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Abstract

We define laziness to describe a large suppression of variational parameter updates
for neural networks, classical or quantum. In the quantum case, the suppression is
exponential in the number of qubits for randomized variational quantum circuits.
We discuss the difference between laziness and barren plateau in quantum machine
learning created by quantum physicists in [1] for the flatness of the loss function
landscape during gradient descent. We address a novel theoretical understanding of
those two phenomena in light of the theory of neural tangent kernels. For noiseless
quantum circuits, without the measurement noise, the loss function landscape is
complicated in the overparametrized regime with a large number of trainable varia-
tional angles. Instead, around a random starting point in optimization, there are
large numbers of local minima that are good enough and could minimize the mean
square loss function, where we still have quantum laziness, but we do not have
barren plateaus. However, the complicated landscape is not visible within a limited
number of iterations, and low precision in quantum control and quantum sensing.
Moreover, we look at the effect of noises during optimization by assuming intuitive
noise models, and show that variational quantum algorithms are noise-resilient
in the overparametrization regime. Our work precisely reformulates the quantum
barren plateau statement towards a precision statement and justifies the statement
in certain noise models, injects new hope toward near-term variational quantum
algorithms, and provides theoretical connections toward classical machine learn-
ing. Our paper provides conceptual perspectives about quantum barren plateaus,
together with discussions about the gradient descent dynamics in [2].

1 Barren plateau, laziness and noise

Variational quantum circuits [3–8] can be used to optimize cost function measured on quantum
computers. Specifically, these cost functions can be used for machine learning tasks [9–16]. In this
case variational quantum circuits are addressed as quantum neural networks.
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However, a generically designed variational quantum ansatz may not be applicable to real problems.
Specifically, a problem so-called barren plateau has been widely discussed in the variational quantum
algorithm community, which is believed to be one of the primary problems of quantum machine
learning [1]. The argument is given as follows. A typical gradient descent algorithm will look like

θ`(t+ 1)− θ`(t) ≡ δθµ = −η ∂L
∂θ`

, (1)

where θµ is the variational angle, and t is referring the time step of gradient descent dynamics. η is the
learning rate, and L is the loss function. The observation [1] is that, if our variational ansatz is highly
random, due to the k-design integral formula [17–20], the derivative of the loss function is generically
suppressed by the dimension of the Hilbert space N , and we might encounter a situation where the
variation of the loss function during gradient descent is very small, namely δL ≡ L(t+1)−L(t)� 1
for the step t. For instance, the second moment formula for Haar ensemble is∫

dUUijU
†
kl =

1

N
δilδjk . (2)

Here U is a unitary taken from a 1-design, and δ is the Kronecker delta and i, j, k, l are matrix
indexes. For higher moments random integrals [17–21], the factor poly(1/N) will appear. Thus, the
difference between the variational angles during iterations will be suppressed by the dimension of
the Hilbert space. The work [1] demonstrates this existence of the barren plateau (the statement
where δL � 1) numerically and understands the result as a primary challenge of variational quantum
circuits. It is often considered to be quantum analogs to the vanishing gradient problem, but the
nature is fundamentally different [22, 23]. A further explanation is given in Appendix A.

Although the existence of the barren plateau is verified by numerous works [24–27], the theoretical
understanding of the barren plateau problem is unclear. Moreover, the classical machine learning
community has been successfully demonstrated its practical usage in science and business for years,
and many successful classical neural network algorithms have been run for large scales. For example,
Generative Pre-trained Transformer-3 (GPT-3) from OpenAI [28] has used 175 billion of
training parameters, and it is one of the most successful natural language processing models up to
date. Considering the standard LeCun initialization of weights W with the normalization of the
variance σ2

W [22, 23, 29]

E(WijW
†
kl) =

σ2
W

width
δikδjl , (3)

and its formal similarity to Equation 2, we might imagine that similar issues will happen for classical
neural networks too: they might be highly overparametrized in the large-width limit. Here, σW is
a number that is independent of the size of the neural networks, and we set the width of the neural
network to be the same in each layer for simplicity. In fact, in Appendix A, we will show that in the
classical large-width neural network, the barren plateau will also happen: the trainable weights do
not run that much during gradient descent.

So, why classical overparametrized neural networks are supposed to be practical and good, but the
barren plateaus of quantum neural networks are crucial challenges? In this paper, we define the
primary theoretical argument towards the quantum barren plateau, the large suppression of the right
hand side of Equation 1, as laziness. In the quantum context, the suppression is from the dimension
of the Hilbert space, while in the classical case, the suppression is from the width of the classical
neural networks. In a more precise language, laziness is referring to small δθµ, and barren plateau is
referring to small δL.

Moreover, we will show that laziness may not imply the quantum barren plateau, from the perspective
of overparametrization theory and representation learning theory through quantum neural tangent
kernels (QNTKs) [2, 29]. In this paper, for quantum neural networks overparametrization is referring
to the fact where LTr(O2)/N2 ≈ O(1), where O is the operator we are optimizing, L is the number
of trainable angles, and η is the learning rate as a constant.

