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Abstract. Moving scientific computation from high-performance computing (HPC) and cloud
computing (CC) environments to devices on the edge, i.e., physically near instruments of interest, has
received tremendous interest in recent years. Such edge computing environments can operate on data
in-situ, offering enticing benefits over data aggregation to HPC and CC facilities that include avoiding
costs of transmission, increased data privacy, and real-time data analysis. Because of the inherent
unreliability of edge computing environments, new fault tolerant approaches must be developed
before the benefits of edge computing can be realized. Motivated by algorithm-based fault tolerance,
a variant of the asynchronous Jacobi (ASJ) method is developed that achieves resilience to data
corruption by rejecting solution approximations from neighbor devices according to a bound derived
from convergence theory. Numerical results on a two-dimensional Poisson problem show the new
rejection criterion, along with a novel approximation to the shortest path length on which the criterion
depends, restores convergence for the ASJ variant in the presence of certain types data corruption.
Numerical results are obtained for when the singular values in the analytic bound are approximated.
A linear system with a more dense sparsity pattern is also explored. All results indicate that successful
resilience to data corruption depends on whether the bound tightens fast enough to reject corrupted
data before the iteration evolution deviates significantly from that predicted by the convergence
theory defining the bound. This observation generalizes to future work on algorithm-based fault
tolerance for other asynchronous algorithms, including upcoming approaches that leverage Krylov
subspaces.

1. Introduction. Recent years have seen a proliferation of edge devices, i.e.,
streamlined computing devices that provide an entry point to the individual instru-
ments in their vicinity. Modern infrastructure includes a wide range of such devices,
from smart residential thermostats to industrial smart grid meters. These devices,
along with wearable healthcare devices and content delivery systems, are motivating
a push of computation beyond the walls of high-performance (HPC) and cloud com-
puting (CC) facilities onto the edge devices themselves. Consider, as an example,
the benefits of enabling smart power grid devices to operate autonomously when the
central operator is disabled due to a natural disaster or cyber-physical attack. The
capability provided by edge computing environments to operate without a single point
of failure or on data in-situ is appealing to real-time system operators. Unfortunately,
the benefits of edge computing cannot be realized before the inherent unreliability of
edge devices is addressed. Modern scientific computing algorithms typically assume
that data will not be corrupted as the algorithm is executed. HPC and CC platforms
provide such data integrity by utilizing fault management techniques. Checkpointing
and redundant computation are cornerstones of fault management techniques in HPC
and CC, and are an integral part of n-modular redundancy [3], n-version programming
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[15], majority voting [3], and redundant cloud servers [15] techniques. The frequency
of checkpointing is typically chosen to avoid restarting from a checkpoint created
long before the fault occurs while keeping the cost of synchronization and storage
reasonable. Similarly, the amount of redundancy is typically chosen to avoid having
all redundant entities experience a fault at the same time while keeping the cost of
storage and flops reasonable. Thus, checkpointing and redundancy are not practical
for edge computing environments where synchronization is typically expensive, and
data storage and/or flops are limited.

One promising alternative fault management strategy is the class of algorithm
based fault tolerant (ABFT) methods. The general idea is to leverage the structure or
expected behavior of the algorithm to detect, mitigate, and/or recover from faults such
as data corruption. Examples of ABFT schemes include methods for the fast Fourier
transform [13], matrix multiplication [20], Krylov-based iterative methods [5], and the
synchronous Jacobi method [2]. Focusing on the iterative methods, the work presented
in [5] uses the orthogonality of projections onto Krylov spaces for detection of faults,
while [2] utilizes the contraction mapping property of stationary iterative methods.
Unfortunately, those ABFT approaches are for iterative methods that require frequent
synchronizations, making them impractical for edge computing environments due to
network latency, heterogeneous nodes, and nonpersistent nodes/links. Asynchronous
methods remove the need for global synchronization after each iteration, allowing
them to outperform their synchronous counterparts in high-latency environments (see,
e.g., [19]). This makes asynchronous methods very appealing for edge computing;
however, the authors are aware of only two existing asynchronous methods with ABFT
strategies: the robust alternating direction method of multipliers (ADMM) [12] and
the robust push-sum algorithm [16].

Solving the nonlinear systems that are being pushed to edge computing envi-
ronments, such as distribution system state estimation [18] and machine learning for
autonomous vehicles [14] and smart agriculture [11], typically require the solution of
one or more linear systems (e.g., direction vectors in the Newton-Rhapson method).
To address the resulting need for an asynchronous linear solver with ABFT for such
tasks, we modify the asynchronous Jacobi (ASJ) method [7, 10, 19, 2, 4] with a re-
jection criterion based on the convergence properties of ASJ. In [12], such a rejection
criterion is developed where data from neighboring nodes is rejected if the difference
between successive data obtained from a neighbor exceeds a bound derived from the
convergence theory for ADMM. Here, a similar criterion is used but with a novel
bound derived for the ASJ method based on the ASJ convergence theory developed
in [10]. Because the bound for ASJ depends on time-dependent global information,
specifically the shortest path length, a novel local approximation to that global in-
formation is also developed. It is worth noting that the choice of the ASJ method
for modification is motivated by (i) the authors are not aware of another asynchro-
nous linear solver with established convergence theory, (ii) while the Jacobi method is
known to scale poorly to large and ill-conditioned systems, ASJ can be sufficient for
small problems that appear in edge environments (e.g., state estimation in a neigh-
borhood), and (iii) the observations and understanding of the resilience modification
for ASJ can be generalized to upcoming asynchronous Krylov-based solvers, such as
the one recently developed in [6].

This paper is organized as follows. Section 2 formulates the problem, introduces
the notation and important definitions, and discusses the nature of data corruption
to be investigated. Section 3 develops our resilience enabling technique. Section 4
presents numerical results verifying the implementation of the method and demon-
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strating the effectiveness of the proposed rejection technique in the presence of various
forms of data corruption. An empirical sensitivity study of the rejection criterion pa-
rameters is also presented, with a discussion on potential improvements to the local
approximation of global information used in the criterion. The evaluation of the
method is extended to a second linear system with a more dense sparsity pattern.
Section 5 summarizes the outcomes of the paper and discusses how the results might
generalize to ongoing and future work.

