
Optimal and robust experiment design for quantum state tomography of star-topology register

Ran Liu,1, 2 Yanjun Hou,1, 2 Ze Wu,1, 2 Hui Zhou,3 Jiahui Chen,4, 5 Xi Chen,6 Zhaokai Li,1, 7, 2, ∗ and Xinhua Peng1, 7, 2, †
1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences,

University of Science and Technology of China, Hefei 230026, China
2CAS Center for Excellence in Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei 230026, China
3School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China

4Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
5Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada

6Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
7Hefei National Laboratory, Hefei 230088, China

(Dated: June 20, 2022)

While quantum state tomography plays a vital role in the verification and benchmarking of quantum systems,
it is an intractable task if the controllability and measurement of quantum registers are constrained. In this
paper, we study the quantum state tomography of star-topology registers, in which the individual addressability
of peripheral spins is infeasible. Based on the star-symmetry, we decompose the Hilbert space to alleviate
the complexity of tomography and design a compact strategy with minimum number of measurements. By
optimizing the parameterized quantum circuit for information transfer, the robustness against measurement
errors is also improved. Furthermore, we apply this method to a 10-spin star-topology register and demonstrate
its ability to characterize large-scale systems. Our results can help future investigations of quantum systems with
constrained ability of quantum control and measurement.

I. INTRODUCTION

The estimation of an unknown quantum state, known as
quantum state tomography (QST), is one of the fundamental
problem in quantum science and technology [1–4]. It has be-
come an indispensable tool in validating and benchmarking
quantum devices. Typically, standard QST requires measure-
ments to be carried out in different settings to observe differ-
ent parts of the density matrix. The switch between settings
is usually accomplished by applying unitary operation before
experimental measurements [5].
Most of the previous work consider the problem of QST

based on quantum systems with ability of universal quantum
control [6–8]. However, it is common in certain quantum sys-
tems that particles or qubits cannot be individually addressed,
which poses restrictions to universal quantumoperation and in-
dividual measurements. As an example, the Hong-Ou-Mandel
effect [9] in the field of quantum optics leads to the result that
the photons with the same characteristics enter the same mode
and become indistinguishable. In spin systems, this also hap-
pens when the quantum spins cannot be addressed either by
their positions or the magnet resonant frequencies, e.g., a large
number of trapped ions [10, 11] and the nuclear spins with
magnetic equivalence [12, 13].
To tackle the problem of QST for such quantum system

composed of indistinguishable particles, the permutationally
invariant quantum tomography scheme has been proposed and
developed [14–19]. Taking advantage of the permutationally
invariant symmetry, the quantum states can be efficiently char-
acterized and reconstructed, which is also scalable for multi-
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qubit systems.
Star-topology register (STR) has a specific network topol-

ogy that consists of a central spin uniformly interacting with
a set of peripheral spins, and these peripheral spins cannot
be individual addressed due to their magnetic equivalence.
The indistinguishability of permutationally invariant particles
means the ease of collectively manipulating large-scale quan-
tum system. Besides, STR can be used to efficiently prepare
large-scale entangled states, i.e. NOON state, due to its spe-
cific form of coupling. So STR has been widely used in
quantum sensing and quantum simulation, such as measuring
magnetic field [20], characterizing radio-frequency (RF) inho-
mogeneity [21], studying noise spectroscopy [22], thermody-
namics of many-body systems [23], algorithmic cooling [24]
and temporal ordered phase [25]. However, due to the specific
star-symmetry, the controllability and measurement in STR
are constrained [26], and whether the STR quantum states can
be fully determined by available measurement settings has not
been investigated yet.
In this work, we provide a novel scheme for quantum state

tomography of STR. By exploiting the star-symmetry, we use
an effective representation of quantum state in a decomposed
Hilbert space, and design the optimal schemewith theminimal
number of measurement settings. The parameterized quantum
circuits (PQCs) used for information transfer are then opti-
mized to improve the robustness against measurement errors.
As a demonstration, we numerically simulate the QST for a
10-spin STR and show the feasibility and scalability of our
method. The rest of the paper is structured as follows. In
Sec. II we first give a brief introduction about STR, including
its model, available measurements and decomposition of the
Hilbert space. Then we describe our scheme of QST to be
applied on STR in Sec. III. Sec. IV includes the error analysis
of our method and the optimization strategy to improve the
robustness. In Sec. V we move on to the numerical demon-
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FIG. 1: (a) A schematic diagram of the topology of STR and the resonant spectra of spins polarized in 𝑥/𝑦-axis. The frequencies and the
corresponding observables are labeled. (b) Decomposed Hilbert space of 4-qubit STR by Schur transform. We further add the isomorphic
subspaces together for a brief representation, for the information in isomorphic subspaces are the same.

stration of our scheme in a 10-spin example and then conclude
this work in Sec. VI.

