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Superconducting quantum circuits are
a promising hardware platform for real-
izing a fault-tolerant quantum computer.
Accelerating progress in this field of re-
search demands general approaches and
computational tools to analyze and de-
sign more complex superconducting cir-
cuits. We develop a framework to sys-
tematically construct a superconducting
quantum circuit’s quantized Hamiltonian
from its physical description. As is of-
ten the case with quantum descriptions of
multicoordinate systems, the complexity
rises rapidly with the number of variables.
Therefore, we introduce a set of coordi-
nate transformations with which we can
find bases to diagonalize the Hamiltonian
efficiently. Furthermore, we broaden our
framework’s scope to calculate the circuit’s
key properties required for optimizing and
discovering novel qubits. We implement
the methods described in this work in an
open-source Python package SQcircuit. In
this manuscript, we introduce the reader
to the SQcircuit environment and function-
ality. We show through a series of exam-
ples how to analyze a number of interesting
quantum circuits and obtain features such
as the spectrum, coherence times, transi-
tion matrix elements, coupling operators,
and the phase coordinate representation of
eigenfunctions.
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1 Introduction

Two of the important lines of research in su-
perconducting quantum circuits that run parallel
to the current quest to realize large-scale fault-
tolerant quantum computers are (1) exploring the
spaces of novel circuitry that more robustly en-
code quantum information [1, 2, 3, 4, 5]; and (2)
coupling superconducting qubits to other quan-
tum systems to form hybrid devices [6] that im-
plement new memory, sensing, and communica-
tions functions. Both directions are characterized
by increasing complexities in the circuit layout
and demand a general approach toward analyzing
larger and more complex circuits. To study the
quantum behavior of a superconducting quantum
circuit, we need to diagonalize the Hamiltonian
of the circuit, derived from the circuit quantiza-
tion method [7, 8, 9, 10]. However, the compu-
tational cost for diagonalization increases expo-
nentially with the circuit size, and a proper basis
choice is necessary for alleviating this problem
when solving larger circuits. Existing numerical
packages have made significant and valuable con-
tributions in this direction [11, 12, 13]. We build
on these earlier efforts by directly addressing the
dual challenges of scalability and generality. We
move beyond restrictions on the anharmonicity or
types of qubits, and realize automatic construc-
tions that enable more efficient diagonalization of
larger circuits.

In this work, we develop a systematic frame-
work that constructs the Hamiltonian for an ar-
bitrary superconducting quantum circuit. We
pay close attention to proper accounting for time-
dependent external fluxes [14, 15] and represent
the Hamiltonian in a basis that requires fewer
computational resources for diagonalization. Ad-
ditionally, we describe how to calculate proper-
ties essential to designing new superconducting
qubits, such as coherence times in the presence
of various noise processes, robustness to fabri-
cation imperfections, and coupling to external
control lines. We implement these approaches
and provide an open-source Python-based pack-
age SQcircuit. Relying on NumPy, SciPy, and
QuTiP [16] packages, SQcircuit is a realization
of the framework in this paper and provides a
general approach for analyzing arbitrary circuits,
complementing and extending the functionalities
of the aforementioned packages [12, 11, 13]. Users
can define arbitrary circuits and, through highly-

abstracted routines, conveniently compute and
visualize quantities of interest such as energy
spectra, eigenvectors, and coherence properties
(Fig.1). We expect the package to significantly
accelerate the analysis and design processes of
complex superconducting circuits.

The remainder of the manuscript is structured
as follows: Sec. 2 reviews the general approach to
obtaining the Hamiltonian for an arbitrary su-
perconducting circuit. In Sec. 3, we derive a
proper transformation of coordinates to find an
appropriate basis for efficiently diagonalizing the
Hamiltonian of any superconducting circuit. In
Sec. 4, we walk the reader through the SQcircuit
library, and use the 0 − π qubit [17, 18, 19] as
an example to demonstrate how to define a cir-
cuit in SQcircuit and obtain basic circuit proper-
ties such as eigenenergies and eigenvectors. Next,
in Sec. 5, we expand the developed theory in
previous sections to extract other circuit prop-
erties such as matrix elements, lifetimes, and so
on, along with SQcircuit functionalities to ob-
tain those features. We conclude by presenting
an outlook in Sec. 7.

2 Circuit Hamiltonian

Our description of a quantum circuit follows pre-
vious studies [20, 7, 21]. We start with a cir-
cuit consisting of capacitors and inductors as
branches. Applying Faraday’s law around loops
in the circuit leads to constraints that impose re-
lationships between different branch fluxes and
reduce the number of independent variables. A
systematic approach to obtaining the indepen-
dent degrees of freedom of the system is to define
node fluxes by choosing a minimum spanning tree
in the graph and assigning a flux variable ϕi at ev-
ery node i [7]. Faraday’s law then leads to a num-
ber of relations between the branch fluxes ϕb,k

and node fluxes ϕi (subscript b denotes branch
variables), usually of the form ϕb,k = ϕi − ϕj +
ϕext,b,k, where nodes i, j are the endpoints of kth
branch. Here, ϕext,b,k is not a dynamical variable
but a constraint imposed on branches that are
not part of the minimum spanning tree. For these
branches, the value of ϕext,b,k is found by consid-
ering the external flux in the loop formed by the
branch (we refer to external fluxes of the lth loop
by ϕext,l which is different from value of the exter-
nal flux at the branch ϕext,b,k). In a circuit with
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Figure 1: The general overview of SQcircuit. By defining the net-list of an arbitrary circuit in SQcircuit envi-
ronment, users can compute and visualize quantities of interest such as energy spectra, coupling operators, and etc,
through highly-abstracted routines.

nN + 1 nodes and nL inductive loops, we have
only nN independent variables, and we rewrite
the relation between kth branch flux variable be-
tween nodes i, j in terms of vectorized node fluxes
Φ = [ϕ1, ..., ϕnN ] (we have set the ground node
i = 0 to a fixed potential ϕ0 = 0) and external
fluxes Φext = [ϕext,1, . . . , ϕext,nL ] as:

ϕb,k = wT
k Φ + bT

k Φext, (1)

where wk is the nN dimensional vector with δim−
δmj for element m ∈ {1, 2, · · · , nN} and bk is the
nL dimensional vector that its lth element is one if
kth branch is a closure branch for loop l otherwise
it is zero.

The node fluxes take the role of position vari-
ables. There is an associated “potential” en-
ergy due to every inductive element. Every
branch with an inductive element has an en-
ergy which is an instantaneous function of the
branch flux, i.e., Ub,k = Ub,k(ϕb,k). We are
primarily concerned with two types of induc-
tors, linear inductors with inductance l where
UL(ϕb,k) = ϕ2

b,k/2l and Josephson junctions
UJ(ϕb,k) = −EJ cos(2πϕb,k/Φ0), where Φ0 =
h/2e is the magnetic flux quantum and EJ is the
Josephson energy.

For branches which are capacitors, the time-
derivative of the branch flux is the voltage drop
across the branch Vb,k = ϕ̇b,k; therefore, we as-
sign a “kinetic” energy T (ϕ̇b,k) = cϕ̇2

b,k/2 to any
capacitor branch k with a capacitance c.

2.1 Purely Harmonic Circuits

For the case of purely harmonic circuits, i.e., cir-
cuits containing only linear inductors and capac-
itors, the analysis is significantly simplified. As

justified below, we need only to consider the in-
ductances and capacitances between each pair of
nodes i and j given by lij and cij , respectively.
Constant external fluxes can be absorbed into the
flux variables – the linearity of the circuit means
that these shifts do not affect the dynamics. The
total potential energy can then always be written
as

U = 1
2
∑
ij

(ϕi − ϕj)2

lij
, (2)

while the total kinetic energy is given by

T = 1
2
∑
ij

cij(ϕ̇i − ϕ̇j)2, (3)

where above summations are over i, j = 1, .., nN.
These equations can be conveniently expressed in
terms of vectors Φ and Φ̇, and by defining capaci-
tance C and inverse inductance (susceptance) L∗

matrices such that

U(Φ) = 1
2Φ

TL∗Φ,

T (Φ̇) = 1
2Φ̇

T
CΦ̇. (4)

The relation between capacitance (susceptance)
matrix elements and the capacitances (suscep-
tances) of the branches is then

Cij = [C]ij :
{
Cii = ci0 +

∑
k ̸=i cik i = j

Cij = −cij i ̸= j

and

1
Lij

= [L∗]ij :


1

Lii
= 1

li0
+
∑

k ̸=i
1

lik
i = j

1
Lij

= − 1
lij

i ̸= j
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. The Lagrangian L(Φ, Φ̇) = T (Φ̇) − U(Φ)
gives us the dynamics of the system. The Euler-
Lagrange equation generated by this Lagrangian
for each variable i is effectively Kirchhoff’s cur-
rent law for that node. In contrast, Kirchhoff’s
voltage law was automatically satisfied when we
applied the constraints from Faraday’s law on the
branch fluxes.

As a prelude to obtaining a quantum theory, we
find the Hamiltonian. For this, we first calculate
the conjugate momenta or charge variables for
each node flux ϕi. The equation in vector form is
given succinctly as the gradient

Q ≡ ∂L

∂Φ̇
= CΦ̇. (5)

Assuming that the capacitance matrix is invert-
ible, we obtain the circuit HamiltonianH through
the Legendre transformation

H = 1
2Φ

TL∗Φ + 1
2Q

TC−1Q. (6)

2.2 Circuits with Nonlinear Inductors
The presence of nonlinear inductors, i.e., induc-
tors where U(ϕb) is not quadratic, allows exter-
nal fluxes to change the dynamics of circuits fun-
damentally. The simplest example is the super-
conducting quantum interference device (SQUID)
which contains two Josephson junctions in paral-
lel, forming a loop.

