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We generalize the hidden-fermion family of neural network quantum states to encompass both
continuous and discrete degrees of freedom and solve the nuclear many-body Schrödinger equation
in a systematically improvable fashion. We demonstrate that adding hidden nucleons to the original
Hilbert space considerably augments the expressivity of the neural-network architecture compared
to the Slater-Jastrow ansatz. The benefits of explicitly encoding in the wave function point sym-
metries such as parity and time-reversal are also discussed. Leveraging on improved optimization
methods and sampling techniques, the hidden-nucleon ansatz achieves an accuracy comparable to
the numerically-exact hyperspherical harmonic method in light nuclei and to the auxiliary field
diffusion Monte Carlo in 16O. Thanks to its polynomial scaling with the number of nucleons, this
method opens the way to highly-accurate quantum Monte Carlo studies of medium-mass nuclei.

I. INTRODUCTION

Since the early 2000s, the combination of nuclear effec-
tive field theories (EFTs) and sophisticated many-body
methods has paved the way to a systematic description of
atomic nuclei that is well rooted in the underlying theory
of strong interactions [1]. In particular, numerical meth-
ods based on single-particle basis expansions, such as self-
consistent Green’s function [2], the in-medium similarity-
renormalization group [3], and Coupled Cluster [4] have
achieved a formidable success in treating binding energies
and radii up to 208Pb [5] and have provided a plausible
solution to the quenching puzzle of beta-decays [6]. Nev-
ertheless, some prominent challenges remain open. As a
chief example, most of existing nuclear Hamiltonians can-
not simultaneously describe light nuclear systems and the
equation of state of infinite nucleonic matter [7, 8]. Ex-
haustive tests of nuclear interactions require many-body
methods that are suitable to retain the complexity of nu-
clear dynamics at short distances [9, 10]. An accurate
description of the latter is also critical to reproduce ex-
clusive lepton-nucleus scattering cross sections [11–13],
for the calculation neutrinoless double-beta decay ma-
trix elements [14], and for studying neutron-star matter
in the high-density regime [8, 9, 15].

Continuum quantum Monte Carlo (QMC) meth-
ods [16] have no difficulties in treating short-range (or
high-momentum) components of the nuclear wave func-
tion, but are presently limited to light nuclei, with up to
A = 12 nucleons. The primary reason preventing QMC
calculations of medium-mass and large nuclei is the on-
set of the fermion-sign problem. Controlling it requires
employing sophisticated wave-functions, whose calcula-
tion either scales exponentially with the number of nucle-
ons [17, 18] or violates the factorization theorem [19–21].
Therefore, extending QMC calculations to medium-mass
nuclei rests on our ability to develop wave functions that
capture the vast majority of nuclear correlations while re-

quiring computational time that scales polynomially with
A. Developing such wave-functions is also important to
correctly evaluate observables that do not commute with
the Hamiltonian — e.g. spatial and momentum distri-
butions, electroweak transition and responses — as their
QMC estimates strongly depend upon the quality of the
wave-function ansatz.

After the earliest application to prototypical interact-
ing spins models [22] artificial neural networks (ANNs)
have proven to compactly and accurately represent the
wave function of a variety of strongly interacting sys-
tems [23–25]. The applicability of ANNs in solving the
nuclear Schrödinger equation in momentum space has
been first demonstrated in Ref. [26], where the ground-
state of the deuteron is reproduced with remarkable accu-
racy by a single-layer ANN — see Ref. [27] for a detailed
uncertainty-quantification analysis. Subsequently, an
anti-symmetric coordinate-space ansatz defined through
the product between a permutation-invariant ANNs Jas-
trow and a Slater determinant of single-particle orbitals
has been utilized in a variational Monte Carlo (VMC)
method to solve leading-order pionless-EFT Hamiltoni-
ans of A ≤ 6 nuclei [28, 29]. Detailed comparisons
against Green’s function Monte Carlo and the hypersh-
perical harmonics approaches have validated the expres-
sivity of this ANN Slater-Jastrow (ANN-SJ) ansatz, but
also highlighted its shortcomings, essentially due to the
incorrect nodal surface of the Slater determinant.