II. STAR-TOPOLOGY REGISTER

A. Model

An STR consists of a central spin (A) uniformly coupled to
𝑁 − 1 identical peripheral spins (M) with the same interaction
strength 𝐽𝐴𝑀 , thus showing the so-called 𝑠𝑡𝑎𝑟-𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. A
schematic diagram of the topology of STR is shown in Fig.
1(a). In the following, we consider the Ising-type interations
between A and M with the strength of 𝐽𝐴𝑀 . The interactions
among the peripheral spins are ineffective in our case due to
magnetic equivalence symmetry, thus the system Hamiltonian
can be written as

𝐻0 = 𝐻𝐴 + 𝐻𝑀 + 𝐻𝐴𝑀 (1)

= 𝜋𝜔𝐴𝜎
𝐴
𝑧 + 𝜋𝜔𝑀𝜎𝑀

𝑧 + 𝜋

2
𝐽𝐴𝑀𝜎𝑀

𝑧 𝜎𝐴
𝑧 .

Here 𝜔𝐴 and 𝜔𝑀 are the Larmor frequencies of central and
peripheral spins caused by external magnetic field, which gen-
erally can be omitted in the rotating frame. 𝜎𝐴

𝜈 = 𝜎
𝐴,𝑁
𝜈 is

the Pauli matrix of central spin A and 𝜎𝑀
𝜈 =

∑𝑁−1
𝑖=1 𝜎

𝑀,𝑖
𝜈 is

the collective Pauli matrix of peripheral spins M, where 𝜎 ·,𝑖
𝜈

denotes the Pauli matrix of the 𝑖th spin with 𝜈 = {𝑥, 𝑦, 𝑧}. Here
we label the central spin as the 𝑁-th (i.e., the last) qubit for the
convenience of block diagonalization of the Hilbert space.
The additional control Hamiltonian arise from time-

dependent magnetic field applied on 𝑥-𝑦 plane. The central
spin can be selectively addressed due to its distinct character-
istics. Nevertheless, the peripheral spins are indistinguishable
from one another and can only be collectively manipulated.
Under the star-symmetry, the controllability of the system is
not universal, and the control Hamiltonian can be written as

𝐻control = 𝜋𝑢𝐴
𝑥 (𝑡)𝜎𝐴

𝑥 + 𝜋𝑢𝐴
𝑦 (𝑡)𝜎𝐴

𝑦 (2)

+ 𝜋𝑢𝑀𝑥 (𝑡)𝜎𝑀
𝑥 + 𝜋𝑢𝑀𝑦 (𝑡)𝜎𝑀

𝑦 ,

where
√︃
𝑢
𝐴/𝑀
𝑥 (𝑡)2 + 𝑢

𝐴/𝑀
𝑦 (𝑡)2 is the instantaneous Rabi fre-

quency determined by the strength of the control field.

B. Measurement settings for STR

The central spin in STR can be individually measured while
the peripheral ones are indistinguishable. Without loss of
generality, we consider the measurement setting for central
spin being its polarization on 𝑥-𝑦 plane as

𝑀𝐴,𝑥/𝑦 = 𝜎𝐴
𝑥/𝑦 . (3)
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To extract more information about the quantum state, we can
have the system evolve under the internal Hamiltonian 𝐻0 and
measure 𝑀𝐴,𝑥/𝑦 at different times. In this way, a sequential of
time domain signals can be obtained as

〈𝑀𝐴,𝑥/𝑦〉(𝑡) = Tr(𝑒−𝑖𝐻0𝑡 𝜌𝑒𝑖𝐻0𝑡𝜎𝐴
𝑥/𝑦), (4)

where 〈𝑀𝐴,𝑥 (𝑡)〉, 〈𝑀𝐴,𝑦 (𝑡)〉 can both be extracted from the
independent detection along 𝑥- and 𝑦-axis. After a Fourier
transform on the sampling time domain signals, i.e.,

𝑆(𝜔) =
∫ ∞

0
〈𝑀𝐴,𝑥/𝑦 (𝑡)〉(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡, (5)

we can obtain the frequency spectrum 𝑆(𝜔), which shows
𝑁 peaks at the frequencies of 𝜔1

