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Non-Hermitian skin effect and self-acceleration
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Non-Hermitian systems exhibit nontrivial band topology and a strong sensitivity of the energy spec-
trum on the boundary conditions. Remarkably, a macroscopic number of bulk states get squeezed
toward the lattice edges under open boundary conditions, an effect dubbed the non-Hermitian skin
effect (NHSE). A well-established dynamical signature of the NHSE in real space is the directional
bulk flow (or persistent current) for arbitrary initial excitation of the system, which is observed at
long times. Here we unravel a different dynamical signature of the NHSE in real space that mani-
fests itself in the early-time dynamics of the system, namely self-acceleration of the wave function.
Self-acceleration is demonstrated to occur rather generally in single–band lattice models probed by
single-site excitation, where the acceleration turns out to be proportional to the area enclosed by the
energy spectrum of the Bloch Hamiltonian under periodic boundary conditions. The observation of
wave packet self-acceleration at early times is a clear signature of the NHSE and should be exper-
imentally accessible using synthetic non-Hermitian matter, for example in discrete-time photonic
quantum walks.

I. INTRODUCTION

The physical properties and topological phases of non-
Hermitian (NH) periodic or quasi-periodic systems are
attracting a great interest since the past few years
[1–110], providing a newly emergent research area in
condensed-matter physics and beyond (see e.g. the re-
cent reviews [20, 39, 60, 61]). NH systems are non-
conservative systems where the inherent loss and/or gain
arising from interaction with an environment are de-
scribed by a NH Hamiltonian. As an effective description,
NH Hamiltonians find applications in different areas of
physics [39], ranging from optical, acoustical, mechanical
and electrical systems to open quantum systems under
continuous measurement and the description of quasi-
particles in solids with disorder or interaction.
A unique feature of certain NH lattices is the NH skin ef-
fect [5–7, 9, 35], i.e. the strong dependence of the energy
spectrum on the boundary conditions: while under pe-
riodic boundary conditions (PBC) the energy spectrum
describes one (or more) closed loop in complex plane en-
closing a non-vanishing area A, under open boundary
conditions (OBC) the energy spectrum shrinks to one
(or a set of) open arc in the interior of the PBC en-
ergy spectrum loop. Moreover, while under PBC the
wave functions are extend Bloch modes like in ordinary
Hermitian latices, under OBC an extensive number of
bulk wave functions are exponentially localized at the
edges, dubbed skin modes. The origin of skin modes can
be traced back to the nontrivial point-gap topology of
the bulk energy spectra under PBC, thus establishing a
bulk-edge correspondence for skin modes [3, 35]. The NH
skin effect greatly affects several dynamical properties of
the system even in the bulk, including the appearance
of a directional (chiral) bulk flow and persistent currents
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[26, 41, 93, 98, 99, 110], non-Bloch quench dynamics and
dynamical quantum phase transitions [79, 94], anhar-
monic Rabi oscillations [44], chiral tunneling [38], edge
burst [96] and wave self-healing [102]. In particular, the
directional flow in the bulk of the lattice under rather
arbitrary initial excitation conditions of the system, with
an asymptotic (long-time) convective motion as dictated
by a saddle-point analysis [26], provides a feasible tool
to detect the NH skin effect in bulk probing experiments
[98, 99, 110].
In this work we unveil a novel bulk dynamical signature
of the NHSE, which arises in the early stage of time evo-
lution: self-acceleration of the wave function. Such a
phenomenon is demonstrated to arise rather generally in
single-band lattice models for single-site initial excita-
tion of the lattice. While the long-time dynamics of the
wave function is dominated by the interference of Bloch
modes with the largest imaginary part of energy, leading
to a directional flow of excitation along the lattice at a
constant drift velocity in systems displaying the NHSE,
the early-time dynamics of the wave function is domi-
nated by the interference of the entire Bloch modes that
constitute the wave function under single-site excitation,
leading to a self (or transient) acceleration of the wave
function in the early time evolution. The acceleration of
the wave function is shown to be proportional to the area
A enclosed by the PBC energy spectrum loop, thus van-
ishing in the absence of the NHSE. The predicted effect
should be experimentally observable in synthetic classi-
cal or quantum NH lattices, for example in discrete-time
photonic quantum walks [53, 57, 98, 99].

http://arxiv.org/abs/2206.10836v1
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FIG. 1. Energy spectra of a NH lattice with nearest and
next-to-nearest neighbor hopping t±1, t±2. In (a) t−1 = t1 =
1 − 0.6i and t−2 = t2 = 0.5 + 0.1i, whereas in (b) t1 = 1,
t−1 = 0.8, t2 = 0.8, and t−2 = 0.6. The upper panels show the
PBC (solid curves) and OBC (open circles) energy spectra,
while the lower panels depict the dispersion relation of the
PBC energy curves E = ER(k) + iEI(k). The NH lattice in
(a) does not display the NHSE: the OBC and PBC energy
spectra do coincide and are described by an open curve C in
complex energy plane. The NH lattice in (b) displays the
NHSE: the PBC energy spectrum describes a closed loop C
with one self-intersection in complex plane, while the OBC
energy spectrum is a set of open arcs in the interior of C. The
area A enclosed in the PBC energy loop is A = π(|t1|

2 +
2|t2|

2 − |t−1|
2 − 2|t−2|

2) ≃ −2.89. The largest imaginary
part of EI(k) = Im(E) is assumed at the Bloch wave number
k = km.