We first express the potential energy of the cir-
cuit in terms of the branch fluxes across all induc-
tive elements in SL∪SJ , set of branches consisting
of linear inductors SL and Josephson junctions
SJ :

U =
∑

k∈SL∪SJ

Uk(ϕb,k). (7)

But not all branch fluxes are independent vari-
ables. Using Eq. 1, we write the potential energy
in terms of node flux variables Φ, and the exter-
nal fluxes Φext = Φ0φext/2π:

U(Φ) =1
2Φ

TL∗Φ +
∑

k∈SL

1
lk

(Φ0
2π

)
wT

k Φ(bT
k φext)

−
∑

k∈SJ

EJk
cos

(2π
Φ0

wT
k Φ + bT

k φext

)
The kinetic part of the energy is given by sum-

ming over the capacitive energy of every capaci-
tor:

T = 1
2
∑

k∈SC

ckϕ̇
2
b,k.

In the case where the external fluxes are time-
independent (Φ̇ext = 0), we find that

ϕ̇b,k = wT
k Φ̇,

and
T (Φ̇) = 1

2Φ̇
T
CΦ̇.

as in the harmonic case.
As noted recently [14, 15], a time-dependent

external flux poses a challenge to this description
as we end up with terms ϕ̇i in the Lagrangian
that depend on how we assign fluxes to branches.
Since time-dependent flux is essential in contexts
such as flux-noise-induced dephasing [14] and Flo-
quet engineering [22], it is crucial for SQcircuit
to treat these cases correctly, and we provide de-
tails of our approach in Appendix D.

From the Lagrangian description, we can again
obtain the conjugate momenta, and through a
Legendre transformation, the Hamiltonian, which
is now given by:

H =1
2Q

TC−1Q + 1
2Φ

TL∗Φ

+
∑

k∈SL

(
Φ0
2π

bT
k φext

lk

)
wT

k Φ

−
∑

k∈SJ

EJk
cos

(2π
Φ0

wT
k Φ + bT

k φext

)
.

(8)

Note that in the absence of Josephson junctions,
we can absorb the external fluxes into Φ and re-
cover the Hamiltonian from the linear analysis. In
Appendix A, we show in detail how to construct
the Hamiltonian for an example circuit.

Finally, to quantize our circuit, we promote ev-
ery node flux and its conjugate momentum to op-
erators (ϕi → ϕ̂i and so on...) with the canoni-
cally conjugate operators satisfying the commu-
tation relation

[ϕ̂m, Q̂n] = δmniℏ.

In matrix form, the commutators are expressed
compactly as

Φ̂Q̂T − Q̂Φ̂T = iℏ1,

where 1 is the identity matrix.

3 Coordinate Transformations and
Hamiltonian Diagonalization
A major challenge in performing a full quantum
analysis of a superconducting circuit is that, in
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general, increasing the size of the circuit leads
to an exponential increase in the numerical re-
sources needed for simulation. Therefore, find-
ing the coordinate transformations in which the
Hamiltonian is sparse and falls off quickly from
the diagonal is essential. Although we use ex-
act diagonalization to calculate the eigenvalues,
our method paves the way for approximate meth-
ods such as tensor networks [23] for large Hilbert
spaces. To meet these criteria, we are free to
transform the Hamiltonian of Eq. 8 by perform-
ing a canonical transformation of charge and flux
operators:

ˆ̃Q = R−1Q̂,

ˆ̃Φ = S−1Φ̂,

where R and S are nN × nN real invertible ma-
trices. For convenience, we impose the require-
ment that the transformation is canonical, i.e.,
the transformed charge and flux operators satisfy
the relations [ ˆ̃ϕm,

ˆ̃Qn] = δmniℏ. This leads to the
constraint

ST = R−1. (9)

The transformed Hamiltonian has the following
form:

ˆ̃H =1
2

ˆ̃QT C̃−1 ˆ̃Q + 1
2

ˆ̃ΦT L̃∗ ˆ̃Φ

+
∑

k∈SL

(
Φ0
2π

bT
k φext

lk

)
w̃T

k
ˆ̃Φ

−
∑

k∈SJ

EJk
cos

(2π
Φ0

w̃T
k

ˆ̃Φ + bT
k φext

)
,

(10)

where the transformed inverse capacitance and
susceptance matrices are:

C̃−1 = RTC−1R,

L̃∗ = STL∗S,

and the vector assigning fluxes to junctions is
given by

w̃T
k = wT

k S.

As explained in Appendix B, we can always find
S and R such that L̃∗ and C̃ have the block
diagonal form of:

C̃ =
[
Cha 0
0 Cch

]
, (11)

L̃∗ =
[
L∗ha

0
0 0

]
, (12)

where the “harmonic” parts Cha and L∗ha are
nH×nH invertible diagonal matrices, while the
“charge” part Cch is a nC×nC symmetric matrix
(not necessarily diagonal). The corresponding
transformed charge and flux operators are also
divided into two parts:

ˆ̃QT =[Q̂haT

|Q̂chT

]
=[Q̂ha

1 , . . . , Q̂
ha
nH

|Q̂ch
1 , . . . , Q̂

ch
nC

],
ˆ̃ΦT =[Φ̂haT

|Φ̂chT

]
=[ϕ̂ha

1 , . . . , ϕ̂
ha
nH

|ϕ̂ch
1 , . . . , ϕ̂

ch
nC

].

We similarly divide the w̃T
k into to two parts:

w̃T
k = [whaT

k |wchT

k ]

The transformation that we described above
expresses the system’s dynamics as that of (1)
nH uncoupled harmonic oscillators, with capaci-
tances and inverse inductances given by the diag-
onals of Cha and L∗ha , (2) nC superconducting is-
lands with no conducting paths connecting them
and charging energy given by the capacitance ma-
trix Cch, and (3) the flux drop across several junc-
tions as weighted by the vector w̃T

k . Next we will
quantize the harmonic (1) and charge (2) modes
separately, and eventually diagonalize and find
the spectrum of the full circuit.

Harmonic modes: Ignoring the junctions
momentarily, the part of the Hamiltonian
acting on the first subspace is given by
1
2Q̂

haT (Cha)−1Q̂ha + 1
2Φ̂

haT
L∗ha

Φ̂ha. Since Cha

and L∗ha are diagonal matrices, we have nH un-
coupled harmonic oscillators with charge and flux
variables Q̂ha

i and ϕ̂ha
i . Our diagonalization has

effectively found the normal mode decomposition
of the system. We associate creation and annihi-
lation operators â†

i and âi with each of the har-
monic oscillators. The charge and flux operators
are then

Q̂ha
i = i

√
ℏ

2Zi
(â†

i − âi, ) (13)

ϕ̂ha
i =

√
ℏZi

2 (â†
i + âi), (14)

where Zi and ωi are the mode impedance and
angular frequency respectively, and given by:

Zi =
√

1/(L∗ha
i,i Cha

i,i ), (15)

ωi =
√
L∗ha

i,i /C
ha
i,i . (16)
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Charge modes: The remaining subspace has a
kinetic energy term 1

2Q̂
chT (Cch)−1Q̂ch, and a po-

tential energy that is only due to junctions. Con-
sider the case where there is only a single charge
mode, then the junction energy will have the form
cos(αϕ̂ch

1 + Ô), where Ô is an operator that rep-
resents the rest of the terms in the cosine. Since
we can write the cosine as

cos(αϕ̂ch
1 + Ô) = eiαϕ̂ch

1 eiÔ + e−iαϕ̂ch
1 e−iÔ

2 ,

and eiαϕ̂ch
1 effects a translation in the charge basis

where e±iαϕ̂ch
1 |Q̂ch

1 = Q1⟩ = |Q̂ch
1 = Q1 ± ℏα⟩, we

see that only a discrete number of charge eigen-
states | · · ·n1 · · · ⟩ ≡ | · · · (Q1 + n1ℏα) · · · ⟩ for in-
teger n1 need to be considered. Moreover, we are
free to choose the coefficient α with an appropri-
ate transformation of the basis, i.e., a constant
scaling of R and S which keeps the transforma-
tion canonical. This constant scaling is effectively
equivalent to choosing the units of Q̂ and ϕ̂ while
keeping the commutation relation the same. A
physical meaningful value for α is 2π/Φ0. This
choice means that Josephson tunneling changes
the charge state by 2e, and thus couples all charge
states of the from |n1⟩ ≡ |Q̂ch

1 = Q1 ± 2en1⟩.
In Appendix B.2, we generalize the above ap-

proach to systems with more charge modes, where
a more careful consideration of the flux periodic-
ity in the circuit is needed to avoid double count-
ing of states. In that case our basis for each
charge mode is given by the eigenstates of that
charge operator, and rescale the operators such
that

Q̂ch
i |ni⟩ = (Qi + 2eni) |ni⟩ . (17)

The gate charge Qi can affect the dynamics,
and leads to changes in the energy levels, per-
haps most dramatically in the charge limit of the
Cooper pair box qubit.