𝐴
= − 𝑁−1

2 𝐽𝐴𝐵, 𝜔
2
𝐴

=

− 𝑁−3
2 𝐽𝐴𝐵, ..., 𝜔

𝑁
𝐴

= 𝑁−1
2 𝐽𝐴𝐵 . The corresponding observ-

ables for each peak can be written as

𝑂𝑖
𝐴 =

∑︁
𝑙

|𝑛, 𝑁 − 1 − 𝑛〉𝑙 〈𝑛, 𝑁 − 1 − 𝑛|𝑙 ⊗ 𝜎𝐴
𝑥/𝑦 , (6)

and equivalently the expectation of 𝑂𝑖
𝐴
can be extracted from

the signal on the corresponding peak. Here |𝑛, 𝑁 − 1 − 𝑛〉 is
the quantum state of 𝑁 − 1 peripheral spins with 𝑛 spins being
up and 𝑁 − 1 − 𝑛 spins being down with 𝑛 = 0, 1, 2...𝑁 − 1,
and 𝑙 runs over the indistinguishable permutations of them.
𝑆(𝜔) obtained from state polarized in 𝑥/𝑦-axis and the cor-
responding observables and frequencies are depicted in Fig.
1(a).
Similarly, the collective observables for the peripheral qubits

can be obtained as

𝑂1𝐵 = 𝜎𝑀
𝑥/𝑦 ⊗ |0〉〈0|, (7)

𝑂2𝐵 = 𝜎𝑀
𝑥/𝑦 ⊗ |1〉〈1|.

The corresponding frequency spectrum is also depicted in Fig.
1(a). As we can see, the degenerate levels in 𝐻0 lead to the
specific N-peak spectrum of central spin and two-peak spec-
trum of peripheral ones, which also means that the individual
detection of peripheral spins becomes infeasible. The set of
observables

{𝑂1,2,...𝑁
𝐴

, 𝑂
1,2
𝐵

} (8)

forms the initial measurement settings for STR.

C. Decomposition of the Hilbert space

Due to the 𝑁 − 1 peripheral spins in STR can only be ma-
nipulated collectively, the available unitary controls are thus
constrained. These unitary operators can be represented in
the decomposed Hilbert space based on Lie algebra technique.
The permutationally invariant Lie subalgebra of SU(2𝑁−1) can
be defined as

LPI = {𝑎 |𝑎 ∈ SU(2𝑁−1), such that ∀Π ∈ 𝑆𝑁−1,Π𝑎Π = 𝑎}.(9)

Here 𝑆𝑁−1 is the symmetric group of all permutations of the
𝑁 − 1 peripheral spins, and Π is one of its elements. For the
Hilbert space of peripheral spins written as (C2)⊗𝑁−1,LPI can
be fully reduced under the following decomposition

(C2)⊗𝑁−1 �
d𝑁 /2e⊕
𝑖=1

𝑁𝑖⊕
𝑗=1

𝑉𝑖, 𝑗 . (10)

Here

𝑁𝑖 =
𝑁 + 2 − 2𝑖
𝑁 + 1 − 𝑖

𝐶𝑖−1
𝑁−1, (11)

with𝐶𝑖−1
𝑁−1 as the binomial number. Each𝑉𝑖, 𝑗 is an irreducible

subspace of (C2)⊗𝑁−1 for LPI with the dimensions of 2𝑖 when
𝑁 is even and 2𝑖 − 1 when 𝑁 is odd, and 𝑁𝑖 is the number of
isomorphic irreducible subspaces [27]. The largest subspace is
known as Dicke subspace, which associated with total angular
momentum (𝑁 − 1)/2.
The basis transformation of the decomposition, defined as

𝑈tr, is known as the Schur transform [28]. Similarly, the
evolved quantum states with star-symmetry possess the same
symmetry and can be represented in the same decomposed
Hilbert space. This block-decomposition represents a natural
way to treat permutationally invariant states [15–18].
Considering the whole Hilbert space of STR, it can then

be block diagonalized by applying 𝑈tr ⊗ 12, where the left
distribution law over direct sum [29], i.e.,

(
⊕
𝑖, 𝑗

𝑉𝑖, 𝑗 )
⊗

𝑉𝐶 =
⊕
𝑖, 𝑗

(𝑉𝑖, 𝑗
⊗

𝑉𝐶 ) ≡
⊕
𝑖, 𝑗

𝑉𝑖, 𝑗 (12)

is used. Correspondingly, the quantum states can be written
as

𝜌 =
⊕
𝑖, 𝑗

𝜚𝑖, 𝑗 =
⊕
𝑖, 𝑗

𝜆𝑖, 𝑗 𝜌𝑖, 𝑗 , (13)

where 𝜆𝑖, 𝑗 = Tr(𝜚𝑖, 𝑗 ). Due to 𝑉𝑖, 𝑗 and 𝑉𝑖, 𝑗′ are isomorphic
and contain the same information of quantum state, so we have
𝜆𝑖,1 = 𝜆𝑖,2 = ... ≡ 𝜆𝑖,:.
A schematic diagram of the decomposed Hilbert space of

4-qubit STR is shown in Fig. 1(b). We also give a brief repre-
sentation 𝜌br for such quantum states by adding the isomorphic
subspaces together, as it is convenient for exhibiting quantum
states when 𝑁 is large.