II. NON-HERMITIAN LATTICE MODEL AND

WAVE FUNCTION DYNAMICS

A. Hamiltonian, energy spectra and the

non-Hermitian skin effect

We consider a one-dimensional tight-binding lattice
which is described, in the single band approximation, by
the single-particle Hamiltonian in physical space

Ĥ =
∑

n,l

Hn,l|n〉〈l| (1)

with matrix Hamiltonian Hn,l = −tl−n, where t±r are
the left/right hopping amplitudes between sites distant r
in the lattice. The Hamiltonian is not Hermitian when-
ever t−r 6= t∗r . The NHSE [6] arises rather generally in
the presence of non-reciprocal hopping amplitudes, i.e.
when |t−r| 6= |tr|, a prototypal example being the clean
(disorder-free) Hatano-Nelson model [3, 111]. In this case
the energy spectrum of H is very sensitive to the bound-
ary conditions. Indicating by

P (β) = −
∑

l

tlβ
l (2)

the Laurent polynomial associated to the Toeplitz ma-
trix H , for periodic boundary conditions the energy spec-
trum σ(HPBC) reads EPBC(k) = P (β) with β = exp(ik)
varying on the ordinary Brillouin zone Cβ , i.e. k real
(−π ≤ k < π) and |β| = 1, while under open boundary
conditions (OBC) the energy spectrum σ(HOBC) reads
EOBC(k) = P (β) where now β varies on the general-

ized Brillouin zone C̃β , corresponding rather generally to
|β| 6= 1, i.e. k complex [6, 9, 16, 35, 40, 95]. In the for-
mer case (PBC) the eigenfunctions of H are the usual
extended (Bloch) waves, while in the latter case (OBC)
they are exponentially localized toward either one of the
two edges (skin modes), depending on whether |β| > 1
or |β| < 1.
In the presence of the NHSE, σ(HPBC) and σ(HPBC)
describe distinct curves in complex energy plane: while
σ(HPBC) describes a closed loop C with possible self-
intersections, σ(HOBC) describes an open arc in the in-
terior of the loop C [9, 16, 35]: only in the absence of
the NHSE the σ(HPBC) energy spectrum collapses to an
open arc to coincide with σ(HOBC) (with the exception
of possible isolated points). Let us indicate by A the area
enclosed by the loop C, which is given by

A =

∮

C

EIdER =
1

2

∮

C

(EIdER − ERdEI)

=
1

2

∫ π

−π

dk

(

EI

dER

dk
− ER

dEI

dk

)

(3)

where ER(k) and EI(k) are the real and imaginary parts
of the energy EPBC(k), respectively. Clearly, in a NH
lattice without the NHSE the area A always vanishes,
whereas in a NH lattice displaying the NHSE the area
A is rather generally non-vanishing, with the very spe-
cial exception of self-intersecting loops where the areas
of distinct regions sum up with their own sign yield-
ing an overall vanishing area. Therefore, rather gen-
erally a non-vanishing value of the area A can be re-
garded as a signature of the NHSE. Note that, since
E(k) = −

∑

n tn exp(ikn), in terms of hopping ampli-
tudes tn of the lattice the area A takes the explicit form

A = −π
∑

n

n|tn|
2 (4)

which vanishes for reciprocal coupling (|t−n| = |tn|)
but rather generally is non-vanishing for non-reciprocal
(asymmetric) coupling. Interestingly, as shown in
Ref.[41] a non-vanishing area A necessarily implies that,
in the system under PBC, a non-vanishing persistent cur-
rent J =

∮

C
n(H,H∗)dH circulates in the ring. For spe-

cific forms of the distribution function n(H,H∗), such a
persistent current equals any area A′ ≤ A of any loop
internal to C [41].
As an example, Fig.1 shows the energy spectra under

PBC and OBC in two NH lattice models with nearest
and next-to-nearest hopping amplitudes t±1, t±2, one of
which displays the NH skin effect [Fig.1(a)] while the
other one does not [Fig.1(b)]. In the latter case the
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area A vanishes as |t−1,−2| = |t1,2|, while in the former
case the energy loop C encloses rather generally a non-
vanishing area A = −π(|t1|

2 − |t−1|
2 + 2|t2|

2 − 2|t−2|
2).

B. Wave function dynamics

We consider here the temporal dynamics of the wave
function |ψ(t)〉 =

∑

n ψn(t)|n〉 in an infinitely-extended
lattice, i.e. far from any possible edge, with some given
initial excitation condition ψn(0) of the system at initial
time t = 0. The wave function satisfies the Schrödinger
equation

i
∂|ψ(t)〉

∂t
= Ĥ |ψ(t)〉 (5)

on an infinitely-extended spatial domain, which can be
readily solved in Fourier (momentum) space yielding

ψn(t) =

∫ π

−π

dkF (k) exp[ikn− iE(k)t]. (6)

In the above equation, E(k) = EPBC(k) is the energy
spectrum under PBC and

F (k) =
1

2π

∞
∑

n=−∞

ψn(0) exp(−ikn) (7)

is the spectral (Bloch) excitation amplitude, which is de-
termined by the initial excitation condition of the system.
Initial normalization of the wave function is assumed, i.e.
∑

n |ψn(0)|
2 = 1, corresponding to

2π

∫ π

−π

dk|F (k)|2 = 1. (8)