We separate the basis of the transformed
Hamiltonian into two subspaces. The first sub-
space is formed by nH harmonic oscillators and
the second subspace is formed by nC charge
modes, which is also the number of charge islands.
Therefore, the general basis of the circuit is

|nha
1 , . . . , n

ha
nH

⟩ |nch
1 , . . . , n

ch
nC

⟩ , (18)

where nha
m = 0, 1, 2, · · · is number of pho-

tons in the mth harmonic mode and nch
m =

· · · ,−1, 0, 1, · · · are the number of cooper pair
that have tunneled onto the mth charge mode.

We now express the Josephson potential ener-
gies in the basis chosen above. Using the fact that
different flux operators act on different subspaces,
the Josephson energies can be written as

cos
(2π

Φ0
w̃T

k
ˆ̃Φ + bT

k φext

)
=

1
2e

ibT
k φext

nH∏
m=1

e
i 2π

Φ0
wha

kmϕ̂ha
m

nC∏
m=1

e
i 2π

Φ0
wch

kmϕ̂ch
m + h.c.,

where wλ
km and ϕ̂λ

m are the mth element of wλ
k

and Φ̂λ respectively for λ ∈ {ha, ch}. By using
annihilation and creation operator representation
of ϕ̂ha

k , Eq. 14, we can write the exponential term
related to harmonic modes as:

e
i 2π

Φ0
wha

kmϕ̂ha
m = D̂m(αkm), (19)

where αkm = i 2π
Φ0
wha

km

√
ℏZm

2 and D̂m(αkm) =
exp

(
αkma

†
m − α∗

kmam

)
is bosonic displacement

operator for harmonic mode m whose off diag-
onal elements fall off quickly from the diagonal
for small |αkm| ≪ 1. The exponential due to the
charge mode is

e
i 2π

Φ0
wch

kmϕ̂ch
m = (d̂m)wch

km , (20)

where d̂m =
∑

nch
m

|nch
m +1⟩⟨nch

m | is the charge rais-
ing operator. Note that as a result of how we per-
formed the circuit transformation, wch

km is either
0, −1 or +1. The operator raised to these powers
corresponds to the identity, reducing the charge
on island m by one Cooper pair, or increasing it
by a Cooper pair.

Finally, the transformed Hamiltonian of Eq. 10
in the specified harmonic and charge operators
has the following representation:

ˆ̃H = ℏ
nH∑

m=1
ωmâ

†
mâm + 1

2
∑
mn

(Cch)−1
mnQ̂

ch
mQ̂

ch
n

+
∑

k∈SL

(
Φ0

2π
bT

k φext

lk

) nH∑
m=1

wha
km

√
ℏZm

2 (â†
m + âm)

−
∑

k∈SJ

EJk

2

(
eibT

k φext

nH∏
m=1

D̂m(αkm)
nC∏

m=1
(d̂m)wch

km

+ h.c.
)
.

To represent and diagonalize the Hamiltonian nu-
merically, we must set the truncation number for
each harmonic and charge mode. For example,
if the truncation number of the second harmonic

Accepted in Quantum 2023-04-29, click title to verify. Published under CC-BY 4.0. 6
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Figure 2: Examples of the conserved charge on the iso-
lated island. Charges cannot escape the island because
there is no Josephson junction connected to the island.SQcicuit detects these situations and removes them
automatically.

mode is N , the nha
2 in Eq. 18 can take any value

from 0 to N − 1.
There are several key ideas associated to our

method for the Hamiltonian diagonalization: (1)
for the circuits only consist of linear elements
such as capacitors and inductors, we show that
proper coordinate transformation and basis se-
lection is sufficient for diagonalizing the Hamil-
tonian, without a need to solve the eigenvalue
problem; (2) for the circuits with nonlinearities,
we employ the idea of finding and omitting the de-
couple modes using the Josephson junction part
of the Hamiltonian. This significantly reduces
the dimension of the Hilbert space required for
computing the spectrum. For example, these
decouple modes frequently happen in symmetric
circuits such as 0 − π qubit (see Sec. 4 for de-
tails). Another example of decoupled modes are
conserved charges on isolated islands in super-
conducting circuits that cannot tunnel through
Josephson junctions. These modes appear in the
Hamiltonian with terms proportional to Q̂2 and
do not have presence in the Josephson junction
part of the Hamiltonian (see Fig. 2). Since these
charges are conserved, they have no dynamics,
and we can remove them from the problem.

4 Circuit Description in SQcircuit

We have developed SQcircuit, a Python pack-
age that utilizes and automates the methods de-
scribed in the previous sections to build and di-
agonalize the circuit Hamiltonian from its cir-
cuit description and extract experimentally rel-
evant properties such as transition matrix ele-
ments and decay rates. In this section, by us-
ing 0 − π qubit [18] shown in Fig. 3a as an ex-

ample, we demonstrate how to describe a cir-
cuit in SQcircuit and to calculate its spectrum
and eigenfunctions. We begin by importing the
SQcircuit package:

1 import SQcircuit as sq
In SQcircuit, each circuit component has an

associated class definition and properties. To
define the capacitors, we create an object of
Capacitor class. For instance, the capacitors in
Fig. 3a can be defined by

1 C = sq.Capacitor(value=0.15, unit="GHz")
2 CJ = sq.Capacitor(value=10, unit="GHz")

In the above lines of the code, the unit argument
can be either hertz or farad. If the unit is in
hertz, such as "GHz", "MHz", the value argument
specifies the charging energy of the capacitor, i.e.,
Ec = e2/2c. If the unit argument is in farad,
such as "nF", "pF", etc., the value specifies the
capacitance in farad. For example, the previous
line of code for the CJ capacitor is approximately
equivalent to

1 CJ = sq.Capacitor(value=1.94, unit="fF")
since the 1.94 femtofarad capacitor has a charging
energy of approximately 10 gigahertz.

Before defining the inductive elements, we need
to define the inductive loops (closed path of in-
ductive elements) within which the element re-
sides and through which the flux will be set, and
so we define the loops for the circuit. For exam-
ple, for the 0 − π qubit, we define a single loop
by creating an object of Loop class as

1 loop1 = sq.Loop(value=0)
where value is the external flux value that can be
altered later by set_flux() method.

The inductor in Fig. 3a can be created as an
object from the Inductor class:

1 L = sq.Inductor(value=0.13, unit="GHz",
2 loops = [loop1])

Like the Capacitor class, if the unit argument
is in hertz, the value describes the inductive en-
ergy, El = (Φ0/2π)2/l. If the unit argument is in
henry, such as "uH", "nH", etc., the value is the
inductance in henry. For inductive elements that
are part of a loop, we indicate the loops in which
they reside. For example, if the inductive ele-
ment is part of the two loops, namely loop1 and
loop2 (both objects of the Loop class), we would
pass the arguments of loops=[loop1, loop2] to
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Figure 3: a) A symmetric 0 − π qubit with inductive, Josephson, and charging energies in gigahertz unit as follow:
EL/h = 0.13 GHz, EJ/h = 5 GHz, EC/h = 0.15 GHz, and ECJ

/h = 10 GHz. b) The energy spectrum of the
circuit calculated by diag() functionality of the SQcircuit. c) The probability distribution of the ground and first
excited states in phase space coordinates, calculated at φext = 0, by using eig_phase_coord() functionality of theSQcircuit. Figures are generated by the Python code in Appendix E.

the definition of the inductive element. In our ex-
ample, the inductor is only part of loop1. Thus,
we set loops=[loop1]. The Josephson junction
as an inductive element has an analogous defini-
tion to inductors and can be defined by using the
Junction class. The Josephson junction in Fig.3a
can be defined as

1 JJ = sq.Junction(value=5, unit="GHz",
2 loops=[loop1])

The default unit for all elements is gigahertz.
However, we can change the default unit for
each type of element via sq.set_unit_cap(),
sq.set_unit_ind(), and sq.set_unit_JJ() func-
tions for capacitors, inductors, and Josephson
junctions respectively. For example the default
unit of capacitors can be set to "fF" with

1 sq.set_unit_cap("fF")
After defining all circuit components, to de-

scribe the circuit topology in SQcircuit, we cre-
ate an object of Circuit class by passing a
Python dictionary that contains the list of all el-
ements at each edge. For the circuit of Fig.3a

1 elements = {
2 (0, 1): [CJ, JJ],
3 (0, 2): [L],
4 (0, 3): [C],
5 (1, 2): [C],
6 (1, 3): [L],
7 (2, 3): [CJ, JJ]
8 }
9

10 cr = sq.Circuit(elements)
By creating an object of Circuit class, SQcircuit
systematically finds the set of transformations
and bases for diagonalization of the Hamiltonian.

Before setting the truncation numbers for each
mode and diagonalizing the Hamiltonian, we can
gain more insight into our circuit by calling the
description() method. SQcircuit prints out
the transformed Hamiltonian Eq. 10 and a list-
ing of the modes, whether they are harmonic or
charge modes, and the frequency for each har-
monic mode as given by Eq. 16. Moreover, it
shows the external flux distribution over induc-
tive elements bT

k and prefactors in the Josephson
junction part of the Hamiltonian w̃T

k . For exam-
ple, by executing it on the cr object:

1 cr.description()
Ĥ = ω1â†

1â1 + EC22 (n̂2 − ng2 )2 − EJ1 cos(φ̂1 + φ̂2+
0.5φext1 ) − EJ2 cos(φ̂1 − φ̂2 − 0.5φext1 )
− − − − − − − − − − − − − − − − − − − − − − − −−

mode 1: harmonic φ̂1 = φzp1 (â1 + â†
1) ω1/2π = 3.22

mode 2: charge ng2 = 0
EC22 = 0.3 EJ1 = 5 EJ2 = 5 φzp1 = 2.49
− − − − − − − − − − − − − − − − − − − − − − − −−

The output above indicates that the first mode
of the cr circuit is a harmonic mode with a
natural frequency of 3.22 gigahertz, as indicated
by the frequency unit of SQcircuit. The sec-
ond mode is a charge mode. There is a third
mode that is not displayed in the Hamiltonian
due to SQcircuit automatically eliminating de-
coupled modes. The normalized charge offset for
the second mode (ng2) can be altered through
set_charge_offset() method as

1 cr.set_charge_offset(mode=2, ng=1)
This method is useful for understanding the
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charge dispersion of the energy spectrum due to
random offsets on charge islands [24].