Defining quantum analogs of neural tangent kernels from their classical counterparts [23, 30–40], we
show that from the first-principle theoretical derivation, random (noiseless) quantum neural networks
are still efficient to learn in the large-L limit without barren plateaus, despite their laziness. In fact,
although each trainable angle does not move much due to the small magnitude of the gradient, the
combined effect of many of them on the loss function will still be significant. In addition, there
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exist good enough achievable local minima that minimize the training error. See Figure 1 for an
illustration. The requirements for making this to happen is especially when LTr(O2)/N2 ≈ O(1),
and we have a small learning rate and the mean square loss function. In the case of large Hilbert space
dimension without overparametrization, the exponential decay rate during gradient descent might
be small, which may not make this phenomenon manifest in the polynomial training iterations. In
practice, what we see is a very slow decay of loss functions. Interestingly, in this case quantum noises
will not affect us significantly until exponential numbers of iterations. Thus, the averaged QNTK,
K̄, proportional to Tr(O2)L/N2, explains the existence of the barren plateau in practice, with or
without noises. On the other hand, in the overparametrization regime where ηLTr(O2)/N2 ≈ O(1),
the exponential decay of gradient descent process is visible.

We note that the large-L expansion is a quantum analog of the classical neural tangent kernel theory at
large width. In fact, we will show in Section 2 that we have similar large-width expansion comparing
the classical theory, where in our model, classical width corresponds to L. The dimension of the
Hilbert space plays an important role in the calculation. Moreover, the correspondence between
quantum and classical neural networks might be explained by some physical heuristics, from the
duality between matrix models and quantum field theories. See Appendix C for a brief discussion.

Moreover, we need to point out that laziness is intrinsically still a precision problem. More precisely,
it could be primarily from quantum measurement and quantum control, since the size of classical
devices could scale as log(1/ε) for given precision ε, while variational quantum circuits cannot, due
to the measurement error and the limitation of quantum control [1]. Thus, it naturally motivates us
to think about how to include the effect of noise in the gradient descent calculation. In our work,
we introduce a simple and intuitive noise model by adding random variables in the gradient descent
dynamics. We show that in the overparametrization regime, our variational quantum algorithms are
noise-resilient. More precisely, we find that the residual training error scales as

ε2(t) ≈ (1− ηK)2t

(
ε2(0)− σ2

θ

η(2− ηK)

)
+

σ2
θ

η(2− ηK)
, (4)

with the neural tangent kernel K and the standard deviation of the noise introduced in the variational
angles σθ. Thus, in the late time, we get

L(∞) =
1

2
ε2(∞) ≈ σ2

θ

2η(2− ηK)
. (5)

In the late time, we have

L(∞) =
1

2
ε2(∞) ≈ σ2

θ

2η(2− ηK)
. (6)

Thus, in the overparametrized regime, we could set ηK ≈ O(1), so schematically,

L(∞) ≈ O(
σ2
θ

η
) , (7)

indicating that we could get good predictions at the end as long as we sufficiently control the noises.

We will give more details in the following sections.

2 The loss function landscape and the QNTK theory

We begin by considering a variational quantum circuit ansatz, on a Hilbert space of size N with
log2N qubits, as follows,

U(θ) =

(
L∏
`=1

W` exp (iθ`X`)

)
≡

(
L∏
`=1

W`U`

)
, (8)

with some trainable angles θ`, constant unitary operators W`, and Pauli operators X`. Following [29],
we consider the mean square loss function

L(θ) =
1

2

(〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
−O0

)2 ≡ 1

2
ε2 , (9)
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Figure 1: Density plots of the loss function landscape comparing usual and overparametrized
variational quantum circuits. We illustrate the landscape by color plots of the loss function for two
variational angles. Left: the traditional understanding of barren plateaus where we have the a single
optimal point. Right: in the overparametrized case, the landscape is not barren, since for a random
initial point, we get many good enough local optima that could minimize the loss function. Note that
those plots are schematic since it is not possible to directly plot the loss function landscape in very
high dimensions. In order to visualize it in O(1) numbers of iterations, one might have to have the
number of trainable angles L comparable to the dimension of the Hilbert space N .

and train the expectation value
〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
on an initial state |Ψ0〉 towards a value O0.

We define the residual training error ε =
〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
−O0. We use the gradient descent

algorithm Equation 1 with the learn ing rate η and an initial variational angle θ(0). We look now at
the difference of the residual training error

δε ≡ ε(t+ 1)− ε(t) . (10)

When the learning rate of Equation 1 η is small, we can perform a Taylor expansion,

δε ≈
∑
`

∂ε

∂θ`
δθ` = −η

∑
`

∂ε

∂θ`

∂ε

∂θ`
ε = −ηKε . (11)

The quantity K here is called the Quantum Neural Tangent Kernel (QNTK) [29], K =
∑̀

∂ε
∂θ`

∂ε
∂θ`

.

Note that in a general supervised learning setup where one has a labeled dataset instead of just one
expected value O0, K is a positive-semidefinite and symmetric matrix instead of a non-negative
number. Here we focus on the optimization problem Equation 9: this example will demonstrate the
validity of our theory, that can be readily generalized to a full supervised quantum machine learning
setup.