2. Problem Statement. Solutions of linear systems are ubiquitous in mod-
ern scientific computing algorithms, defining search directions in both iterative and
nonlinear solvers. Thus, consider solving the linear system

Ax = b,(2.1)

for x ∈ Rm, where A ∈ Rm×m and b ∈ Rm. Assume that A is non-singular so that
a unique solution to (2.1) exists. The asynchronous Jacobi method is an iterative
solver for (2.1) in that successive approximations to the solution x are formed across
N computational nodes. Denote by xi ∈ Rmi , mi ≤ m, the partition of x that
node i is approximating. Let I ∈ Rm×m and D ∈ Rm×m be the identity matrix and
the diagonal matrix containing the diagonal elements of A, respectively. The update
equation that defines the successive approximations computed by node i, denoted x0

i ,
x1
i , etc., can now be expressed as

xκi =
N∑
j=1

Mijxψ(i,j,κ)
j + ci, κ = 1, 2, . . .(2.2)

where Mij ∈ Rmi×mj is the partition of the Jacobi iteration matrix M := I −D−1A
with rows that correspond to xi and columns that correspond to xj , and ci ∈ Rmi

is the partition of c := D−1b with elements that correspond to xi. The index func-
tion ψ is defined by ψ(i, j, κ) = λ if node i uses node j’s λ-th approximation in the
computation of its κ-th approximation. All matrix, vector, and matrix-vector oper-
ations, including the communication of xκi and xψ(i,j,κ)

j , are to be considered block
operations.

The general form of (2.2) defines a class of chaotic or asynchronous iterative meth-
ods, first introduced by Chazan and Miranker [4], that generalize classic relaxation
methods to allow each compute node to perform a new iteration immediately after
the previous iteration has completed. Chazan and Miranker provide the sufficient
condition to guarantee convergence of any relaxation scheme of the form (2.2): that
the spectral radius of the absolute value of the global iteration matrix, M , is bounded
below one, i.e., ρ(|M |) < 1, where |M | is defined by taking the absolute value of each
element in the matrix. However, the authors in [4] assume that the values of xψ(i,j,κ)

j

sent by node j are the same as those received by node i. Such assumption can become
invalid in emerging computing environments that do not provide the guarantees of
current high performance computing systems. Thus, the goal of this work is to modify
(2.2) to ensure, or at least encourage, convergence even if data corruption results in
either (i) the values of xψ(i,j,κ)

j received by node i being different than those sent by
node j or (ii) the values of xκj stored on node j being altered. As a convenience to the
reader, Table 1 summarizes the notation used herein, as well as the location where
the notation is first mentioned.
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Table 1
Notation Table

Symbol Description Location
N number of computational nodes Section 2
A square system matrix (Rm×m) with real components Section 2

x , b vectors of real components (Rm) Section 2
xi vector (Rmi) containing the i-th partition of x assigned to the i-th computational node Section 2
D diagonal matrix (Rm×m) whose elements are the diagonal entries of A Section 2
M Jacobi iteration matrix D−1A (Rm×m) Section 2
Mi,j partition of M (Rmi×mj ) with rows corresponding to xi and columns corresponding to xj Section 2
i,j,k indexing of partitions Section 2
λ, κ indexing of iterations Section 2
xκi the κ-th iteration of the approximation to vector x on node i (Rmi) Section 2
p the probability of a bit flip in a communicated element Section 2.1

ωf , ωr the time to failure and recovery time Section 2.2
δ an offset that is sampled from a Gaussian distribution with a positive mean Section 2.2

νi(t) iteration index such that xνi(t)
i is the most recent approximation of xi at time t Section 3

x̃(t) global approximate solution (Rm) at time t such that x̃i(t) = xνi(t)
i , i = 1, . . . , N Section 3

x∗ global exact solution (Rm) to Ax = b Section 3
e(t) global error (Rm) at time t such that ei(t) = x̃i(t) − x∗

i Section 3
Ω(t) := Ω(ψ,M, t) error operator (Rm×m) such that e(t) = Ω(t)e(0) Section 3

G(V, E) directed acyclic graph with nodes V and edges E Section 3
s(t), l(t) shortest and longest paths in G, respectively Section 3

ψij(κ) := ψ(i, j, κ) iteration index of the update from node j which node i uses to compute its κ-th update Section 3
ζij(t) arg maxκ ψij(κ) < ψij(νi(t)) Section 3
τij [κ] time at which the solution approximation existed on node j that will later be used to form xκi Section 3

σmin(A), σmax(A) smallest and largest singular value of A, respectively Section 3
s̃i(t) approximate shortest path Section 3

dxνi(t)
i := xνi(t)

i − xνi(t)−1
i difference (Rmi) between two successive solution approximations on node i Section 3

ϵ a user defined tolerance for the stopping criteria Section 3

2.1. Natural Data Corruption. The first data corruption model is motivated
by bit flips occurring in network hardware memory that alter data as it is in transit.
This natural data corruption is modeled as a random process where each component
of transmitted data is affected by a bit flip with a fixed probability p ∈ (0, 1). The bit
flips themselves are performed either on ieee 754 double precision (64 bit) floating
point [1] or on 32 bit signed integer numbers. The affected bit index is sampled
from various uniform integer distributions, then the bit flip is performed directly. In
extremely rare cases, this method of performing bit flips on double precision numbers
can result in the special floating point values NaN or inf. It is worth noting that
this data corruption approach mirrors the model of Anzt et al. [2], where a fixed
number of bit flips are introduced per iteration to the entries of the iteration matrix
M during the matrix-vector product in each iteration, which may corrupt up to 1%
of updates to the elements of the solution vector. Instead, we choose to corrupt the
elements of the transmitted solution vector directly at a fixed probability p ∈ (0, 1),
i.e., corruption is applied with probability p to each transmitted data element.

2.2. Malevolent Data Corruption. The second data corruption model is mo-
tivated by intentional corruption caused by a malicious actor who has gained inter-
mittent access to a device to manipulate the result of a calculation. This malevolent
data corruption is modeled as a periodic process where each agent is considered to
be in either a “normal” or a “degraded” state. When in a “normal” state, the new
approximate solution is unaltered. After ωf seconds have passed, the agent is com-
promised and enters a “degraded” state. While in the “degraded” state, the impacted
data on an agent is corrupted by adding an offset to all solution elements. Note that
such non-transient corruption, i.e., overwriting of the local solution data, presents a
more challenging recovery scenario than transient corruption. This offset is sampled
from a Gaussian distribution with a positive mean δ and a standard deviation of 0.5δ.
The repeated application of these offsets will gradually increase the magnitude of the
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corrupted elements of the solution vector, absent any mitigation strategy. We choose
the standard deviation 0.5δ to ensure that 95% of the sampled offsets will be greater
than zero regardless of the choice of δ. After ωr seconds have passed, the agent is
secured and returns to a “normal” state.

3. Corruption Resilience Modification. To improve data corruption resilience
in the asynchronous Jacobi method (2.2), we take the approach of inspecting incom-
ing data before it is used to form the next approximation xκi in (2.2). If the data is
identified as corrupted, it is rejected by being excluded from contributing to the next
solution approximation. We will use the convergence theory established by Hook and
Dingle [10] to derive our rejection criterion. The authors in [10] derive an error bound
using metrics of the evolution of the solution approximations computed by each node
and the communication pattern between nodes. They accomplish this task by casting
the algorithm evolution as a directed acyclic graph, whose vertices are the solution
approximations computed by each node and edges indicate when a solution approxi-
mation is used to compute a latter solution approximation. Using a similar notation,
we will summarize the components used to form the rejection criterion below.

