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Quantum computing is anticipated to offer immense computational capabilities which could provide efficient solutions to many
data science problems. However, the current generation of quantum devices are small and noisy, which makes it difficult to process
large data sets relevant for practical problems. Coreset selection aims to circumvent this problem by reducing the size of input data
without compromising the accuracy. Recent work has shown that coreset selection can help to implement quantum K-Means clustering
problem. However, the impact of coreset selection on the performance of quantum K-Means clustering has not been explored. In this
work, we compare the relative performance of two coreset techniques (BFL16 and ONESHOT), and the size of coreset construction
in each case, with respect to a variety of data sets and layout the advantages and limitations of coreset selection in implementing
quantum algorithms. We also investigated the effect of depolarisation quantum noise and bit-flip error, and implemented the Quantum
AutoEncoder technique for supressing the noise effect. Our work provides useful insights for future implementation of data science
algorithms on near-term quantum devices where problem size has been reduced by coreset selection.

1 INTRODUCTION

Quantum computing is an emerging paradigm for data science problems, but a key fundamental question remains open:
how can a quantum computer load a large classical scale data set and process it to find an answer? Today’s quantum
devices consist of only a few tens of qubits and their capabilities are limited due to noise. Contrarily real-world data
science problems involve large volumes of data. For quantum algorithms to handle useful practical problems in near
future, it is imperative to make meaningful size reduction of classical data sets so that they can be processed by the
existing quantum devices without much loss of accuracy.

In 2020, Harrow [13] proposed a quantum-classical hybrid method that uses coreset to break through the quantum
limitation and offer quantum speedups for a variety of data science algorithms such as maximum likelihood estimation,
Bayesian inference, and saddle-point optimization. A coreset is a small weighted set of data used to represent the large
original data within an acceptable accuracy loss. In the same year, Tomesh et al. [18] proposed that the clustering of
data can be transformed into a Hamiltonian optimization problem, with coreset as input, and solved with Quantum
Approximate Optimization Algorithm (QAOA) to realize quantum K-Means clustering. While Harrow [13] proposed
that quantum speed-ups would be possible to achieve by implementing the coreset selection method and Tomesh et al.

[18] studied the coreset construction technique for the K-Means clustering problem, the impact of coreset selection on
results for data science problems by a quantum algorithm, such as on the performance of quantum K-Means clustering,
remains an open question. For example, it is not well understood how a particular coreset selection scheme might
effect the accuracy of a quantum algorithm?, or what is the impact of varying coreset size on the quantum algorithm
implementation? The latter question also involves an interesting interplay between the improved algorithm accuracy
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due to larger coreset size and reduced fidelity due to stronger quantum noise present in the larger quantum circuit.
Filling this gap could help researchers better understand the coreset selection, including its impact and its strengths
and weaknesses, and ultimately advance this field.

Our research aims to explore the impact of coreset selection on the quantum K-Means clustering implementation
and summarizes its advantages as well as the limitations of using coreset selection with a quantum algorithm. This
paper explores two influencing factors of coreset selection on quantum K-Means clustering: (1) How the performance of
quantum K-Means clustering changes when using different coreset construction algorithms; (2) How different coreset
size interferes with quantum algorithm implementation. To answer the former question, we analysed the BFL16 coreset
construction algorithm [7] and the ONESHOT coreset construction algorithm [4] which provide key insights into the
influence of a particular coreset construction algorithm on quantum implementation. For (2), we varied coreset size
from 5 to 10 and analysed its impact on the QAOA circuit performance. The evaluation method is to use the classical
K-Means clustering as the benchmark to test the accuracy of the coreset on 6 different data sets, where the accuracy is
defined as a direct benchmark against the classical K-Means clustering solution. Due to the limited quantum resources,
we focused on 2-Means clustering problem as also the case in recently published work [18], but our methods can be
readily generalised to the K-Means Clustering problem.

Another important factor studied in our work is the impact of quantum noise. The depolarisation quantum noise and
bit-flip errors will modify the quantum state, leading to erroneous results, interfering with the analysis, and eliminating
the contribution of the coreset. In recent literature, there has been significant efforts to reduce the impact of noise by
either implementing quantum error correction codes, or by implementing strategies at the quantum circuit level, such
as Quantum AutoEncoders (QAEs), which inherits the idea of classical autoencoders, correcting quantum errors by
learning fair parameters [5]. The quantum error mitigation strategy tested in this paper is the QAEs, which compresses
the input data to the bottleneck level to remove the noise.