A frozen QNTK will remain constant during a gradient descent flow will lead to gradient flow
equations which can be solved exactly [29], showing that the error will decay exponentially at the
gradient descent iteration t as

ε(t) = (1− ηK)tε(0) . (12)

For sufficient random variational ansätze, we could compute the value of K based on the same
assumption of the barren plateau problem [1]. After computing 2-design random average E (see [2]
for more details)

E(O) =

∫
U∈2-design

dUO(U) , (13)
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More precisely, we define

U−,` ≡
`−1∏
`′=1

W`′U`′ , U+,` ≡
L∏

`′=`+1

W`′U`′ ,

V−,` = U−,`W`U`, V+,` = U+,` . (14)

And we assume that V−,` and V+,` form 2-designs independently in all `s. We get the following
expression of the averaged QNTK,

K̄ = E(K) = L
(
NTr

(
O2
)
− Tr2(O)

) 2

N + 1

(
1

N2 − 1

)
≈

2LTr
(
O2
)

N2
. (15)

This simple equation combined with Equation 12 reveals how, on average, the residual training
error of a gradient descent dynamics will decay exponentially. Moreover, one should also check the
standard deviation ∆K. If ∆K � K̄, we get a distribution of K which is concentrated at K̄. In fact,
one could show that from k-design assumptions,

∆K ≈
√
L

N2

√
(8Tr2 (O2) + 12Tr (O4)) . (16)

Thus, we have ∆K/K̄ = O(1/
√
L). In the limit where L � 1, the neural tangent kernel is

concentrated around a fixed value K̄. A more precise constraint will also include a time-dependent
statement including the perturbations of higher-order Taylor expansion of the residual training error,
which is characterized by the so-called quantum meta-kernel or dQNTK. See Appendix B for more
details.

3 Precision and noise

Now we give some physical interpretations about Equation 15. We see in Section 2 that the theory
should work in the regime where L� 1, and also the overparametrization regime where ηK ≈ O(1).
From Equation 12, we know that K̄ would serve as an exponent of exponential decay: the larger K̄
is, the faster the algorithm will converge. This qualitative description has been formulated in [29],
with numerical evidence in [41] around the same time.

Moreover, a statement about precision could be made by combining Equation 12 and Equation 15.
We have

log
1

εr
≈ −T log

(
1− ηK̄

)
≈ ηK̄T . (17)

Here, T is the total training steps, and εr is the relative residual training error around the end of
training εr = ε(T )/ε(0). The relative error εr could be as small as the precision of the quantum
device. Using Equation 15, we get

log
1

εr
≈

2ηLTr
(
O2
)
T

N2
. (18)

Equation 18 makes the barren plateau problem manifestly as a precision problem. If we want to
see the convergence within T ≈ O(1), we want ηK̄ ≈ 1. The smaller K̄ is, the smaller decaying
exponent we have, and more likely we will experience a barren plateau in practice. Otherwise, there
will be good enough local optima around the small random fluctuations of variational angles. The
more overparametrized the quantum neural networks are, the faster convergence they could have. In
this case, we do not have a barren plateau if we assume that we do not have the measurement noise
and the quantum hardware noise, although we have laziness.

Originally, a relation between the barren plateau problem and the precision has also been stated in
[1], while we make it more clear by showing that the barren plateau is not algorithmic. In fact, in
Appendix A, we show that classical overparametrized neural networks have laziness as well. Many
useful, practical machine learning algorithms have to be in this case [23]. Thus, variational quantum
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algorithms here have no algorithmic issue, and the origin of the problem comes from measurement
and control (see also [42]).

Let us take a look at Equation 1 again. To implement variational algorithms, we need to perform
measurements to evaluate the loss function or its derivatives (involving quantum measurements), and
update the trainable angles through Equation 1 (involving quantum control). On the measurement
side, classical computations could handle the precision-ε computation with the resource scaling as
log 1/ε, while measurement errors will be produced in the quantum setup, making the scaling 1/εα

for positive α [1]. There is no known way to date to avoid it because of limitations of metrology [43].
On the control side, it is also challenging to update the variational angles with exponential precision.
In a sense, our theory makes the statement from [1] more precise.

The discussion naturally motivates us to introduce the noise model. Heuristically, we will expect
that during the gradient descent process, the effective noise term will also be exponentially decaying
because of the original recurrence relation and its solution. To verify this, we could add a random
fluctuation term ∆θ` to model the uncertainty of measuring the expectation value. One could also
assume that the random variable ∆θ` is Markovian. Namely, it is independent for the time step t.
Moreover, we assume that ∆θ`s are distributed with Gaussian distributions N (0, σ2

θ). Note that σθ
could come from the measurement noise during estimations of quantum observables used for the
gradient descent, which scales as 1/

√
n, where n is the number of measurements. And the Gaussian

assumptions come from the central limit theorem in the large-n limit. Furthermore, σθ could also
come from the hardware noises. On the other hand, the physical implementation of rotation angle
will also have limited precision. One could note that robust quantum control techniques can suppress
errors of rotation angles to higher orders, see [44].