III. QUANTUM STATE TOMOGRAPHY OF STR

A QST problem can be converted into a multiparameter
estimation one. Let {B𝑚} denote a set of Hermitian operators
satisfying Tr(B𝑚B𝑛) = 0 when 𝑚 ≠ 𝑛. We suppose that the
quantum state to be constructed can be completely represented
by {B𝑚}:

𝜌 =
1

2𝑁
+
∑︁
𝑚

𝑐𝑚B𝑚, (14)
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FIG. 2: Flowchart for optimizing readout operations for QST. Each of the gray boxes contains a PQC for generating readout operation with
parameters to be optimized. Each row of Θ̂, i.e., Θ̂1,2,3...𝑁𝑢 ,:, corresponds to single-qubit rotation parameters (boxed in red dashed line) in one
PQC. The cost function 𝑓 (Θ̂) can be calculated from 𝑁𝑢 readouts. To minimize 𝑓 (Θ̂), Θ̂ can be updated until converged.

where 1 is the identity matrix and 𝑐𝑚 = Tr(𝜌B𝑚)/Tr(B𝑚B𝑚).
For the general quantum states, due to the constrains that 𝜌 is
Hermitian with unit trace, the number of degrees of freedom
is 4𝑁 − 1.
In a tomographic experiment, multiple copies of the state

to be constructed are prepared and measured under a specific
measurement setting, which corresponds to a set of exper-
imental observables {𝑂𝑖}𝑁𝑜

𝑖=1. Typically, the data collected
from a single setting is generally not informationally complete
to reconstruct 𝜌, hence the results from multiple settings are
needed. To implement the switch between different settings,
a set of unitary readout operations {𝑈 𝑗 }𝑁𝑢

𝑗=1 can be applied
before measurements; that is, Tr(𝑈 𝑗 𝜌𝑈

†
𝑗
𝑂𝑖) = Tr(𝜌𝑈†

𝑗
𝑂𝑖𝑈 𝑗 )

[30]. So the available sets of observables can be noted as
{𝑂̃𝑘 = 𝑈

†
𝑗
𝑂𝑖𝑈 𝑗 }𝑁𝑜 ;𝑁𝑢

𝑖=1; 𝑗=1. The measurement result 𝑜𝑘 of the 𝑘th
measurement 𝑂̃𝑘 is

𝑜𝑘 = Tr(𝜌𝑂̃𝑘 ) =
∑︁
𝑚

𝑐𝑚Tr(𝑈†
𝑗
𝑂𝑖𝑈 𝑗B𝑚), (15)

and a system of linear equations can be obtained,

®𝑜 = F̂ · ®𝑐. (16)

Here ®𝑜 = (𝑜1, 𝑜2, ...𝑜𝑘 , ...)T, and F̂ is the transfer matrix with
the element F̂𝑘𝑚 = Tr(𝑂̃𝑘B𝑚). By solving Eq. (16), the
solution, i.e., ®𝑐 = (𝑐1, 𝑐2, ...𝑐𝑚, ...)T, is unique (or the state
can be fully determined) if and only if the rank of F̂ equals to
the dimension of ®𝑐. So in the general case, the minimum of
𝑁𝑢 to fully determine 𝜌 is d 4

𝑁−1
𝑁𝑜

e.
We then move to the case of STR. Due to the star-symmetry,

the exponential scaling of unknown parameters can be effec-
tively alleviated. In the following, we only consider the case
that the evolved quantum states can always be represented in
d𝑁/2e different irreducible subspaces as mentioned in Sec.
II C and the trace is preserved in each subspace. The sim-
plest case is the unitary evolution under Hamiltonian with

star-symmetry. So the number of degrees of freedom for STR
quantum states is{ ∑𝑁 /2

𝑖=1 (4𝑖)2 − 𝑁
2 , when N is even∑(𝑁+1)/2

𝑖=1 (4𝑖 − 2)2 − 𝑁+1
2 , when N is odd

(17)

The result for both cases can be expressed as

2𝑁 (𝑁 + 1) (𝑁 + 2)
3

− d𝑁
2
e, (18)

where d 𝑁2 e comes from the trace-preserving conditions in
different subspaces, i.e.,{

Tr(𝜚𝑖,:) = 𝜆𝑖,: |𝑖 = 1, 2, ...d𝑁/2e
}
. (19)

