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Barren plateaus appear to be a major obstacle to using variational quantum algorithms to simulate
large-scale quantum systems or replace traditional machine learning algorithms. They can be caused
by multiple factors such as expressivity, entanglement, locality of observables, or even hardware
noise. We propose classical splitting of ansätze or parametrized quantum circuits to avoid barren
plateaus. Classical splitting is realized by splitting an N qubit ansatz to multiple ansätze that
consists of O(logN) qubits. We show that such an ansatz can be used to avoid barren plateaus. We
support our results with numerical experiments and perform binary classification on classical and
quantum datasets. Then, we propose an extension of the ansatz that is compatible with variational
quantum simulations. Finally, we discuss a speed-up for gradient-based optimization and hardware
implementation, robustness against noise and parallelization, making classical splitting an ideal tool
for noisy intermediate scale quantum (NISQ) applications.

I. INTRODUCTION

Variational quantum algorithms (VQAs)[1] are promis-
ing tools to solve a wide range of problems, such as find-
ing the ground state of a given hamiltonian via the vari-
ational quantum eigensolver (VQE)[2], solving combina-
torial optimization problems with the quantum approxi-
mate optimization algorithm (QAOA)[3] or solving clas-
sification problems using quantum neural networks [4].

VQAs are suitable for noisy intermediate scale quan-
tum (NISQ) [5] hardware as they can be implemented
with a small number of layers and gates for simple tasks.
However, a scalability problem arises with the increasing
number of qubits, hindering a possible advantage. VQAs
rely on a classical optimization loop that updates the
parameters of the ansatz iteratively until a condition on
the cost function is satisfied. Classical optimizers use the
information on the parametrized cost landscape to find
the minimum. The updates on the parameters move the
ansatz to a lower point on the cost surface. In 2018, Mc-
Clean et al. showed that the cost landscape flattens with
the increasing number of qubits, making it exponentially
harder to find the solution for the optimizer [6]. The flat-
tening was first observed by looking at the distribution
of gradients across the parameter space, and the prob-
lem was named barren plateaus (BPs). A VQA is said
to have a BP if its gradients decay exponentially with re-
spect to one of its hyper-parameters, such as the number
of qubits or layers.

Since the discovery of the BP problem, there has been
significant progress that improved our understanding of
what causes BPs and several methods to avoid them have
been proposed. It has been shown that noise [7], entan-
glement [8], and the locality of the observable [9] play
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an essential role for determining whether an ansatz will
exhibit BPs. It has also been shown that the choice of
ansatz (e.g. expressivity) of the circuit is one of the deci-
sive factors that impact BPs [10]. For instance, the ab-
sence of BPs has been shown for quantum convolutional
neural networks (QCNN) [11, 12] and tree tensor net-
works (TTN) [13, 14]. On the other hand, the hardware
efficient ansatz (HEA) [6, 14, 15] and matrix product
states (MPS) [14] have been shown to have BPs.

One of the essential discoveries showed that BPs are
equivalent to cost concentration and narrow gorges [16].
This implies that BPs are not only a result of the expo-
nentially decaying gradient but also of the cost function
itself, and they can be identified by analyzing random
points on the cost surface. As a result, gradient-free op-
timizers are also prone to BPs and do not offer a way to
circumvent this problem [17].

Many methods have been suggested to mitigate BPs
in the literature. Some of these methods suggest to use
different ansätze or cost functions [18, 19], determining
a better initial point to start the optimization [20–23],
determining the step size during the optimization based
on the ansatz [24], correlating parameters of the ansatz
(e.g., restricting the directions of rotation) [10, 25], or
combining multiple methods [26, 27].

In this work, we propose a novel idea in which we claim
that if any ansatz of N qubits is classically separated to
a set of ansätze with O(logN) qubits, the new ansatz
will not exhibit Barren Plateaus. This work is not the
first proposal in the literature that considers partition-
ing an ansatz. However, our proposal is significantly
different. Most work in the literature first considers
an ansatz and then emulates the result of that ansatz
through many ansätze (exponentially many in general)
with less number of qubits (which increases the effective
size of quantum simulations) using gate decompositions,
entanglement forging, divide and conquer or other meth-
ods [28–35]. On the other hand, this work proposes us-
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ing ansätze that are classically split, meaning that there
are no two-qubit gate operations between the subcircuits
before splitting. This way, there is no need for gate de-
compositions or other computational steps. Our results
show that this approach provides many benefits such as
better trainability, robustness against noise and faster
implementation on NISQ devices.

In the remainder of the paper, we start by giving an
analytical illustration of the method in Section II. Then,
we provide numerical evidence for our claim in Section III
and extend our results to practical use cases by compar-
ing binary classification performance of classical splitting
for classical and quantum data. Next, we propose an ex-
tension of the classical splitting ansatz and perform ex-
periments to simulate the ground state of the transversal-
field ising hamiltonian. Finally, we discuss the advan-
tages of employing classical splitting, make comments on
future directions in Section IV and give an outlook in
Section V.

II. AVOIDING BARREN PLATEAUS

Barren plateaus (BPs) can be identified by investigat-
ing how the gradients of an ansatz scale with respect to
a parameter. Here, we will start with the notation of
McClean et al. and extend it to classical splitting [6].
The ansatz is composed of consecutive parametrized (V )
and non-parametrized entangling (W ) layers. We define
Ul(θl) = exp(−iθlVl), where Vl is a Hermitian operator
and Wl is a generic unitary operator. Then the ansatz
can be expressed with a multiplication of layers,

U(θ) =

L∏
l=1

Ul(θl)Wl. (1)

Then, for an observable O and input state of ρ, the
cost is given as

C(θ) = Tr[OU(θ)ρU†(θ)]. (2)

The ansatz can be separated into two parts to inves-

tigate a certain layer, such that U− ≡
∏j−1
l=1 Ul(θl)Wl

and U+ ≡
∏L
l=j Ul(θl)Wl. Then, the gradient of the jth

parameter can be expressed as

∂jC(θ) =
∂C(θ)

∂θj
= iTr[[Vj , U

†
+OU+]U−ρU

†
−]. (3)

The expected value of the gradients can be computed
using the Haar measure. Please see Appendix A for more
details on the Haar measure, unitary t-designs and de-
tails of the proofs in this section. If we assume the ansatz
U(θ) forms a unitary 2-design, then this implies that
〈∂kC(θ)〉 = 0 [6]. Since the average value of the gradients

are centered around zero, the variance of the distribution,
which is defined as,

Var[∂kC(θ)] = 〈(∂kC(θ))2〉 − 〈∂kC(θ)〉2, (4)

can inform us about the size of the gradients. The vari-
ance of the gradients of the jth parameter of the ansatz,
where U− and U+ are both assumed to be unitary 2-
designs, and the number of qubits is N , is given as [6, 10],

Var[∂jC(θ)] ≈ O
(

1

26N

)
. (5)

This means that for a unitary 2-design the gradients
of the ansatz vanish exponentially with respect to the
number of qubits N . Details of this proof is provided in
Appendix A. Now, let us consider the classical splitting
(CS) case. We split the ansatz U(θ) to k many m-qubit
ansätze, where we assume without loss of generality that
N = k×m. Then, we introduce a new notation for each
classically split layer,

U il (θ
i
l) = e−iθ

i
lV

i
l W i

l , (6)

where index l determines the layer and index i determines
which sub-circuit it belongs to. This notation combines
the parametrized and entangling gates under U il . Then,
the overall CS ansatz can be be expressed as,

U(θ) =

L∏
l=1

k⊗
i=1

U il (θ
i
l) =

k⊗
i=1

L∏
l=1

U il (θ
i
l) =

k⊗
i=1

U i(θi).