Define νi(t) so that xνi(t)
i is the solution approximation on node i at time t. A

global solution approximation at time t, denoted by x̃(t), is defined block-wise as
x̃i(t) = xνi(t)

i , i = 1, . . . , N . With x∗ being the exact solution of (2.1), the global
error at time t is defined as e(t) = x̃(t) − x∗. Denote the error operator Ω(ψ,M, t)
such that e(t) = Ω(ψ,M, t)e(0). The properties of Ω(ψ,M, t), denoted herein as
Ω(t), are presented in [10] using a directed acyclic graph G(V, E) with graph nodes V
and edges E . This is not the graph of computational node-to-node connections but
is instead a directed acyclic graph representation of the evolution of the collective
computation: each solution approximation at each computational node (i.e., each xκj )
is an element of V, and there is an edge in E from xλj to xκi iff ψ(i, j, κ) = λ. Figure
1 presents a simple example of a directed acyclic graph for the algorithm evolution
between two nodes. The initial states on node 1 and node 2 are denoted by x0

1 and
x0

2, respectively. The initial solution approximation on node 2 is received by node 1
and used to compute the next solution approximation on node 1:

x1
1 = M11x0

1 +M12x0
2.

Node 2, on the other hand, uses x1
1 instead of x0

1 to compute the next approximation

x1
2 = M22x

0
2 +M12x

1
1,

as depicted in Figure 1. Hook and Dingle [10, Theorem 1] prove that the error operator
Ω(ψ,M, t) consists of sums over all the paths within G(V, E) of the corresponding
iteration matrix blocks. For example, the error operator at time t1 in Figure 1 is

Ω(ψ,M, t1) =
[
M11M11M11 +M12M21M11 M12M22 +M11M12
M22M21M11 +M21M11 M22M22 +M21M12 +M22M21M12

]
.

The authors further show that the convergence rate is bounded by the slowest propa-
gation of information, defined as the shortest path in G(V, E) from an initial solution
approximation to a current approximation, leading to the error bound that forms
the basis of our rejection criteria. Given a non-negative iteration matrix M , i.e., all
elements of M are non-negative, Hook and Dingle [10, Theorem 3] show that Ω(t) is
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x0
1

x0
2

x1
1 x2

1 x3
1

x1
2 x2

2 x3
2

t = t1

Fig. 1. Directed acyclic graph G(V, E) illustrating an example two-node evolution of the solution
approximations xν1(t)

1 and xν2(t)
2 .

bounded as follows

∥Ω(t)∥2 ≤

∥∥∥∥∥∥
l(t)∑

k=s(t)

Mk

∥∥∥∥∥∥
2

,(3.1)

where s(t) and l(t) are the lengths of the shortest and longest paths in G(V, E) at
time t, respectively. The goal now is to use (3.1) to develop a criterion for whether
computational node i should accept or reject a new solution approximation xψ(i,j,νi(t))

j

obtained from node j. For notational brevity, we introduce ψij(κ) := ψ(i, j, κ).
To compare the new solution approximation xψij(νi(t))

j to the previous solution
approximation received by computational node i from computational node j, we define
ζij(t) to be the index of the solution approximation on node i that was last directly
influenced by a solution approximation from node j. In other words, we seek to denote
the two most recent solution approximations received by node i from node j at time
t as xψij(νi(t))

j and xψij(ζij(t))
j , respectively. Formally, ζij(t) = arg maxκ{ψij(κ) <

ψij(νi(t))}. Now, a bound on ∥xψij(νi(t))
j − xψij(ζij(t))

j ∥2 can be derived using (3.1).
Let τij [κ] be the time at which the solution approximation existed on computational
node j that would later be used to form xκi , so that νj

(
τij [ζij(t)]

)
= ψij(ζij(t)) and

νj
(
τij [νi(t)]

)
= ψij(νi(t)). Note that xψij(νi(t))

j can now be expressed as xνj(τij [νi(t)])
j =

x̃j
(
τij [νi(t)]

)
and xψij(ζij(t))

j as xνj(τij [ζij(t)])
j = x̃j

(
τij [ζij(t)]

)
. Thus, the following

bound holds

xψij(νi(t))
j − xψij(ζij(t))

j = x̃j
(
τij [νi(t)]

)
− x∗

j︸ ︷︷ ︸[
Ω
(
τij [νi(t)]

)
e(0)
]

j

+ x∗
j − x̃j

(
τij [ζij(t)]

)︸ ︷︷ ︸[
−Ω
(
τij [ζij(t)]

)
e(0)
]

j

⇒ ∥xψij(νi(t))
j − xψij(ζij(t))

j ∥2 ≤
[∥∥Ω

(
τij [ζij(t)]

)∥∥
2 +

∥∥Ω
(
τij [νi(t)]

)∥∥
2

]
∥e(0)∥2

Assuming the initial solution approximation is the zero vector, one has ∥e(0)∥2 ≤
∥A−1∥2∥b∥2. Assuming also that the iteration matrix M is non-negative, the Hook
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and Dingle bound (3.1) is now applied to obtain

∥xψij(νi(t))
j − xψij(ζij(t))

j ∥2 ≤
[ ∥∥∥∥∥∥

l(τij [ζij(t)])∑
k=s(τij [ζij(t)])

Mk

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
l(τij [νi(t)])∑

k=s(τij [νi(t)])

Mk

∥∥∥∥∥∥
2

]
∥A−1∥2∥b∥2.

(3.2)

Evaluating the bound (3.2) directly is very difficult in practice, primarily because
none of A−1, the τij map, nor the s(t) and l(t) functions are known a priori. Thus,
to obtain a practical version of (3.2), the two individual finite series are bounded by
a single infinite series

∥xψij(νi(t))
j − xψij(ζij(t))

j ∥2 ≤ 2∥A−1∥2∥b∥2

∞∑
k=s(τij [ζij(t)])

∥M∥k2 .