An interesting question of major relevance from both
theoretical and experimental viewpoints is whether the
temporal dynamics of the wave function can unravel
the NHSE. Previous works focused on the long-time
dynamics of the wave function, showing that a wave
function drift at some non-vanishing constant speed vm
along the lattice, for rather arbitrary initial excitation
condition of the system, is a clear signature of the
NHSE [26, 93, 99, 110]. Such a result has been suc-
cessfully applied in bulk probing experiments of both
classical and quantum NH systems to unveil the NHSE
[93, 98, 99, 110]. In the long-time limit (t → ∞), from
Eq.(6) it is clear that the dynamics is dominated by the
interference of the extended Bloch modes with wave num-
ber k close to km, at which the imaginary part of the
PBC energy, EI(k), reaches its largest value. In fact, the
growth rate of the wave function ψ(t) = ψn=vt(t) along
the space-time line n = vt, defined by the Lyapunov ex-
ponent

λ(v) = lim
t→∞

log
|ψ(t)|

t
, (9)

reaches its largest value, λ = EI(km), at the drift ve-
locity v = vm = (dER/dk)km

, which is non-vanishing in
systems displaying the NHSE [26]. This result does not
depend on the specific initial excitation condition of the
system, and therefore its observation does not require
any special initial preparation of the system.

III. WAVE FUNCTION DYNAMICS AT EARLY

TIMES: SELF-ACCELERATION AND THE

NON-HERMITIAN SKIN EFFECT

Here we focus our attention to the early time dynamics
of the wave function, unveiling a novel bulk signature of
the NHSE: self-acceleration. To this aim, let us indicate
by nCM (t) the center of mass of the wave function at
time t, which is given by the normalized mean value of
the position operator

nCM (t) =
〈ψ|n|ψ〉

〈ψ|ψ〉
=

∑

n n|ψn(t)|
2

∑

n |ψn(t)|2
. (10)

Using Eq.(6), it can be readily shown that nCM (t) takes
the form (see Appendix A for technical details)

nCM (t) =
i
∫ π

−π
dk
(

F ∗ dF
dk

− i|F (k)|2 dE
dk
t
)

exp[2EI(k)t]
∫ π

−π
dk|F (k)|2 exp[2EI(k)t]

(11)
where E(k) = ER(k) + iEI(k) is the dispersion curve of
the PBC energy spectrum. According to the Lyapunov
exponent analysis [26], the asymptotic form of nCM (t) as
t→ ∞ is independent of the particular shape of F (k), i.e.
initial excitation of the system, and reads (see Appendix
A)

nCM (t) ∼ vmt (12)

where vm = (dER/dk)km
is the drift velocity at the Bloch

wave number k = km corresponding to the largest value
of EI(k), with vm 6= 0 when the NH lattice displays the
NHSE.
On the other hand, Eq.(11) indicates that the short time

dynamics of nCM (t), i.e. as t → 0, depends sensitively
on the spectral amplitude F (k), i.e. initial excitation of
the system. To unravel the signature of the NHSE in the
short-time dynamics of the wave function, we consider
here a typical excitation condition of the lattice corre-
sponding to single-site excitation, so that all extended
Bloch states are equally excited. In fact, for ψn(0) = δn,0
the spectral amplitude F (k) is flat [F (k) = 1/(2π) ac-
cording to Eq.(7)]. This kind of excitation enables to
simply probe the existence of the NHSE in the lattice
based on the early time dynamics of the system, as we
are going to demonstrate. Assuming F (k) = 1/(2π), the
kinematic equation of the wave function center of mass
[Eq.(11)] reads

nCM (t) = t

∫ π

−π
dk dE

dk
exp[2EI(k)t]

∫ π

−π
dk exp[2EI(k)t]

, (13)
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i.e.

nCM (t) = t

∫ π

−π
dk dER

dk
exp[2EI(k)t]

∫ π

−π
dk exp[2EI(k)t]

(14)

since the integral

∫ π

−π

dk
dEI

dk
exp[2EI(k)t] =

1

2t

∫ π

−π

dk
d

dk
exp[2EI(k)t]

vanishes. From Eq.(14) it readily follows that, in any
Hermitian lattice or in an NH lattice that does not dis-
play the NH skin effect, one has nCM (t) ≡ 0, i.e. the
center of mass is at rest. In fact, in the Hermitian limit
EI(k) = 0 and from Eq.(14) one obtains

nCM (t) = t

∫ π

−π
dk dER

dk
∫ π

−π
dk

= 0 (15)

consistent with the fact that in any Hermitian lattice the
motion of the center of mass, in the absence of any gra-
dient force, is uniform, and specifically at rest when the
initial distribution of particle momentum has a vanish-
ing mean value (like in the single-site lattice excitation).
Likewise, in a NH lattice that does not display the NH
skin effect one has nCM (t) ≡ 0. To prove this result,
let us observe that in this case the loop C describing the
PBC energy spectrum E(k) degenerates to an open arc
[9] and thus, for any Bloch wave number k in the first
Brillouin zone one can find another Bloch wave num-
ber k′ in the same zone such that E(k) = E(k′) and
dE(k) = −dE(k′). This implies that the integral

∫ π

−π

dk
dER

dk
exp[2EI(k)t] =

∮

C

dER exp[2EI(k)t],

and thus nCM (t), vanishes at any time t. Conversely, in
a NH lattice displaying the NHSE the curve C describes
a closed loop, with possible self-intersections, that does
not degenerate to an open arc, so that nCM (t) is non-
vanishing. It is interesting to calculate the short-time
behavior of nCM (t), which is obtained from Eq.(14) in
the t → 0 limit. Introducing the Taylor expansion of
the exponential term exp[2EI(k)t] = 1 + 2EI(k)t+ ... in
Eq.(14), at leading order in t one obtains

nCM (t) ≃
1

π
t2
∫ π

−π

dk
dER

dk
EI(k) =

1

π
t2
∮

C

EIdER.