The main step before diagonalizing the circuit
is to set the truncation numbers. To do that, we
pass a list of truncation numbers for each mode
to the set_trunc_nums() method. For cr circuit:

1 cr.set_trunc_nums([25, 25])
Lastly, we use diag() to extract a specified

number of eigenfrequencies and eigenvectors. We
find the first five eigenstates of the cr circuit via:

1 efreqs, evecs = cr.diag(n_eig=5)
where n_eig specifies the number of eigenvalues
to output. The lower n_eig, the faster SQcircuit
finds the eigenvalues. efreqs is a Numpy array
that contains the eigenfrequencies in SQcircuit
frequency units. evecs is a list that includes the
eigenvectors, each as a QuTiP object.

To generate the spectrum of the circuit, firstly,
we need to change and sweep the external flux of
loop1 by the set_flux() method. Then, we need
to find the eigenfrequencies of the circuit that cor-
respond to that external flux. The following lines
of code find the flux tuning of the spectrum, spec,
which is a 2D NumPy array where each column
contains the eigenfrequencies with respect to the
external flux.

1 # array of external fluxes
2 phi = np.linspace(0, 1, 100)
3
4 # number of eigenvalues we aim for
5 n_eig = 5
6
7 # array that contains the spectrum
8 spec = np.zeros(n_eig, len(phi))
9

10 for i in range(len(phi)):
11
12 # set the value of the flux
13 loop1.set_flux(phi[i])
14
15 # get the eigenfrequencies
16 spec[:, i], _ = cr.diag(n_eig)

The results are plotted in Fig. 3b (see Ap-
pendix E.) Note that the default unit of fre-
quency in SQcircuit is gigahertz. We can change
the default unit by calling sq.set_unit_freq()
method. For example, we can change the unit to
megahertz via

1 sq.set_unit_freq("MHz")

5 Circuit Features and Properties
We have developed a systematic way to con-
struct a Hamiltonian for a superconducting quan-

tum circuit and diagonalize it in a physically-
motivated and efficient basis. However, for many
quantum hardware design problems, the spec-
trum of the circuit is not sufficient. In this
section, we extend the theory of Sec. 2 and
3 to extract other essential circuit properties,
and describe how to obtain those features using
SQcircuit.
5.1 Coordinate Representation of Wavefunc-
tions

Since many physical processes involve operators
that are local in the flux (or equivalently phase
φ = 2π/Φ0 × ϕ), it is sometimes informative to
plot the wavefunctions in this space. Given an
eigenstate of the circuit in basis of Eq. 18

|ψ⟩ =∑
nha

1 ,...,nch
nC

Cnha
1 ,...,nch

nC
|nha

1 , . . . , nha
nH

⟩ |nch
1 , . . . , n

ch
nC

⟩ ,

we are interested in finding the inner product in
phase coordinates:

⟨φha
1 , . . . , φha

nH
, φch

1 , . . . , φ
ch
Nc

|ψ⟩ =
∑

nha
1 ,...,nch

nC

Cnha
1 ,...,nch

nC

⟨φha
1 |nha

1 ⟩ . . . ⟨φha
nH

|nha
nH

⟩ ⟨φch
1 |nch

1 ⟩ . . . ⟨φch
nC

|nch
nC

⟩ .
(21)

It suffices to express each harmonic and charge
mode eigenstate in phase coordinate basis. In
other words, we need to find ⟨φλ

m|nλ
m⟩ for λ ∈

{ha, ch}. For the harmonic modes we use the
phase coordinate representation of Fock states
given by

⟨φha|n⟩ = 1√√
π2nn!x0

e−( Φ0
2π φha)2/2x2

0Hn

(
Φ0φ

ha

2πx0

)
,

(22)
where x0 =

√
ℏZi and Hn are the Hermite poly-

nomials. On the other hand, the phase coordinate
representation of the charge mode eigenstates are
given by

⟨φch|n⟩ = 1√
2π

exp (inφch). (23)

The eigenvectors in the phase coordinate can
be obtained by substituting the Eq. 22-23 into
Eq. 21.

We implement the above basis transfor-
mation in SQcircuit within the function
eig_phase_coord(). For example, we obtain the
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Figure 4: a) A drive voltage source coupled with small capacitance of cd to arbitrary nodes of i and j of a circuit.
The Qi and Qj are the charge node operators of the node i and j respectively, and Cij is the capacitance between
those two nodes. b) A current source coupled to an inductor between arbitrary nodes of i and j of a circuit with
small mutual inductance of M . φij is the phase drop across the inductor Lij between nodes i and j with phase node
operators of φi and φj .

ground state and first excited state of the 0 − π
qubit of Sec. 4 at φext = 0 by executing the com-
mands:

1 # create a range for each mode
2 phi1 = np.pi*np.linspace(−1,1,100)
3 phi2 = np.pi*np.linspace(−0.5,1.5,100)
4
5 # the ground state
6 state0 = cr.eig_phase_coord(
7 k=0,
8 grid=[phi1, phi2]
9 )

10
11 # the first excited state
12 state1 = cr.eig_phase_coord(
13 k=1,
14 grid=[phi1, phi2]
15 )

Here, k is an eigenvector index, which is 0 for
the ground state and 1 for the first excited state.
The argument grid is a list that specifies the val-
ues of phase φ to evaluate the wavefunction at,
which can be either a single number or a range
of values for each mode. We therefore choose a
range of values for phi1 and phi2. The resulting
phase coordinate representations of the states are
state0 and state1, which are 100 × 100-complex
Numpy arrays holding the values of the eigenfunc-
tion evaluated on a grid corresponding to phi1
and phi2. In Fig. 3c we plot | ⟨φ1, φ2|ψ⟩ |2 for the
ground state state0 and the first excited state
state1 (see Appendix E for more details).

5.2 Coupling Operators and Matrix Elements

Having shown how to analyze an isolated circuit,
we now move to describing our approach for un-
derstanding the interaction of a circuit with the

outside world. More specifically, we aim to cal-
culate the rates at which transitions occur be-
tween energy eigenstates under the effect of dif-
ferent driving mechanisms, such as the capacitive
and inductive driving via control electronics. The
same calculations also apply to estimate the ef-
fect of vacuum noise or other random fluctuations
driving the system, enabling us to estimate quan-
tities such as the qubit lifetime.

Capacitive coupling: As shown in Fig. 4a, we
can capacitively couple a voltage source to arbi-
trary nodes of i and j of a circuit. If the cou-
pling capacitor, cd, is small enough that the cou-
pling elements do not change the spectrum of the
primary circuit, the interaction Hamiltonian be-
tween the primary circuit and drive circuit will
be (Appendix C.1)

Ĥdr
c = (cdVd)eT

ijC
−1R ˆ̃Q,

where Vd is a voltage of a source eij is the nN
dimensional vector with δik − δkj for element k ∈
{1, 2, · · · , nN}. We therefore define the capacitive
coupling operator as

Ôc ≡ eT
ijC

−1R ˆ̃Q. (24)

Inductive coupling: The inductive coupling
case, shown in Fig. 4b, is essentially a dual of the
capacitive case and can be analyzed very simi-
larly. Given an inductor lij in the circuit, we
introduce a mutual coupling M which is small
enough to have negligible effect on the main
circuit’s spectrum. The effect of the coupling
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is then captured by an interaction Hamiltonian
(Appendix C.2)

Ĥdr
l = (MId) 1

lij
eT

ijS
ˆ̃Φ,

where Id is the source current. The inductive
coupling operator is defined as

Ôl ≡ 1
lij

eT
ijS

ˆ̃Φ. (25)

We now use the coupling operators defined
above to estimate the transition rates between
states. We first calculate the transition matrix el-
ement of each type of coupling operator between
the energy eigenstates |m⟩ and |n⟩:

⟨m| Ôλ |n⟩ , (26)

where λ ∈ {c, l}. In SQcircuit, the
coupling_op() method returns the coupling op-
erator for each type of coupling. For example, to
obtain Ôc as a QuTiP object in the constructed
Fock/charge basis, we issue the command:

1 O_c = cr.coupling_op(ctype="capacitive",
2 nodes=(i, j))

The argument ctype sets the type of coupling to
either "capacitive" or "inductive", while the
nodes argument is a Python tuple containing the
nodes that couple to the drive circuit. Some-
times we are interested only in a specific element
of the transition matrix element (Eq. 26) as op-
posed to the whole matrix. For this we use the
matrix_elements() method:

1 g_mn = cr.matrix_elements(ctype="capacitive",
2 nodes=(i, j),
3 states=(m, n))

where the states of interest are passed through
the states argument.