Thus, one could show that the residual training error has the recursion relation in the linear order of
the Taylor expansion,

δε = −ηεK +
∑
`

∂ε

∂θ`
∆θ` . (19)

Now, let us assume that K is still a constant, K ≈ K̄. Since ∆θ` ∼ N (0, σ2
θ), we get∑

`

∂ε

∂θ`
∆θ` ∼ N (0,Kσ2

θ) . (20)

Including the noise term into the recursion relation, one could show that averaging over the random
distribution of the noise, we have

ε2(t) = (1− ηK)2t

(
ε2(0)− σ2

θ

η(2− ηK)

)
+

σ2
θ

η(2− ηK)
. (21)

Note that the first term is decaying when the time t is increasing. At the late time, we have

ε2(∞) =
σ2
θ

η(2− ηK)
≈ O(

σ2
θ

η
) , (22)

where we assume the overparametrization ηK ≈ O(1) . Thus, at the late time, the loss function
will arrive at a constant plateau at O(σ2

θ/η). One could improve σθ to make the constant plateau
controllable and do not increase significantly with N , indicating that our algorithm could be noise-
resilient. See Appendix D for a more detailed discussion, and see Figure 1 for an illustration. Some
numerical results are also obtained in Figure 2 and Figure 3.

4 Conclusion and outlook

In this paper, we point out that for variational circuits with sufficiently large numbers of trainable
angles, the gradient descent dynamics could still be efficiently performed, despite the existence of
the exponential suppression of the variational angle updates (laziness). We point out that laziness
is not uniquely happening in quantum machine learning, but also for overparametrized classical
neural networks with large widths. The efficiency of large-width neural networks is justified by
the neural tangent kernel theory, so do their quantum counterparts. A solid and simple theory has
been established based on the above ideas, and the relation between the number of training steps,
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the quantum device error, the trainable depth, the dimension of the Hilbert space, and the norm of
operators appearing in the loss function has been explicitly derived. Moreover, we have justified that
for simple and natural noise models, we could make the variational quantum circuits noise-resilient
in the overparametrized regime, with solid theoretical and numerical evidence.

Our results also indicate a more well-defined path to designing quantum neural networks from the
first principle. If we are sampling unitary operators uniformly in the whole unitary group, it is hard to
avoid polynomial factors of N , the dimension of the Hilbert space, into the expression of the number
of iterations in order to obtain the visible laziness (see parallel efforts in [45, 46]). One idea is to
reduce the space of searching, and reduce the space of variational circuits to some subspaces, where
people observe some evidence for setups in quantum convolutional neural networks [25, 47] and
local loss function [24], and the barren plateau phenomena are less drastic in those cases. However,
since the subspace we are searching is reduced, the decreased expressibility will lead to a lower
performance for the final convergence of the loss function on the training set [45]: around the end
of the training, drastic corrections towards fixed neural tangent kernels will stop the exponential
decay, and we get a local minimum which may not be good enough. The design of variational circuits
will be a trade-off between barren plateaus and performance [48], which could be manifest in the
presence of laziness. Despite generalizations to full learning setups with multiple output dimensions,
other interesting directions include detailed discussions about the quantum noise in the real machines
during quantum representation learning to understand how the noise will affect laziness and the
barren plateau, a justification of our theory with large-scale classical and quantum simulation, and
possible theoretical understandings beyond the limit L� 1. We look forward to further analysis and
research along our path.

Note added: When the paper is finished, we notice that another nice independent paper [49] appears
in the arxiv, which has very similar conclusion to our results.
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Appendix

A Comments on the barren plateau in the classical machine learning

Now we consider a classical neural network, the MLP model (see [23]). The definition is

z
(1)
i (xα) ≡ b(1)

i +

n0∑
j=1

W
(1)
ij xj;α,

for i = 1, . . . , n1,

z
(`+1)
i (xα) ≡ b(`+1)

i +

n∑̀
j=1

W
(`+1)
ij σ

(
z

(`)
j (xα)

)
,

for i = 1, . . . , n`+1; ` = 1, . . . , L− 1. (23)

Here, σ is a non-linear activation function, and we have widths n1,2,··· ,L in layers ` = 1, 2, · · ·L.
The input dimension is n0 and the output dimension is nL. Weights and biases at layer ` are denoted
as W (`) and b(`). z(`) is called the preactivation. xj,α will denote the data where j is the vector
index, and α is the data sample index. At the beginning, we initialize the neural network by

E
[
b
(`)
i1
b
(`)
i2

]
= δi1i2C

(`)
b ,

E
[
W

(`)
i1j1

W
(`)
i2j2

]
= δi1i2δj1j2

C
(`)
W

n`−1
. (24)

Here, Cb and CW will set the variance of biases and weights (we use the notation CW = σ2
W in the

main text). And we train the neural networks by gradient descent algorithms. We could consider the
simplest version of the gradient descent algorithm,

θµ(t+ 1) = θµ(t)− η
dLA
dθµ

∣∣∣∣
θ(t)

. (25)

The loss function is

LA ≡
1

2

∑
i,α̃∈A

(zi (xα̃; θ)− yi,α̃)
2

=
1

2

∑
i,α̃∈A

ε2
i,α̃ , (26)

where α̃ ∈ A form a training set A, and we have a supervised learning task with the data label y. zi
is the final prediction from the MLP model, z(L)

i , η is the training rate. θµ is a vector combining all
W s and bs. ε here is the residual training error,

εi,α̃ = zi (xα̃)− yi,α̃ . (27)

A.1 The fundamental difference between barren plateau and vanishing gradient

Firstly, we wish to comment on the fact that there is a fundamental difference between the barren
plateau problem and the vanishing gradient problem.