(16)
Taking into account that

∮

C

EIdER =
1

2

∮

C

(EIdER − ERdEI) = A, (17)

where A is the area enclosed by the curve C [Eq.(3)], one
finally obtains

nCM (t) ≃
1

π
At2. (18)
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FIG. 2. Time evolution of the wave function in the two NH
lattices of Fig.1 for initial single-site excitation ψn(0) = δn,0.
The main panels show on a pseudo-color map the evolution
of normalized wave function |ψ̃n(t)| = |ψn(t)|/

√
∑

n |ψn(t)|2,
while the insets depict the corresponding time evolution of the
wave function center of mass nCM (t). In (a) the NH lattice
does not show the NHSE and the center of mass is at rest.
In (b) the NH lattice displays the NHSE and the short time
behavior of nCM (t) is parabolic with a constant acceleration
according to Eq.(18) of the main text. The dashed curve in
the inset of (b) depicts the parabolic motion as predicted by
Eq.(18).

Equation (18) shows that the early time dynamics of the
wave function is characterized by a constant acceleration

a =
2

π
A = 2

∑

n

n|tn|
2 (19)

which is proportional to the area A enclosed by the PBC
energy loop C. The acceleration is not due to any external
gradient force, but to the asymmetric nature of hopping
amplitudes and thus, ultimately, to the the NHSE. For
such a reason, it can be referred to as a self-acceleration,
or transient acceleration. Clearly, at longer times the ac-
celeration decreases until to asymptotically vanish, corre-
sponding to the long-time drift dynamical regime at the
constant speed vm. The above results are illustrated in
Fig.2, which depicts typical numerical results of the wave
function time evolution in the two NH lattices of Fig.1
for initial single-site excitation of the system. The self-
acceleration at early times is clearly visible in the lattice
displaying the NHSE [Fig.2(b)], with an initial accelera-
tion which is in excellent agreement with the theoretical
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prediction of Eq.(19).
Two final comments are in order. As a first comment,

it should be mentioned that in single-band lattices self-
acceleration of a wave packet can provide a clear signa-
ture of the NHSE even beyond the single-site excitation
regime, provided that certain symmetry constraints are
met. This point is discussed in the Appendix B. As a
second comment, one could wonder whether the previ-
ous analysis can be extended to multi band systems. In
this case the initial single-site (or more generally few-site)
excitation of the lattice mixes the different bands so that
the simple kinematical analysis is not anymore able to
predict the NHSE from early-time self-acceleration argu-
ments. However, for special initial excitation conditions,
where a single band of the lattice is excited with the
same amplitudes for all extended Bloch modes or even
under special multi-band excitation, the previous analy-
sis is still valid. An experimentally-relevant example of
a two-band NH system, where the self-acceleration pro-
vides a signature of the NHSE, is discussed in the next
section.

IV. SELF-ACCELERATION IN

NON-HERMITIAN PHOTONIC QUANTUM

WALKS

To illustrate the self-acceleration phenomenon, let us
consider discrete-time NH photonic quantum walks as
an experimentally-accessible platform of NH synthetic
matter [53, 57, 98, 99, 110]. Specifically, we consider
discrete-time quantum walks of optical pulses in coupled
fiber loops that realize a synthetic mesh lattice [112–114].
The system consists of two fiber loops of slightly different
lengths L±∆L (short and long paths) that are connected
by a fiber coupler with a coupling angle β [Fig.3(a)]. Bal-
anced optical gain and loss ±h are applied in the short
and long fiber loops, respectively. The traveling time of
light in the two loops are T ± ∆T , where T = L/c, c
is the group velocity of light in the fiber at the probing
wavelength, and ∆T = ∆L/c≪ T is the time mismatch
arising from fiber length unbalance. After each round
trip, the field amplitudes u(t) and v(t) of the light waves
in the short and long loops at a given reference plane
couple each other via the fiber coupler according to the
time-delayed equations

u(t+ T −∆T ) = [cosβu(t) + i sinβv(t)] exp(h) (20)

v(t+ T +∆T ) = [cosβv(t) + i sinβu(t)] exp(−h).(21)

We now consider the light dynamics at discretized times
t = tmn = n∆T + mT , where n = 0,±1,±2, ... is the
site number of the synthetic lattice at various time slots
and m is the round-trip number, assumed to match the
traveling time T along the mean path length L [Fig.3(b)].
Note that the numberN of sites in in the lattice is limited
by the constraint N∆T < T , i.e. N < L/∆L. Indicating

by u
(m)
n = u(tmn ) and v

(m)
n = v(tmn+1) the field amplitudes

at the discretized times tmn , from Eqs.(20) and (21) it

(a) (b)