Based on the analysed results, we find that both the BFL16 algorithm and the ONESHOT algorithm can achieve
more than 95% accuracy on all 6 data sets. The difference between these two algorithms is the coreset points selection
preference. BFL16 tends to select the points of the coreset according to the distribution of the data set, while ONESHOT
tends to learn the density of the data set. The impact of coreset size on accuracy is greater than that of the coreset
construction algorithm. Experiments on various datasets show that generally increasing the size of the core set tends to
reduce accuracy, but is data-dependent. The reason for this is that it is difficult to achieve a balance between coreset
size and QAOA, although Nelder-Mead optimizer [16] is used to optimize QAOA to make it work efficiently, using more
qubits makes the circuit larger and makes it harder for QAOA with Nelder-Mead optimizer to find the desired result.
Larger circuits are also more susceptible to quantum noise. At first, the quantum noise is ignored to focus on the impact
of coreset construction and selection. In the later part of the paper, noise is included and its impact is investigated on
overall accuracy. A noise mitigation strategy, QAEs, is applied to mitigate the impact of quantum error and achieves
positive results.

The main contributions of our work sare as follows:

• We explore a relatively new area of research, coreset selection for quantum algorithm implementation, and
present an analysis of the impact of coreset selection on the performance of quantum K-Means clustering.

• We analyse the effect of the coreset size on the results, including the relationship between the coreset size and
accuracy and the relationship between the coreset size and quantum algorithm.
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• We apply QAEs for the QAOA circuit and show that QAEs are effective strategy to mitigate the impact of quantum
noise.

In the rest of the paper, Section 2 reviews related papers and the background of the research. In Section 3, a detailed
explanation of the used methods is provided. Performance analysis of coreset and QAEs will be in Section 4. Section 5
includes the conclusions of the paper and a discussion on future research directions.

2 RELATEDWORK AND BACKGROUND

Performance analysis of coreset selection for quantum algorithms is a relatively new research field with only a few
studies in the published literature to-date. In this section, we provide a summary of the related work on coreset selection
and quantum denoising methods as well as the background of the research.

2.1 Coreset selection

2.1.1 Coreset construction. Coreset is a weighted small data set used to represent the whole large data set. The naive
approach to construct the coreset is to assign the same probability to each point in the data set and randomly select a
small set as the coreset. However, the randomly selected coreset may not be able to effectively represent the original
data because the sensitivity is not bounded. The sensitivity is the worst-case effect of each data point on the objective
function [7], and bounding the sensitivity helps to guarantee the result will always be approximately optimal. The
bounding operation is realized by using (𝛼, 𝛽) − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 where 𝐷𝑖𝑠 (X,𝐶) ≤ 𝛼 min𝐷𝑖𝑠 (X,𝐶) and |𝐶 | ≤ 𝛽𝑘

while 𝛼 and 𝛽 are small real number and 𝐷𝑖𝑠 represents the distance 𝐷𝑖𝑠 (X, C) = |X − C|. For K-Means clustering on
coreset 𝐶 for data set X, the objective function is

∑
𝑥 ∈X min |𝑥 − 𝑐𝑐𝑙𝑜𝑠𝑒𝑠𝑡 | where 𝑐𝑐𝑙𝑜𝑠𝑒𝑠𝑡 is the closest point in coreset

𝐶 for each data point 𝑥 . In 2017, Bachem et al. [3] proposed a BFL16 coreset construction algorithm that measures
the probability of each point being selected as coreset as the distance between each point and other points, and the
𝐷2-sampling algorithm is used to limit the sensitivity. In this work, the BFL16 coreset has been applied to K-Means
clustering, K-Median clustering, and Principal Component Analysis (PCA). The explanation for the steps it takes to
construct the BFL16 coreset is:

(1) Find 𝑛 K-Means++ cluster centers 𝐵 using 𝐷2-sampling where 𝑛 is a hyper-parameter predefined based on the
requirement and normally it will be a small integer value. The benefit of using K-Means++ cluster center instead
of K-Means cluster center is that the K-Means++ clustering method can find more representative cluster centers
and realize faster.

(2) Set the probability of a certain point being selected as one of the elements in the coreset and the weight of this
point based on the distance to 𝐵.

(3) Construct the coreset𝐶 of size 𝑘 , where 𝑘 is the hyper-parameter indicates the number of elements in one coreset.
Notice that the number of 𝑘 is the same as the number of qubits used when passing it to the quantum computer.