Recall that ∥M∥2 is equal to the largest singular value of M , denoted as σmax(M),
and that ∥A−1∥2 is equal to the reciprocal of the smallest singular value of A, denoted
as 1/σmin(A). Finally, introduce s̃i(t) as a lower bound on minr ̸=i s

(
τir[ζir(t)]

)
, so

that if the geometric series above converges (i.e., if ∥M∥2 < 1), then

∥xψij(νi(t))
j − xψij(ζij(t))

j ∥2 ≤ 2 ∥b∥2

σmin(A)
σmax(M)s̃i(t)

1 − σmax(M) .(3.3)

The lower bound s̃i(t) is obtained in the following manner: each computational
node r sends its current value of s̃r(t) along with the current solution approximation to
its neighbors. When computational node i receives a value of s̃r(t) from node r, that
value is stored by node i as s̃r. Additionally, every time node i computes a new solution
approximation, a separate counter s̃0

i is incremented. Once computational node i has
received a value from each neighbor r with Mir ̸= 0, the values for both s̃i(t) and s̃0

i

are set to min
(
s̃0
i , 1 + minr:Mir ̸=0 s̃r

)
. Then the process repeats, with computational

node i again collecting updated values for all relevant s̃r(t) before updating s̃i(t).
Note that since the value received from computational node j for s̃j(t) + 1 should
never be less than s̃i(t), the solution approximation xψij(νi(t))

j will only be accepted
by computational node i if (3.3) is satisfied and the new value of s̃j(t) is such that
s̃j(t) + 1 ≥ s̃i(t). This additional constraint provides some resilience for when the
value of s̃j(t) is itself corrupted. These two constraints form the rejection criterion for
the rejection variant of the asynchronous Jacobi method presented in Algorithm 1.
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Algorithm 1: Asynchronous Jacobi Rejection Variant (ASJ-R)
1 foreach node i=1,2,. . . ,N do
2 Initialize the algorithm with x0

i = 0, s̃i = 0, and s̃0
i = 0. Set κ = 0 and

S = {}.
3 foreach xj and s̃j received from node j do
4 if ∥xj − xκj ∥2 ≤ 2 ∥b∥2

σmin(A)
σmax(M)s̃i

1−σmax(M) and s̃j + 1 ≥ s̃i then
5 set xκj = xj
6 store s̃j in S
7 if S contains s̃r for all r such that Mir ̸= 0 then
8 set s̃i = min{s̃0

i , 1 + min S}
9 set s̃0

i = s̃i
10 set S = {}

11 set xκ+1
i =

∑N
r=1 Mirxκr + ci

12 set s̃0
i = s̃0

i + 1
13 communicate xκ+1

i and s̃i
14 set κ = κ+ 1

The development of stopping criteria for asynchronous methods remains an active
area of research. Hook and Dingle [10] have each node report to a root node when
a local stopping criterion is met. Each node then continues iterating until the root
node indicates that it has received reports from all nodes. Instead of designating a
root node, our approach has each node collect such reports in a decentralized fashion.
Each node i checks the following criterion after a new solution approximation xνi(t)

i

is computed:

∥Diidxνi(t)
i ∥∞ < ϵ

∥b∥2√
m
,(3.4)

where dxνi(t)
i = xνi(t)

i − xνi(t)−1
i and ϵ > 0 is a prescribed tolerance. If the bound

in (3.4) is satisfied, node i reports to all other nodes that it has locally converged
while continuing to iterate. If a successive solution approximation on node i fails to
satisfy (3.4), node i reports to all other nodes that it has no longer locally converged.
If a node j has locally converged and has received reports that all other nodes have
locally converged, it starts a “convergence duration” timer while continuing to iterate.
If node j either determines it has no longer locally converged or receives a report that
another node has no longer locally converged, the timer is set back to zero. Each node
continues to iterate until either (i) the specifying convergence duration is achieved or
(ii) a specified maximum number of iterations is reached. Ideally, the convergence
duration is chosen so that the information that a given node has no longer locally
converged has time to arrive at all other nodes before those other nodes stop iterating.
As such, the proper choice of convergence duration likely depends on parameters that
determine the speed at which information propagates across the nodes, e.g., network
hardware, sparsity pattern of A, etc.

4. Numerical Results. Having derived the modified asynchronous Jacobi in
Section 3, shown in Algorithm 1, we now numerically evaluate the proposed method.
We choose the benchmark problem to have an analytic solution so we can verify the
implementation of Algorithm 1. We then compare the method convergence against
that of the traditional asynchronous Jacobi method when the natural and malevolent
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data corruption described in Sections 2.1 and 2.2, respectively, are present. The
comparison includes results for both when the singular values in the path-length
rejection criterion (3.3) are “exact” (computed by each node before the iteration using
an eigensolver) and when the singular values are approximated with varying levels of
relative accuracy.

Each run is to a convergence tolerance of ϵ = 10−5 and performed on a single
36-core node of the Quartz supercomputer at the Livermore Computing Complex.
The “exact” singular values in the rejection criterion (3.3) are computed using the
bi-diagonal divide and conquer singular value decomposition algorithm in the Eigen
software library [8]. The Skywing software platform [17], which is designed to support
asynchronous algorithms, is used for execution and communication for all methods.
Each run leverages 16 Skywing agents to serve as the N = 16 computational nodes.
More on the motivation and implementation of Skywing can be found in [6] and on
GitHub at https://github.com/LLNL/Skywing, respectively.

To account for the stochastic nature of both asynchronous algorithms and the
corruption model, ensembles of 30 runs are performed for each study. Quantities such
as the ensemble wall-clock time and relative solution error are reported as a geometric
mean defined as

ā = exp
(

1
s

s∑
k=1

log
(
ak
))

,

where a is the quantity of interest and s = 30 corresponds to the ensemble of 30
runs. When a is time-dependent, such as when a represents the relative solution error
∥e(t)∥2/∥x∗∥2, the values of ā(t) are obtained using linear interpolants of ak(t). If
ak(t) contains an ieee 754 NaN or ±∞ value, as can happen in the relative solution
error with data corruption, the corresponding value of ā(t) is omitted.

The linear system (2.1) solved throughout this section is obtained from a finite
difference discretization of the following Poisson problem on the unit square

−
(
∂2u

∂x2 + ∂2u

∂y2

)
= f, x ∈ (0, 1), y ∈ (0, 1),

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0,
(4.1)

where the choice of f(x, y) = 2π2 sin(πx) sin(πy) results in an analytic solution
u(x, y) = sin(πx) sin(πy). The unit square is uniformly discretized into ℓ+ 1 × ℓ+ 1
squares of length h = 1/(ℓ+ 1). Such a discretization along with the Dirichlet bound-
ary condition in (4.1) leaves the values of u(xi, yj) to be determined at the square
vertices, where xi = (i+1)h and yj = (j+1)h for i = 0, . . . , ℓ−1 and j = 0, . . . , ℓ−1.
Let the k-th element of x ∈ Rℓ2 and b ∈ Rℓ2 in (2.1) be u(xi, yj) and f(xi, yj), respec-
tively, with i = (k mod ℓ) and j = kℓ. With the Laplace operator discretized across
the points (xi, yj) using centered finite difference, the matrix A in (2.1) is defined as
the following ℓ2 × ℓ2 block tridiagonal matrix

A =


L −I

−I L −I
. . . . . . . . .