L+ΔL L-ΔL

n

m

0 1 2-2 -1-3

1

2

3

gain
loss

coupler

β
4

FIG. 3. Discrete-time NH photonic quantum walk on a syn-
thetic lattice. (a) Schematic of two coupled fiber loops with
slightly length mismatch L ±∆L. Optical gain is applied in
the short fiber loop, while optical loss is applied to the long
fiber loop. A fiber coupler with coupling angle β mixes the
light waves between the two fiber loops. (b) Schematic of the
synthetic mesh lattice. The physical time t is mapped at the
discretized times tmn = n∆T+mT , where T = L/c is the mean
travel time and ∆T = ∆L/c≪ T is the travel time mismatch
between the two fiber loops. The index n corresponds to the
site index in a synthetic one-dimensional spatial lattice, while
the integer m corresponds to a discrete time along which the
system evolves.

follows that light dynamics in the coupled fiber loops is
governed by the discrete-time coupled equations

u(m+1)
n =

[

cosβu
(m)
n+1 + i sinβv(m)

n

]

exp(h) (22)

v(m+1)
n =

[

cosβv
(m)
n−1 + i sinβu(m)

n

]

exp(−h) (23)

which are the main equations describing the NH photonic
quantum walk. In a system under PBC, the eigenfunc-
tions of Eqs.(22) and (23) are extended Bloch waves with
wave number k and quasi energy θ(k). Owing to the bi-
nary nature of the lattice, there are two quasi energy
bands. After letting

(

u
(m)
n

v
(m)
n

)

=

(

U
V

)

exp[ikn− iθ(k)m] (24)

one readily finds the following dispersion relations for the
two quasi energy bands

θ±(k) = ±acos (cosβ cos(k − ih)) (25)

with corresponding amplitudes of wave functions

(

U
V

)

±

=

(

1
exp(−h−iθ±(k))−cosβ exp(ik)

i sin β

)

. (26)

The most general solution to Eqs.(22) and (23) reads

(

u
(m)
n

v
(m)
n

)

=
∑

l=±

∫ π

−π

dkFl(k)

(

U
V

)

l

exp[ikn− iθl(k)m]

(27)
where the spectral amplitudes F±(k) are determined
from the initial excitation condition of the system. To
establish a connection between the discrete-time pho-
tonic quantum walk and the continuous-time dynamics
in a single-band NH lattice described by a continuous
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Schrödinger equation, let us consider a coupling angle β
close to π/2, so that | cosβ| ≪ 1 and sinβ ∼ 1. In this
limit, the dispersion relations Eq.(25) of the two quasi
energy bands read

θ±(k) ≃ ±
π

2
∓ E(k), (28)

where we have set

E(k) = cosβ cos(k − ih). (29)

Since |E(k)| ≪ 1, the amplitudes of corresponding Bloch
wave functions [Eq.(26)] take the simple form

(

U
V

)

±

≃

(

1
∓ exp(−h)

)

(30)

and thus the most general solution to Eqs.(22) and (23)
reads

(

u
(m)
n

v
(m)
n

)

= (−i)m
∫ π

−π

dkF+(k)

(

1
− exp(−h)

)

exp[ikn+iE(k)m]+(i)m
∫ π

−π

dkF−(k)

(

1
exp(−h)

)

exp[ikn−iE(k)m].

(31)

By a proper initial preparation of the system, we can
excite a single quasi energy band with a flat spectral am-
plitude. For example, let us consider the initial condition

u(0)n = δn,0 , v(0)n = exp(−h)δn,0 (32)

corresponding to two-pulse excitation of the system, with
one pulse injected into the short-path loop and the other
one, with reduced amplitude exp(−h), in the long-path
loop at the same time slot n = 0. In this case one
has F+(k) = 0 and F−(k) = 1/(2π), i.e. only the
l = − quasi energy band is excited with a flat spectral

amplitude. Correspondingly, v
(m)
n = exp(−h)u

(m)
n and

u
(m)
n = (i)mψ

(m)
n , where we have set

ψ(m)
n =

1

2π

∫ π

−π

exp[ikn− iE(k)m]. (33)

The center of mass of normalized light intensity in the
mesh lattice at discrete time step m reads

nCM (m) =

∑

n n(|u
(m)
n |2 + |v

(m)
n |2)

∑

n(|u
(m)
n |2 + |v

(m)
n |2)

=

∑

n n|ψ
(m)
n |2

∑

n |ψ
(m)
n |2

.