Later in 2018, Bachem et al. [4] proposed the ONESHOT coreset construction algorithm, using 𝐷2-sampling to bound
sensitivity. Different from the BFL16 algorithm, the Δ parameter is introduced to make the coreset more sensitive to the
density of the data. The ONESHOT coreset has been proved to be suitable for dealing with multiple clustering problems
at the same time. Similar to BFL16 algorithm, it also requires 𝑛 K-Means++ cluster centers 𝐶𝐶 from 𝐷2-sampling. The
steps of the ONESHOT coreset are:

(1) Preparing the sensitivity 𝑆 of each point. 𝑆 =
𝜙𝑥 (𝐶𝐶)
(2∗𝑙𝑒𝑛) where 𝜙𝑥 (𝐶𝐶) is obtained by dividing the distance of each

point to its nearest 𝑐𝑐 by the number of points in each cluster, and 𝑙𝑒𝑛 is the size of the data set.



4

(2) Define the hyper parameter Δthat controls the gradient to 𝑆 . It helps to make the coreset more close to a
denser cluster. The sensitivity is bounded by the sum of sensitivities of all points {1, (1 + Δ), ..., 𝑃𝑚𝑎𝑥 }, 𝑃𝑚𝑎𝑥 is a
hyper-parameter that defines the upper bound.

(3) The probability of each point to be selected as coreset is denoted as 𝑃 (𝑥) . Equation of it is, 𝑃 (𝑥) = 𝑆 (𝑥)∑
𝑥′∈X 𝑆 (𝑥 ′) .

The weight of each coreset elements is 1
𝑙𝑒𝑛∗𝑚∗𝑃 (𝑥) where𝑚 is the size of coreset.

2.1.2 Coreset for quantum K-Means clustering. Tomesh et al. [18] took BFL16 coreset as the input to the quantum
algorithm, and used the quantum approximate optimization algorithm (QAOA) to obtain the state that gave the lowest
Hamiltonian. The obtained state contains the information of splitting and clustering the coreset to form 2 cluster
centroids. The metric to measure the method performance and accuracy loss is the cost 𝐶𝑜𝑠𝑡 =

∑
𝑐∈𝐶,𝑥 ∈X ∥𝑥 − 𝑐 ∥2,

which is the sum of squared distance from each point to the closest coreset point. In most cases, the cost of using
the cluster centroids obtained from the quantum method was close to the cost of cluster centroids obtained directly
using the 2-Means clustering model on the entire dataset. The accuracy loss is in a controllable range. Compared with
Tomesh et al. [18], our research is more focused on exploring the impact of coreset selection on the performance of
quantum K-Means clustering, we define accuracy, shown in equation 5, as the criterion for evaluating performance, and
the effects of different coreset construction algorithms, coreset size, QAOA performance and quantum noise on the
performance of quantum K-Means clustering are analyzed.

2.2 Quantum Approximate Optimization Algorithm

QAOA is a quantum algorithm to find approximate solutions for optimization problems [10]. It starts with a trial state
|𝜓 (𝜃 )⟩ where 𝜃 is the gate parameter for any adjustable gate. It will then measure the expectation value of the system
energy and use classical optimization algorithms to find a new |𝜃⟩ that gives lower system energy. By repeating these
steps multiple times, it finally assigns a high probability to the state that gives the lowest system energy. In this research,
the QAOA returns the state with the information on how to segment and cluster the input to form cluster centroids to
minimize the objective function. The objective function for 2-Means clustering is shown in Equation 1, where 𝜇 is the
set of cluster centroids. ∑︁

𝜇𝑖 ∈𝜇,𝑥𝑖 ∈X
𝑚𝑖𝑛∥𝑥𝑖 − 𝜇𝑖 ∥2 (1)

It has been proved that minimizing the objective function is equivalent to minimizing the squared distance from each
point to its closest cluster centroids[6], shown in Equation 2. The 𝑆+1 is the cluster obtained by cluster centroid 𝜇+1 and
the 𝑆−1 is the cluster obtained by cluster centroid 𝜇−1.∑︁

𝑖∈𝑆−1
∥𝑥𝑖 − 𝜇−1∥2 +

∑︁
𝑖∈𝑆+1

∥𝑥𝑖 − 𝜇+1∥2 (2)

The Equation 2 can be transformed to maximising weighted inter-cluster distance, shown in Equation 3, where𝑊 is
the sum of weights in each cluster, the equation for𝑊 is𝑊±1 =

∑
𝑖∈𝑆±1 𝑤𝑖 ,𝑤 is the weight for each coreset element

[18]. It is worth mentioning that the 𝑥 here is no longer the point in the original data set but the elements in the
coreset. Equation 3 is also known as the MAX-CUT problem. In classical computation, this can be achieved by classical
optimization algorithms such as Maximum Likelihood Estimation [19] or gradient descent. While in the quantum
domain, the objective function of the MAX-CUT problem is transferred to Hamiltonian, and the QAOA is used to
find the lowest Hamiltonian value. It will return a pair of symmetric states, telling us which partition maximizes the
weighted inter-cluster distance.
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𝑊+1𝑊−1∥𝜇+1 − 𝜇−1∥2 (3)