−I L −I
−I L

 , where L =


4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1
−1 4

 ,
and I ∈ Rℓ×ℓ is the identity matrix. The linear system is evenly distributed across
the agents, i.e., m1 = . . . = m16.

https://github.com/LLNL/Skywing
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4.1. Convergence Duration. Recall that the stopping criteria discussed at the
end of Section 3 involves a user-specified convergence duration for both the traditional
asynchronous Jacobi (ASJ) and the modified asynchronous Jacobi (ASJ-R) methods.
As such, we first evaluate the impact of the convergence duration on the asynchronous
solving of the benchmark problem (4.1) in the absence of data corruption. The number
of squares chosen to discretize the unit square domain is selected so the linear system
results in m = 144, m = 400, and m = 784 unknowns, respectively. Figure 2 shows
the dependence of the convergence behavior on the convergence duration. For the

Fig. 2. Ensemble convergence of ASJ-R for various convergence durations on Poisson bench-
mark problem with m = 144 (left), m = 400 (center), and m = 784 (right). All ensemble runs
converge for all durations with the smallest system size; however, the larger system sizes indicate
the agents are unable to reach consensus on convergence for the smallest duration.

smallest system, m = 144, all runs converge for all three duration values both in the
sense that the agents reach consensus on convergence and that the resulting relative
solution error is below the target tolerance. As the system size increases to m = 400,
however, the shortest duration 0.01s results in around 30% of the ensemble runs
ending with the agents unable to reach consensus on convergence, even though the
relative solution error is near or below the target tolerance. With the largest system
size m = 784, the shortest duration results in slightly more than 30% of the ensemble
runs failing to reach consensus. Increasing the duration to 0.1s remedies the lack of
consensus for all three system sizes evaluated. While these results could motivate a
duration of 0.1s for evaluating the methods with corruption present, we choose the 1s
duration that is an order of magnitude longer to increase confidence that convergent
results are due to the algorithm being able to continue decreasing the error despite
corruption and not the iteration stopping at the right moment between corruption
occurrences.

4.2. Path Length Rejection Variant with Data Corruption. With the
convergence duration established, we now evaluate the resilience of the ASJ and ASJ-
R methods to both natural and malevolent corruption, as defined in Section 2.1 and
Section 2.2, respectively. To choose a system size, we consider the sizes of the power
flow benchmark systems mentioned in [18], which range from O(14) to O(300) un-
knowns. As such, all corruption studies discretize the unit square such that the linear
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system has m = 400 unknowns (ℓ = 20) and results in each agent communicating
with one or two neighbors in a line configuration. We present time for the corruption
studies as relative to the average time to convergence (≈ 3.5s) obtained in Section 4.1
for m = 400, i.e., a time to convergence of 1.0 indicates the method converged in the
same amount of time as it would without corruption present.

Natural Data Corruption. Our first investigation introduces bit flips to com-
municated data, similar to the studies performed by Anzt et al. in [2]. We aim to
assess the impact of the probability p of a bit flip on the convergence of both ASJ
and ASJ-R. As discussed in Section 2.1, corruption is applied at each iteration and
on every agent with probability p to all communicated data. The elements of xκi in
both ASJ and ASJ-R are stored as ieee 754 double floating point numbers, whereas
the values of the approximate shortest path length s̃i(t) in ASJ-R are stored as signed
integers. If a given double floating point value is chosen to be corrupted, a bit index
out of a given subset of its 64 bit representation is randomly chosen to be flipped. If
a given signed integer value is chosen to be corrupted, a bit index out of any of its 32
bit representation is randomly chosen to be flipped.

For our first study, we fix the probability of a bit flip in a given communi-
cated value to be p = 0.01. Following Anzt et al. [2], we investigate the following
double floating point subsets: the lower mantissa ie3([0−25]), the upper mantissa
ie3([26−51]), the exponent ie3([52−62]), and the sign bit ie3(63). We start with
the lower mantissa subset ie3([0−25]), which leads to floating point value corruption
ranging from 1/252 ≈ 10−16 to 1/227 ≈ 10−8 relative to the original values. Figure 3
shows the convergence behavior for ASJ and ASJ-R. For both ASJ and ASJ-R, all

Fig. 3. Ensemble convergence of ASJ and ASJ-R with bit flip probability p = 0.01, with double
floating point flips limited to the lower mantissa ie3([0−25]). Convergence is achieved in all ASJ
and ASJ-R runs, with times to solution comparable to the respective baseline (no corruption) values.

runs in the respective bit flip ensemble converge with times to solution that are ap-
proximately the same as those of the respective baseline (no corruption) ensemble.
The indifference of the ASJ convergence behavior to lower-mantissa flips is consistent
with Anzt et al. [2], where it was found that ASJ convergence behavior is not affected
by such bit flips until the relative residual norm is reduced to a very small value. The
indifference is due to the corruption caused by lower-mantissa flips being too small
to significantly affect the iteration evolution to the tolerance ϵ = 10−5, as relaxation
methods are inherently robust to small amounts of corruption.

To introduce larger corruption, we now investigate the sign bit ie3(63) subset,
which leads to floating point value corruption of 2 relative to the original values.
Figure 4 shows the convergence behavior for ASJ and ASJ-R. For ASJ, the effect of
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Fig. 4. Ensemble convergence of ASJ and ASJ-R with bit flip probability p = 0.01, with double
floating point flips limited to the sign bit ie3(63). Convergence is lost for all of the ASJ runs and
achieved for all ASJ-R runs, albeit with longer times to solution.

the more significant corruption from sign bit flips is evident as the solution error of all
ASJ runs decreases at first but then stagnates at a level well above the convergence
tolerance, consistent with the findings of [2]. The introduction of the rejection criterion
in ASJ-R, based on (3.3), restores convergence in all of the runs, albeit with longer
times to solution: 1.75x longer for about 80% of the runs and 6x longer for the slowest
run. This increased time to solution is explained starting with the presence of a
stagnation period for all ASJ-R runs with bit flips. Given that the ASJ-R error during
this stagnation period coincides with the stagnated ASJ error, it can be inferred that
the value of the approximate shortest path length s̃i(t) in (3.3) during the stagnation
period is not yet large enough for ASJ-R to reject the corruption. Figure 5 shows the
value of the approximate shortest path length for two agents. The values of s̃7(t) and

Fig. 5. Approximate shortest path length s̃i(t) used by ASJ-R algorithm with bit flip probability
p = 0.01, with double floating point flips limited to the sign bit ie3(63) (left: i = 7, right: i = 9).
The approximate shortest path length reaches 700 at around the time the stagnation period ends in
Figure 4 (denoted by dashed black line).

s̃9(t) grow roughly linearly with time until the end of the stagnation period around
t = 0.6. Around t = 0.65, the value of s̃i(t) is large enough (≈ 700) to start rejecting
data containing bit flips so that all 30 runs can resume converging. The values of s̃7(t)
and s̃9(t) continue to grow after t = 0.65, albeit at a slower rate due to the rejections.