The authors of Ref. [30] have recently introduced an
extremely expressive family of variational wave func-
tions, consisting of augmented Slater determinants in-
volving “hidden” additional fermionic degrees of free-
dom. This family of wave functions, which has proven
to be universal for fermionic lattice systems, has been
utilized to study the Hubbard model on the square lat-
tice. In this paper, we generalize this approach to en-
compass both discrete and continuous degrees of free-
dom and solve the nuclear many-body problem in a
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systematically-improvable fashion. We couple the “hid-
den nucleons” wave function with the VMC method de-
veloped in Refs. [28, 29] to compute the ground-state
energies of 3H, 3He, 4He, and 16O nuclei starting from
the pionless-EFT Hamiltonian of Ref. [31]. We note that
16O becomes the largest nucleus studied with neural-
network quantum states so far. Both parity and time-
reversal symmetries are directly encoded in the varia-
tional state to appreciably improve the optimization of
the ANN’s parameters. The training is further accel-
erated capitalizing on a novel version of the stochastic
reconfiguration [32] method, with a regularization based
on RMSProp algorithm [33]. Our results for 3H, 3He,
4He nuclei are benchmarked against the numerically-
exact hyperspherical-harmonics (HH) method [34]. For
the larger 16O nucleus, we compare the hidden-nucleon
ground-state energies and point-nucleon density with the
ones computed with the AFDMC.

This work is organized as follows. Section II pro-
vides an overview of the nuclear Hamiltonian, the hidden-
nucleon wave function, and of the optimization algo-
rithm. In Section III we discuss our results, comparing
them with existing hyperspherical-harmonics and QMC
nuclear methods. Finally, in Section IV we state our
conclusions and provide perspectives on future develop-
ments.

II. METHODS

To a remarkably large extent, the dynamics of atomic
nuclei can be modeled by nonrelativistic Hamiltonians of
the form

H = −
∑
i

∇2
i

2mN
+
∑
i<j

vij +
∑
i<j<k

Vijk , (1)

where vij and Vijk denote the nucleon-nucleon (NN)
and three-nucleon 3N potentials. In this work, follow-
ing Ref. [28, 29], we employ NN and 3N forces derived
at leading order in a pionless-EFT expansion that consist
of contact terms between nucleons [35]. More specifically,
we use the leading-order NN potential “o” of Ref. [31]
that is designed to reproduce the np scattering lengths
and effective radii in S/T = 0/1 and 1/0 channels. We
assume the electromagnetic component of the NN poten-
tial to only include the Coulomb repulsion between finite-
size protons. The authors of Ref. [31] explored different
regulator values for the 3N force. Here we take R3 = 1.0
fm because when used in conjunction with model “o”,
this value of R3 provides binding energies that are in
reasonably good agreement with experiments for various
closed-shell nuclei across the nuclear chart.

To fix the notation, we introduce R = {r1 . . . rA} and
S = {s1 . . . sA} to indicate the set of single-particle spa-
tial three-dimensional coordinates and the z-projection
of the spin-isospin degrees of freedom si = {szi , tzi } of the
A nucleons comprising a given nucleus.

A. Hidden-nucleon wave function

Generalizing the “hidden-fermion” approach of
Ref. [30] to encompass continuous and discrete coordi-
nates, we introduce a “hidden-nucleon” (HN) ansatz to
model the ground-state wave functions of atomic nuclei.
In addition to the visible coordinates R,S, the Hilbert
space also contains fictitious degrees of freedom for the
Ah hidden nucleons, which are in turn functions of the
visible ones (Rh, Sh) = f(R,S). The amplitudes of the
hidden-nucleons wave function ansatz in the R,S basis
are schematically given by

ΨHN (R,S) ≡ det

[
φv(R,S) φv(Rh, Sh)
χh(R,S) χh(Rh, Sh)