2.3 Quantum denoising methods

Quantum noise is a major obstacle to the performance of the quantum algorithm. To reduce the detrimental impact of
errors, various quantum error mitigation and correction schemes have been proposed. Some quantum error correction
algorithms like Shor’s code [9] and Steane’s algorithm [17] work on the basic level of quantum computers, and some
work on the circuit level such as Duplicated Circuit [15] and Quantum AutoEncoders [1]. We will review the work that
is on the circuit level.

2.3.1 Duplicated Circuit. Duplicated Circuit achieves the most accurate results by making 𝑁 copies of the circuit, and
then take the average of the measurement results. The diagonalizing gates are assigned after the state preparation gates

in each copied circuit. The matrix for diagonalizing gate is


1 0 0 0

0
√
2
2 −

√
2
2 0

0
√
2
2

√
2
2 0

0 0 0 1


. The limitation of Duplicated Circuit

the state preparation gate required, such as 𝐶𝑁𝑂𝑇𝑔𝑎𝑡𝑒 + 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑌𝑔𝑎𝑡𝑒 +𝐶𝑁𝑂𝑇𝑔𝑎𝑡𝑒 . Since the QAOA circuit can not
be converted to meet the formula of state preparation gate, the Duplicated Circuit can not be used as error correction
strategy in this experiments.

2.3.2 Quantum AutoEncoders. In 2019, Beer et al. [5] proposed Quantum Neural Network (QNN), which inherits the
idea of classical Artificial Neural Network (ANN). The hidden layers in QNN contain unitary operations 𝑈 instead of
the activation function in ANN. The output state 𝜌𝑜𝑢𝑡 after feed-forward is in Equation 4, where † is the transpose of
the unitary operation, 𝑡𝑟 is the trace of the matrix in linear algebra, and hidden layers 𝑈 𝐿 = 𝑈 𝐿

𝑛𝑙
𝑈 𝐿
𝑛𝑙−1 ...𝑈

𝐿
1 , where 𝑛𝑙 is

the number of qubits in layer 𝐿. The parameters to be learned in QNN is the rotation angle in each rotation gate, so the
backpropagation will update the rotation angles if the output state is different from the expectation.

𝜌𝑜𝑢𝑡 = 𝑡𝑟𝑖𝑛,ℎ𝑖𝑑𝑑𝑒𝑛 (𝑈 𝑜𝑢𝑡𝑈 𝐿 ...𝑈 1 (𝜌𝑖𝑛
⊗

|0...0 >ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡< 0...0|)𝑈 1† ...𝑈 𝐿†𝑈 𝑜𝑢𝑡†
) (4)

Quantum AutoEncoders (QAEs) is an implementation of QNN for quantum denoising. It takes a pure quantum state
as the expected output and a noisy state as input, performing feedforward and backpropagation to adjust parameters in
the unitary operation. If the output after performing feed-forward is different from the expected input, backpropagation
needs to be performed to allow the parameters in unitary operation to be updated. Through multiple feedforward
and backpropagation, the unitary operation can almost perfectly learn how to map the corrupt state to the right state.
Achache et al. [1] applied QAEs to correct the noisy Greenberger–Horne–Zeilinger (GHZ) state caused by bit-flips.
From their work, the [2,1,2] QAEs can correct a noisy GHZ state back to a nearly pure state within 100 epochs.

3 METHODOLOGY

3.1 Research problem

Our research aims to analyze the impact of coreset selection on quantum K-Means clustering performance from four
perspectives: coreset construction algorithms, size of coreset, QAOA performance, and quantum noise. The performance
is defined as: For a data set 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛}, after applying classical 2-Means clustering, there will be two clusters



6

𝐶1 = {𝑑1, 𝑑2, ..., 𝑑𝑘 } (0 < 𝑘 < 𝑛) and 𝐶2 = {𝑑𝑘+1, 𝑑𝑘+2, ..., 𝑑𝑛}, and 𝐶1 and 𝐶2 are taken as the benchmark. After
applying quantum K-Means clustering, there are two quantum clusters 𝑄𝐶1 and 𝑄𝐶2, if 𝑄𝐶1 = {𝑑1, 𝑑2, ..., 𝑑𝑘 } and
𝑄𝐶2 = {𝑑𝑘+1, 𝑑𝑘+2, ..., 𝑑𝑛}, which means 𝑄𝐶1 == 𝐶1 and 𝑄𝐶2 == 𝐶2, then the performance of quantum K-Means
clustering is prefect. The metric defined to measure performance is the accuracy shown in Section 4.1. The performance
of quantum K-Means clustering constructed by different coreset construction algorithms, different coreset sizes, and
operating environments is measured to analyze the impact of these factors.