To introduce corruption with a relative magnitude between the sign bit and lower
mantissa subsets, we now investigate the upper mantissa ie3([26−51]) subset, which
leads to floating point value corruption ranging from 1/226 ≈ 10−7 to 1/2 relative to
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the original values. In Figure 6, the corruption from upper-mantissa flips is still large

Fig. 6. Ensemble convergence of ASJ and ASJ-R with bit flip probability p = 0.01, with double
floating point flips limited to the upper mantissa ie3([26−51]). Convergence is lost for all of the
ASJ runs and achieved for all ASJ-R runs. The times to solution of the convergent runs are longer
than those of sign bit flips (Figure 4); however, the times to tolerance ϵ = 10−5 are about the same
as sign bit flips.

enough to prevent convergence in all ASJ runs, with the solution error stagnating at
a level above tolerance but lower than with sign bit flips, consistent with the smaller
magnitude value changes and with the findings of [2]. For ASJ-R, convergence is
achieved in all runs with a time to solution around 3x longer for all but one run
that took around 4.25x longer. There is a stagnation period followed by a return to
convergence behavior, as seen with sign bit flips, only the period lasts longer until
about t = 0.7. There is also a significant reduction in convergence rate starting
around t = 1.5 that is not addressed until around t = 2.75. Both of these differences
are explained by the observation that as s̃i(t) grows, there is always corruption of
a certain magnitude that will not be rejected. Thus, to reject the larger of the
magnitude corruption range that upper-mantissa bit flips can cause, s̃i(t) must reach a
larger value than with sign bit flips before convergence is restored from the stagnation
period. This is confirmed in Figure 7, where the value for s̃i(t) at t = 0.7 is about 750.
The degraded convergence from t = 1.5 until t = 2.75 is explained by the requirement
that s̃i(t) reach an even larger value before the smaller of the corruption range is
rejected. It is worth noting that Anzt et al. [2] also see a slower rate of convergence
for synchronous Jacobi with bit flips for likely the same reason.

The last subset to investigate is the exponent subset ie3([52−62]), which leads
to floating point value changes ranging from 1 to 21023 − 1 ≈ 10308 relative to the
original values. In Figure 8, the corruption from exponent flips is large enough that
all ASJ runs result in solution iterates containing non-finite (i.e., ieee 754 NaN) values
after just a few iterations, which is consistent with the findings of [2]. For ASJ-R,
convergence is achieved in most runs with times to solution similar to that of sign
bit flips: around 1.75x for almost all the runs with one run taking almost 3x. The
slowdown to 1.75x is explained as with the sign and upper-mantissa bit flips: s̃i(t)
must reach a certain value before larger magnitude corruption data is rejected enough
to restore convergence. The slowdown to 3x is explained as with the upper-mantissa
bit flips: after the initial stagnation period, s̃i(t) must continue to grow before smaller
magnitude corruption is also rejected. The runs that do not converge are, however,
not explained by prior observations for sign or upper-mantissa bit flips. In those
runs, the corruption that is not rejected during the stagnation period is large enough
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Fig. 7. Approximate shortest path length s̃i(t) used by ASJ-R algorithm with bit flip probability
p = 0.01, with double float point flips limited to the sign bit ie3([26−51]) (left: i = 7, right: i = 9).
The approximate shortest path length reaches 750 at around the time the stagnation period ends in
Figure 6 (denoted by dashed black line).

Fig. 8. Ensemble convergence of ASJ and ASJ-R with bit flip probability p = 0.01, with double
floating point flips limited to the exponent ie3([52−62]). Convergence is lost for all of the ASJ runs
and achieved for most of the ASJ-R runs, with the times to solution being mostly comparable to that
of sign bit flips (Figure 4)

to cause the evolution of the solution approximations to substantially deviate from
that predicted by the convergence theory upon which the rejection criterion (3.3) is
derived. The deviation is large enough that the updates required to drive the solution
approximation back towards the exact solution are now significantly larger than those
predicted by the convergence theory, causing the the rejection criterion to reject the
valid updates that would otherwise restore convergence.

With an understanding of how ASJ and ASJ-R perform on bit flips with prob-
ability p = 0.01 in subsets of the floating point double, we now investigate flipping
any of 64 bits with probability p values of 0.0025, 0.005, 0.01, 0.015, 0.02, and 0.04.
All of the runs in any ASJ ensemble corresponding to p > 0 quickly saw NaN values
in the solution approximations. Noting similar occurrence of NaN values in Figure 8,
one can infer that, even with bit flip probability as low as p = 0.0025, the ASJ runs
quickly experience the occurrence of one or more exponent bit flips. For ASJ-R, the
convergence behavior is shown in Figure 9. All but one of the runs for p ≤ 0.015
converged, with a large majority of runs still converging for p = 0.02 and p = 0.04.
As one might expect, increasing p results in the times to solution increasing from
around 2.25x to around 4x, with increasing variability as p increases. Such behavior
is explained by the prior observations: that increasing p results in increased likeli-
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Fig. 9. Ensemble convergence of ASJ-R with bit flip corruption probabilities ranging from p = 0
to p = 0.04, with double floating point flips in any of the 64 bits. Convergence is lost for all of the
ASJ runs and achieved for large majority of ASJ-R runs, with increasing p resulting in larger times
to solution and larger proportion of ensemble runs that fail to converge.

hood of bit flips causing corruption that is small enough to avoid rejection by the
increasing s̃i(t), yet large enough to (i) delay convergence until s̃i(t) increases enough
or (ii) cause the solution approximation to deviate substantially enough that the re-
jection criterion actually prevents convergence. All in all, the ASJ-R algorithm has a
very high probability of converging even when a large number of bit flips occur, e.g.,
p = 0.04 of communicated data are corrupted at each iteration.

Malevolent Data Corruption. Our second investigation introduces malevolent
manipulation of stored data, as defined in Section 2.2. As opposed to the investigation
with natural bit flips, here we limit the corruption to double floating point values
(i.e., no corruption of signed integer values for ASJ-R). We aim to assess the impact
of the recovery time ωr and mean manipulation offset δ on the convergence of both
ASJ and ASJ-R. As described in Section 2.2, while agent i is in a degraded state,
every element of xκi is manipulated by an additive offset sampled from a normal
distribution with mean δ and standard deviation 1

2δ. We introduce corruption to
agent i = 9 with a time-to-failure ωf = 2s so the first degraded state occurs before
the agents would otherwise start the convergence duration timers without corruption
(≈ 2.5s). We study recovery times ωr selected from 0.01s, 0.02s, 0.03s, 0.04s, and
0.05s that represent relative uptimes of 99.5%, 99%, 98.5%, 98%, and 97.5%. The
offset magnitudes δ are selected from 0.1, 0.2, 0.3, 0.4, and 0.5.

Figure 10 shows the convergence behavior of ASJ for time-to-failure ωf = 2s with
various ωr and fixed δ = 0.2 and with fixed ωr = 0.02s (99% uptime) and various
δ. All of the ASJ runs fail to converge for the recovery times and offset magnitudes
explored. The effect of the corruption is seen around t = 0.6 as the solution error is
small enough to begin the convergence duration but then rapidly increases due to the
corruption on agent 9 that quickly propagates to other agents. The error increases to
a peak that coincides with agent 9 returning to a normal state, after which the error
does decrease until the next rapid increase when agent 9 is again degraded. Increasing
either the recovery time ωr or the offset magnitude δ effectively shifts the overall error
evolution upward. While one might technically obtain convergence to the tolerance
ϵ = 10−5 by decreasing the convergence duration for the smallest ωr and δ, the results
in Figure 10 show that the ASJ method cannot reliably converge to a given tolerance
with malevolent corruption.