(34)

Note that, since |E(k)| ≪ 1, the amplitudes ψ
(m)
n vary

slowly with index m and thus, in the continuum limit we
may set m = t and

ψn(t) =
1

2π

∫ π

−π

exp[ikn− iE(k)t]. (35)

The previous equation, together with Eq.(34), clearly
shows that the center of mass of the light waves in the
synthetic lattice exactly reproduces the dynamical be-
havior of a single-band NH lattice with Hamiltonian pos-
sessing the PBC energy spectrum E(k) = cosβ cos(k −
ih), which corresponds to the Hatano-Nelson model with
asymmetric nearest-neighbor hopping amplitudes t−1 =

−(cosβ/2) exp(−h) and t1 = −(cosβ/2) exp(h). Accord-
ing to Eqs.(18) and (19), the early time evolution of the
wave function is parabolic with a self-acceleration given
by

a =
2

π
A = − cos2 β sinh(2h). (36)

where A is the area enclosed by the ellipse describing
the PBC energy spectrum of the Hatano-Nelson model.
It should be mentioned that, for a small gain/loss pa-
rameter h ≪ 1, the same parabolic motion can be ap-
proximately obtained even for initial single-pulse excita-
tion of one fiber loop solely, i.e. for the initial condition
un,0 = δn,0 and vn,0 = 0, which can be experimentally
more feasible than the above two-pulse excitation regime.
In this case, even though both quasi energy bands of the
lattice are excited, the trajectory of the center of mass
at early times remains approximately parabolic with an
acceleration a as given by Eq.(36) (see Appendix C for
technical details).
We checked the predictions of the theoretical analysis by
direct numerical simulations of Eqs.(22) and (23) in phys-
ical space. The lattice is initially excited by two pulses,
one injected in the short loop and the other one in the
long loop, with relative amplitudes exp(−h), according
to Eq.(32). Note that, for a small gain/loss parameter h,
one can assume exp(−h) ≃ 1, i.e. a symmetric excitation
condition. Figures 4(a) and (b) show the numerically-
computed discrete-time evolution of normalized light in-

tensity (|u
(m)
n |2 + |v

(m)
n |2)/

∑

n(|u
(m)
n |2 + |v

(m)
n |2) at vari-

ous lattice sites n, along with the behavior of the center
of mass nCM (m), for a coupling angle β = 0.9 × (π/2)
and for a gain/loss parameter h = 0.05. The early time
dynamics clearly shows self-acceleration with an acceler-
ation a in excellent agreement with the theoretical pre-
diction given by Eq.(36) [Fig.4(b)]. For single-pulse ex-
citation of the short-path fiber loop, a similar parabolic
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FIG. 4. NH photonic quantum walk in a coupled fiber loop
for a coupling angle β = 0.9 × π/2 and a gain/loss param-
eter h = 0.05. (a) Discrete-time evolution of the normal-

ized light intensity (|u
(m)
n |2 + |v

(m)
n |2)/

∑

n
(|u

(m)
n |2 + |v

(m)
n |2)

at various lattice sites n on a pseudo color map. Initial ex-

citation condition of the system is u
(0)
n = δn,0 and v

(0)
n =

exp(−h)δn,0 ≃ δn,0. The corresponding evolution of the cen-
ter of mass nCM (m) versus the discrete time step m is shown
in panel (b) by open circles. The dashed parabolic curve, al-
most overlapped with the open circles in the early stage of the
dynamics, corresponds to the parabolic motion with an accel-
eration a as predicted by the theoretical analysis [Eq.(36)]. (c)

Same as (b), but for the initial excitation condition u
(0)
n = δn,0

and v
(0)
n = 0.

motion is also observed in the early stage of the dynamics
[Fig.4(c)].

V. CONCLUSIONS

The non-Hermitian skin effect, i.e. the strong sensi-
tivity of the energy spectrum on the boundary condi-
tions and the condensation of a macroscopic number of
bulk states towards the lattice edges, is ubiquitous in
non-Hermitian lattices with non-reciprocal couplings and
rooted in the point-gap topology of the energy spectrum
under periodic boundary conditions. Bulk dynamics can
provide clear signatures of the NHSE, despite the absence
of edge effects in the systems, and are thus of major inter-
est both theoretically and experimentally. In this work
we unveiled a clear signature of the NHSE in one-band
NH lattices that is observed in the early time evolution
of the system: self-acceleration. Under single-site excita-
tion, the center of mass of the wave function in the lattice
describes a parabolic path in the early stage of the dy-
namics with an acceleration that is proportional to the
area enclosed by the PBC energy spectrum in complex
plane. The early-time acceleration does not arise from
any external force, but it is transiently induced by non-
reciprocal hopping in the lattice and thus dubbed ′self-
acceleration′. We illustrated this phenomenon by con-
sidering in details NH photonic quantum walks, which
realize synthetic NH matter in the temporal domain.
The present study unravels a new and universal

dynamical signature of the non-.Hermitian skin effect
which, besides of major physical relevance, could provide
a useful tool to experimentalists. In fact, self-acceleration
of a wave packet in the early time dynamics, as compared
with directional flow in the long-time dynamics, can be
easier to detect in an experiment, since it requires to
probe the system only for a short time scale, thus avoid-
ing detrimental effects such as decoherence in quantum
matter or the need of controlling the system over long
times.
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Appendix A: Wave function center of mass

In this appendix we prove Eqs.(11) and (12) given in the main manuscript. The wave function center of mass at
time t reads

nCM (t) =
〈ψ(t)|n|ψ(t)〉

〈ψ(t)|ψ(t)〉
=

∑

n n|ψn(t)|
2

∑

n |ψn(t)|2
(A1)
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where normalization of the wave function at any time t is required owing the non-conservative nature of the system.
Using the spectral representation Eq.(6) of the wave function, one has

〈ψ(t)|ψ(t)〉 =
∑

n

∫

dkdk′F (k)F ∗(k′) exp[i(k − k′)n] exp[−iE(k)t+ iE∗(k′)t]. (A2)