The vanishing gradient problem is claimed to be a challenge of machine learning algorithms, where
the gradient is vanishing for some neural network constructions, and it will be challenging to train
the network [50, 51]. A standard and traditional explanation of the vanishing gradient problem
is due to multiplicatively large number of layers in a deep neural network. The loss will have
exponential behavior against some multiplicative factors during gradient descent, which will cause
either exploding or vanishing of the loss function if there is no fine tuning. A resolution of the
vanishing gradient problem is associated with the idea of He initialization or Kaiming initialization,
which fine-tunes the neural network towards its critical point [52] (see also [23]).

The barren plateau problem is a term invented from the quantum community since [1]. As far as
we know, there is no such term in classical machine learning instead of geography. The theoretical
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argument from the barren plateau problem is the following, where we define the argument as laziness.
If we consider the gradient descent process of the variational angles,

θµ(t+ 1) = θµ(t)− η
dLA
dθµ

∣∣∣∣
θ(t)

. (28)

and if we make a sufficiently random variational ansatz, the factor poly(dimH) where dimH is the
dimension of the Hilbert space, will appear in the formula of dLA/dθµ. Thus, the change of the
variational angle will always suppressed by the dimension of the Hilbert space. A simple example of
the Haar random factor poly(dimH) will be the integration formula over a 2-design,∫

dUUijU
†
kl =

δilδjk
dimH

, (29)

where the matrix U forms a 2-design. The higher k is in a k-design, the higher factor of dimH will
appear if we consider higher moments of U . Thus, one claim that the variational angles almost cannot
run in the randomized variational quantum architectures.

We could notice that the argument of the barren plateau problem using laziness is fundamentally
different from the vanishing gradient problem: the vanishing gradient problem is dynamical when
going to deeper and deeper neural networks, while the laziness is static and appears everywhere. Thus
they are two intrinsically different problems. Moreover, from the similarity between the 2-design
integral formula 29 and the LeCun parametrization 24, we could expect that the large-width neural
networks will have similar behaviors: their weights and biases will also almost not run. Considering
that classical overparametrized neural networks are proven to be practically useful (see, for instance,
a comparison [53]), and large-scale neural networks could be implemented commonly nowadays,
laziness may not always be bad in the actual machine learning tasks.

A.2 Classical large-width neural network has laziness as well

Now we prove that in the above setup, the large-width classical neural network will also have laziness.
We have

dLA
dθµ

=
∑
i,α̃

εi,α̃
dεi,α̃
dθµ

=
∑
i,α̃

εi,α̃
dzi,α̃
dθµ

=
∑
i,α̃

yi,α̃
dzi,α̃
dθµ

+
∑
i,α̃

zi,α̃
dzi,α̃
dθµ

. (30)

We wish to represent the derivatives over W and b by the derivatives of early-layer preactivation z(`),

dz
(L)
i;α

db
(`)
j

=
dz

(L)
i;α

dz
(`)
j;α

,

dz
(L)
i;α

dW
(`)
jk

=
∑
m

dz
(L)
i;α

dz
(`)
m;α

dz
(`)
m;α

dW
(`)
jk

=
dz

(L)
i;α

dz
(`)
j;α

σ
(`−1)
k;α . (31)

Here, σ(`) is a short-hand notation of σ(z(`)), and we introduce σ(`)
j;α as σ(z

(`)
j;α). Finally, we have,

dz
(L)
i;α

dz
(`)
j;α

=

n`+1∑
k=1

dz
(L)
i;α

dz
(`+1)
k;α

dz
(`+1)
k;α

dz
(`)
j;α

=

n`+1∑
k=1

dz
(L)
i;α

dz
(`+1)
k;α

W
(`+1)
kj σ

(`)
j;α
′

for ` < L ,

dz
(L)
i;α

dz
(L)
j;α

= δij . (32)
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This is a back-propagation iterative formula, giving the recurrence relation from the end of the neural
networks to the beginning. Moreover, we use σ′ to denote derivatives of σ. So we get

dz
(L)
i;α

dz
(`)
j;α

=

n`+1∑
k=1

dz
(L)
i;α

dz
(`+1)
k;α

dz
(`+1)
k;α

dz
(`)
j;α

=

n`+1∑
k=1

dz
(L)
i;α

dz
(`+1)
k;α

W
(`+1)
kj σ

(`)
j;α
′

=

n`+1,n`+2∑
k`+1,k`+2

dz
(L)
i;α

dz
(`+2)
k`+2;α

W
(`+2)
k`+2j

W
(`+1)
k`+1j

σ
(`+1)
j;α

′σ
(L−2)
j;α

′

=

n`+1,n`+2,...,nL∑
k`+1,k`+2,...,kL

dz
(L)
i;α

dz
(L)
kL;α

W
(L)
kLj

W
(L−1)
kL−1j

. . .W
(`+2)
k`+2j

W
(`+1)
k`+1j

× σ(L−1)
j;α

′σ
(L−2)
j;α

′ . . . σ
(`+1)
j;α

′σ
(L−2)
j;α

′

=

n`+1,n`+2,...,nL−1∑
k`+1,k`+2,...,kL−1

W
(L)
i,j W

(L−1)
kL−1j

. . .W
(`+2)
k`+2j

W
(`+1)
k`+1j

σ
(L−1)
j;α

′σ
(L−2)
j;α

′ . . . σ
(`+1)
j;α

′σ
(L−2)
j;α

′ . (33)

We find the expectation value will vanish directly (which is exactly similar to the quantum case).
Thus, we could estimate the norm by computing the variance of the gradients from,

E

(dz(L)
i;α

dz
(`)
j;α

)2


=

n`+1,n`+2,...,nL−1,n`+1,n`+2,...,nL−1∑
k`+1,k`+2,...,kL−1,k̄`+1,k̄`+2,...,k̄L−1

E

(
W

(L)
i,j W

(L)
i,j W

(L−1)
kL−1j

W
(L−1)

k̄L−1j
. . .