]
(2)

In the above equation, φv(R,S) denotes the A×A matrix
representing visible single-particle orbitals computed on
the visible coordinates — this would be the only compo-
nent of the wave function in a Hartree-Fock description
of the nucleus. Note that, in contrast with Ref. [30],
the columns of our matrix denote different particles,
while rows refer to different states. The Ah × Ah ma-
trix χh(Rh, Sh) yields the amplitudes of hidden orbitals
evaluated on hidden coordinates. Finally, χh(R,S) and
φv(Rh, Sh) are Ah×A and A×Ah matrices that provide
the amplitudes of hidden orbitals on visible coordinates
and those of visible orbitals on hidden coordinates, re-
spectively.

In the limit Ah = 1, χh(R,S) = 0, and χh(f(R,S)) =
0 we recover the usual Slater-Jastrow formulation, which
can be thereby interpreted as a limit of the hidden-
nucleon ansatz. If the function f is permutation in-
variant, it is immediate to prove that ΨHN (R,S) is
anti-symmetric under the exchange of two-particles co-
ordinates. The authors of Ref. [30] have demonstrated
that the hidden-fermion ansatz can represent any anti-
symmetric functions on the lattice, provided that the
functions χh and f are general.

In order to bypass the combinatorial nature of the
function f , we directly parametrize each column “i” of
φv(Rh, Sh) and χh(Rh, Sh) in terms of independent, real-
valued, permutation-invariant neural networks as

φiv(Rh, Sh) = eU
i
φ(R,S) tanh[Viφ(R,S)]

χih(Rh, Sh) = eU
i
χ(R,S) tanh[Viχ(R,S)] . (3)

As in Refs. [28, 29, 36], permutation-invariance is
achieved by expressing the functions U iφ, Viφ, U iχ, and Viχ
in terms of the Deep-Sets architectures [37, 38]. Taking
pair coordinates as input instead of single-particle ones
was found to accelerate the training when the sum pool-
ing is used [29]. Here, we achieve similar performances
with single-particle inputs employing the logsumexp pool-
ing

F(R,S) = ρF

[
log
(∑

i

eφF (ri,si)
)]

(4)
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Both φF and ρF are dense feed-forward neural networks,
comprised of two hidden layers with 16 nodes each. The
latent space, i.e. the size of the output of φF and the
input of ρF , is 16-dimensional. The output layers of ρF
contain A nodes for F = U iφ and F = Viφ and Ah nodes

for F = U iχ and F = Viχ.
The single-particle orbitals defining φv(R,S) and

χh(R,S) are represented by dense feed-forward neural
networks that take as input the single particle coordi-
nates of the nucleons. They are both comprised of two
hidden layers with 10 nodes each, while their outputs are
one-dimensional with linear activation functions.

The hyperbolic tangent is the activation function cho-
sen for the hidden layers of all the dense feed-forward
neural networks used in this work. We tried alterna-
tive differentiable functions, such as Softplus [39] and
GELU [40], without finding appreciable differences. Note
that our choices are restricted to differentiable activation
functions because the calculation of the kinetic energy
requires evaluating their second derivatives.

B. Symmetries and sampling

In this work, we enforce point-symmetries, such as par-
ity and time reversal, into the hidden nucleon ansatz.
Since all the atomic nuclei considered in this work have
ground-states with positive parity, we can construct such
variational states by

ΨP
HN (R,S) ≡ ΨHN (R,S) + ΨHN (−R,S) . (5)

For even-even nuclei, such as 4He and 16O, we can addi-
tionally enforce time-reversal symmetry

ΨPT
HN (R,S) ≡ ΨP

HN (R,S) + ΨP
HN (R, θS) , (6)

where θS is obtained by applying the operator −iσy to
all single-particle spinors [41]. Note that no complex con-
jugate operation is required in the above definition since
ΨP
HN (R,S) is a real-valued function. As discussed in

Sec. III, enforcing point-symmetries considerably accel-
erates the training and augments the expressivity of the
ANN for a fixed number of hyperparameters. In prin-
ciple, additional point-symmetries, such as “signature”,
and “simplex” [42], can be imposed in a similar fashion
as Eqs. 5 and 6. Their impact on ANN quantum states
will be investigated in future works.