Taking into into account that k, k′ vary in the range (−π, π) and that

S(k − k′) ≡

∞
∑

n=−∞

exp[i(k − k′)n] = 2πδ(k − k′) (A3)

from Eq.(A2) one obtains

〈ψ(t)|ψ(t)〉 = 2π

∫ π

−π

dk|F (k)|2 exp[2EI(k)t] (A4)

where EI(k) is the imaginary part of the PBC energy E(k). Likewise, one has

〈ψ(t)|n|ψ(t)〉 =
∑

n

∫

dkdk′F (k)F ∗(k′)n exp[i(k − k′)n] exp[−iE(k)t+ iE∗(k′)t]

= −i

∫

dk′F ∗(k′) exp[iE∗(k′)t]

∫

dkF (k)
∂S(k − k′)

∂k
exp[−iE(k)t] (A5)

After integration by parts, from Eq.(A5) and using Eq.(A3) one obtains

〈ψ(t)|n|ψ(t)〉 = 2πi

∫

dk′F ∗(k′) exp[iE∗(k′)t]
∂

∂k′
{F (k′) exp[−iE(k′)t]} (A6)

Equation (A6) can be written in the equivalent form

〈ψ(t)|n|ψ(t)〉 = 2πi

∫

dk′
{

F ∗(k′)
dF (k′)

dk′
− it|F (k′)|2

dE(k′)

dk′

}

exp[2EI(k
′)t]. (A7)

From Eqs.(A4) and (A7) it then follows Eq.(11) given in the main text.
Let us finally calculate the asymptotic behavior of 〈ψ(t)|ψ(t)〉 and 〈ψ(t)|n|ψ(t)〉 at long times, i.e. as t → ∞.
Indicating by k = km the Bloch wave number at which EI(k) reaches its largest value, i.e.

(dEI/dk)km
= 0 , (d2EI/dk

2)km
< 0 (A8)

it is clear that in the t → ∞ limit the dominant contribution to the integrals on the right hand sides of Eqs.(A4)
and Eqs.(A7) comes from the wave numbers k close to km, and that the second term on the right hand sides of
Eq.(A7) becomes dominant over the first one owing to the secularly growing term ∼ t. After letting ξ = k − km,
E(k) ≃ E(km)+ (dE/dk)km

ξ+(1/2)(d2E/dk2)km
ξ2 with (dE/dk)km

= (dER/dk)km
real and (d2EI/dk

2)km
< 0, one

then obtains in the large t limit

〈ψ(t)|ψ(t)〉 ∼ 2π|F (km)|2 exp[2EI(km)t]

∫ ∞

−∞

dξ exp[tξ2(d2EI/dk
2)km

] (A9)

〈ψ(t)|n|ψ(t)〉 ∼ 2πt|F (km)|2
(

dER(k)

dk

)

km

exp[2EI(km)t]

∫ ∞

−∞

dξ exp[tξ2(d2EI/dk
2)km

] (A10)

and thus

nCM (t) =
〈ψ(t)|n|ψ(t)〉

〈ψ(t)|ψ(t)〉
∼ vmt (A11)

in the large t limit, where

vm =

(

dER(k)

dk

)

km

(A12)

is the drift velocity.
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Appendix B: NH skin effect, self-acceleration and symmetry constraints

In this Appendix we discuss under which general excitation conditions of the lattice an initial self-acceleration of
the wave packet can provide a clear signature of the NHSE. In fact, rather generally it is possible to excite the system
so as to observe an initial acceleration, despite the system does not display the NHSE.
For a rather arbitrary excitation of the system defined by the complex spectral amplitude F (k) = H(k) exp[iϕ(k)]
of modulus H(k) and phase ϕ(k), the instantaneous acceleration a of the wave function in the early time dynamics,
given by a = limt→0+(d

2nCM/dt
2), can be readily calculated from Eq.(11) given in the main text and reads

a = −8π

∫ π

−π

dkH2(k)

(

dϕ

dk

)

E2
I (k) + 8π

∫ π

−π

dkH2(k)EI(k)

(

dER

dk

)

+ 32π2

(
∫ π

−π

dkH2(k)EI(k)

)

×

×

[
∫ π

−π

dk

(

dϕ

dk

)

H2(k)EI(k) +

∫ π

−π

dkER(k)H(k)

(

dH

dk

)]

(B1)

with the constraints 2π
∫ π

−π
dkH2(k) = 1 (normalization of the wave function at t = 0) and

∫ π

−π
dk(dϕ/dk)H2(k) = 0,

corresponding to nCM (0) = 0. For single-site excitation of the system, corresponding to H(k) = 1/(2π) and ϕ(k) = 0,
Eq.(B1) reduces to Eq.(19) given in the main manuscript, which relates the acceleration a to the area A enclosed
by the PBC energy spectrum in complex plane: thus a non-vanishing acceleration of the wave function at initial
time is a clear signature of the NHSE. Here we wish to discuss under which more general conditions a non-vanishing
acceleration a at initial time indicates that the system displays the NHSE. To this aim, we write the PBC dispersion
curve E(k) = −