W
(`+2)
k`+2j

W
(`+2)

k̄`+2j
W

(`+1)
k`+1j

W
(`+1)

k̄`+1j

)
E
((

Σ
(`);(L−1)
j;α

)2
)

=

n`+1,n`+2,...,nL−1,n`+1,n`+2,...,nL−1∑
k`+1,k`+2,...,kL−1,k̄`+1,k̄`+2,...,k̄L−1

E

(
W

(L)
i,j W

(L)
i,j W

(L−1)
kL−1j

W
(L−1)

k̄L−1j
. . .

W
(`+2)
k`+2j

W
(`+2)

k̄`+2j
W

(`+1)
k`+1j

W
(`+1)

k̄`+1j

)
E
((

Σ
(`);(L−1)
j;α

)2
)

=
1

nL
C

(L)
W C

(L−1)
W . . . C

(`+1)
W E

((
Σ

(`);(L−1)
j;α

)2
)
, (34)

where

Σ
(`);(L−1)
j;α = σ

(L−1)
j;α

′σ
(L−2)
j;α

′ . . . σ
(`+2)
j;α

′σ
(`+1)
j;α

′ . (35)

We have used the Wick contraction rule and the LeCun parametrization 24 according to [23]. Plug
Equation 34 back to Equation 31, we see that this 1/nL factor appears. This is the classical barren
plateau in the large-width classical neural networks.

A.3 Classical large-width neural network could still learn efficiently

Here we show that the classical neural tangent kernel (NTK) will not vanish in classical MLPs,
despite its laziness. This indicates that there are many good enough local minima around the point of
initialization, so even the variational angles run slowly (the barren plateau problem), it will not matter
for our practical purpose. On the other hand, more variational parameters will make us converge
faster.

This part is a review of existing results, presented in the language of [23]. In classical MLPs, similar
to the quantum cases we have discussed in the whole paper, the residual training error ε will decay
exponentially at large width. We define the NTK as

Hi1i2;α1α2 ≡
∑
µ

dzi1;α1

dθµ

dzi2;α2

dθµ
. (36)

The gradient descent rule will imply,

δεi;δ = −η
∑

i1,α̃∈A
Hii1;δα̃εi1,α̃ . (37)

10



One could compute the average of the NTK. One could define the frozen NTK and the fluctuating
NTK as

Hi1i2;α1α2 = H̄i1i2;α1α2 + ∆Hi1i2;α1α2 , (38)

and we have

E (∆Hi1i2;α1α2
∆Hi3i4;α3α4

) =
1

nL−1

[
δi1i2δi3i4A(α1α2)(α3α4) + δi1i3δi2i4Bα1α3α2α4

+ δi1i4δi2i3Bα1α4α2α3

]
.

(39)

The full expressions of A,B are given in Chapter 8 of [23]. Similarly, in the statistics language,
one could check [31]. The suppression of ∆H in the large width indicates that the large-width
neural networks will learn efficiently through non-trivial H̄i1i2;α1α2 , which is guaranteed to converge
exponentially. In the large-width limit, the gradient descent algorithm is theoretically equivalent to
the kernel method, where the kernel is defined effectively by NTKs. In Chapter 11 of [23], it is shown
that dNTK, the higher-order corrections to the exponential decay, will vanish on its own, averaging
over the Gaussian distribution of weights and bias. Moreover, the correlations between dNTK and
other operators, which cause even numbers of W s in total, will be suppressed by the large width
polynomially. Those theoretical results are classical analogs of random unitary calculations done in
our work.

B Some further details about concentration conditions

For concentration conditions including the quantum meta-kernel, one could see [2] for further details.
Here we provide a simple review.

Now, we would like to ask when the QNTK approximation is valid. When the learning rate is small,
the error of the prediction in Equation 15 could possibly come from two sources: the fluctuation
of K about K̄ during the gradient descent, and the higher-order corrections comparing the leading
order Taylor expansion in Equation 11. The fluctuation ∆K could come from higher-order statistical
calculations over the k-design assumption, similar to the analysis of higher-order effects in the barren
plateau setup [26],

∆K =

√
E
(

(K − K̄)
2
)
≈
√
L

N2

√(
8Tr2 (O2) + 12Tr (O4)

)
, (40)

in the large-N limit, and we present a detailed calculation in [2] with formulas up to 4-design.
Moreover, we could look at higher order corrections to the Taylor expansion by the quantum meta-
kernel (dQNTK) [29],

δε = −η
∑
`

dε

dθ`

dε

dθ`
ε+

1

2
η2ε2

∑
`1,`2

d2ε

dθ`1dθ`2

dε

dθ`1

dε

dθ`2

≡ −ηKε+
1

2
η2ε2µ . (41)