The set of variational parameters p entering the ANN
variational state are optimized minimizing the expec-
tation value of the Hamiltonian E = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉.
The 3A spatial dimensional integrals and the spin-isospin
summations are evaluated in a stochastic fashion, using
the Metropolis-Hastings sampling algorithm discussed in
the supplemental material of Ref. [28]. It has to be noted
that the hidden-nucleon ansatz is completely general and
does not prevent the Metropolis-Hastings algorithm to
sample nonphysical states. To better elucidate this issue,
consider a nucleus with a given total isospin projection

Tz. Even though nuclear interactions are charge con-
serving, the hidden-nucleon ansatz yields non-zero am-
plitudes for states S such that

∑
i t
z
i 6= Tz. The lat-

ter are avoided by constraining the Metropolis walk onto
states with

∑
i t
i
z = Tz, which is equivalent to multiplying

ΨHN (R,S) by the Kronecker Delta δ(
∑
i t
i
z − Tz). Simi-

larly, the LO pionless-EFT Hamiltonian of Eq. 1 does not
contain a tensor force and preserves the total spin pro-
jection on the z-axis Sz. As a consequence, to prevent
sampling nonphysical states, we restrict the Metropolis
walk to S with

∑
i s
z
i = Sz. In practice, this is achieved

by starting the walk with a state that satisfies the above
requirements and sampling the new ones by exchanging
the spin and the isospin projections of two, not necessar-
ily different, pairs of nucleons.

C. Optimization

Given the neural-network architecture, and the sam-
pling procedure as described in the previous discussions,
we further need to specify a procedure to minimize the
variational energy and find the optimal parameters of
the model wave function. The stochastic-reconfiguration
(SR) algorithm [32], closely related to the natural gra-
dient descent method [43] in unsupervised learning, has
proven to efficiently optimize neural network quantum
states for a variety of applications, ranging from spin
models [22, 30, 44] to periodic bosonic systems [36] and
atomic nuclei [28, 29]. The variational parameters are
updated as pt = pt−1 − ηS−1t−1gt−1, where η is the learn-
ing rate, S is the quantum Fisher-information matrix,
and g = ∂E/∂p is the gradient of the energy. The inver-
sion of matrix S is typically stabilized by adding a small
positive diagonal matrix S → S+εI, implying that all di-
agonal elements are shifted by the same amount, thereby
neglecting potential order of magnitudes differences in
the parameters’ changes [45]. To remedy this shortcom-
ing, inspired by the RMSProp method [33], we accumu-
late the exponentially-decaying averages of the squared
gradients

vt = βvt−1 + (1− β)g2
t (7)

and regularize the the Fisher-information matrix by S →
S + εdiag(

√
vt + 10−8). In the original formulation of

the SR algorithm, taking larger values of ε reduces the
magnitude of the parameters’ update and rotates it to-
wards the stochastic gradient descent direction. In our
RMSProp version, the regularization term rotates the
update towards the RMSProp direction, which typically
yields faster training than the simple stochastic gradient
descent. Since the dimension of the Fisher matrix scales
quadratically with the number of variational parameters,
storing it in memory becomes unfeasible for a nucleus as
large as 16O. To overcome this limitation, as in Refs. [46],
we use the iterative conjugate-gradient method to solve
the linear system associated with the SR parameters’ up-
date. Finally, the Adaptive Epsilon heuristic scheduler
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FIG. 1. Convergence of the SR algorithm for 3He (upper
panel) and 3H (lower panel) with the original (blue solid cir-
cles) and RMSProp-like (orange solid circles) diagonal shifts.
The ANN-SJ and the HH energies of Ref. [29] are displayed
by the purple dashed and solid green lines, respectively.

introduced in Ref. [28] has been adopted to determine
the best value of the regularization parameter ε at each
optimization step.