5.3 Estimating Decay and Dephasing Rates
We need to understand the effects of imperfect
components and fluctuating parameters on the
resulting dynamics in the quantum description of
superconducting circuits. In this section, we show
how SQcircuit can take properties – such as the
dissipation present in the materials within capaci-
tors, losses in inductors, the presence of quasipar-
ticles in junctions, parasitic coupling to output
channels, and fluctuations in parameters – and
convert them into dissipation rates and jump op-
erators that enter a master equation description
of the open quantum system’s dynamics.

5.3.1 Depolarization

Consider a circuit that is coupled to a degree of
freedom of the environment ξ̂ with the interaction
Hamiltonian

Hint = Ôξ̂.

The operator Ô is in the circuit Hilbert space,
while ξ̂ is an operator acting on the environment.
Within the context of linear response theory [25],
we find the decay rate

Γm→n = 1
ℏ2 | ⟨m| Ô |n⟩ |2Sξξ(ωmn), (27)

from level m to n. The transition frequency
ωmn = ωm −ωn is positive when the circuit emits
energy to the environment and negative when cir-
cuit absorbs energy from it. The spectral density
function (SDF) Sξξ(ωmn) is defined as

Sξξ(ω) =
∫ ∞

−∞
dτ ⟨ξ(τ)ξ(0)⟩ e−iωτ ,

and satisfies the detailed balance relation [25] of

Sξξ(ω)
Sξξ(−ω) = exp

( ℏω
kBT

)
,

where kB is the Boltzmann’s constant and T is
the bath temperature. In SQcircuit, the default
bath temperature is 0.015 kelvin, and it can be
changed it by

1 cr.set_temp(T=0.010)
where cr is an object of the Circuit class.

To make quantitative predictions, we need to
specify both operator Ô and the SDF Sξξ(ω).
SQcircuit includes three common loss channels
below that are currently considered to be signifi-
cant in state-of-the-art circuits.

Capacitive Loss: Dissipation in the capacitor
dielectric can be modeled by a capacitor con-
nected to a bath with voltage operator V̂ . For
the capacitance cij between nodes of i and j, the
circuit operator is

Ô = cije
T
ijC

−1R ˆ̃Q,

with spectral density function of

SV V (ω) = ℏ
cijQcap(ω)

(
1 + coth ℏω

2kBT

)
,

where Qcap(ω) is a quality factor which may be
weakly frequency dependent. To calculate Γm→n,
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Figure 5: a) A Fluxonium qubit with inductive, Josephson, and charging energies in gigahertz unit as follow: EL/h =
0.46 GHz, EJ/h = 10.2 GHz, and EC/h = 3.6 GHz. b,c) T1 and Tφ due to capacitive loss and critical current
noise of a Fluxonium with Qcap = 106 and Acc/EJ = 5 × 10−7 is plotted as a function of external flux by usingdec_rate() functionality of the SQcircuit. Appendix E contains the Python code that produces these figures.

the SDF SV V (ω) is evaluated at the relevant tran-
sition frequency ωmn. In SQcircuit the default
capacitor quality factor is [26]

Qcap(ω) = 106
(2π × 6GHz

|ω|

)0.7
, (28)

but this can be set independently for each capaci-
tor in the circuit, either as a scalar value or a func-
tion of ω. For example, to set Qcap(ω) = 2 × 106

for the capacitor of the fluxonium in Fig.5a, we
define the capacitor with

1 C = sq.Capacitor(3.6, "GHz", Q=2e6)

Inductive Loss: This is a loss due to quasi-
particle tunneling across Josephson junctions of
the superinductors and highly depends on their
design. To model this loss, we can assume that
the inductor between i and j nodes is coupled to
a bath with current Î. The circuit operator Ô,
hence, is equivalent to

Ô = eT
ijS

ˆ̃Φ,

and

SII(ω) = ℏ
lijQind(ω)

(
1 + coth ℏω

2kBT

)
,

where Qind(ω) is a frequency-dependent qual-
ity factor, with the following default value in
SQcircuit [27]:

Qind(ω) = 500×106K0(h×0.5GHz
2kBT ) sinh (h×0.5GHz

2kBT )

K0( ℏ|ω|
2kBT ) sinh ( ℏ|ω|

2kBT )
,

in which K0 is the Bessel function of the second
kind. More generally, Qind(ω) can be set to any

desired value or function, and for the Fluxonium
inductor in Fig.5a withQind = 300×106, we could
define

1 L = sq.Inductor(0.46, "nH", Q=300e6)

Quasiparticle Loss: This loss occurs due to
quasiparticle tunnelling in each Josephson junc-
tion. Based on [28], the circuit operator for
Josephson junction at the edge k is

Ô = sin
(1

2

(2π
Φ0

w̃T
k

ˆ̃Φ − bT
k φext

))
1, (29)

and SDF is

Sqp(ω) = ℏωRe[Yqp(ω)]
(

1 + coth ℏω
2kBT

)
,

where real part of admittance is

Re[Yqp(ω)] =
√

2
π

8EJk

RK∆

(2∆
ℏω

)3/2
xqp

√
ℏ|ω|

2kBT

×K0

( ℏ|ω|
2kBT

)
sinh

( ℏ|ω|
2kBT

)
,

in which RK = h/e2 is the von Klitzing con-
stant, ∆ is the superconducting gap, and xqp is
the quasiparticle density. SQcircuit has default
value of ∆ = 3.4 × 10−4 eV and xqp = 3 × 10−6,
but these values can be altered when defining the
circuit Josephson junctions. For the Fluxonium
in Fig.5a, we change ∆ and xqp to different values
via

1To calculate the matrix element of Ô in the charge
basis, we need to transform the Cooper pair charge basis
to the single electron charge basis, similar to the approach
in [13].
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1 JJ = sq.Junction(10.2, "GHz",
2 delta=2.5e−4, x=8e−6)

Finally, after defining all lossy elements and
diagonalizing the circuit, the decay rate of Eq. 27
can be calculated with

1 Gamma_mn = cr.dec_rate(dec_type=dec_type,
2 states=(m, n),
3 total=total)

In the above code, dec_type argument spec-
ifies the decay types and can be either
"capacitive", "inductive", or "quasiparticle".
If total=False, SQcircuit calculates only the
downward decay rate Γm→n if m > n, or Γn→m

if n > m. If total=True which is the default
value, SQcircuit returns the summation of both
downward and upward transitions, that is 1

T1
=

Γm→n + Γn→m. As an example, Fig.5b plots T1
of the Fluxonium qubit due to capacitive loss as
a function of external fluxes. The Python code
that generates this plot is provided in Appendix
E.

5.3.2 Dephasing

Besides causing transitions between different
eigenstates, noise processes also lead to dephas-
ing errors. More specifically, if the transition fre-
quency ωmn(λ) depends on some external param-
eter λ = λ0 + δλ(t) where λ0 is the desired value
and δλ(t) is some noise process with ⟨δλ(t)⟩ = 0,
then information about the relative phase be-
tween the mth and nth eigenstates is degraded
due to fluctuations in λ. Superconducting cir-
cuits are mainly affected by 1/f noise such as
flux, charge, and critical current noise. The SDF
for the 1/f noises is given by

Sλλ(ω) = 2πA2
λ

|ω|
,

where Aλ is the noise amplitude. The pure de-
phasing time and its rate between mth and nth
eigenstates is given by [18, 29]

1
Tϕ

= κmn =
(

2A2
λ(∂ωmn

∂λ
)2| lnωlowtexp|

+2A4
λ(∂

2ωmn

∂λ2 )2(ln2 ωhi

ωlow
+ 2 ln2 ωlowtexp)

)1/2
,

(30)

where ωlow and ωhi are the low-frequency and
high-frequency cutoff and texp is the measure-
ment time. The default value for those param-
eters in SQcircuit are as follow: ωlow = 1Hz,

ωhi = 3.0GHz, and texp = 10µs which can be
changed by

1 cr.set_low_freq(value, unit)
2 cr.set_high_freq(value, unit)
3 cr.set_t_exp(value, unit)

where cr is an object of Circuit class. Below we
give details on how SQcircuit treats the three
major 1/f noise channels that contribute to de-
phasing.

Critical current noise: This noise is due
to fluctuations in the Josephson energy. In
SQcircuit, the default value for the normalized
noise amplitude is A ≡ AJ/EJ = 10−7, and a
different value such as A = 5 × 10−7 can be spec-
ified in the junction definition (Fig.5a) with

1 JJ = sq.Junction(10.2, "GHz", x=8e−6,
2 delta=2.5e−4, A=5e−7)

Charge noise: This noise is due to random-
ness of the charge in the circuit charge islands.
SQcircuit has the default normalized noise am-
plitude of A ≡ Ang/e = 10−4, which can be
modified for each charge mode of the circuit via
set_charge_noise() method

1 cr.set_charge_noise(mode=1, A=2e−4)
Here mode argument specifies the index of the
charge mode. To see which circuit mode is a
charge mode, one can use description() method
explained in Sec. 4.