Here µ =
∑
`1,`2

d2ε
dθ`1dθ`2

dε
dθ`1

dε
dθ`2

could be computed statistically using k-design formulas again.
One can show that E(µ) = 0 (which is the same as its classical counterpart [23]), and we have

∆µ =
√
E (µ2) ≈

√
32L

N3
Tr3/2

(
O2
)
, (42)

in the large-N limit. The condition where the QNTK estimation in Equation 15 is valid when

∆K � K ⇔ L� 1 , (43)

1

2
η2ε2∆µ� ηK̄ε⇔ ηε(0)

L

N3
Tr3/2

(
O2
)
�

LTr
(
O2
)

N2

⇔ ηΩO
N

ε(0)� 1 . (44)
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We call the conditions 43 and 44 as the concentration conditions. Here, we denote ε(0) = ε(t = 0),
and we assume that Tr(O2) ≡ Ω2

O > Tr2(O). This is correct, for instance, if O is a Pauli operator,
where we have Tr(O2) = N but Tr2(O) = 0.

Note that the condition Equation 44 is a weak condition. It only tells that how small η is needed to
make sure the nearly expansion is valid. In practice, we often assume that η < O(1) and ΩO ≥ O(N),
so Equation 44 is automatically satisfied. The condition that usually matters is Equation 43, which is
the definition of overparametrization here L� 1. Thus, if L is large, the prediction will be correct,
no matter how large N is. But if N is large, the decay rate itself K̄ will be small. So this is exactly
the definition of the barren plateau!

Furthermore, we wish to mention that if we only count for powers of N and L, we have

∆K

K̄
= O

(
1√
L

)
,

∆µ

K̄
= O

(
1

N

)
. (45)

If we demand K̄ = O(1) and ignore η, we get L = O(N), so we get ∆K
K̄

= O
(

1
N

)
as well. The

1/N or 1/width expansion is exactly observed in the classical neural networks [23]. The origin of
this equivalence comes from the similarity between Equation 2 and Equation 46, while a higher
level (but heuristic) understanding comes from a connection between quantum field theory and the
large-width expansion [23, 37, 38] and a similarity between Feynman rules in quantum field theory
and matrix models [54], which we will briefly explain in Appendix C for readers who are interested
in how observations about this paper might be discovered from another perspective.

C A physical interpretation

Here we make some comments about possible, heuristic, physical interpretations of the agreement
between classical and quantum neural networks. There is a duality, pointed out in [23, 37–39] where
the large-width classical neural networks could be understood in the quantum field theory language.
In the large-width limit, the output of neural networks will follow a Gaussian process, averaging with
respect to Gaussian distribution over weights and bias according to the LeCun parametrization,

E (WijWkl) =
σ2
W

width
δikδjl , (46)

or more generally,

E
(
Wi1j1Wi2j2 . . .Wi2k−1j2k−1

Wi2kj2k

)
= O(

1

poly(width)
) , (47)

for all positive integer k. Here, we are considering the multilayer perceptron (MLP) model with
weights W , and the width is defined as the number of neurons in each layer. The limit is mathemati-
cally similar to the large-N limit of gauge theories, which becomes almost generalized free theories.
We could understand the ratio between the depth, the number of layers, and the width, the number of
neurons, as perturbative corrections against the Gaussian process, which is similar to what we have
done in the large-N expansion of gauge theories.

This physical interpretation will be helpful also when we consider its quantum generalization. If
classical MLPs are similar to quantum field theories, quantum neural networks will be similar to
matrix models [55, 56]. Matrix models have been studied for a long time, around and after the second
string theory revolution [54], and they have deep connections to the holographic principle [57] and
the AdS/CFT correspondence [58, 59]. Haar ensembles are toy versions of matrix models, which
have been widely studied as toy models of chaotic quantum black holes [17, 60]. The similarity
between the LeCun parametrization 46 and the 1-design Haar integral formula

E(UijU
†
kl) =

1

dimH
δilδjk , (48)

or more generally,

E
(
Ui1j1U

†
i2j2

. . . Ui2k−1j2k−1
U†i2kj2k

)
= O(

1

poly(dimH)
) , (49)
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where dimH is the dimension of the Hilbert space, might be potentially related to the similarity of
Feynman rules between matrix models and quantum field theories. Thus, the similarity between
quantum and classical neural networks might have a physical interpretation between matrix models
and their effective field theory descriptions.

The above analogy is heuristic. We should point out that machine learning and physical systems are
very different. Some mathematical similarities could provide guidance towards new discoveries and
better insights, but we have to be careful that they are intrinsically different phenomena.

D Noises

Now let us add the affection of the noise. From the original gradient descent equation,

θ`(t+ 1)− θ`(t) ≡ δθµ = −η ∂L
∂θ`

= iη
〈

Ψ0

∣∣∣V †+,` [X`, V
†
−,`OV−,`

]
V+,`

∣∣∣Ψ0

〉
, (50)

we add a random fluctuation term ∆θ` to model the uncertainty of measuring the expectation value.
We assume that the random variable ∆θ` is Markovian. Namely, it is independent for the time step t.
Moreover, we assume that ∆θ`s are distributed with Gaussian distributions N (0, σ2

θ).