In contrast, all of the ASJ-R runs in Figure 11 converge for recovery time ωr =
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Fig. 10. Ensemble convergence of ASJ with malevolent corruption with time-to-failure ωf = 2s
(t ≈ 0.6 in normalized time), various recovery times ωr and various offset magnitudes δ (left:
various ωr values and δ = 0.2, right: ωr = 0.02s and various δ values). Convergence is not obtained
for any of the runs.

0.02s and various offset magnitudes δ. As with the ASJ results in Figure 10, the

Fig. 11. Ensemble convergence of ASJ-R with malevolent corruption with time-to-failure
ωf = 2s (t ≈ 0.6 in normalized time), recovery time ωr = 0.02s, and various offset magnitudes
δ. Convergence is achieved for all runs, with the time to solution being comparable to that of bit flip
(Figure 4) and exponent flip (Figure 8) corruption.

solution error does increase with the arrival of the first degraded state in agent 9;
however, the values of s̃i(t) on neighboring nodes have reached large enough values to
reject at least some of the corruption and limit the jump in error. By the time agent 9
enters the second degraded state, the values of s̃i(t) on neighboring nodes are such that
more corruption is rejected than during the first degraded state, resulting in an even
smaller jump in error than the first degraded state. Figure 12 shows similar progressive
limiting of solution error increases during degraded states for various recovery times ωr
with offset magnitude δ = 0.2. Note that some of the runs with longer recovery times
ωr ≥ 0.03s do either take longer to converge or fail to converge. Both behaviors are
explained by the longer recovery times leading to more corruption occurring during
the first degraded state that can be small enough in magnitude to avoid rejection
yet large enough to drive up the error on all agents. As we saw in Section 2.1,
corruption leads to either a stagnation period that is eventually corrected, leading to
delayed convergence, or to enough deviation from theory that the rejection criterion
rejects all further updates, leading to non-convergence. That said, the ASJ-R method
restores convergence in almost all runs with the time-to-failure ωf = 2s, at least for
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Fig. 12. Ensemble convergence of ASJ-R with malevolent corruption with time-to-failure ωf =
2s, various recovery times ωr, and offset magnitude δ = 0.2. Convergence is achieved for all runs
with ωr = 0.01s and ωr = 0.02, and almost all runs with larger ωr, resulting in times to solution
around 1.5x longer than without corruption.

the recovery times and offset magnitudes selected

4.3. Path-Length Rejection Considerations. Recall that the ASJ-R rejec-
tion criterion (3.3) is developed on theory that uses the exact shortest path length
si(t), which is typically not available to the agents and therefore replaced by an ap-
proximation s̃i(t). We saw in Section 4.2 that whether s̃i(t) in (3.3) is sufficiently
large to reject significant corruption at a given time t has a profound impact on the
convergence of ASJ-R, ranging from a temporary stagnation period that results in
a longer time-to-solution to persistent stagnation that prevents convergence all to-
gether. While a more rigorous study is warranted for future work, the values of s̃i(t)
as defined in Algorithm 1 are found to consistently underestimate the values of si(t)
for runs that were anecdotally selected. As such, one might both significantly reduce
the ASJ-R time-to-solution and increase the likelihood of convergence in the pres-
ence of corruption with a more accurate approximate shortest path length s̃i(t) that
reduces or eliminates the stagnation issues in Section 4.2.

Another consideration for the practical use of ASJ-R is the dependence of the
rejection criterion (3.3) on singular values. For the system sizes considered in Sec-
tion 4.2, the values of σmin(A) ≈ 0.0447 and σmax(M) ≈ 0.989 are relative cheap
to compute locally on each agent; however, one might want to apply ASJ-R to
large systems or to systems where agents do not have access to all rows of A. As
such, the malevolent corruption study with time-to-failure ωf = 2s, recovery time
ωr = 0.02s, and offset magnitude δ = 0.2 is repeated for ASJ-R but with either
σmin(A) or σmax(M) replaced in (3.3) by approximate values. Figure 13 shows the
convergence behavior of ASJ-R with σmin(A) replaced by the numerically computed
value scaled by one of 10−4, 10−2, 1, 102, or 104. All the runs converge when the
approximated singular value is smaller than the true value, where the smaller singular
value results in a looser bound in the rejection criterion. The looser bound means
s̃i(t) needs to attain larger values to reject the same data as when the true singular
value is used, explaining why the smaller approximated values result in longer times
to solution. Increasing the approximated singular values above the true value results
in a tighter bound, which likely offsets some of the underestimation in the shortest
path length. Overall this results in a shorter time to solution, almost that of ASJ-R
without corruption, from the additional rejection for 102 and in non-convergence too
much rejection for 104. While ASJ-R appears relatively robust to approximation of
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Fig. 13. Ensemble convergence for ASJ-R with malevolent data corruption using various scaled
values of σmin(A) in the rejection criterion (3.3). Convergence is attained in almost all runs for all
scaling factors except 104 scaling, with times to solution values improving for larger scaling factors.

Fig. 14. Ensemble convergence for ASJ-R with malevolent data corruption using various per-
turbed values of σmax(M) in the rejection criterion (3.3). Convergence is only attained for runs with
scaling factors 1 and 0.99, with optimal times to solution for 0.99 scaling factor.

σmin(A), Figure 14 shows the method is much less robust to σmax(M) being replaced
by the numerically computed value scaled by one of 0.98, 0.99, 1, 1.01, or 1.02. When
the scaling value 0.99 is used, the resulting smaller singular value results in a tighter
bound in the rejection criterion, leading to a time to solution equal to that of ASJ-
R without corruption. All the other scaling values, however, caused the rejection
criterion to be too restrictive or too passive to restore convergence. It is worth not-
ing that the results from Figure 13 and Figure 14 both support the hypothesis that
a better shortest path length approximation s̃i(t) will significantly improve ASJ-R
performance in the presence of corruption.

4.4. Sparsity Pattern. The Poisson benchmark problem (4.1) results in lin-
ear systems of a particular structure, i.e., the matrix A in (2.1) has only two off-
diagonal bands. To evaluate whether the resilience to corruption seen in the prior
sections extends beyond that discrete Poisson sparsity pattern, the Margulis-Gabber-
Galil expander graph is leveraged from the NetworkX software library [9] (see https:
//networkx.org). Specifically, the new linear system is defined by A = I − G/8 ,
where I ∈ R400×400 is the identity matrix, G ∈ R400×400 is the Margulis-Gabber-Galil
(MGG) expander graph with degree 8, and b ∈ R400 is a vector of ones. Figure 15
shows that the sparsity pattern of such A results in substantially more connectivity
between agents compared to that of the Poisson benchmark.

https://networkx.org
https://networkx.org
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Fig. 15. Sparsity pattern of matrix A in the Poisson benchmark (left) and in the new linear
system that leverages the MGG expander graph (right). The new linear system results in commu-
nicated data from each agent being sent to significantly more neighboring agents than the Poisson
benchmark, where communicated data is sent to at most two neighboring agents.