(7)

The CS ansatz can be seen in Fig. 1a. Next, we will
assume the observable and the input state to be classi-
cally split, such that they both can be expressed as a
tensor product of m-qubit observables or states. This as-
sumption restricts our proof to be valid only for m-local
quantum states and m-local observables. It is important
to note here that we use a definition that is different from
the literature throughout the paper. For this proof, an
m-local observable is an observable such that there are
no operators that act on overlapping groups of m qubits.
A generic m-local observable can be expressed as,

Om-local =

k∑
i=1

Oi ⊗ 1ī =

k∑
i=1

k⊗
j=1

(Oi − 1) δi,j + 1, (8)

where Oi is an observable over the qubits {(i − 1)m +
1, (i − 1)m + 2, ..., im}, and ī represents the remaining
N −m qubits. Then, the cost function becomes;
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FIG. 1. All types of ansätze used in this work. (a) An N -qubit generic ansatz consisting of L layers of the parametrized unitary
U are separated in to k = N/m many m-qubit ansätze. This ansatz will be referred to as the classically split (CS) ansatz. The
standard ansatz can be recovered by setting m = N . (b) Extended classically split (ECS) ansatz. This is an extension to the
CS ansatz. First L layers of the ansatz consists of k = N/m many m qubit U blocks. Then, T layers of N qubit V layers are
applied. (c) A simple ansatz that consists of RY rotation gates and CX gates connected in a “ladder” layout. (d) Hardware
Efficient Ansatz (HEA) that is used to produce the quantum dataset. Parameters of the first column of U3 gates are sampled
from a uniform distribution ∈ [−1, 1], while the rest of the parameters are provided by the dataset [36]. (e) EfficientSU2 ansatz
with “full” entangler layers [37].

C(θ) =

k∑
i=1

Tr[

k⊗
j=1

((Oi − 1) δi,j + 1)U j(θj)ρjU
j†(θj)]

=

k∑
i=1

k∏
j=1

Tr[((Oi − 1) δi,j + 1)U j(θj)ρjU
j†(θj)]

=

k∑
i=1

Tr[OiU
i(θi)ρiU

i†(θi)].

(9)
This can be written as a simple sum,

C(θ) =

k∑
i=1

Ci(θi), (10)

where,

Ci(θi) = Tr[OiU
i(θi)ρiU

i†(θi)]. (11)

Then, the costs of each classically separated circuit are
independent of each other. The gradient of jth parameter
of the ith ansatz can be written as,

∂i,jC(θ) = ∂i,jC
i(θi)

= ∂i,j(Tr[OiU
i(θi)ρiU

i†(θi)]).
(12)

Now, let us consider each ansatz U i(θi) to be a unitary
2-design. We want to choose the integer m such that it
scales logarithmically in N . Hence, we choose β and γ
appropriately, such that m = β logγ N holds. Then, if
we combine Eq. (5) with Eq. (12), the variance of the
gradient of jth parameter can be expressed as

Var[∂jC(θ)] ≈ O
(

1

2(6m)

)
= O

(
1

N6β logγ 2

)
. (13)

Here, the dependence on i or j becomes irrelevant (a
simpler choice for ansatz design would be to choose every
new ansatz to be the same), so it can be dropped for a
simpler notation. Similar to Eq. (5) the variance scales
with the dimension of the hilbert space (e.g. O(2m)).
Then, the overall expression scales with, O(N−6β logγ 2),
where β and γ are constant (e.g. β = 1 and γ = 2 results
in m = log2N). As a result, the variance of the classi-

cal splitting ansatz scales with O(poly(N)
−1

) instead of
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O(exp(N)
−1

). Therefore, a CS ansatz, irrespective of its
choice of gates or layout, can be used without leading to
BPs.

III. NUMERICAL EXPERIMENTS

In this section, we report results of four numerical ex-
periments. We investigate the scaling of gradients under
classical splitting by computing variances over many sam-
ples in Section III A. Then, we perform three experiments
to observe how classical splitting affects performance of
an ansatz. This task by itself leads to many questions as
there are multitudes of metrics that one needs to com-
pare and as many different problems one can consider.
For this purpose, we consider problems well known in
the literature, where trainability of ansätze plays a sig-
nificant role.

First, we perform binary classification on a synthetic
classical dataset in Section III B. The dataset contains
two distributions that are called as classes. The goal is
to predict the class of each sample. We perform the same
task for distribution of quantum states in Section III C.
Then, we give practical remarks in Section III D. Finally,
we propose an extension to the CS ansatz and employ it
for quantum simulating the ground state of the transverse
field ising hamiltonian in Section III E.

For the first three experiments (Sections III A to III C),
we consider the CS ansatz with layers that consists of
RY rotation gates and CX entangling gates applied in a
ladder formation for each layer. This layer can be seen
in Fig. 1c. As the observable, we construct the 1-local
observable defined in Eq. (14), where Zi represents the
Pauli-Z operator applied on the ith qubit and 1ī rep-
resents the identity operator applied on the rest of the
qubits.

O =
1

N

N∑
i=1

Zi ⊗ 1ī (14)

A. Barren Plateaus

Barren Plateaus are typically identified by looking at
the variance of the first parameter over a set of random
samples [6]. Recently, it has been shown that this is
equivalent to looking at the variance of samples from
the difference of two cost values evaluated at different
random points of the parameter space [16]. Since the
gradient-free optimization methods are also affected from
BPs, the values of the cost become a more inclusive in-
dicator [17]. For this reason, we will report our findings
with respect to the cost, rather than the gradients to
draw a broader picture. Results with respect to the gra-
dient of the first parameter is presented in Appendix B
for the sake of completeness.

4 8 12 16 20 24
N (Number of Qubits)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Va
r[

C]

m=4
m=8
m=12

m=16
m=20
m=N

FIG. 2. The variance of the change in cost vs. the number of
qubits for varying values of m. Each color/marker represents
a certain value of m and data points of the standard ansatz
(m = N) is plotted with a dashed black line.