Due to the identity matrix in each subspace commutes with
readout operations 𝑈 and observables 𝑂, the trace in each
subspace thus have no effect on the measurement results. Here
we take the trace in each subspace, as denoted in Eq. (19), as a
prior information, so another d𝑁/2e equations can be obtained
and absorbed into Eq. (16).
According to Sec. II B, the number of elements in {𝑂𝑖}

(i.e., 𝑁𝑜) for a single measurement setting is 2𝑁 + 4. As a
result, the minimum of 𝑁𝑢 for quantum state tomography of
STR is

𝑁min𝑢 =

⌈ 2𝑁 (𝑁+1) (𝑁+2)
3 − d 𝑁2 e
2𝑁 + 4

⌉
∼ 𝑁2. (20)

Typically, QST requires a set of readout operations {𝑈 𝑗 }𝑁𝑢

𝑗=1
to be selectedwith 𝑁𝑢 as small as possible and F̂ is column full
rank. Previous protocols typically considered it as a set cover
problem——𝜌 can be fully determined iff {𝑂̃𝑘 } can cover
{B𝑖}. To solve this NP-hard problem, greedy strategy [31] and
integer programming [5] have been investigated. Both of them
are promising to fully reconstruct 𝜌 with the minimum number
of 𝑈, while how the choice of 𝑈 influences the precision
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of tomography has not been considered. In the following
section, we propose a novel scheme for QST, in which we use
the minimal readout operations generated by parameterized
quantum circuits (PQCs) and then optimize them to improve
the robustness against measurement errors.

IV. IMPROVE THE ROBUSTNESS OF QST BY
OPTIMIZING READOUT OPERATIONS

Intuitively, readout operations for QST are supposed to
transfer tomographically complete information into available
measurement settings, and they can be achieved by suitably
chosen random PQCs [32]. What’s more, PQCs are flexible
to be further optimized for specific demands by tuning the
parameters. Here, we generate informationally complete read-
out operations by random PQCs and then optimize them to
improve the robustness against measurement errors.
The structure of PQCs is illustrated in Fig. 2, where two

types of quantum operations, i.e., single-qubit rotations and
entangling gates, are included. A single-qubit rotation can
be determined by 3 independent parameters, which is de-
noted as 𝑅(𝛼, 𝛽, 𝛾) ≡ 𝑅𝑥 (𝛼)𝑅𝑦 (𝛽)𝑅𝑥 (𝛾) with 𝑅𝜈 (𝑥) =

exp(−𝑖𝑥𝜎𝜈/2). Due to the peripheral spins can only be ma-
nipulated collectively, a layer of single-qubit rotation involves
6 rotation parameters as boxed by the red dashed lines. An en-
tangling layer is realized by the free evolution under the system
Hamiltonian with the interval 𝜏 = 1/2𝐽𝐴𝑀 . Here we denote a
𝑛−layer PQC as a one with the first layer being a single-qubit
rotation while the others consisting of an entangling gate and
a single-qubit rotation. Enough PQCs with sufficiently long
sequence of these layers can produce the column full rank
transfer matrix F̂ . When the structure of PQCs is specified, F̂
can be determined by the parameter matrix Θ̂ of PQCs, where
each row of Θ̂, i.e., Θ̂1,2,3...𝑁𝑢 ,:, corresponds to parameters in
one PQC.
With such transfer matrix, the quantum state can be recon-

structed by calculating the vector of variables ®𝑐,

®𝑐 = F̂ −1 · ®𝑜. (21)

This reconstruction is computationally simple and known as
linear inversion [33]. When the matrix F̂ is not a square
one, or it’s singular, F̂ −1 can be replaced by Moore-Penrose
pseudoinverse [34]. For a variable, e.g., 𝑐𝑚, in ®𝑐, we have

𝑐𝑚 =

𝑁𝑜𝑁𝑢+d𝑁 /2e∑︁
𝑘=1

(F̂ −1)𝑚𝑘𝑜𝑘 , (22)

from which the error of experimental measurement on 𝑜𝑘 is
transferred into 𝑐𝑚. According to the error propagation for-
mula, we have

Var(𝑐𝑚) =

𝑁𝑜𝑁𝑢+d𝑁 /2e∑︁
𝑘=1

����𝜕𝑐𝑚𝜕𝑜𝑘

����2 × Var(𝑜𝑘 )
=

𝑁𝑜𝑁𝑢+d𝑁 /2e∑︁
𝑘=1

|F −1
𝑚𝑘 |

2 × Var(𝑜𝑘 ), (23)

where Var(𝑐𝑚) and Var(𝑜𝑘 ) are the variances of 𝑐𝑚 and 𝑜𝑘 ,
respectively.
Tominimise the variance of 𝑐𝑚 and improve the precision of

QST, the parameters in PQCs for generating readout operations
can be optimized. The cost function can be defined as the
weighted sum of Var(𝑐𝑚), i.e.