3.2 Methods

The performance of the BFL16 coreset construction algorithm [7] and ONESHOT algorithm [4] on 6 data sets are
investigated to analyse the impact of the coreset construction algorithm. The distributions of coreset for 6 data sets are
plotted to help understand the logic behind each algorithm and the difference between them. For both algorithms, 40
K-Means++ cluster centers constructed from 𝐷2-sampling are taken as initial points. For ONESHOT algorithm, the
hyper-parameter Δ = 1

𝑙𝑜𝑔 (𝑙𝑒𝑛) where 𝑙𝑒𝑛 is the length of data set and 𝑃𝑚𝑎𝑥 = 2.
In general, the larger the coreset size, the less accuracy is lost, and the better the representation of the original data.

Experiments in [18] prove this point. However, the results of this experiment showed that a larger coreset makes QAOA
with Nelder–Mead optimizer difficult to do segmentation and clustering operations, and wrong QAOA result will lead to
unsatisfactory final accuracy. The relationship diagram of coreset size and accuracy is provided for supporting analysis.
These experiments are run on the noise-free quantum simulator to maximize the reliability of the results.

The depolarisation quantum noise and bit-flip error are introduced into the simulator from depolarizing noise model
provided by IBM, the model allows the user to set the error rate and the type of gate where the error occurs, it will
assign X gates to gates set by the user based on a set error rate. The Quantum AutoEncoders (QAEs) is applied to the
QAOA circuit to get the collapsed state back to pure. Figure 1 shows the structure of [3,1,3] QAEs, that is, the input
size is 3, the bottleneck layer size is 1, and the output layer size is 3. Target state prep and input state prep represent
noise-free quantum state and corrupted quantum state respectively. The qubits occupied by QAEs is 1 +m1 + w, where
m1 is the size of each layer and 1 is the first qubit used to measure state fidelity, w is the size of the QNN and its equation
is w = 𝑚𝑎𝑥

1≤𝑖≤(𝑙𝑒𝑛−1)
(m𝑖 +m𝑖+1). For [3,1,3] structure,m1 is 3 because the input size is 3, w is 4, so there are totally 8 qubits

used. The H gate and CCX gate between the second and third barriers are used to compare the inconsistency of the input
and target states and reflect it through the first qubit. Figure 2 shows the decomposition circuit of QAEs. The unitary
operation is𝑈 = 𝑒𝑖𝑘 where 𝑘 =

∑
𝜎 ∈𝑃

⊗
𝑛 𝐾𝜎𝜎 , where 𝑛 is the number of qubits used in the circuit, 𝑃 ∈ {𝐼 , 𝑌 , 𝑋, 𝑍 }, an

example of 𝑃
⊗

3 ∈ {𝐼 𝐼 𝐼 , 𝐼𝑋𝑋, 𝐼𝑋𝑌 ...}, 𝐾 are the coefficients of the unitary operation vector. The training process is to
train coefficient 𝐾that makes the input state close to the pure state as much as possible.

4 RESULTS AND DISCUSSION

The objective of the experiment is to demonstrate to what extent quantum K-Means clustering is affected by our
proposed influencing factors.

4.1 Evaluation

The performance of quantum K-Means clustering is analysed by setting accuracy as a metric to measure the degree of
influence of each factor on quantum K-Means clustering. Accuracy represents the use of quantum K-Means clustering,
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Fig. 1. Circuits for QAEs

Fig. 2. Decomposed circuits for QAEs

how many points have been assigned into the same cluster as classical K-Means clustering. The equation of accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
number of correctly assigned points

size of data set
(5)

Table 1 describes 6 data sets used in experiments. The selection of data sets is based on their size and dimension, ranging
from the Physical exercise data set with a small amount of data and low dimension to the Epilepsy dataset with a large
amount of data and a high dimension.
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Table 1. Data sets

Data sets Number of points/Dimension Description

Physical exercise 20/3 Physical exercise Linnerud data set.[8]
Iris 150/4 Iris data set contains 150 instances for 3 different type of iris plant.[11]
Wine 178/13 Wine data set shows 13 components in three types of wine. [14]

Boston house price 506/13 House prices in the Boston area and possible influencing factors. [12]
Breast cancer 569/30 This dataset records information about breast cancer patients.[14]