The experiments were performed using analytical gra-
dients and expectation values, assuming a perfect quan-
tum computer and infinite number of measurements, us-
ing Pennylane [38] and Pytorch [39]. Variances are com-
puted over 2000 samples, where the values of the param-
eters are randomly drawn from a uniform distribution
over [0, 2π].

We start by presenting the variances over different val-
ues of m and N in Fig. 2. We fix the number of layers (L)
to N , so that the ansatz exhibits BPs in the no classical
splitting setting (m = N). The results indicate that a
constant value of m resolves the exponential behaviour,
as expected from Eq. (13). Furthermore, it is evident
that larger values of m can allow the ansatz to escape
BPs, given that m grows slow enough (e.g. O(logN)).

Our theoretical findings illustrate that the classical
splitting can be used to avoid BPs irrespective of the
number of layers. In our first experiment, we numerically
showed that this holds when we set L = N . Recent find-
ings showed that, a transition to BPs happens at a depth
of O(logN) for an ansatz with a local cost function [9].
Therefore, there is great importance in investigating the
behaviour for larger values of L. For considerably low
values of N (e.g. N < 32), we can assume a constant
value for m (e.g. m = 4), such that m is approximately
O(logN). We present variances of two ansätze (m = 4,
m = N) for up to 200 layers and 16 qubits in Fig. 3.
For the standard ansatz, we see a clear transition to BPs
with increasing number of layers, as expected [9]. On
the other hand, the CS ansatz (m = 4) shows a robust
behavior from small to large number of layers.

These two experiments show the potential of the clas-
sical splitting in avoiding BPs. However, the question of
whether this potential can be transferred in-to practice
(e.g. binary classification performance or quantum simu-
lation) still lacks an answer. Next, we will be addressing
this question.
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2 4 8 16 50 100 200
L (Number of Layers)
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N=8
N=16
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m=N

FIG. 3. The variance of the change in cost vs. the number of
layers for m = 4 (solid lines) and m = N (dashed lines) with
varying number of qubits.

B. Binary classification using a classical dataset

In this experiment, we will continue using the same
ansatz with same assumptions to perform binary clas-
sification using a classical dataset. Our goal here is to
compare performance of the CS ansatz to the standard
case for increasing number of qubits. We need a dataset
that can be scaled for this purpose. However, datasets
are typically constant in dimension and do not offer an
easy way to test the scalability in this sense. Therefore,
we employ an ad-hoc dataset that can be produced with
different number of features.

Three datasets (N = 4, 8 and 16) were produced using
the make classification function of scikit-learn1 [40]. This
tool allows us to draw samples from an N -dimensional
hypercube, where samples of each class are clustered
around the vertices. Each dataset contains 420 train-
ing and 180 testing samples. Each of the data samples
were encoded using one RY gate per qubit, such that
each ansatz uses the same number of features of the given
dataset. Please see Appendix C for more details on the
production of the dataset and distributions of samples.

The binary classification was performed using the ex-
pectation value over the observable defined in Eq. (14)
and the binary cross entropy function was used as the
loss function during training, such that,

L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (15)

where y (i.e. y ∈ {0, 1}) is the class label of the
given data sample and ŷ is the prediction (i.e. ŷ =

1 The classical dataset is produced for 600 data samples with a
420/180 train/test split, a class separation value of 1.0, 2.0%
class assignment error and no redundant or repeated features.

1 2 4 1 2 4 8 1 2 4 8 16
m (Number of Local Qubits)

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

N=4 N=8 N=16

FIG. 4. Box plot of the best test accuracy obtained over
50 runs plotted with respect to the relevant local number of
qubits (m). Each column represents a problem with a dif-
ferent sample size (4, 8, 16). Each marker is placed on the
median, boxes cover the range from the first to third quar-
tiles and the error bars extend the quartiles by 3 times range.
Each m value is plotted with a different marker and color.

Tr[OU(θ)ρ(x)U†(θ)], where x is the data sample)2. The
ADAM optimizer [41] with a learning rate of 0.1 was used
and all models are trained for 100 epochs using full batch
size (bs=420)3. We report our results based on 50 runs
for each setting.

Classification performance of ansätze for changing val-
ues of m using the three datasets are presented in Fig. 4.
Here, the results show the distribution of accuracies over
the test set. For the N = 4 case, we see that the standard
(m = N) ansatz performs the best. However, this is not
the case as we go to more qubits. For the 8 and 16 qubit
cases, it is evident that m < N ansätze can match the
performance of the standard ansatz. We can also see that
the constant choice of m = 4 can provide a robust perfor-
mance with increasing number of qubits (at least up-to
N = 16), matching our expectations. Training curves of
all settings are presented in Appendix D.

C. Binary classification using a quantum dataset

The binary classification performance of the classical
splitting over the classical datasets provides the first nu-
merical evidence for their advantage against the standard
ansätze. It is also important to investigate if they can be

2 Here, the expectation value can have values between [-1,1], we
scale it to be [0,1] to compensate for the discrepancy between
the class labels.

3 In the case of N = m = L = 16 full batch size was not pos-
sible due to vast memory requirement. Therefore, bs=60 was
used only for this case. In Appendix D, we show that using a
smaller batch size does not affect the performance of the model
significantly.
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extended to problems where the data consists of quan-
tum states. Our proof in Section II assumed the input
states to be tensor product states. Now, we remove this
constraint and use a quantum dataset.

For this experiment, we use the NTangled dataset [36].
NTangled dataset provides parameters to produce distri-
butions of quantum states that are centered around dif-
ferent Concentrable Entanglement (CE) [42] values. CE
is a measure of entanglement, which is defined as follows,

CE(|Ψ〉) = 1− 1

2N

∑
α∈Q

Tr[ρ2
α], (16)

where Q is the power set of the set {1, 2, ...,N}, and ρα
is the reduced state of subsystems labeled by the ele-
ments of α associated to |Ψ〉. The NTangled dataset
provides three ansätze trained for different CE values for
N=3, 4 and 8. We choose the Hardware Efficient Ansatz
(Fig. 1d) with depth=5, such that the parameters of the
first layer of U3 gates are sampled from a unitary dis-
tribution ∈ [−1, 1] and the others are provided by the
dataset. Then, we apply the same CS ansatz used in
Section III B and perform binary classification such that
the CE values are the labels of classes. The CE distri-
butions of the produced quantum states are presented in
Appendix E.

For the binary classification task, the same training
settings are used as in Section III B, except this time
models are trained until 50 epochs, as most models were
able to reach 100% test accuracy. We report our results
using different pairs of distributions in Table I. In the case
of N = 4, we observed that classical splitting can perform
at similar accuracy, even if the ansatz do not have any
entangling gates (m = 1). We see that entangling gates
are needed for better performance if the problem gets
harder (e.g. 0.25 vs. 0.35 case). If we go to a problem
with more qubits, we can safely say that the CS ansatz
can match the performance of the standard ansatz and
converge faster.