Flux noise: This noise is due to the fluctua-
tions of the external fluxes coupled to inductive
loops of the circuit. A ≡ Aφext/2π = 10−6 is the
default value for the normalized noise amplitude
and can be altered in inductive loop definition
with

1 loop1 = sq.Loop(value=0, A=5e−6)
As discussed in [14, 15] and Appendix D, it is vi-
tal to correctly specify the distribution of the ex-
ternal fluxes over inductive elements to properly
calculate the dephasing rate for the circuit. This
requires knowing the capacitor associated with
each inductive elements, which can be specified
via the cap argument in the inductor and junc-
tion definitions in SQcircuit. It also requires to
pass flux_dist="all" option to Circuit() class
definition. For the Fluxonium in Fig.5a, we could
define the circuit with following codes:
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1 # user−defined flux noise
2 loop1 = sq.Loop(value=0, A=5e−6)
3
4 C = sq.Capacitor(3.6, "GHz", Q=1e6)
5 L = sq.Inductor(0.46, "GHz", loops=[loop1])
6
7 # assign C to JJ
8 JJ = sq.Junction(10.2, "GHz", cap=C,
9 A=5e−7, loops=[loop1])

10
11 # C is inside the JJ
12 elements = {(0, 1): [L, JJ]}
13
14 # define the Fluxonium
15 cr = sq.Circuit(elements, flux_dist="all")

where we assumed that the inductor has a tiny
capacitor and the Josephson junction has C ca-
pacitor. Notice that since we have assigned C to
JJ, there is no need to add C to the edge list of
elements.

Finally, to calculate the dephasing rate of
Eq. 30, we again use the dec_rate() method:

1 kappa_mn = cr.dec_rate(dec_type=dec_type,
2 states=(m, n))

where dec_type argument can be either, "cc",
"flux", or "charge". In Fig.5c, we plot the de-
phasing time Tϕ due to the critical current noise
of the Fluxonium qubit with the Python code in
Appendix E.

6 Online presence
We published SQcircuit as an open source
Python package under BSD-3 license, which dis-
closes that it is free to use and to be developed.
The main source code can be found under the
[30] GitHub repository, which provides the link
to download and install the software. In addition,
we prepared numerous examples that reproduce
the result of the state of the art superconducting
circuits in the literature to show the efficiency and
convenience of the SQcircuit usage. We also pro-
vided an online documentation over [31] for de-
tailed information and tutorial of the SQcircuit.
The Sphinx code that generate this documenta-
tion is made available on different GitHub reposi-
tory of [32]. The list of the online links related to
GitHub pages, website, documentation, and Ana-
conda and PyPi package index repository pages
are summarized at table 1. We welcome any feed-
back regarding bugs/comments/improvements to
the SQcircuit software packages as well as any
initial pull request on the corresponding GitHub
pages. If you find this useful, you are encouraged

to cite this paper, where the framework has been
developed.

Table 1: Online links related to website, GitHub pages,
as well as package index repository pages of SQcircuit.

SQcircuit website:
sqcircuit.org
SQcircuit online documentation:
docs.sqcircuit.org
GitHub repository for SQcircuit source code:
github.com/stanfordLINQS/SQcircuit
GitHub repository for Sphinx source code:
github.com/stanfordLINQS/SQcircuit-doc
GitHub repository for Jupyter notebook examples:
github.com/stanfordLINQS/SQcircuit-examples
Anaconda package repository page:
anaconda.org/conda-forge/sqcircuit
PyPi package repository page:
pypi.org/project/SQcircuit/

7 Conclusions and Future Works

In this work, we propose a general approach for
analyzing any arbitrary superconducting circuit.
We theoretically develop a systematic framework
that models the Hamiltonian of the circuit. Then,
we show a proper transformation of the coor-
dinates that efficiently diagonalize the Hamilto-
nian to model its quantum behavior. We also
extend our frameworks to capture other impor-
tant features of the circuits such as lifetime, ma-
trix elements, coupling operators, phase space
representation of eigenfunctions, etc. Numeri-
cally, we introduce the SQcircuit library: an
open-source Python library enabling the simu-
lation and analysis of any superconducting cir-
cuit. We explain its functionalities to diagonalize
the circuit Hamiltonian and to obtain the circuit
features such as lifetime, matrix elements. Fu-
ture work will aim to broaden the scope of the
SQcircuit by adding more loss channels, creat-
ing a framework for optimization and machine
learning approaches to discover and design so-
phisticated superconducting circuits, and includ-
ing new functionalities to build a composite cir-
cuit created out of established superconducting
circuits.
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During preparation of this manuscript, we were
made aware of ongoing work in Jens Koch’s group
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discuss details of our projects, but agreed to post
preprints on the arXiv simultaneously.
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A Example for Circuit Hamiltonian
To elaborate upon the theory discussed in Sec. 2,
we construct the Hamiltonian for the circuit
shown in Fig. 6. To obtain the Hamiltonian of the
form shown in Eq. 8, we specify C, L∗, wk, and
bk. To construct the capacitance matrix, we set
the diagonals elements to be the sum of the capac-
itance connected to a node and the off-diagonal
elements to be negative the sum of capacitance
between two nodes:

C =

c1 + cJ2 + cJ3 0 −cJ3

0 c2 + cJ1 + cJ4 −c2 − cJ4

−cJ3 −c2 − cJ4 c2 + cJ3

 .
We construct the inverse inductance or suscep-
tance matrix L∗ similarly, by setting diagonal ele-
ments to be the sum of the susceptance connected
to a node and off-diagonal elements to be nega-
tive the sum of susceptance between two nodes:

L∗ =

0 0 0
0 0 0
0 0 1

l

 .
To calculate wk and bk defined in Eq. 1, we find
a relation between the kth inductive branch flux,
node fluxes, and external fluxes by specifying a
minimum spanning tree. In Fig. 6b the purple
solid lines specify the chosen spanning tree and
black dashed lines specify closure branches. The
index of each branch is also specified; thus, the
Josephson junction index set is SJ = {1, 2, 3, 4}
and linear inductor index set is SL = {5}. The
Josephson junction on branch k = 1 is part of
the spanning tree, so its branch flux includes no
offset from external fluxes:

ϕb,1 = (ϕ1 − 0) + 0 × ϕext,1 + 0 × ϕext,2.

Hence,

wT
1 =

[
1 0 0

]
, bT

1 =
[
0 0

]
.

In contrast, the Josephson junction on branch
k = 3 is not part of the spanning tree, but is on
a closure branch that encloses ϕext,2. Therefore
the branch flux depends on ϕext,2 as,

ϕb,1 = (ϕ1 − ϕ3) + 0 × ϕext,1 + 1 × ϕext,2,

which specifies w3 and b3:

wT
3 =

[
1 0 −1

]
, bT

3 =
[
0 1

]
.
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Figure 6: a) An arbitrary superconducting circuit with two inductive loops. b) The spanning tree of the circuit is
specified by purple solid lines and closure branches are the black dashed lines. Branch numbers are specified next to
each line.

Using the same approach, the wk and bk for other
branches are

wT
2 =

[
0 1 0

]
, bT

2 =
[
0 0

]
,

wT
4 =

[
0 1 −1

]
, bT

4 =
[
1 0

]
,

wT
5 =

[
0 0 1

]
, bT

5 =
[
0 0

]
.

We note that this approach for specifying bk

via spanning tree is complete only for time-
independent external fluxes [14, 15]. A gener-
alized description including time-dependent ex-
ternal fluxes is provided in Appendix D.

B Coordinate Transformations

In this section we systematically construct trans-
formed capacitance and inverse inductance ma-
trices as described in Sec. 3, to obtain the form
in Eqs. 11 and 12. The transformation occurs in
two steps. In the first step we diagonalize the LC
part of the Hamiltonian and separate the Hilbert
space into two subspaces of harmonic and charge
modes. In the second step we transform only
the charge-mode subspace to simplify the bound-
ary conditions and representation of the charge
modes. Thus, we write the S and R matrices as,

R = R1R2,

S = S1S2,

where Rλ and Sλ specify the λth transformation.

B.1 First Transformation
We write the first transformation as:

C−1
1 = RT

1 C
−1R1, (31)

L∗
1 = ST

1 L
∗S1. (32)

The goal is to find the R1 and S1, such that C1
and L∗

1 are diagonal. By taking the inverse of
Eq. 31 and imposing the transformation is canon-
ical, i.e., RT

1 = S−1
1 , we obtain:

C1 = ST
1 CS1,

L∗
1 = ST

1 L
∗S1.

(33)

Therefore, the problem reduces to finding the
matrix S1 such that C1 and L∗

1 are diagonal.
Because (C, L∗) are symmetric and positive-
semidefinite, we can take their square root and
rewrite C and L∗ as [33]

C =
√
C

T √
C,

L∗ =
√
L∗T √

L∗.

By substituting in Eq. 33 we find

C1 = ST
1

√
C

T √
CS1 = F T

c Fc,

L∗
1 = ST

1
√
L∗T √

L∗S1 = F T
l Fl,

(34)

where

Fc =
√
CS1,

Fl =
√
L∗S1.

(35)

Because C1 and L∗
1 are assumed to be diagonal,

Eq. 34 implies that

Fc = UDc,

Fl = V Dl,
(36)
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where Dc and Dl are diagonal matrices and U
and V are orthogonal matrices. By combining
Eq. 35 and Eq. 36, we have:

√
CS1 = UDc, (37)

√
L∗S1 = V Dl. (38)

Because C is invertible, we can find S1 by multi-
plying the left side of Eq. 37 by

√
C

−1
:

S1 =
√
C

−1
UDc (39)

Substituting Eq. 39 in Eq. 38:

√
L∗

√
C

−1 = V DlD
−1
c UT = V DUT , (40)

where
D = DlD

−1
c . (41)

The right side of Eq. 40 has the form of a singu-
lar value decomposition (SVD). Hence, we can
specify S1 from U and Dc matrices. We are
free to choose Dc and Dl as long as they sat-
isfy Eq. 41. However, the zero diagonal entries of
D imply that the corresponding diagonal entries
of Dl should also be zero because Dc is invert-
ible and cannot have zero diagonal entries. In
addition, permuting the D diagonal entries can
create another acceptable form of SVD. We sort
the D diagonal entries to place the zero entries
at the last indices, defining a 2 × 2 block matrix
partition in which we call the first nH non-zero
diagonal elements the “harmonic” block and the
last nC zero elements the “charge” block. Thus,
C1 and L∗

1 have the following form:

C1 = D2
c =

[
Cha1 0
0 Cch1

]
,

L∗
1 = D2

l =
[
L∗ha1 0
0 0

]
,

where Cha
1 and L∗ha

1 are nH ×nH diagonal matri-
ces and Cch1 is a nC × nC diagonal matrix.