Epilepsy 11.5k/179 Data set used to recognize epileptic seizure.[2]

4.2 Coreset construction algorithm

Table 2 presents the accuracy and standard deviation of the coreset obtained by BFL16 and ONESHOT algorithms on
the six data sets. "Accuracy - quantum" in the table refers to the accuracy of quantum k-means clustering obtained
by coreset and QAOA, and "Accuracy-classical" refers to the accuracy of K-Means clustering obtained by coreset and
weighted average on a classical computer. The accuracy in the table is the average accuracy after ten experiments, not
the highest one. Accuracy on both quantum and classical is obtained from the coreset size of 5 for 6 data sets. Regardless
of the coreset construction algorithm used, using QAOA, or using a weighted average to do the segmentation and
clustering operations on a classical computer, an accuracy of more than 90% can be achieved.

The data in "Accuracy-classical" is not affected by quantum algorithms and can visualize the impact of coreset
construction. For all 6 data sets, both the BFL16 and ONESHOT algorithms achieve at least 95% accuracy, which means
the coreset from two algorithms represents the original large data well. The difference in accuracy on 6 data sets mainly
comes from the distribution of the data set itself. For the robustly clustered data sets such as Iris data set, Boston housing
price data set, and Breast cancer data set, both BFL16 and ONESHOT coreset can achieve good accuracy. The impact of
dimension and number of points in the data set is limited because data sets like physical exercise and wine are not
as large and high-dimension as the Boston house price and breast cancer data set, and the accuracy of the coreset
construction algorithm on them is low mainly because of their data distribution. The distribution of the data set and
the distribution of the coreset constructed by BFL16 and ONESHOT are presented in Figure 3 and Figure 4 through
T-distributed Stochastic Neighbor Embedding (TSNE) and PCA. However, if using a coreset on a data set with a large
amount of data and high dimensions like the Epilepsy data set, the performance of the coreset will still be affected.

The BFL16 algorithm tends to follow the distribution of the data and assign more points to the larger cluster; while
the coreset of the ONESHOT algorithm follows the density of the data and assigns most points to the cluster with high
density. For example, the Iris data set has two clusters, and the cluster in the lower right corner is relatively large and
wide. BFL16 algorithm places 4 of the 5 points in that area, while the ONESHOT algorithm only gives two. ONESHOT
algorithm gives three points to the denser cluster in the upper left corner, while over there, the BFL16 algorithm gives
only one. The difference comes from the parameter. Δ in the ONESHOT algorithm makes adjustments to the coreset
and makes the coreset sensitive to the density of data, while BFL16 determines the coreset by calculating the distance
between points so that it prefers to learn the distribution of data.

4.3 Quantum Approximate Optimization Algorithm

In the classical K-Means clustering algorithm, the cluster centroids are formed by calculating the distance between
points to form 𝑘 clusters and then calculating the weighted average in each cluster. The quantum K-Means clustering
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Fig. 3. Implementation of BFL16 coreset construction algorithm on 6 data sets

Table 2. Performance of coreset construction algorithms with coreset size 5 on 6 data sets (accuracy ± standard deviation)

Data sets BFL16 ONESHOT
Accuracy - quantum Accuracy - classical Accuracy - quantum Accuracy - classical

Physical exercise 94% ± 0.08 97% ± 0.03 95% ± 0.03 99% ± 0.02
Iris 92% ± 0.1 99.4% ± 0 94% ± 0.06 99.2% ± 0
Wine 91.8% ± 0.07 97.6% ± 0.01 90% ± 0.08 97.6% ± 0.01

Boston house price 92.3% ± 0.08 99.9% ± 0 94% ± 0.05 100%
Breast cancer 92.1% 0.06 97.6% ± 0.02 91.7% ± 0.06 96.8% ± 0.02