D. Practical remarks on classical splitting

The efficacy of classical splitting relies on the parts of
the circuit before and after the set of gates that undergo
classical splitting. This can be seen most clearly if we set
m = 1 and apply classical splitting to the entire circuit
after a possible initialization. In this case, we only per-
form single qubit operations after initialization. Hence,
if the initialization produces a tensor product state, then
the circuit subject to classical splitting with m = 1 can
no longer generate any entanglement. Similarly, if we
initialize with the HEA (Fig. 1d) and apply classical
splitting with m = 1 to the remaining circuit, then no
tensor product state can be found.

More generally, m = 1 produces a circuit that cannot
change the amount of entanglement. For other choices

of m, the picture becomes more complicated but, gen-
erally, the set of states that can be generated by the
quantum circuit before classical splitting will be reduced
to a subset based on the characteristics of the remaining
initialization.

A näıve implementation of classical splitting therefore
requires knowledge of the correct initialization such that
the final solution can still be reached with the classically
split circuit. In generic applications, this knowledge is
likely not available. Hence, an adaptive approach to clas-
sical splitting should be considered.

One adaptive approach would be to increasem to check
for improvements. After we observe no further training
improvement with m = 1, we could move to m = 2.
This enlarges the set of states the quantum circuit can
reach, and thus may lead to further training improve-
ments, at the cost of possibly stronger BP effects. How-
ever, if m = 1 has already converged fairly well, then the
state is already fairly close to the m = 2 solution and
it is unlikely to find a BP. With m = 2 converged, we
can then move to m = 4 and continue the process by
doubling m one step at a time.

If, for example, we consider the N = 4 “0.25 vs. 0.3”
case of Table I, we may start training with m = 1. This
training converges to about 90% accuracy. Increasing m
to m = 2 will lead to further improvements that converge
to about 98% accuracy. Finally, we can further improve
the 98% to 100% accuracy by going to m = 4.

In this way, we utilize the efficiency of classical splitting
to obtain an approximate solution which we then refine
by trading efficiency for circuit expressivity through in-
creasing m. At this point, the efficiency reduction should
no longer lead to insurmountable complications as we al-
ready are close to the optimal solution for the current m
value.

Another adaptive approach would be to use classical
splitting to check and bypass plateaus. For example, if a
VQE appears to be converged, it may also just be stuck in
a plateau. Applying classical splitting at this point would
reduce the effect of the plateau. Thus, if the VQE con-
tinues optimizing after classically splitting a seemingly
converged circuit, we can conclude that this was in fact
a plateau. After a suitable number of updates using the
classically split circuit, we can then return to the full
circuit in the hopes of having passed the plateau.

Unfortunately, this approach cannot be used to posi-
tively distinguish between true local optima and plateaus
since the classical splitting reduces expressivity and thus
introduces artificial constraints. Hence, if the set of states
expressible by the classically split circuit is orthogonal
to the gradient in the cost function landscape, then a
plateau will be replaced with a local optimum and, thus,
no improvements will be obtained. In this case, we there-
fore cannot conclude that the VQE has converged sim-
ply because classical splitting shows no improvements.
However, experimenting with different implementations
of classical splitting may result in cases that do not re-
place the plateau with an artificial local optimum.
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TABLE I. Binary classification performance of ansätze with different values of m over different distributions of quantum states
from the NTangled dataset [36]. Average of 50 runs are presented with errors showing the difference to maximum and minimum
observed values. Best average value of each metric for the given task is printed in bold.

N
Task

L m Train Accuracy (%)
Avg. epochs to reach Avg. epochs to reach

Test Accuracy (%)
Avg. epochs to reach Avg. epochs to reach

[CE Values] 90% Train Accuracy 100% Train Accuracy 90% Test Accuracy 100% Test Accuracy

4 0.05 vs. 0.35 4
1 94.6+2.5

−1.7 6.7+11.3
−5.7 N/A 94.6+3.8

−1.8 6.1+11.9
−5.1 N/A

2 100.0+0.0
−0.5 4.9+12.1

−3.9 N/A 100.0+0.0
−0.0 3.9+11.1

−2.9 10.8+26.2
−9.8

4 99.9+0.1
−1.6 5.4+6.6

−4.4 N/A 100.0+0.0
−1.1 4.1+8.9

−3.1 N/A

4 0.25 vs. 0.35 4
1 90.4+4.1

−3.5 N/A N/A 86.4+6.9
−5.9 N/A N/A

2 98.2+1.5
−1.3 7.7+25.3

−5.7 N/A 97.1+2.3
−1.6 7.9+27.1

−6.9 N/A

4 100.0+0.0
−0.4 5.1+9.9

−4.1 N/A 100.0+0.0
−1.1 4.5+11.5

−3.5 N/A

8 0.15 vs. 0.45 8

1 99.9+0.1
−0.2 3.3+3.7

−2.3 N/A 100.0+0.0
−0.0 2.4+2.6

−1.4 6.1+10.9
−5.1

2 100.0+0.0
−0.0 2.5+2.5

−1.5 7.1+11.9
−6.1 100.0+0.0

−0.0 1.5+2.5
−0.5 3.2+6.8

−2.2

4 100.0+0.0
−0.0 2.4+1.6

−1.4 4.6+4.4
−3.6 100.0+0.0

−0.0 1.4+1.6
−0.4 2.9+7.1

−1.9

8 100.0+0.0
−0.0 2.8+2.2

−0.8 7.8+11.2
−5.8 100.0+0.0

−0.0 1.8+2.2
−0.8 4.8+8.2

−3.8

8 0.40 vs. 0.45 8

1 99.9+0.1
−0.4 3.1+2.9

−2.1 N/A 99.6+0.4
−0.7 2.2+2.8

−1.2 N/A

2 100.0+0.0
−0.0 2.8+4.2

−1.8 9.2+11.8
−8.2 100.0+0.0

−0.0 1.9+4.1
−0.9 5.2+5.8

−4.2

4 100.0+0.0
−0.0 2.4+1.6

−1.4 5.3+12.7
−4.3 100.0+0.0

−0.0 1.5+1.5
−0.5 3.2+9.8

−2.2

8 100.0+0.0
−0.0 2.9+3.1

−0.9 8.2+9.8
−6.2 100.0+0.0

−0.0 1.9+3.1
−0.9 5.7+5.3

−4.7

E. Extending classical splitting to VQE

Until now, we have investigated using classical splitting
for binary classification problems. It succeeded by show-
ing an overall better training performance in Section III B
and a competitive performance and faster convergence
in Section III C. In this section, we consider simulating
the ground state of the transverse-field ising hamiltonian
(TFIH) on a 1D chain. The TFIH with periodic bound-
ary conditions can be defined as;

H = −J
N∑
i=1

ZiZi+1 − h
N∑
i=1

Xi, (17)

for N lattice sites, where J determines the strength of
interactions and h determines the strength of the exter-
nal field. Simulating the TFIH on a 1D chain requires
connectivity of qubits on the 1D chain. This contradicts
with the assumption we made, when we proved absence
of BPs for classically split ansätze in Section II, since the
TFIH does not fit the definition we had for an m-local
observable in Eq. (8). Therefore, we need to rely on the
numerical experiments to talk about BPs under the new
constraints.