B.2 Second Transformation

Since the elements of L∗
1 are zero for the charge

block, there is no quadratic potential for this sub-
space. Instead, the Josephson junction cosine po-
tentials form a nC-dimensional periodic potential:

U(Φha1 ,Φch1 + a) = U(Φha1 ,Φch1), (42)

where ϕhaT
1 = [ϕha1

1 , . . . , ϕha1
nH

] and ΦchT
1 =

[ϕch1
1 , . . . , ϕch1

nC
] are flux variables after the first

transformation for the harmonic and charge sub-
spaces respectively, and a is an nC-dimensional
vector defined as

a =
nC∑
i=1

miai, mi ∈ Z,

where ai are primitive lattice vectors. We can
write the periodic potential of Eq. 42 as a Fourier
series:

U(Φha1 ,Φch1) =
∑
k

ck(Φha1)e
i
ℏk

T Φch1
, (43)

where k is a reciprocal lattice vector formed from
basis vectors ki satisfying kT

i aj = 2πℏδij .

Consider |Qch1
0 ⟩ = |Qch1

1 , . . . , Qch1
nC

⟩, an eigen-
vector of all charge operators Q̂ch1

i in the charge
block after the first transformation, with

Q̂ch1
i |Qch1

0 ⟩ = Qch1
i |Qch1

0 ⟩ . (44)

Because [ϕ̂ch1
m , Q̂ch1

n ] = iℏδmn, the operator
e

i
ℏk

T Φ̂ch1 performs a charge displacement on
|Qch1

0 ⟩:

e
i
ℏk

T Φ̂ch1 |Qch1
0 ⟩ = |Qch1

0 + k⟩ . (45)

As a consequence of Eqs. 43-45, the Hilbert space
corresponding to the charge block is spanned by
a discrete set of charge eigenvectors |Qch1⟩ on a
reciprocal lattice. The lattice so far is defined
up to a reference vector which we can take to be
|Qch1

0 ⟩, defining the following basis for the charge-
block subspace:

H
Q

ch1
0

= {|Qch1
0 + k⟩ |k =

nC∑
i=1

miki,mi ∈ Z}.

Any vector k on the reciprocal lattice can be ab-
sorbed into the definition of |Qch1

0 ⟩, so we can take
|Qch1

0 ⟩ to describe a possible non-integer offset to
the reciprocal lattice. The offset, if present, corre-
sponds to a conserved quantity that is equivalent
to a quasi-momentum and is often called "gate
charge" or "charge offset".

For calculations, charge operators and the po-
tential of Eq. 43 have a more physically meaning-
ful representations if each reciprocal vector has
the the following form:

k̃i = (2e)ei, (46)
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where 2e is the Cooper pair charge and ei is the
nC-dimensional vector with the ith element equal
to one and the rest equal to zero (standard basis).
We therefore construct S2 and R2 for the second
transformation such that Eq. 46 is satisfied. The
transformation acts only on the charge block, so
S2 and R2 are block-diagonal:

S2 =
[
I 0
0 Sch

2

]
,

R2 =
[
I 0
0 Rch

2

]
,

where I is an nH × nH identity matrix and
(Sch

2 )T = (Rch
2 )−1. Under these transformations

Eq. 43 becomes,

U(Φha2 ,Φch2) =
∑
k

ck(Φha2)e
i
ℏk

T Sch
2 Φch2

,

where Φha2 and Φch2 are the flux variables af-
ter the second transformation, and Φha2 = Φha1 .
Hence, the new reciprocal vectors k̃i are related
to previous ones by

k̃T
i = kT

i S
ch
2 .

To ensure the k̃T
i have the form of Eq. 46, Sch

2
should satisfy:

Sch
2 = (KT )−1,

where the ith column of the K matrix is ki.

So far we have considered only the generic form
of a periodic potential in Eq. 42. In practice, the
reciprocal lattice vectors ki for the Josephson po-
tential are proportional to the prefactor vectors
wch1

i within the cosines after the first transforma-
tion, defined by truncating ST

1 wi to the charge
block. We can therefore form the columns of K
using the nC linearly-independent wch1

i :

K = (2e)
[
wch1

1 . . . wch1
nC

]
(47)

This guarantees that all wch2
k (prefactors of the

flux variables after the second transformation)
are integers, and that the reciprocal vectors have
the form of Eq. 46. Thus, after the second trans-
formation the capacitance and inductance matri-
ces C2 and L∗

2 are

C2 =
[
Cha2 0
0 Cch2

]
,

L∗
2 =

[
L∗ha

2 0
0 0

]
,

where Cha1 = Cha2 , L∗ha
2 = L∗ha

1 , and Cch2 =
(Sch

2 )TCch1Sch
2 . Although Cch1 is diagonal, Cch2

is not necessarily diagonal, so C2 and L∗
2 have

the same form as Eqs. 11-12.

C Interaction Hamiltonian
Here we obtain interaction Hamiltonians for the
two generic circuits shown in Fig. 4. To do so,
we describe how the drive circuit changes the La-
grangian of the main circuit, then compute the
Hamiltonian by Legendre transform. We derive
additional terms describing capacitive drives and
inductive drives in Sec. C.1 and Sec. C.2, respec-
tively.

C.1 Capacitive Drive

The coupling capacitor and voltage drive of Fig.
4a only affect the kinetic energy of the circuit as
follows,

T ′(Φ̇) = T (Φ̇) + 1
2cd(ϕ̇i − ϕ̇j − Vd)2, (48)

U ′(Φ) = U(Φ), (49)

where T (Φ̇) = 1
2Φ̇

TCΦ̇ and U(Φ) are respec-
tively the kinetic and potential energies related
to the circuit without drive components, and (ϕi,
ϕj) are flux variables for the nodes i and j that
are connected through the drive circuit. The La-
grangian is L = T − U , from which we compute
redefined charge operators (as momenta conju-
gate to the flux variables):

Q′
t = ∂

∂ϕ̇t

L =
∑
m

Ctmϕ̇m + cd(δit − δjt)(ϕ̇i − ϕ̇j −Vd).

(50)
We define the new capacitance matrix C ′ and
charge drive vector qd with following elements

C ′
mn = Cmn + cd(δim − δjm)δmn,

qdm = cdVd(δim − δjm),

and rewrite Eqns . 48 and 50 in those parameters:

Q′ = C ′Φ̇ − qd, (51)

T ′ = 1
2Φ̇

TC ′Φ̇ − qT
d Φ̇ + 1

4q
T
d

1
cd
qd. (52)

The Hamiltonian of the circuit is

H = Q′T Φ̇ − T ′(Φ̇) + U ′(Φ), (53)
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Thus, by substituting Eqns. 49, 51, 52 in Eq. 53:

H =1
2Q

′T C ′−1
Q′ + U(Φ) + qT

dC
′−1

Q′

+ 1
2q

T
dC

′−1
qd − 1

4q
T
d

1
cd
qd.

The last two terms contain no dynamical vari-
ables, so we neglect them as they describe only
a global shift to the energy spectrum. Assuming
cd is much smaller than capacitors connected to
nodes i and j, we can substitute the Q′ and C ′

with Q and C. Accordingly, the Hamiltonian can
be written as

Ĥ = Ĥ0 + qT
dC

−1Q̂, (54)

where Ĥ0 is the Hamiltonian of the circuit with-
out drives. The interaction Hamiltonian for ca-
pacitive driving can be written using transformed
charge operators as:

Ĥdr
c = (cdVd)eT

ijC
−1R ˆ̃Q,

where we used qd = cdVdeij and eij is the nN- di-
mensional vector with element k ∈ {1, 2, · · · , nN}
equal to δik − δkj .

C.2 Inductive Drive
In contrast to capacitive coupling, inductive cou-
pling only changes the potential of the circuit and
leaves the kinetic energy intact. The potential en-
ergy of the inductor lij coupled to the drive circuit
in Fig.4b is,

∆U = 1
2 lijI

2
ij +MIdIij + 1

2 ldI
2
d , (55)

where Iij is the current through the lij inductor
and Id is the source current. The flux drop across
the lij and ld inductors has the following relation
with their currents due to mutual inductance M :

ϕij = lijIij +MId,

ϕd = MIij + ldId,
(56)

Assuming M ≪ lij , we express the Eq. 55 in ϕij

using Eq. 56:

∆U = 1
2lij

ϕ2
ij + MId

lij
ϕij + 1

2 ldI
2
d .