Thus, the residual training error has the recursion relation in the linear order of the Taylor expansion,

δε = −ηεK +
∑
`

∂ε

∂θ`
∆θ` . (51)

Now, let us assume that K is still a constant. Since ∆θ` ∼ N (0, σ2
θ), we get∑

`

∂ε

∂θ`
∆θ` ∼ N (0,Kσ2

θ) . (52)

Thus, we could write the recursion relation as

δε = −ηεK +
√
K∆θ . (53)

Here, ∆θ ≈ N (0, σ2
θ). One can solve the difference equation iteratively. The answer is

ε(t) = (1− ηK)tε(0) +
√
K

t−1∑
i=0

(1− ηK)
i
∆θ(t− 1− i) . (54)

Now, we have

√
K

t−1∑
i=0

(1− ηK)
i
∆θ(t− 1− i) ∼ N (0,Kσ2

θ

t−1∑
i=0

(1− ηK)
2i

)

= N (0, σ2
θ

1− (1− ηK)
2t

η(2− ηK)
) . (55)

At the initial time t = 0, there is no effect of noise. The relative size of the error will grow during
time compared to the exponential decay term without noises. Based on the distribution, we could
compute the average ε2 against the noises, ε2, as

ε2(t) = (1− ηK)2t

(
ε2(0)− σ2

θ

η(2− ηK)

)
+

σ2
θ

η(2− ηK)
. (56)

Note that the first term is decaying when the time t is increasing. At the late time, we have

ε2(∞) =
σ2
θ

η(2− ηK)
≈ O(

σ2
θ

η
) , (57)

where we assume the overparametrization ηK ≈ O(1) . Thus, at the late time, the loss function
will arrive at a constant plateau at O(σ2

θ/η). One could improve σθ to make the constant plateau
controllable and do not increase significantly with N , indicating that our algorithm could be noise-
resilient.
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One could also estimate the time scale where the contribution of the noise could emerge. We could
define the time scale, Tnoise, as,

(1− ηK)Tnoiseε(0) ≈ σθ

√
1− (1− ηK)

2Tnoise

η(2− ηK)
. (58)

It means that at Tnoise, the noise contribution is comparable to the noiseless part in the residual training
error. We have,

Tnoise ≈
log

(
σθ√

2ε2(0)η−ε2(0)η2K+σ2
θ

)
log(1− ηK)

,

ε(Tnoise) = 2(1− ηK)Tnoiseε(0) =
2σ2

θ√
ε(0)2(2η − η2K) + σ2

θ

ε(0) . (59)

We find that choosing η ≈ O(1/K) will minimize ε(Tnoise). It is exactly the overparametrization
condition we use in this paper.

To be self-consistent, we need to check if the choice η ≈ O(1/K) is consistent with the concentration
condition about dQNTK. In fact, we find that η ≈ O(1/K) will naturally satisfy the dQNTK
concentration condition if ε(0) < O(L

√
N). This is naturally satisfied in generic situations in

variational quantum algorithms since we will usually not have an exponential amount of residual
training error initially.

E Numerical results

In this part, we show some simple numerical evidences based on the analysis done in [2]. We will
use the randomized version of the hardware-efficient variational ansatz defined in [2]. In Figure 2,
for each σθ value, we run 10 experiments of 100 steps using the same setup of the ansatz U(θ), the
operator O and the input state θ0 as in [2]. After that, we get the residual error of the last step and
take the average value over 10 experiments to get the mean ε value, shown with black dots in the
figure. The red line in the figure is the theoretical prediction. In these experiments, L = 64, and we
have 4 qubits. We can further get the analytic result of the mean value of ε after a long time as

ε =

√
2

π
· σθ√

2η − η2K
, (60)

where the K value is taken from the value of the last step, as it fluctuates a lot in the early time.

We run multiple experiments to approach the theoretical value as much as possible, where 10
experiments are done for each σθ value. To verify that the numerical result lies in a reasonable regime,
we calculated the 90% confidence interval of ε theoretically.

To compensate for the effect of large K on our numerical simulations, since in every experiment
setup, due to randomness, the training will lead the parameters to different regimes of different Ks,
we choose those experiments which fulfill our theoretical restrictions for small K. The numerical
results above are with K ≈ O(10), which still shows great agreement with our theoretical formalism.

More precisely, in Figure 2, we get the relationship between residual error fluctuation and noise. For
each σθ value, we calculated the standard deviation with final residual error data from 10 experiments,
shown as black dots. The final residual error that we get from the numerical experiments is taken
absolute value for the benefit of the log scale. We find the numerical results follow the theoretical
prediction in a reasonable confidence interval. Moreover, we verify the extent of our final residual
error that can achieve as a function of noise σθ with numerical evidence.

In Figure 3, we verify the prediction of standard deviation of ε(∞), σε, in the small η regime. In
these numerical experiments, the inaccuracy comes mainly from a limited number of experiments and
a limited time scale (t = 100). Especially for experiments with a small learning rate η with random
initial states, Tnoise may be large for 100 steps to cover.
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Figure 2: Noise standard deviation σθ as a function of standard deviation of final residual error σε
after training long enough time, with both numerical result (black dots) and theoretical prediction
(red line). In this figure, η = 0.005, K ≈ 25, ε(0) ≈ 1.
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Figure 3: Standard deviation of final residual error σε as a function of learning rate η after training
long enough time, with both numerical result (black dots) and theoretical prediction (red line). In this
figure, σθ = 0.005, K ≈ 35, ε(0) ≈ 1, t = 100.
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