The CS ansätze can only produce local entangled
states, for this reason we need an extension of the ansatz
in Fig. 1a. We propose to extend the classically split
ansatz by adding standard layers at the end. The reason
for adding them at the end is to keep the base of light
cones4 produced by the classically split layers constant.

4 A light cone or a causal cone of an ansatz is an abstract concept
that illustrates how information spreads as more gates are ap-
plied. The types of gates and their connectivity determines the
opening angle of the cone. The evidence from the literature sug-
gests that there is a correspondence between the opening angle
of the cone, BPs and quantum circuit complexity [9, 43].

Then, when we add the standard layers, the light cones
will grow at a pace that is determined by the newly-added
part5. This way, the overall ansatz can still escape BPs
as long as the newly-added part does not exhibit BPs.

We define the extended classically split (ECS) ansatz
with two types of layers. First L layers consist of classi-
cally split m qubit gate blocks. Then, there are T lay-
ers of any no-BP ansatz (see Fig. 1b). Since the first
L layers can only produce m-local product states (i.e.
m < O(logN)), the existence of BPs depends only on
the remaining T layers. This way we can choose very
large L, but need to keep T small as standard ansätze
reach BPs rather rapidly (e.g. O(logN) depth for a lad-
der connected ansatz [9]). We provide numerical evidence
for avoiding BPs with the ECS ansatz in Appendix F.

For the experiment, we consider the Hamiltonian de-
fined in Eq. (17) with J = 1, h = 1. Then, we implement
the ECS ansatz with m = 4 for total depth of 2, 4, 6
and 8. Each side of the ansatz consists of EfficientSU2
layers [37] (see Fig. 1e). The first L layers are classi-
cally split to subcircuits of m qubits, while the next T
layers do not have any splitting. Total depth (D) corre-
sponds to L + T , where T = 0 is equivalent to the CS
ansatz, T = D is equivalent to the standard EfficientSU2
ansatz and other values explore hybrid use cases of the
ECS ansatz. We report the energy error, which is the ab-
solute difference between the final energy measurement
and the exact ground state energy in Fig. 5. Results of 10
runs are averaged and plotted with their minimum and
maximum values as the error bars. Experiments are per-
formed under no noise assumption using 10k shots. The
SPSA optimizer [44] is used with 10k iterations. Results

5 It also depends on the choice of m, but since we already have
a constraint on m (i.e. m = O(logN)) the newly-added ansatz
will be the dominant component.
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with m = 2 and training curves of all runs are presented
in Appendix G and H.

The upper panel shows that the mean error increases
with increasing total depth in the no classical splitting
setting (T = D). This is mainly due to the flattening of
the cost landscape, which makes the optimization process
harder. On the other hand, setting T (e.g. T = 1) to a
low number provides a better error, since it preserves
trainability despite the increasing total depth. This is a
clear indication that the classical splitting allows deeper
ansätze.

The lower panel shows the best error obtained in all
the runs for two settings. Here, we observe that both set-
tings achieve better errors with increasing depth initially.
Then, the no CS setting shows rapidly increasing errors
as it looses trainability rather quickly, compared to the
ECS ansatz.

In this experiment, the best error was achieved with
the fully classically split ansatz (T = 0). This is mainly
due to the employed EfficientSU2 ansatz not being a
very good choice for this particular problem. This means
that by employing other ansätze, the observed behaviour
might change, making a larger value of T perform the
best. Nevertheless, the results are still a good indication
of how the trainability of the ansatz is affected by the
choice of L and T . We plan to draw a more detailed pic-
ture of the tradeoff between values of L and T in a future
work.

Simulating larger size systems requires a deep ansatz
(linear or larger in system size) in general [1]. Although a
problem-agnostic ansatz can perform well at small sizes,
BPs forbid the scalability. Our results show that the ECS
can help circumvent this issue and allow deeper ansätze.
Here, we haven’t investigated the potential of classical
splitting to obtain the exact ground state energy of the
model, but focused on the trainability aspect. Such a
study is left as future work. Our goal here is to show
that classical splitting can allow one to build wide and
deep ansätze without exhibiting BPs. Typically, faster
convergence or a better final energy might be achieved
with a different ansatz or an optimizer, but this is out of
scope of this work.

IV. DISCUSSION

In this work, we showed that the classical splitting of
the ansätze can be used to escape BPs both analytically
and numerically. Then, we investigated if the classical
splitting hinders the learning capacity of the ansatz. Our
experiments showed that this is not the case, and the
classically split ansatz can match the performance at low
number of qubits and is potentially superior at larger
number of qubits.

In general the benefits of classical splitting comes from
the reducing the effective Hilbert Space that the CS
ansatz can explore. Classical splitting only allows the
ansatz to produce m-qubit tensor product states, if the

FIG. 5. Energy errors of ansätze with increasing total depth
for N = 12 TFIH using the extended classical splitting (ECS)
ansatz with EfficientSU2 sublocks (see Fig. 1b) and m = 4.
Total depth (D) corresponds to L+ T , where T = 0 is equiv-
alent to the CS ansatz, T = D is equivalent to standard Effi-
cientSU2 and other values explore hybrid use cases of the ECS
ansatz. Final energy measurements of 10 runs are averaged
and plotted with their minimum and maximum values as the
error bars on the upper panel. The lower panel shows the best
errors obtained for T = 1 and T = D settings. Energy error
is the absolute difference of the energy measurement and the
exact ground state energy.

input state is also a tensor product state following our
assumptions in Section II. This, as a result, reduces the
expressivity of the ansatz. Nevertheless, this also al-
lows the ansatz to avoid BPs [10] by limiting the scal-
ing behavior to the more favorable case of m-qubit sys-
tems. In the case of the classical splitting, the expo-
nential increase of the Hilbert Space dimension is pre-
vented and instead a polynomial scaling is enforced. For
the m-local CS ansatz, each local Hilbert Space have
dim(Hk) = 2m = Nβ log2 γ . Although the advantage of
using classical splitting may look trivial, there are many
benefits of employing such an ansatz besides the numer-
ical experiments we performed in Section III.