III. RESULTS

We begin our analysis comparing the performances of
the original SR method with the version that includes
the RMSProp-inspired diagonal shift in the Fisher-
information matrix. In Fig. 1, we show the convergence
of the ground-state energy of 3He (upper panel) and 3H
(lower panel) as obtained with Ah = 3 hidden nucleons
and the positive-parity ansatz of Eq. (5). The blue solid
circles, corresponding to the energies obtained using the
RMSProp-like regularization, are noticeably closer to the
numerically-exact HH result of Ref. [28] than those ob-
tained with the original version of the SR algorithm. The
fact that the SR-RMSProp estimates are less scattered
that the SR ones is another indication of the better min-
ima found by new version of the algorithm. Most notably,

independent of the particular regularization choice, both
the SR and SR-RMSProp energies are appreciably lower
than the ANN-SJ value reported in Ref. [29].

Because of its superior training performances with re-
spect to the original version of the algorithm, in the re-
mainder of the paper we will only show results obtained
with the SR-RMSProp minimizer. The convergence of
the 4He ground-state energy computed with Ah = 4
hidden nucleons is in displayed in Fig. 2. The parity-
conserving wave function ΨP

HN (R,S) is outperformed
by ΨPT

HN (R,S), which additionally preserves the time-
reversal symmetry. Both of them provide significantly
better energies than the original ANN-SJ model, as
they can improve the nodal surface of the single-particle
Slater determinant. More importantly, ΨPT

HN (R,S) pro-
vides a variational energy that is consistent with the
numerically-exact HH estimate of Ref. [29]. It has to
be noted that ΨP

HN (R,S) should in principle converge
to the exact energy, even with Ah = 4 hidden nucleons,
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FIG. 2. Upper panel: 4He ground-state energy convergence
with the ansatz that conserves parity (blue solid circles) and
parity plus time reversal (orange solid circles). The ANN-SJ
and the HH ground-state energies of Ref. [29] are displayed by
the purple dashed and solid green lines, respectively. Lower
panel: Convergence of the parity-conserving ansatz utilizing
a wider ANN than in the upper panel.
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but it requires wider (or deeper) ANN architectures. To
prove this point, in the lower panel of Fig. 2 we show the
training of ΨP

HN (R,S) with Ah = 4 in which the num-
ber of nodes in the hidden layers in φF and ρF has been
increased from 16 to 24. After about 4800 optimization
steps, the parity-conserving ansatz yields energies that
are consistent with the HH method. Nevertheless, our
results indicate that enforcing time-reversal symmetry is
effective in reducing the training time and augment the
expressivity of the hidden-nucleon ANN architecture.

Neural-network quantum states applications to nuclear
systems have so far been limited to light nuclei, with
up to A = 6 nucleons [26, 28, 29]. Here, we signifi-
cantly extend the reach of this methods by computing the
ground-state of 16O utilizing the hidden-nucleon ansatz.
In Ref. [31], the AFDMC method has been employed to
study this nucleus using as input the LO pionless-EFT
Hamiltonian of Eq. (1). The AFDMC trial wave function
takes the factorized form ΨT (R,S) ≡ 〈RS|F|Φ〉. The
Slater determinant of single-particle orbitals Φ(R,S) de-
termines the long-range behavior of the wave function.
The correlation operator is expressed as

F =
( ∏
i<j<k

F cijk

)(∏
i<j

F cij

)(
1 +

∑
i<j

F opij

)
(8)

The spin-isospin independent three-body correlations
F cijk act on all triplets of nucleons. Similarly, the cen-
tral two-body Jastrow F cij is applied to all nucleon pairs,

while the spin-isospin dependent term, F opij , appears in

a linearized form [47]. This approximation reduces the
computational cost of evaluating ΨT (R,S) from expo-
nential to polynomial in A but makes the trial wave func-
tion non extensive: if the system is split in two (or more)
subsets of particles that are separated from each other,
the F does not factorize into a product of two factors
in such a way that only particles belonging to the same
subset are correlated. As a consequence, the correlation
operator of Eq. (8) becomes less effective for nuclei larger
than 16O, preventing the applicability of the AFDMC
method to medium-mass nuclei.