A convergence duration study is first conducted for the new linear system, as was
done in Section 4.1, to confirm that 1s should still be used. The resulting average
time to convergence (≈ 2.9s) is used to normalize the time in the new linear system.
Next, bit flips in any of the 64 bits of the floating point double are introduced to
communicated data with the same probabilities as those used for the Poisson bench-
mark. Figure 16 shows that the ASJ-R method retains similar resilience to the bit
flip corruption for the new linear system as shown for the Poisson benchmark. That

Fig. 16. Ensemble convergence of ASJ-R for the Poisson benchmark (left) and the MGG system
(right) with bit flip corruption probabilities ranging from p = 0 to p = 0.04, with double floating point
flips in any of the 64 bits. The convergence behavior is comparable, with increasing p for the MGG
system resulting in longer relative times to solution and a larger likelihood that a given run does not
converge.

said, the increased connectivity in the new linear system does seem to result in longer
relative times to solution, and a larger likelihood that a given ASJ-R run does not con-
verge, as the probability p of bit flips is increased. This behavior is likely due to how
a corrupted broadcasted solution approximation will be received by more neighbors
due to the increased connectivity. Malevolent manipulation of stored data on agent
i = 9 is also explored using the same time-to-failure ωf , recovery times ωr, and offset
magnitudes δ as used in the Poisson benchmark. Figure 17 shows that the ASJ-R
method retains resilience to the malevolent corruption for the new linear system, with
the relative times to solution being slightly faster than those for the Poisson bench-
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mark. Whereas the increased connectivity is a disadvantage for bit flip corruption,
the connectivity here provides a faster mechanism to correct the corruption both on
agent i = 9 and on any other agents that failed to reject the corrupted updates.

Fig. 17. Ensemble convergence of ASJ-R in the presence of malevolent corruption for the
Poisson benchmark (left column) and the MGG system (right column) with recovery time ωr = 0.02s
and various offset magnitudes δ (top row) and various recovery times ωr and offset magnitude
δ = 0.2 (bottom row). The convergence behavior is comparable for the two linear systems.

5. Conclusions. We introduced a fault-tolerant asynchronous Jacobi (ASJ) vari-
ant that leverages ASJ convergence theory by Hook and Dingle [10] to provide re-
silience to data corruption. The resulting variant ASJ method (ASJ-R) rejects so-
lution approximations from neighbor nodes if the distance between two successive
approximations violates an analytic bound. Because the analytic bound requires the
shortest path length, the ASJ-R method includes a shortest path length approxima-
tion. Following the work of Anzt et al. [2], we studied the resilience of ASJ and
ASJ-R to corruption in communicated data due to bit flips in various parts of the
ieee 754 floating point representation. While we observed that both ASJ and ASJ-R
reliably converge when the corruption is very small relative to the convergence toler-
ance, the ASJ-R method generally retains the ability to converge when bit flips occur
in locations that cause larger magnitude corruption. The convergence of the ASJ-R
exhibits a stagnation period, a degraded convergence rate, or both depending on the
properties of the corruption, resulting in times to solution around 1.5x to 6x longer
than without corruption. By individually studying particular locations for bit flips,
we are able to explain both convergence behaviors, as well as the lack of convergence,
by whether the shortest path length increases at a sufficient rate to reject the errors
that would otherwise delay or prevent convergence. Stagnation periods occur while
the shortest path length increases to a value needing to start rejecting the corruption.
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A degraded convergence rate occurs when the corruption magnitude is small enough
to avoid the rejection criterion (until the shortest path length is large enough) but
large enough to slow, but not stall, the convergence. Non-convergence occurs when
the corruption that avoids the rejection criterion is enough for the solution approxima-
tions to deviate substantially from that predicted by convergence theory, resulting in
the ASJ-R method rejecting the large updates that would otherwise drive the solution
approximations back towards the exact solution.

We also studied the resilience of ASJ and ASJ-R to the corruption of stored data,
where the stored values are perturbed by a uniformly distributed amount for periodic
windows of time. Whereas ASJ failed to converge in all the scenarios tested, ASJ-R
reliably restored convergence in a large majority of those scenarios. As with the bit
flip corruption, we observed that the convergence of ASJ-R depends on whether the
shortest path length approximation increased at a rate sufficient to prevent the stored
data corruption from driving the solution approximations too far from that predicted
by the convergence theory upon which the rejection criterion is derived. Given the
importance of the shortest path approximation and the ASJ-R rejection criterion
bound that it appears in, we studied the sensitivity of the method to approximations
in the values used for the two singular values in the bound. We found the results
to be more sensitive to the maximum singular value of the iteration matrix and less
sensitive to the minimum singular value of the linear system matrix, which is promising
as the latter is typically more difficult to obtain. Skewing of either singular values
in the direction that tightened the rejection criterion bound was found to more likely
maintain, or even improve, convergence behavior than skewing that loosened the
bound. We also verified that the ASJ-R performance extends to a second linear
system constructed using the Margulis-Gabber-Galil expander graph for a more dense
sparsity pattern.

While this work focused on a solving a linear system with a Jacobi method in
an HPC environment with an empirically determined convergence duration, the key
observations should have applicability to other environments and solvers. Edge com-
puting environments will very likely have greater communication latency than the
HPC environment used here; however, the objective for the rejection criterion remains
to reject the corruption that would cause the solution approximation to deviate too
far for the rejection criterion to be useful. While the greater communication latency
will result in the shortest path length increasing at a slower rate, the latency will
also slow the rate at which the corruption causes the solution approximations to de-
viate. Thus, one might expect the relative times to solution observed in this work
to have some relevance in edge environments. The particular convergence duration
empirically determined in this work, however, will likely not have relevance in edge
computing environments. Instead, one might empirically determine the appropriate
convergence duration for a given environment in the same manner as it was deter-
mined here. One might also a priori leverage information about a given environment
to determine a suitable convergence duration consisting of a safety factor multiplying
the combination of (i) the time for a node to produce an update after reporting local
convergence, (ii) the time to communicate that update to a neighbor, (iii) the time for
the neighbor to produce an update and determine it is no longer locally converged,
and (iv) the for the neighbor to report to the other nodes. Finally, the particular
rejection criterion derived here is indeed unique to the convergence theory for the
Jacobi method. That said, the approach of systematically evaluating a dynamic re-
jection bound by introducing corruption of various magnitudes to broadcasted data
can be leveraged by new asynchronous solvers as they are developed.
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