secondly, the subsystem-to-subsystem coupling must be
engineered such that one of the systems’ eigenmodes
agrees with the dissipation-free mode we expect from the
system-to-bath coupling. While this might seem artificial
at first, it might naturally occur in two-sublattice anti-
ferromagnets: first, the sublattices are very close to each
other, which makes it likely that they mostly couple to a
shared bath; second, in the exchange interaction between
the sublattice spins the average magnetization and the
Néel vector decouple from each other. In turn, even in
real antiferromagnets, the Néel vector is an almost non-
dissipative mode. So, our simple model offers an expla-
nation for why, in some antiferromagnets, the dissipation
of the Néel vector is so much smaller than the dissipation
of the magnetization. In turn, our results also offer an ex-
planation for the large magnon lifetimes typically found
in some antiferromagnets and layered magnets [17, 35].

Conclusion.—For two model systems (coupled oscilla-
tors and coupled macrospins), we derived the dissipative
quasi-classical equation of motion, while assuming that
the subsystems are coupled to a shared bath. In both
cases, we identified a dissipation-free mode (relative co-
ordinate and Néel vector). Generalizing those results, we
argued that a dissipation-free mode should be expected
in a broad class of model systems; namely, whenever sub-
systems of a composite system are coupled to a shared
bath with linear subsystem-to-bath coupling. When the
dissipation-free mode agrees with an eigenmode of the
system, then there is not even an indirect dissipation
channel and one can expect a very long lifetime for an
excitation of that mode.

Finally, we discussed how our results could be used
in real systems to engineer low-dissipation modes. Such
low-dissipation modes could be exploited to design an
efficient information transfer channel through a system,
as the corresponding excitations will have a very long
lifetime. Similarly, exploiting a low-dissipation mode
could be used to reduce decoherence; for a known special
case for qubits, see [36–38]. Two-sublattice antiferro-
magnets seem to be candidates for systems in which a
low-dissipation mode can naturally occur. In turn, our
results also offer an explanation for the low Néel-vector
dissipation and, correspondingly, for the large magnon
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lifetime in some antiferromagnets [17].
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