The AFDMC projects out the ground-state of the sys-
tem from the starting trial wave function performing an
evolution in imaginary time τ

|Ψ0〉 ∝ lim
τ→∞

|Ψ(τ)〉 = e−Hτ |ΨT 〉 . (9)

The fermion-sign problem is mitigated by means of the
constrained-path approximation, which essentially lim-
its the imaginary-time propagation to regions where the
propagated and trial wave functions have a positive over-
lap [16]. Contrary to the fixed-node approximation, the
constrained-path approximation does provide an upper
bound to the true ground-state energy of the system [48].
The accuracy of the trial wave function is critical to re-
duce this bias, as the constrained-path approximation
becomes exact when the trial wave function is coincides
with the ground-state one.

2 4 6 8 10 12 14 16
Ah

134

132

130

128

126

124

E 
(M

eV
)

VMC
AFDMC

PT
HN(R, S)

FIG. 3. Ground-state energy of 16O as a function of the num-
ber of hidden nucleons Ah (solid blue points). The VMC
and AFDMC energies — the latter taken from Ref. [31] —
are shown by the green-dashed and orange solid lines. The
shaded areas represent the Monte Carlo statistical uncertain-
ties.

In Fig. 3, we display the ground-state energy of 16O as
a function of the number of hidden nucleons Ah for the
parity and time-reversal conserving ansatz of Eq. (6). For
comparison, the VMC energy of 16O obtained with the
correlation operator of Eq. (8) is represented in Fig. 3
by the dashed green line, while the shaded area is the
Monte Carlo statistical uncertainty. The solid horizontal
line and the shaded area indicate the constrained-path
AFDMC energy and its statistical uncertainty as listed
in Ref. [31]. Already for Ah = 2, the hidden-nucleon wave
function matches the VMC value. By further increasing
Ah, the variational energy lowers until it becomes consis-
tent with the AFDMC value, within error bars, demon-
strating the accuracy of the hidden-nucleon ansatz even
in the p-shell region.

Unless a forward-walk propagation is used [49, 50],
within diffusion Monte Carlo methods, expectation val-
ues of operators that do not commute with the Hamilto-
nian are typically estimated at first order in perturbation
theory as

〈Ψ(τ)|O|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉

' 2
〈ΨT |O|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

− 〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

. (10)

Hence, in addition to controlling the fermion-sign prob-
lem, the accuracy of ΨT (R,S) is critical to evaluate ob-
servables that do not commute with the Hamiltonian,
such as density distributions in coordinate and momen-
tum space. In any case, the extrapolated estimator is
always biased in a quantity difficult to assess. On the
other hand, neural-network quantum states provide pure
estimators and no extrapolations are required for com-
puting expectations values of operator that do not com-
mute with the Hamiltonian.

In Fig. 4, we display the point-nucleon density of 16O
as obtained with Ah = 16 hidden nucleons, compared
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FIG. 4. Point nucleon density of 16O as obtained with the
hidden nucleon ansatz (solid blue circles) compared with the
perturbatively-corrected AFDMC estimates of Eq. (10).

with the AFDMC results, which are obtained in pertur-
bation theory as in Eq. (10). Remarkably, despite the
lack of mean-field information encoded in the hidden nu-
cleon anstaz — the single-particle orbitals are randomly-
initialized feed-forward neural networks — the training
procedure yields a point-nucleon density of 16O that is
very close to the AFDMC one. This excellent agreement
confirms the accuracy of the hidden-nucleon ansatz in
modeling the wave functions of atomic nuclei at both
short and long distances.