𝑓 (Θ̂) =
∑︁
𝑚

𝑤𝑚Var(𝑐𝑚) (24)

=
∑︁
𝑚

𝑤𝑚

𝑁𝑜𝑁𝑢+d𝑁 /2e∑︁
𝑘=1

| [F̂ −1 (Θ̂)]𝑚𝑘 |2 × Var(𝑜𝑘 ).

Here 𝑤𝑚 is the weight factor and can be defined according to
specific demand. Combiningwith specific optimizing strategy,
Θ̂ can be updated to minimise 𝑓 (Θ̂) until converged as shown
in Fig. 2.

V. EXAMPLE OF 10-QUBIT STR

The example of 10-qubit STR in this work is trimethyl phos-
phite (TMP) molecule consisting of a single 31P nucleus and
nine identical 1H nuclei. Due to its large spin-cluster and
clear spectra in NMR experiment, 10-qubit STR has been
widely applied into the investigation of quantum sensing [20],
measuring translation diffusion constant, mapping RF inho-
mogeneity [21], noise spectroscopy [22] and thermodynamics
of many-body systems [23]. In the following, we take the 10-
qubit STR as an example and give the detailed procedures for
implementing our QST scheme.

1. Choice of basis for STR quantum states.
According to the decomposition of Hilbert space men-
tioned in Eq. (12), we choose the set of basis for sub-
spaces when 𝑖 = 𝑝 as

⊕𝑁𝑝

𝑗=1 𝐵
𝑝
𝑞1 ,𝑞2 , where 𝐵

𝑝
𝑞1 ,𝑞2 is

|𝑞1〉𝑝 〈𝑞1 |𝑝 , 1 ≤ 𝑞1 = 𝑞2 ≤ dim(𝐵𝑝)
|𝑞1〉𝑝 〈𝑞2 |𝑝 + 𝐻.𝑐., 1 ≤ 𝑞1 < 𝑞2 ≤ dim(𝐵𝑝)
i|𝑞1〉𝑝 〈𝑞2 |𝑝 + 𝐻.𝑐., 1 ≤ 𝑞1 < 𝑞2 ≤ dim(𝐵𝑝)

(25)

Here 𝑖 = 1, 2, ...d𝑁/2e labels the irreducible subspace
with different dimensions, 𝑗 = 1, 2, ...𝑁𝑖 labels the iso-
morphic subspace, |𝑞1〉𝑝 , |𝑞2〉𝑝 are the computational
bases of the 𝑝-th subspace and dim(𝐵𝑝) denotes the di-
mension of 𝐵𝑝 . Further, we have the set of basis for the
whole Hilbert space as

B𝑚 = B 𝑝
𝑞1 ,𝑞2

≡
𝛿𝑖 𝑝

𝑁𝑝

d𝑁 /2e⊕
𝑖=1

𝑁𝑖⊕
𝑗=1

𝐵
𝑝
𝑞1 ,𝑞2 , (26)

where 𝛿𝑖 𝑝 denotes the Kronecker delta symbol. Apart
from utilizing the decomposed Hilbert space, we also
avoid introducing extra degrees of freedom caused by
the repetitive information in isomorphic spaces under
this basis, thus providing a compact representation of
STR quantum states.
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FIG. 3: (a) The process of minimizing the cost function 𝑓 (Θ̂) to improve the robustness against measurement errors. Statistical result over
10 runs of numerical optimization. The red solid line is the average while the dashed area is the standard deviation. (b) Real part of the brief
representation of the 10-qubit density matrix 𝜌 to be determined. (c) Diagonal elements of reconstructed density matrix 𝜌. The green bars are
the ideal values of 𝜌br (𝑖, 𝑖), while the error bars contain the average and standard deviation of simulated reconstruction over 100 repetitions.
Here the red and blue error bars correspond to results before and after the optimization of PQCs, respectively

2. Generation of readout operations. For 10-qubit STR,
the number of degrees of freedom can be obtained from
Eq. (18) as 875. Consequently, according to Eq. (20)
we have the minimal number of readout operations re-
quired to fully determine the state is 37. These readout
operations generated by 3-layer PQCs, as shown in Fig.
2, are enough to generate full rank transfer matrix F̂ (Θ̂).