In our binary classification experiments using a classi-
cal dataset, we relied on single qubit and single rotation
gate data encoding. This meant that any classically split
ansatz had less information in each group. This could in
fact be improved with embedding methods such as data
re-uploading, where one can encode all the data points to
each single qubit independently, such that there are alter-
nating layers of rotation gates that encode the data and
parametrized gates that are to be optimized [45]. Data
re-uploading ansätze showed great classification perfor-
mance even for low number of qubits. Since the classical
splitting doesn’t have a limit on the amount of layers,
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data re-uploading would potentially be great way to get
a performance increase.

Classical splitting can provide faster training when
used with gradient based optimizers. In general, the
exact gradients of ansätze are computed with the well-
known parameter shift rule [46, 47]. However, this re-
quires 2 instances of the same circuit to be executed per
parameter. This quickly results in a bottleneck for the
optimization procedure. An ansatz with L = N layers,
where each layer has N parameters, requires O(N2) cir-
cuit executions to compute gradients for a single data
sample. On the other hand, classical splitting provides
cost functions that are independent of each other, as
it was shown in Eq. (11). This allows gradients to be
computed simultaneously across different instances of the
classically split ansatz. As a result, the classically split
ansatz optimization requires O(N logN) circuit execu-
tions for m = O(logN).

The bottleneck in optimization is only one of the chal-
lenges of implementing scalable VQAs. Another problem
that is worth mentioning here is the amount of two-qubit
gates. NISQ hardware provides limited connectivity of
qubits. The topology of the devices plays an essential role
in the efficient implementation of quantum circuits [48].
Typically, a quantum circuit compilation (or transpila-
tion) procedure is required to adapt a given circuit to be
able to be compatible with the capabilities of the devices
(e.g. converting gates to native gates, applying SWAP
gates to connect qubits which are not physically con-
nected) [49].

Classical splitting provides a significant reduction in
number of two qubit gates as it divides a large qubit
to many circuits with less qubits. To show the scale of
the reduction, we can construct a set of hypothetical de-
vices that has a 2D grid topology (square lattice with no
diagonal connections). We start by considering the CS
ansatz that consists the ansätze in Fig. 1c and extend
it to a fully entangled architecture. A linear entangled
ansatz has O(N) two qubit gates, while a fully entan-
gled one has O(N2) per layer. Then, we use Qiskit’s
transpiler6 [37] to fit these ansätze to the hypothetical
devices and report the two qubit gate counts in Table II.

The amount of gates are not only important to have
a better implementation but also to have a more precise
results, since NISQ devices come with noisy gates. We
consider the CX gate errors reported by IBM for their de-
vices, which can be taken as O(10−2) on average7. Then,
as a figure of merit, we can assume 50% to be the limit,

6 Qiskit’s transpiler algorithm is a stochastic algorithm, meaning
that it is possible to get better values if the algorithm is executed
many times. Here, we run the algorithm two times and take the
best results using optimization level 3, and sabre-sabre layout
and routing methods. Although, It is possible to obtain better
gate counts with more runs or different transpilation algorithms,
the best values obtained wouldn’t change our conclusions.

7 This value is chosen after a survey of devices listed on IBM Quan-
tum Cloud.

TABLE II. Two qubit gate counts of different ansätze tran-
spiled for hypothetical devices that has a 2D grid topology
(square lattice with no diagonal connections).

m L
amount of two qubit gates

linear entanglement full entanglement

N = 4 N = 16 N = 36 N = 4 N = 16 N = 36

N
2 6 33 121 24 696 3601

N 12 240 1362 46 5372 65040

4
2 6 24 54 24 92 250

N 12 192 978 46 964 4376

2
2 4 16 36 4 16 42

N 8 128 654 8 134 648

in which we can still get meaningful results. This would
allow us to use 50 CX gates at most. Now, the results
from Table II implies that it is possible to construct a
36 qubit, 2 layer ansatz with linear entanglement, if we
employ classical splitting. This would not be possible
for the standard case as it comes with more than twice
two qubit gates. The reduction only gets better if we
consider a full entanglement case. Following the same
logic, to implement a 36 qubit, 36 layer, fully entangled
ansatz, a CX gate error of O(10−6) is needed, while the
classically split ansatz only requires a CX gate error of
O(10−4). A similar reduction in noise is also possible for
other types of circuit partitioning methods [50].

Classically splitting an ansatz further allows faster im-
plementation on hardware. A generic ansatz consists of
two-qubit gates that follow one and another, matching
a certain layout. We mentioned some of these as lad-
der/linear or full. However, this means that the hardware
implementation of such an ansatz requires execution of
these gates sequentially, taking a significant amount of
time. To overcome such obstacles, ansätze such as the
HEA (see Fig. 1d) are widely used in the literature [15].
Classical splitting an ansatz can reduce the implementa-
tion time significantly since it allows simultaneous two-
qubit gates across different local circuits. This can mean
a speed-up of from O(N/ logN) to O((N/ logN)2) de-
pending on the connectivity of the original ansatz.

Finally, the formulation we used in Section III B allows
the CS ansatz to be implemented on smaller quantum
computers instead of a single large quantum computer.
This means that for similar problems, there are many im-
plementation options available. These include using one
large device, using many small devices (e.g., O(N/ logN)
many O(logN) qubit devices) and parallelizing the task
or using one small device and performing all computa-
tion sequentially. All of these features makes the clas-
sical splitting an ideal approach for Quantum Machine
Learning (QML) applications using NISQ devices.

https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
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V. CONCLUSION

In this work, we presented some foundational ideas of
applying classical splitting to generic ansätze. Our re-
sults indicate many benefits of using classical splitting,
such as better trainability, faster hardware implemen-
tation, faster convergence, robustness against noise and
parallelization under certain conditions. These suggest
that classical splitting or variations of this idea might
play an essential role in how we are designing ansätze
for QML problems. We also presented an extension to
the initial classical splitting idea so that these types of
ansätze can be used in VQE. The initial results that we
presented in this work suggest that classical splitting can
help improve the trainability and reach better error val-
ues. However, it is still an open question to what extent
VQE can benefit from classical splitting. Our results
encourages employing approaches that are based upon
classically splitting or partitioning parametrized quan-

tum circuits [28–35], as they are in general more robust
against hardware noise. We consider in-depth analysis
and applications with VQE and QAOA as future direc-
tions for this work.
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[45] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and
J. I. Latorre, Data re-uploading for a universal quantum
classifier, Quantum 4, 226 (2020).

[46] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii,
Quantum circuit learning, Physical Review A 98, 032309
(2018).

[47] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-
loran, Evaluating analytic gradients on quantum hard-
ware, Physical Review A 99, 1 (2019).

[48] J. Weidenfeller, L. C. Valor, J. Gacon, C. Tornow,
L. Bello, S. Woerner, and D. J. Egger, Scaling of the
quantum approximate optimization algorithm on su-
perconducting qubit based hardware, arXiv:2202.03459
10.48550/arXiv.2202.03459 (2022).

[49] A. Botea, A. Kishimoto, and R. Marinescu, On the Com-
plexity of Quantum Circuit Compilation, Proceedings of
the International Symposium on Combinatorial Search
9, 138 (2018).