IV. CONCLUSIONS

We have developed a novel, hidden-nucleon, neural-
network ansatz suitable to solve the nuclear many-body
Schrödinger equation of a leading-order pionless-EFT
Hamiltonian in a systematically improvable fashion. To
this aim, we extend the hidden-fermion family of vari-
ational states to encompass both continuous and dis-
crete degrees of freedom, corresponding to the spatial
and spin-isospin coordinates of the nucleons. Point sym-
metries such as parity and time reversal are built in
the neural-network wave function to augment its expres-
sivity. We have concurrently improved the stochastic-
reconfiguration algorithm by introducing a non-constant
diagonal regularization inspired by the RMSProp opti-
mization method.

We first gauge the hidden-nucleon wave function in
3H, 3He, and 4He nuclei, whose ground-state energies
turn out in excellent agreement with numerically exact
hyperspherical-hamonics results reported in Ref. [29]. In
A = 3 nuclei, we observe that the RMSProp-inspired di-
agonal shift considerably accelerates the convergence of
the training compared to the default version of the SR
method and adopt it for all the subsequent calculations.
We observe that enforcing time-reversal symmetry no-

ticeably accelerates the optimization of the 4He ground-
state wave function and improves the expressivity of the
neural-network ansatz for a fixed number of variational
parameters.

We then applied the hidden-nucleon architecture to
study the ground-state of 16O, the largest nuclear system
yet computed with neural-network quantum states. Even
using only two hidden nucleons, we are able to match the
VMC energies obtained with conventional spin-isospin
dependent variational wave-functions. By further in-
creasing Ah, the hidden-nucleon architecture gains the
capability to reproduce the AFDMC constrained-path
energy, thereby proving the expressivity of this ansatz
for continuous degrees of freedom.

In addition to the ground-state energy, the neural-
network architecture is capable of learning the single-
particle density of 16O, at both short and long distances.
This is particularly remarkable, as, in contrast with other
QMC methods, the hidden-nucleon ansatz is agnostic to
the mean-field properties of the specific nucleus of inter-
est. Besides the Hamiltonian of choice, the only informa-
tion entering the calculation are the number of protons
and neutrons, the total spin, and its point symmetries;
the short- and long-range components of the ground-state
wave functions are learned by minimizing the energy ex-
pectation value.

The hidden-nucleon ansatz provides a compact repre-
sentation of nuclear wave function in terms of a relatively-
small number of variational parameters. For instance,
the ground-state wave function of 16O withAh hidden nu-
cleons is completely determined by about 77,000 neural-
network parameters. This is an order of magnitudes
smaller than the number of coefficients required to repre-
sent the wave functions by state-of-the-art nuclear many-
body methods based on a single-particle basis expansion,
such as the no-core shell model [51]. The wave functions
computed in this work, as well as the Google-JAX pro-
gram used to generate them are publicly available [52].
They can be readily used to compute quantities of exper-
imental interests, without the need of training the ANN.

In principle, generalized backflow transformations sim-
ilar to those employed to model the ground-state of elec-
tronic systems [24, 25] can be used to augment the expres-
sivity of the hidden-nucleon architecture. We anticipate
using them when dealing with more sophisticated nu-
clear forces, characterized by strong tensor components.
Since the latter do not conserve the total spin projection
on the z-axis Sz, it may well be beneficial to employ an
over-complete spin basis, similar to the employed by the
AFDMC method.

Finally, it has to be noted that the hidden-nucleon ap-
proach exhibit a favorable polynomial scaling in compu-
tational time with the number of nucleons. The calcula-
tion of the wave function requires A3 operations, while
evaluating the expectation value of the spin-isospin de-
pendent component of the NN potential costs A5 opera-
tions. On the other hand, including spin-isospin depen-
dent 3N forces without resorting to density-dependent
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approximations would make the method to scale as A6.
We envision treating medium-mass nuclei as large as 40Ca
by exploiting leadership class hybrid GPU/CPU comput-
ers.
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