Epilepsy 91.6% ± 0.12 95.9% ± 0 92.4% ± 0.05 95.8% ± 0

constructs cluster centroids through QAOA. It converts the weighted coreset into a weighted complete graph and solves
it as a weighted MAX-CUT problem. Figure 5 shows a weighted complete graph obtained using a coreset of size 5 on the
Epilepsy data set, indexed from 0 to 4, and drawn by the nextworkx library. The Hamiltonian for the weighted coreset is,
𝐻𝑎𝑚 = −9887.5𝑍𝑍𝐼𝐼𝐼 + 5135.7𝑍𝐼𝑍𝐼𝐼 − 1855.3𝑍𝐼𝐼𝑍𝐼 + −15242.2𝑍𝐼𝐼𝐼𝑍 − 20656.1𝐼𝑍𝑍𝐼𝐼 + 7462.0𝐼𝑍𝐼𝑍𝐼 + 61305.0𝐼𝑍𝐼𝐼𝑍 −
3875.9𝐼 𝐼𝑍𝑍𝐼 − 31842.8𝐼 𝐼𝑍𝐼𝑍 + 11503.2𝐼 𝐼 𝐼𝑍𝑍 , and then QAOA is applied to obtain the maximum Hamiltonian. The
QAOA circuit is shown in Figure 6. The 𝐻 gate is used to entangle the qubits so that the 𝐶𝑁𝑂𝑇 gates can make a
controlled change, the last 5 gates are used to measure the results. Figure 7 shows that there are two quantum states
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Fig. 4. Implementation of ONESHOT coreset construction algorithm on 6 data sets

that have the highest probability, |11110⟩ and |00001⟩, which are a pair of symmetric states, 𝑖 .𝑒 . the coreset points with
indices 0 to 3 are in one cluster, and index 4 is in the other cluster.

Referring to this approach, the quantum cluster centroids for 6 data sets are plotted in Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12 and Figure 13 respectively. The two clusters are in green dots and blue squares separately, and
the quantum cluster centroids are shown in the two figures on the right, and the classical cluster centroids on the left.
For all 6 data sets, quantum cluster centroids and classical cluster centroids are very close, which means that quantum
K-Means clustering can make clusters that are almost the same as classical K-Means clustering.

4.4 Coreset size

The coreset size has a significant influence on quantum K-Means clustering. Recent work [18] showed a uniform
trend for all six data sets, that is, the larger the size of the coreset, the less the accuracy loss. A key question is does
a larger coreset size help quantum K-Means clustering more? The result of experiments shows that a larger coreset
gives a negative impact on accuracy. The relationship between accuracy and coreset size using QAOA and classical
segmentation and clustering operations are plotted to support, as shown in Figure 15. For the six data sets in Table
1, whether it is the BFL16 coreset or the ONESHOT coreset when using the classical method, the accuracy increases
with the increase of the coreset size, but when using QAOA with Nelder-Mead optimizer, the accuracy decreases with
the increase of the coreset size, 𝑖 .𝑒 . coreset size will directly affect the performance of QAOA with the Nelder-Mead
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Fig. 5. Weighted complete graph for Epilepsy coreset of size 5

Fig. 6. QAOA circuit for Epilepsy coreset of size 5

optimizer, which in turn has an impact on accuracy. Figure 14 illustrates the impact of coreset size on the standard
deviation and accuracy of the six data sets. For both the BFL16 coreset and ONESHOT coreset, the overall trend is that
the accuracy decreases as the coreset size increases, while the standard deviation increases. It is difficult for QAOA to
find suitable quantum states to maximize the Hamiltonian if more quantum states are introduced. If the coreset size is
5, there will be 5 qubits used and 25 quantum states. The amount of quantum state increases exponentially with the
number of qubits. The impact of coreset size on accuracy is also data-dependent. The accuracy increases slightly when
the coreset size increases from 5 to 7 for the Boston house price data set and wine data set, but it drops sharply when
the coreset size increases to 10, while other data sets give different accuracy variations. Accuracy on Epilepsy data set
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Fig. 7. QAOA result for Epilepsy coreset of size 5

Fig. 8. A comparison of two quantum clusters and classical cluster centroids on Iris data set

decreases more than other data sets when coreset size increases from 7 to 10, but remains stable when coreset size
changes from 5 to 7.

An open research area is whether other optimizers can optimize the QAOA algorithm more efficiently or whether
they also follow the above trend when the coreset size grows. These experiments are all done on the noise-free simulator.
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Fig. 9. A comparison of two quantum clusters and classical cluster centroids on Boston data set

Fig. 10. A comparison of two quantum clusters and classical cluster centroids on Breast cancer data set

Fig. 11. A comparison of two quantum clusters and classical cluster centroids on Wine data set

If on the real quantum hardware with quantum noise, the large circuit will suffer from more noise, so it is necessary to
take this factor into account to make a compromise.
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Fig. 12. A comparison of two quantum clusters and classical cluster centroids on Physical data set

Fig. 13. A comparison of two quantum clusters and classical cluster centroids on Epilepsy data set

4.5 Quantum noise andQuantum AutoEncoders

If QAOA is disturbed by quantum noise, the final quantum result will be inaccurate, leading to wrong segmentation and
clustering. The quantum cluster centroids from wrong segmentation and clustering will inaccurately summarize the
data set and leads to low accuracy. We use a depolarizing noise model to introduce depolarisation quantum noise on all
qubits of the simulator.