Thus, the kinetic and the potential energy of the
circuit are

T ′(Φ̇) = T (Φ̇),

U ′(Φ) = U(Φ) + MId

lij
ϕij + 1

2 ldI
2
d ,

(57)

in which T (Φ̇) and U(Φ) are the kinetic and po-
tential energy respectively related to the circuit
without drive components. By neglecting 1

2 ldI
2
d

(since it is just a shift to energy spectrum of a
circuit), the Hamiltonian can be obtained from
the Lagrangian formed by Eq. 57 as

Ĥ = Ĥ0 + MId

lij
eT

ijΦ̂,

where Ĥ0 is the Hamiltonian of the circuit with-
out drive elements, and we used ϕ̂i − ϕ̂j = eT

ijΦ̂.
Note that if the i or j is the ground node (that
is i = 0) the corresponding flux operator is zero
(ϕ̂i = 0). The interaction Hamiltonian in trans-
formed flux operators from inductive drive is:

Ĥdr
l = (MId) 1

lij
eT

ijS
ˆ̃Φ.

D Time-dependent External Fluxes
Different forms of spanning tree lead to differ-
ent distributions bk of the external fluxes over
the inductive elements, and therefore to differ-
ent forms of the Hamiltonian. As discussed in
[14, 15], for stationary external fluxes, all distri-
butions bk lead to Hamiltonians with the same
energy spectrum. However, for time-dependent
external fluxes terms proportional to ∝ ϕ̇φ̇ext ap-
pear in the kinetic energy part of the Lagrangian;
this is not captured in the description of Sec. 2.
In this section, we explain a method to find the
bk for a Hamiltonian with time-dependent exter-
nal fluxes, that remains consistent with the time-
independent case in Sec. 2. Let all branch fluxes
be denoted by

ΦT
b = [ϕb,1, . . . , ϕb,(nN+nL)]

where ϕb,k is the kth branch flux, nN is the num-
ber of circuit nodes, and nL is the number of
independent loops (nL + nN is the number of
branches). Fluxoid quantization and Faraday’s
law determine constraints for the kth loop Ak

threaded by external flux ϕext,k:

ϕext,k = gT
k Φb, (58)

where

[gk]i =


1, if ϕb,i ∈ Ak with same direction as ϕext,k

-1, if ϕb,i ∈ Ak with opposite direction to ϕext,k

0, if ϕb,i /∈ Ak
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Thus, Eq. 58 for all nL loops of the circuit can be
written as

Φext = GΦb, (59)

where G is a nL × (nN +nL) matrix with kth row
equal to gT

k . Moreover, the relation between kth
branch flux ϕb,k, node flux variables Φ (circuit
degrees of freedom), and external fluxes Φext can
be expressed by,

ϕb,k = wT
k Φ + bT

k Φext, (60)

where wk are calculated as in Sec. 2 and bk are
yet to be specified. Eq. 60 for all k can be written
in the matrix form of

Φb = WΦ + BΦext, (61)

where W and B are (nN + nL) × nN and
(nN +nL) ×nL matrices with respective kth rows
given by wT

k and bT
k . We define an (nN + nL)-

dimensional vector Φ+ and (nN +nL)×(nN +nL)
matrix of P as,

Φ+ =
[

Φ
Φext

]
,

P =
[
W B

]
,

to rewrite Eq. 61 compactly as

Φb = PΦ+. (62)

The kinetic energy of the Lagrangian is,

T = 1
2Φ̇

T
b CedΦ̇b,

where Ced is an (nN + nL) × (nN + nL) diagonal
matrix with kth diagonal element equal to the
capacitance of the kth branch. Using Eq. 62, the
kinetic energy can be written as

T = 1
2(Φ̇+)TCΦ̇+,

where,

C = P TCedP =
[
W T

BT

]
Ced

[
W B

]
=
[
W TCedW W TCedB
BTCedW BTCedB

]

The off-diagonal blocks of C lead to terms ∝
ϕ̇φ̇ext. To avoid this, the B matrix should satisfy
the following condition:

W TCedB = 0, (63)

where 0 is a nN × nL zero matrix. The B matrix
has (nN + nL) × nL elements that are unknown
and Eq. 63 introduces nN × nL number of equa-
tions. Thus, n2

L equations are needed to specify
B uniquely. Substituting Eq. 62 in Eq. 59, we
have:

GΦb = GPΦ+ = G
[
W B

] [ Φ
Φext

]
= GWΦ + GBΦext.

GW should be zero by definition, since by sum-
ming the flux drop at each branch of the loop,
the net result should be independent of the flux
node operators. Hence,

GBΦext = Φext.

Because this equation should hold for all Φext,
we find the following constraint for B, which pro-
vides the n2

L needed equations:

GB = I, (64)

where I is an nL × nL identity matrix. We com-
bine Eqs. 63 and 64 as[

W TCed
G

]
B =

[
0
I

]
,

and specify B by

B =
[
W TCed

G

]−1 [
0
I

]
.

This process has been implemented in SQcircuit
to describe time-dependent external fluxes, in
particular to accurately predict dephasing rates
due to flux noise.

E SQcircuit Codes
Here we provide Python code that uses the
SQcircuit library to produce results in the main
body of this paper. We obtain the results of Fig.3
by

1 # import the libraries
2 import SQcircuit as sq
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 # define the loop of the circuit
7 loop1 = sq.Loop()
8
9 # define the circuit’s elements

10 C = sq.Capacitor(0.15, "GHz")
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11 CJ = sq.Capacitor(10, "GHz")
12 JJ = sq.Junction(5, "GHz", loops=[loop1])
13 L = sq.Inductor(0.13, "GHz", loops=[loop1])
14
15 # define the zero−pi circuit
16 elements = {
17 (0, 1): [CJ, JJ],
18 (0, 2): [L],
19 (0, 3): [C],
20 (1, 2): [C],
21 (1, 3): [L],
22 (2, 3): [CJ, JJ]
23 }
24 cr = sq.Circuit(elements)
25
26 # set the truncation numbers
27 cr.set_trunc_nums([25, 25])
28
29 # external flux for sweeping over
30 phi = np.linspace(0, 1,100)
31
32 # spectrum of the circuit
33 n_eig=5
34 spec = np.zeros((n_eig, len(phi)))
35
36 for i in range(len(phi)):
37 # set the external flux for the loop
38 loop1.set_flux(phi[i])
39
40 # diagonlize the circuit
41 spec[:, i], _ = cr.diag(n_eig)
42
43 # plot the energy spectrum
44 plt.figure()
45 for i in range(n_eig):
46 plt.plot(phi, spec[i,:] − spec[0,:])
47 plt.xlabel(r"$\Phi_{ext}/\Phi_0$")
48 plt.ylabel(r"$f_i−f_0$[GHz]")
49 plt.show()
50
51 # set the external flux back to zero
52 loop1.set_flux(0)
53 _, _ = cr.diag(n_eig=2)
54
55 # create a range for each mode
56 phi1 = np.pi*np.linspace(−1,1,100)
57 phi2 = np.pi*np.linspace(−0.5,1.5,100)
58
59 # the ground state
60 state0 = cr.eig_phase_coord(
61 k=0, grid=[phi1, phi2])
62
63 # the first excited state
64 state1 = cr.eig_phase_coord(
65 k=1, grid=[phi1, phi2])
66
67 # plot the ground state
68 plt.figure()
69 plt.pcolor(phi1, phi2,
70 np.abs(state0)**2,
71 shading=’auto’)
72 plt.xlabel(r’$\varphi_1$’)
73 plt.ylabel(r’$\varphi_2$’)
74 plt.show()
75
76 # plot the first excited state
77 plt.figure()
78 plt.pcolor(phi1, phi2,
79 np.abs(state1)**2,
80 shading=’auto’)
81 plt.xlabel(r’$\varphi_1$’)
82 plt.ylabel(r’$\varphi_2$’)
83 plt.show()

and the results of Fig.5 by

1 # import the libraries
2 import SQcircuit as sq
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 # define the loop of the circuit
7 loop1 = sq.Loop()
8
9 # define the circuit’s elements

10 C = sq.Capacitor(3.6, "GHz", Q=1e6)
11 L = sq.Inductor(0.46, "GHz", loops=[loop1])
12 JJ = sq.Junction(10.2, "GHz", cap=C,
13 A=5e−7, loops=[loop1])
14
15 # define the Fluxonium circuit
16 elements = {(0, 1): [L, JJ]}
17 cr = sq.Circuit(elements, flux_dist="all")
18
19 # set the truncation numbers
20 cr.set_trunc_nums([100])
21
22 # external flux for sweeping over
23 phi = np.linspace(0, 1, 300)
24
25 # T_1 and T_phi
26 T_1 = np.zeros_like(phi)
27 T_phi = np.zeros_like(phi)
28
29 for i in range(len(phi)):
30 # set the external flux for the loop
31 loop1.set_flux(phi[i])
32
33 # diagonalize the circuit
34 _, _ = cr.diag(n_eig=2)
35
36 # get the T_1 for capacitive loss
37 T_1[i] = 1/cr.dec_rate(
38 dec_type="capacitive",
39 states=(1,0))
40
41 # get the T_phi for cc noise
42 T_phi[i] = 1/cr.dec_rate(
43 dec_type="cc",
44 states=(1,0))
45
46 # plot the T_1 from the capacitive loss
47 plt.figure()
48 plt.semilogy(phi, T_1)
49 plt.xlabel(r"$\Phi_{ext}/\Phi_0$")
50 plt.ylabel(r"$s$")
51 plt.show()
52
53 # plot the T_phi from the critical
54 # current noise
55 plt.figure()
56 plt.semilogy(phi, T_phi)
57 plt.xlabel(r"$\Phi_{ext}/\Phi_0$")
58 plt.ylabel(r"$s$")
59 plt.show()
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