∑

l tl exp(ikl) in the equivalent form

E(k) = −t0 −
∑

l≥1

[(tl + t−l) cos(kl) + i(tl − t−l) sin(kl)] (B2)

and consider two typical NH terms in the Hamiltonian, corresponding to different symmetries of the the energy
spectrum E(k). In the first case (case I) we assume tl real with t−l 6= tl for some index l, corresponding to a NH
lattice with non-reciprocal couplings leading to the NHSE. The symmetry of the energy spectrum is E(−k) = E∗(k),
i.e. ER(k) is even while EI(k) is odd under the inversion k → −k. In the second case (case II) we assume tl complex
and t−l = tl, corresponding to a NH lattice with complex (but reciprocal) hopping amplitudes, which does not display
the NHSE. The symmetry of the energy spectrum in this case reads E(−k) = E(k), i.e. both ER(k) and EI(k) are
even functions under the inversion k → −k. Let us now consider an excitation of the system satisfying the minimal
constraint ϕ(k) = 0 and H(−k) = H(k). From the odd/even symmetry of the functions under the sign of the integrals
in Eq.(B1), it readily follows that in case II, which does not display the NHSE, one always has a = 0, whereas in case
I, which does display the NHSE, one has

a = 8π

∫ π

−π

dkH2(k)EI(k)

(

dER

dk

)

(B3)

which is rather generally non-vanishing. As an example, let us specialize the analysis to the long-wavelength limit,
where the spectral excitation amplitude H(k) is narrow at around k = 0 and ψn(0) is a slowly-varying function of site
position n. We can consider the Taylor expansions of ER(k) and EI(k) at around k = 0, which in case I read ER(k) ≃
ER(0)+(1/2)(d2ER/dk

2)0k
2 and EI(k) ≃ (dEI/dk)0k. This basically corresponds to considering the long-wavelength

(continuum) limit of the tight-binding Hamiltonian, i.e. H(k) ≃ ER(0) + i(dEI/dk)0k + (1/2)(d2ER/dk
2)0k

2 in
momentum space. In this case from Eq.(B3) one obtains

a ≃ 8π

(

dEI

dk

)

k=0

(

d2ER

dk2

)

k=0

∫ π

−π

dkk2H2(k) = −8π2

(

∑

l

l2tl

)(

∑

l

ltl

)

∫ π

−π

dkk2H2(k) (B4)

i.e. the acceleration is proportional to the variance of the momentum distribution of the wave function.

Appendix C: Kinematic in photonic quantum walks under single-pulse excitation

In the limit of a small gain/loss parameter h ≪ 1, the discrete-time evolution of light field amplitudes u
(m)
n and

v
(m)
n in the two fiber loops can be approximated as (see Eq.(31) of the main text)
(

u
(m)
n

v
(m)
n

)

≃ (−i)m
∫ π

−π

dkF+(k)

(

1
−1

)

exp[ikn+ iE(k)m] + (i)m
∫ π

−π

dkF−(k)

(

1
1

)

exp[ikn− iE(k)m]. (C1)
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For single-pulse excitation of the system in the short fiber loop solely, i.e. for u
(0)
n = δn,0 and v

(0)
n = 0, the spectral

amplitudes are given by F+(k) = F−(k) = 1/(4π), indicating that both quasi energy bands are equally excited with
spectrally-fat amplitudes. Hence, from Eq.(C1) one obtains

u(m)
n =

(−i)m

2π

{
∫ π

−π
dk exp(ikn) cos[E(k)m] m even

i
∫ π

−π
dk exp(ikn) sin[E(k)m] m odd

(C2)

and

v(m)
n =

(−i)m+1

2π

{
∫ π

−π
dk exp(ikn) cos[E(k)m] m odd

i
∫ π

−π
dk exp(ikn) sin[E(k)m] m even

(C3)

where E(k) = cosβ cos(k − ih) is the energy band dispersion curve. From Eqs.(C2) and (C3), after straightforward
calculations one obtains

∑

n

(

|u(m)
n |2 + |v(m)

n |2
)

=
1

2π

∫ π

−π

dk cosh[2EI(k)m] (C4)

∑

n

n
(

|u(m)
n |2 + |v(m)

n |2
)

=
m

2π

∫ π

−π

dk
dER

dk
sinh[2EI(k)m] (C5)

To study the early time dynamics, let ǫ ≡ m| cosβ| and let consider discrete-time steps m such that ǫ ≪ 1. In this
case, we can expand the hyperbolic sine and cosine terms on the right hand sides of Eqs.(C4) and (C5) up to second
order in ǫ, i.e. cosh[2mEI(k)] ≃ 1 + 2m2E2

I (k) and sinh[2mEI(k)] ≃ 2mEI(k). In this way, one obtains

∑

n

(

|u(m)
n |2 + |v(m)

n |2
)

= 1 +O(ǫ2) (C6)

∑

n

n
(

|u(m)
n |2 + |v(m)

n |2
)

=
m2

π

∫ π

−π

dkEI

dER

dk
+ o(ǫ2) =

m2A

π
+ o(ǫ2) (C7)

and thus

nCM (m) =

∑

n n
(

|u
(m)
n |2 + |v

(m)
n |2

)

∑

n

(

|u
(m)
n |2 + |v

(m)
n |2

) =
A

π
m2 + o(ǫ2). (C8)

where A =
∮

dEREI is the area enclosed by the PBC energy loop E(k) in complex plane [Eq.(3) in the main text].
This proves that, in the early-time evolution of the system, the light center of mass in the mesh lattice describes a
parabolic trajectory with an acceleration a = 2A/π.
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