[50] S. Basu, A. Saha, A. Chakrabarti, and S. Sur-Kolay, i-
QER: An Intelligent Approach towards Quantum Error
Reduction, arXiv:2110.06347 (2022).

[51] J. A. Miszczak and Z. Pucha la, Symbolic integration with
respect to the Haar measure on the unitary groups, Bul-
letin of the Polish Academy of Sciences: Technical Sci-
ences; 2017; 65; No 1; 21-27 (2017).

http://arxiv.org/abs/2203.02464
http://arxiv.org/abs/2203.09376
http://arxiv.org/abs/2201.08194
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1103/PhysRevResearch.3.033090
https://doi.org/10.1103/PhysRevResearch.3.033090
https://arxiv.org/abs/2111.08085
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1038/s41534-021-00390-6
https://arxiv.org/abs/2104.10220
http://arxiv.org/abs/2107.07532
https://doi.org/10.1103/PRXQuantum.3.010346
http://arxiv.org/abs/2203.13739
http://arxiv.org/abs/2109.03400
https://doi.org/10.5281/zenodo.6403335
https://doi.org/10.5281/zenodo.6403335
http://arxiv.org/abs/1811.04968
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevLett.127.140501
https://doi.org/10.1103/PhysRevLett.127.140501
http://arxiv.org/abs/2106.05305
https://www.jhuapl.edu/SPSA/PDF-SPSA/Spall_An_Overview.PDF
https://www.jhuapl.edu/SPSA/PDF-SPSA/Spall_An_Overview.PDF
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.48550/arXiv.2202.03459
https://ojs.aaai.org/index.php/SOCS/article/view/18463
https://ojs.aaai.org/index.php/SOCS/article/view/18463
https://ojs.aaai.org/index.php/SOCS/article/view/18463
https://arxiv.org/abs/2110.06347
https://journals.pan.pl/dlibra/publication/121307/edition/105697
https://journals.pan.pl/dlibra/publication/121307/edition/105697
https://journals.pan.pl/dlibra/publication/121307/edition/105697


12

Appendix A:

When analyzing the size of the gradients of an ansatz we need tools that allows integration over all states allowed
by the ansatz over the d-dimensional Hilbert Space. This can be achieved by using the Haar measure. Haar measure
is an invariant measure over the SU(d) group. An ensemble of unitary operators U is called as a unitary t-design
if they are equal to the Haar measure µ(U) up-to polynomial order t. Then, the expectation of ensemble U , where
unitary Vi can be sampled with probability pi is given as,

EtH(ρ) =

∫
U⊗tρ(U⊗t)† dU =

∑
i

piV
⊗t
i ρ(V ⊗ti )†. (A1)

Then, to perform symbolic integration over the Haar measure we will need to use some properties of the measure [51].
For the first moment we have,

∫
dµ(U)UijU

∗
km =

δikδjm
d

, (A2)

where d is the dimension of the Unitary, such that d = 2N and N is number of qubits. Then, for the second moment
we have,

∫
dµ(U)Ui1j1Ui2j2U

∗
k1m1

U∗k2m2
=

=
δi1k1δj1m1

δi2k2δj2m2
+ δi1k2δi2k1δj1m2

δj2m1

d2 + 1
− δi1k1δj2m2

δj1m2
δj2m1

+ δi1k2δi2k1δj1m1
δj2m2

d(d2 + 1)
(A3)

Then one can derive the following identities for integrals over the Haar measure [6, 9, 10],

∫
dµ(U)Tr[UAU†B] =

Tr[A]Tr[B]

d
. (A4)

We can extend this to the second moment to obtain the following identity,

∫
dµ(U)Tr[UAU†BUCU†D] =

=
Tr[A]Tr[C]Tr[BD] + Tr[AC]Tr[B]Tr[D]

d2 − 1
− Tr[AC]Tr[BD] + Tr[A]Tr[B]Tr[C]Tr[D]

d(d2 − 1)
. (A5)

We also have,∫
dµ(U)Tr[UAU†B]Tr[UCU†D] =

=
Tr[AC]Tr[B]Tr[D] + Tr[AC]Tr[BD]

d2 − 1
− Tr[AC]Tr[B]Tr[D] + Tr[A]Tr[C]Tr[BD]

d(d2 − 1)
. (A6)

Now, we can use these identities to compute the average value of the gradients. Let’s start by reminding ourselves the
definitions we used before. The ansatz is composed of consecutive parametrized (V ) and non-parametrized entangling
(W ) layers. We define Ul(θl) = exp(−iθlVl), where Vl is a Hermitian operator and Wl is a generic unitary operator.
Then, the curcuit ansatz can be expressed with a multiplication of layers,

U(θ) =

L∏
l=1

Ul(θl)Wl (A7)

For an observable O and an input state ρ, the cost function is given as
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C(θ) = Tr[OU(θ)ρU†(θ)] (A8)

The ansatz can be separated into two parts to investigate a certain layer, such that U− ≡
∏j−1
l=1 Ul(θl)Wl and

U+ ≡
∏L
l=j Ul(θl)Wl. Then, the gradient of the jth parameter can be expressed as [6]

∂jC(θ) =
∂C(θ)

∂θj
= iTr[[Vj , U

†
+OU+]U−ρU

†
−] (A9)

Then the expected value of the gradient can be computed by using the Haar integral such that,

〈∂jC(θ)〉 = i

∫
dµ(U−)dµ(U+)Tr[[Vj , U

†
+OU+]U−ρU

†
−] (A10)

=
iTr[ρ]

d

∫
dµ(U+)Tr[[Vj , U

†
+OU+] = 0, (A11)

where we use Eq. (A4) to obtain (A10) and use the fact that trace of the commutator is zero in (A11). This proves
that the gradients are centered around zero. Then, the variance of the gradient can inform us about the size of the
gradients. The variance is defined as,

Var[∂jC(θ)] = 〈(∂jC(θ))2〉 − 〈∂jC(θ)〉2 = 〈(∂jC(θ))2〉 (A12)

We can compute the expected value of the variance using the same logic. Then we have,

Var[∂jC(θ)] = −
∫
dµ(U−)dµ(U+)Tr[[Vj , U

†
+OU+]U−ρU

†
−]2 (A13)

= − 1

d2 − 1

(∫
dµ(U+)Tr[ρ]2Tr[[Vj , U

†
+OU+]]2 + Tr[ρ2]Tr[[Vj , U

†
+OU+]2]

)
(A14)

+
1

d(d2 − 1)

(∫
dµ(U+)Tr[ρ2]Tr[[Vj , U

†
+OU+]2] + Tr[ρ]2Tr[[Vj , U

†
+OU+]]2

)
(A15)