3. Optimization of PQCs. The robustness against noise
can be quantified by the cost function 𝑓 (Θ̂) asmentioned
in Eq. (24). Here the variances of different experimental
measurements Var(𝑜𝑘 ) are all taken the same value as
Var(𝑜), and the weighted factors 𝑤𝑚 are all set as 1
for simplicity. 𝑓 (Θ̂) can then be solely determined by
F̂ (Θ̂). The sequential quadratic programming method
is adopted for optimization. At each iteration, the search
direction is the solution of a quadratic programming
subproblem [35], and the iteration is stopped when its
number reaches 30. The optimization is repeated for 10
times with randomly initialized PQCs and the statistical
results over the 10 runs are depicted in Fig. 3(b), where
the average of 𝑓 (Θ̂) decreases from 5.21 × 104Var(𝑜)
to 1.20 × 104Var(𝑜). So the total variance transferred
to ®𝑐 is significantly reduced after optimization. The
optimization procedure is independent of the form of
quantum state, so the PQCs can be tuned appropriately

ahead of experimental measurements and then directly
applied to the tomography of different quantum states.

4. Reconstruction of the quantum state. Here we give a
demonstration with the quantum state to be constructed
𝜌 as a mixture of ’many, some+some, many,’ or MSSM
states 𝜌MSSM in [20],

𝜌MSSM =
∑

𝑙 ( |𝑀, 𝑆〉𝑙 |0〉 + |𝑆, 𝑀〉𝑙 |1〉)
⊗ (〈𝑀, 𝑆 |𝑙 〈0| + 〈𝑆, 𝑀 |𝑙 〈1|). (27)

This state was used to measure magnetic field and can
beat the standard quantum limit. In Fig. 3(b), we exhibit
the 210-dimensional density matrix by using the brief
representation 𝜌br mentioned in II C, where the real part
of 𝜌br is depicted. By applying the transfer matrix to
experimental measurements as given by Eq. (21) The
quantum state can be reconstructed.

5. Error analysis. Imperfect experimental measurements
can lead to deviations from the ideal results. We numer-
ically simulate the deviations by introducing artificial
fluctuations on each 𝑜𝑘 with the standard deviation as
Var(𝑜) = 3×10−4. Due to the ranges of the amplitude of
each observable 𝑜𝑘 are different, we define the relative
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TABLE I: Precision improvement of tomography for different quantum states before and after the optimization of PQCs. These states have
been widely investigated in quantum information and quantum metrology [36, 37].

Quantum State Number of
readout

𝑓 (Θ̂)/Var(𝑜𝑘 ) Infidelity (%) Distance (×10−2)
Random Optimized Random Optimized Random Optimized

Normal STR states

𝑆

37 5.11 × 104 1.08 × 104
2.5±0.7 1.5±0.3 6.4±1 3±0.3

𝐶𝑙 2.6±0.7 1.6±0.3 6.4±1 3±0.3
𝑄1 2.4±0.7 1.6±0.3 6.3±1 2.9±0.3
𝑄2 2.6±0.8 1.6±0.3 6.3±1 3±0.3

States in the Dicke subspace
Coherent

17 1.7×104 5.0×103
1.2±0.4 0.73±0.1 2.2±0.6 1.3±0.2

GHZ 1.2±0.2 0.71±0.2 2.1±0.4 1.2±0.2
Squeezed 1.3±0.3 0.71±0.1 2.3±0.5 1.2±0.2

standard deviation for each observable as

rsd(𝑜𝑘 ) ≡
sd(𝑜𝑘 )
|𝑜𝑘 |

, (28)

where sd(·) is the standard deviation of the 𝑘th observ-
able and the average is over 𝑁𝑢 different readout opera-
tions, respectively. Here, the relative standard deviations
corresponding to the 12 observables of the 10-spin STR
are

• central spin:
18.0%, 22.1%, 22.1%, 16.4%, 1.1%
1.4%, 17.0%, 21.5%, 22.1%, 16.8%

• peripheral spins:
1.1%, 1.2%.

According to Eq. (21), unknown quantum state can be
solved from the simulated measurements. We repeat
this process 100 times and calculate the average and
standard deviation of estimated 𝑐𝑚, and the result of di-
agonal elements is shown in Fig. 3(c). The green bars
are the ideal values of 𝑐𝑚, while the error bars contain
the average and standard deviation of simulated recon-
struction. Here the red and blue error bars correspond
to results before and after the optimization of PQCs,
respectively. To further quantify the precision, we cal-
culate the infidelity and distance between reconstructed
states and the ideal one. The average of infidelity over
the 100 repetitions decrease from 2.4% to 1.6% after
the optimization. Here the infidelity between the mixed
states 𝜌1 and 𝜌2 is defined as

1 − 𝐹 (𝜌1, 𝜌2) ≡ 1 −
(
𝑇𝑟

√︃√
𝜌1𝜌2

√
𝜌1

)2
. (29)

We also use the distance obtained from the Frobenius
norm to quantify the improvement, which is defined as

𝐷 (𝜌1, 𝜌2) ≡
√︁
Tr[(𝜌1 − 𝜌2) (𝜌1 − 𝜌2)T] . (30)

The distance over the 100 repetitions are 0.063 and 0.029
before and after the optimization, respectively.