The quantum input to the experiment is a coreset of size 3 obtained from the Epilepsy data set. The QAOA circuit
is run under the 2% depolarisation error rate and 5% depolarisation error rate respectively, and the bit-flip error is
manually set after the QAOA circuit to simulate the fully collapsed situation. The QAEs is applied to it to correct the
collapsed state. The results are shown in Figure 16. The dodger blue columns shaded with "/" are the results obtained
by the QAOA circuit on a noise-free quantum simulator. The |010⟩ and |101⟩ pairs have the highest probability of
symmetric quantum states, and after introducing depolarisation noise, their probability drops significantly, and the
decrease is more pronounced in a depolarisation error rate of 5%, the results are shown in the sky blue with "\" shading
superior. In this situation, |010⟩ and |101⟩ pairs also have the highest probability relative to other quantum states. The
worst-case scenario is a complete collapse of the quantum state, which could be caused by the bit-flip error, shown in
the yellow column with a dot.
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Fig. 14. Relationship between coreset size and accuracy

Fig. 15. classical accuracy - quantum accuracy

QAEs can correct the collapsed state back for the QAOA circuit. It has been proven by Achache et al. [1] that the
QAEs can do the quantum noise cancellation for the GHZ circuit and this experiment extended it to the QAOA circuit.
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By giving a pure circuit as target and a noisy circuit as input, QAEs learn parameters 𝐾 that can transform the error state
back to the pure state. We trained the QAEs in the simulator using a pure QAOA circuit as the target and a noisy QAOA
circuit as input. The noise comes from bit-flip error and the error rate is set to 20%. We run 150 epochs, each epoch
takes about 270 seconds. The effect of trained QAEs on the fully collapsed quantum state is shown in green columns
with "x" shadowed. QAEs give the highest probability back to |010⟩ and |101⟩ whether at 2% depolarisation error rate or
5% depolarisation error rate, and the state at 2% depolarisation error rate is closer to the ideal one. The limitation of
QAEs is the training time. For the 5-qubit QAOA circuit and [5,1,5] structure of QAEs, 12 qubits are required, and the
training time is around 2 hours per epoch, but the desired effect is not well achieved after 100 epochs. It requires a large
amount of resources and time.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have analysed the impact of the coreset selection on the quantum K-Means clustering performance,
including the analysis of influencing factors such as the coreset construction algorithm, the coreset size, and quantum
noise. We found that both BFL16 and ONESHOT coreset construction algorithms perform well at summarizing robustly
clustered data sets. The impact of these algorithms on the performance of quantum K-Means clustering is not remarkable,
when using classical methods for segmentation and clustering operations, quantum K-Means clustering can achieve
over 95% accuracy on all 6 data sets investigated in this study. The impact of the coreset size is also an important
parameter of interest. For most data sets, a larger coreset would reduce the performance of QAOA with the Nelder-Mead
optimizer. This is because the number of quantum states brought by each additional qubit increases exponentially,
making it difficult for QAOA and optimizers to find approximate solutions, and wrong segmentation and clustering
operations directly affect accuracy. Meanwhile, a larger coreset means larger quantum circuits, which introduce more
quantum noise. It turns out that QAEs can be extended to QAOA circuits with desirable results.

Some parts of our research can be expanded in a future study. A possible research direction is to find a way to make
the coreset with limited size but with better summary of the data set. When using the coreset construction algorithm
to obtain a coreset 𝑀 with size𝑚, instead of using coreset 𝑀 , smaller size of coreset 𝑁 with size 𝑛(𝑛 << 𝑚) can be
taken as the final coreset. Coreset 𝑁 should not be a subset of𝑀 , because𝑀 already represents the distribution of the
dataset, and 𝑁 being a subset of𝑀 means that certain accuracy will be lost, which will bring more negative factors.
Another possible direction of research could be around the performance of classical optimisers for QAOA circuit. More
sophisticated optimisers such as Simultaneous Perturbation Stochastic Approximation (SPSA) optimizers or Adam and
AMSGRAD optimizers can be studied which might allow better accuracy for larger QAOA circuits corresponding to
bigger coreset sizes. Extending research to real quantum hardware is worth considering. We introduce quantum noise
through a depolarizing noise model on the simulator. If on the real quantum hardware, the structure of the hardware,
the relative error rate of each qubit, and other types of quantum errors can all affect the results.

Overall, our study provides useful insights into the application of quantum algorithms for data science problems
where the data size has been reduced by coreset selection. We show that this a promising area of further research which
could enable near future quantum devices to handle data science applications of practical relevance.
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Fig. 16. QAEs result
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