= −
(

Tr[ρ2]− 1

d

)
1

d2 − 1

∫
dµ(U+)Tr[[Vj , U

†
+OU+]2] (A16)

We use Eq. (A6) to obtain Eq. (A14). Then, use the fact that commutator being traceless to obtain Eq. (A16). To
compute the integral of Eq. (A16) we need another identity such that [10],

Tr[[Vj , U
†
+OU+]2] = 2Tr[U+VjU

†
+OU+VjU

†
+O]− 2Tr[U+V

2
j U
†
+O

2]. (A17)

Then, the variance becomes,

Var[∂jC(θ)] = −
(

Tr[ρ2]− 1

d

)
2

d2 − 1

(∫
dµ(U+)Tr[U+VjU

†
+OU+VjU

†
+O] +

∫
dµ(U+)Tr[U+V

2
j U
†
+O

2]

)
. (A18)

The first integral can be computed using Eq. (A5) and the second can be computed using Eq. (A4). Then we
obtain,

Var[∂jC(θ)] = −
(

Tr[ρ2]− 1

d

)
2

d2 − 1
(

1

d2 − 1
(Tr[V ]2Tr[O]2 + Tr[V 2]Tr[O2])

− 1

d(d2 − 1)
(Tr[V ]2Tr[O]2 + Tr[V 2]Tr[O2])− 1

d
Tr[V 2]Tr[O2] )

= −
(

Tr[ρ2]− 1

d

)
2Tr[V 2]Tr[O2]

d2 − 1

(
d− 1

d(d2 − 1)
(1 + Tr[V ]2Tr[O]2)− 1

d

)
. (A19)
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Finally, the asymptotic behaviour of the variance can be expressed as

Var[∂jC(θ)] ≈ O
(

1

d6

)
≈ O

(
1

26N

)
, (A20)

where d = 2N . Thus, the variance vanishes exponentially with respect to N.
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Appendix B
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FIG. 6. The variance of the gradients of the first parameter of the ansatz as a function of the number of qubits for varying
values of m. Each color/marker represents a certain value of m and data points of the standard ansatz (m = N) is plotted
with a dashed black line.
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FIG. 7. The log plot of variance of the gradients of the first parameter of the ansatz vs. number of layers for m = 4 (solid
lines) and m = N (dashed lines) with varying number of qubits.
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FIG. 8. Cost landscapes of ansätze with different settings. Parameters of the ansatz are reduced down to two using PCA and
the x and y axis of the plots represents the PCA variables in same scale but with arbitrary units. The cost values (shown with
the colormap) are obtained using the definitions in Section III B. First column shows cost values of an L = 2 standard ansatz
for increasing number of qubits. Second column shows the results for the same ansatz but with L = N layers. As, expected the
landscape flattens with more qubits and we see a single color for N > 12. Third column shows results for splitting (for m = 4)
of the ansatz in the case of L = N layers. We see that the landscape does not become flatter with more qubits.
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Appendix C

FIG. 9. Distributions of the ad-hoc dataset used in Section III B. Each panel shows distribution of a single feature from one
of three datasets. N denotes the size of the dataset (number of features), while f denotes the feature number. There exists
600 samples of N features for a size N dataset. Colors represent two classes. During training, data samples are divided with a
420/180 train/test ratio. The dataset is produced using make classification function of scikit-learn [40] with a class separation
value of 1.0, 2% class assignment error and no redundant or repeated features.
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Appendix D
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FIG. 10. Training curves showing four different metrics for the problem described in Section III B. Panels of each row show a
different metric. First three columns show training results from L = 2 ansätze, the last three columns show training results
from L = N ansätze for N ∈{4,8,16}. Each value of m is plotted with a different color. Lines are obtained by averaging 50
runs and their standard deviation is shown with shades.
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FIG. 11. Batch size comparison for the training of N = 16, m = 16 and m = 4. Training the N = L = 16 model
requires vast computational resources, especially memory. This restricted us from using a full batch size during the training of
N = m = L = 16 setting. Therefore, we presented results from a training that used a batch size of 60 instead of 420 (full).
Here, we show training curves for m = 4 on addition to m = 16 for two different batch size (bs). Behaviour of the curves show
that the gain in performance has nothing to do with the batch size difference.
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Appendix E
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FIG. 12. Distributions of the NTangled [36] dataset with respect to the CE values described in Section III C. The HEA ansatz
(Fig. 1d) is used to produce the distributions. Each training set has 420 and each test set has 180 data samples. We see a
mismatch for CE ∈{0.40,0.45} in the 8 qubit case. We are not sure what causes this, but it is not an issue for our problem
as we are not interested in the CE values themselves but the quantum states as a whole. So, they are valid quantum state
distributions as long as they can be separated with a given metric for our problem. Our results show that this is in fact true.
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FIG. 13. Training curves showing four different metrics for the problem described in Section III C. Panels of each row show a
different metric. Each column presents a different task, where N determines the problem size and the CE values are the labels
of the classes. Each value of m is plotted with a different color. Lines are obtained by averaging 50 runs and their standard
deviation is shown with shades.
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Appendix F
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FIG. 14. The variance of the change in cost as a function of the number of qubits for varying values of L and T for L+T = D = 6.
The cost function is the TFIH hamiltonian defined in Eq. 17 and the ansatz is the ECS ansatz with EfficientSU2 sublocks (see
Fig. 1). Each line depicts a different value of T . The left panels show results for m = 2 and the right panel shows results for
m = 4. Variances are obtained over 2000 cost samples, where ∆C is the difference of any arbitrary two cost samples.

Appendix G
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FIG. 15. Energy errors of ansätze with increasing total depth for N = 12 TFIH using the extended classical splitting (ECS)
ansatz with EfficientSU2 sublocks (see Fig. 1b) and m = 2. Total depth (D) corresponds to L+T, where T = 0 is equivalent
to the CS ansatz, T = D is equivalent to standard EfficientSU2 and other values explore hybrid use cases of the ECS ansatz.
Final energy measurements of 10 runs are averaged and plotted with their minimum and maximum values as the error bars on
the upper panel. The lower panel shows the best errors obtained for T = 1 and T = D settings. Energy error is the absolute
difference of the energy measurement and the exact ground state energy.
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Appendix H
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FIG. 16. Energy error curves of ansätze TFIH for N = 12 using the extended classical splitting (ECS) ansatz with EfficientSU2
sublocks (see Fig. 1b). Columns corresponds to ansätze with m = 2 and m = 4 respectively. Each row shows results with
increasing total depth (D), such that L + T = D. Energy errors of 10 runs are averaged and their mean is presented. Energy
error is the absolute difference of the energy measurement and the exact ground state energy. It becomes harder to optimize
an ansatz with no classical splitting (L = 0) as depth increases. However, we see that the optimization does not get as hard if
we set T to a small value, e.g. to 1, and employ classical splitting. We observe similar conclusions with m = 2 and m = 4.
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