To further demonstrate the broad applicability of our
scheme, we also apply it to some other typical 10-qubit STR

states that have been widely investigated in quantum infor-
mation and quantum metrology. For example, the infidelity
of mixed states generated by standard strategy (𝑆), classical
strategy (𝐶𝑙), quantum strategy 1 (𝑄1) and quantum strategy
2 (𝑄2) in [36] decrease from around 2.6% to 1.6% after op-
timization, and the distance decrease from around 0.064 to
0.030. Here, the state generated with (𝑄1) is the same as the
one in [20].
Apart from improving the robustness against noise, our

method is flexible to be adjusted to minimize the experimental
effort by combining with prior information of unknown quan-
tum states. For states in the Dicke subspace, the number of
degrees of freedom becomes (4𝑁2 − 1) = 399. As a conse-
quence, the minimal number of readout operations needed can
be reduced to d(4𝑁2−1)/(2𝑁+4)e = 17when 𝑁 = 10. By op-
timizing these operations initially generated by random PQCs,
𝑓 (Θ̂) is decreased from 1.7 × 104Var(𝑜) to 5.0 × 103Var(𝑜).
We give the demonstration with coherent spin state, GHZ state
and spin-squeezed state in [37]. Under the same standard de-
viation on 𝑜𝑘 , the average of infidelity over the 100 repetitions
decrease from 1.2% to 0.72% after the optimization, while the
distance decreases from 0.072 to 0.012. The detailed informa-
tion is shown in Table I.

VI. OTHER STRATEGIES FOR IMPROVING THE
PRECISION OF TOMOGRAPHY

Apart from optimizing the parameters of PQCs to improve
the robustness against the measurement errors, we can also
change the structure or the number of PQCs for improving the
precision of tomography.
Specifically, in the example of 10-spin STR, 37 readout

operations generated by 3-layer PQCs are employed to produce
the column full rank transfer matrix F̂ . While if part of
them are replaced by PQCs with simpler structure, i.e., 2-layer
or 1-layer PQCs, F̂ can still be column full rank. Here we
only consider the combination of 2-layer and 3-layer PQCs.
When the number of 2-layer PQCs is no more than 12, F̂
can be column full rank. The statistical results of the cost
function 𝑓 (Θ̂) under different combination of these two types
are shown in Fig. 4(a). For each combination, the average and
the standard deviation over 100 sets of rand PQCs is depicted.
𝑓 (Θ̂) shows a growing tendency as the structure of PQCs
becomes simple. While the simpler PQC typically means
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FIG. 4: The average and standard deviation of cost function 𝑓 (Θ̂) versus (a) the number of 2-layer PQCs in 37 readout operations and (b)
additional readout operations apart from the 37 ones. The statistical results is based on 100 sets of readout operations generated by random
PQCs.

fewer quantumoperations and accumulated control errors, thus
corresponding to a smaller Var(𝑜𝑘 ). So we can deal with
the tradeoff according to practical experimental conditions to
reach the optimal precision.
Besides, though the minimum number of readout opera-

tions required to reconstruct STR quantum states is given by
Eq. (20), additional ones can be introduced to improve the pre-
cision. The average and the standard deviation of 𝑓 (Θ) over
100 sets of random PQCs are shown in Fig. 4(b), where the
𝑥-axis labels the additional PQCs in each set. Consequently,
additional experimental measurements can be employed when
their time consumption is acceptable.

VII. CONCLUSION

We demonstrated that the full quantum state tomography
of star-topology register is feasible even though the control-
lability and measurement of peripheral spins are constrained.
Utilizing the star-symmetry of STR, we design a compact strat-
egy with the minimum number of measurements, which scales
polynomially with the size of system. We further quantify the
precision of tomography caused in noisy experimental mea-
surements. By optimizing the PQCs for transferring infor-
mation, the robustness against noise can be improved. The
presented 10-spin example confirmed the feasibility and scal-

ability of our scheme. In this case, STR quantum state can be
fully determined with no more than 37 readout operations and
more than three quarters decrease of total variance.
Our approach is a promising tool for the tomography of other

quantum system with constrained controllability and measure-
ments. Besides, due to the readout operations generated by
PQCs are flexible to be adjusted, they can be further opti-
mized according to the specific experimental conditions, such
as measurement noise [38], control errors [39, 40] and relax-
ation effect [41]. Our work also has potential applications in
multiparameter quantum metrology [42], quantum enhanced
imaging [43, 44] and various quantum-process-tomography
experiments [45–48].
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