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Abstract

In this paper, we introduce VeriQBench — an open source benchmark
for quantum circuits. It offers high-level quantum circuit abstractions of
various circuit types, including: 1) combinational, 2) dynamic, 3) sequen-
tial, and 4) variational quantum circuits, which cover almost all existing
types of quantum circuits in the literature. Meanwhile, VeriQBench is
a versatile benchmark which can be used in verifying quantum software
for different applications, as is evidenced by the existing works includ-
ing quantum circuit verification (e.g., equivalence checking [Hon+21a;
WLY21] and model checking [Yin21]), simulation (e.g., fault simulation),
testing (e.g., test pattern generation [CY22]) and debugging (e.g., run-
time assertions [Li+20b]). All the circuits are described in OpenQASM
and are validated on Qiskit and QCOR simulators. With the hope that
it can be used by other researchers, VeriQBench is released at: https://
github.com/Veri-Q/Benchmark.
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1 Introduction

Quantum circuits are the basic components in quantum computing. With the
rapid development in hardware implementation of quantum circuits in experi-
ments, there also emerge many approaches to characterise and evaluate quan-
tum computing models by simulating and comparing quantum circuits, such as
quantum noise effects [Liu+21], variational circuit training [Bro+20] and (ap-
proximate) equivalence checking [VMH07; YM10; BW20b; BW20a; Hon+21a].
In particular, quantifying the practical performance of some carefully chosen
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quantum circuits is a common way to evaluate the performance of quantum
devices, especially in the current NISQ (Noisy Intermediate-Scale Quantum)
era, where quantum noise from the surrounding environment is unavoidable.
These quantum circuits are generated from different fields, such as random
protocols [Aru+19], quantum algorithms [NC02; Chi17], including variational
quantum algorithms [Per+14; FGG14; Had+19; Til+21; Cer+21] and classi-
cal reversible circuits [AD16]. Subsequently, in the recent years, diverse quan-
tum circuit benchmarks have been proposed with different evaluation metrics,
such as QASMBench [Li+20a], quantum LINPACK benchmark [DL21], Super-
marQ [Tom+22] and the quantum volume protocol [Cro+19].

In this paper, we present a new quantum circuit benchmark, calledVeriQBench,
for a different purpose. It was initially designed for testing our own QDA (De-
sign Automation for Quantum Computing) tool series VeriQ. But we hope it
can be applicable in various fields, given the following features:

• Diversity: It includes the most commonly-used quantum circuits, namely
combinational quantum circuits, dynamic quantum circuits, sequential
quantum circuits, and variational quantum circuits. These circuits cover
all types of quantum circuits existing in the literature. Furthermore, the
quantum circuits in our benchmark are diverse in structure (e.g. the layout
of 2-qubit circuits) and complexity (e.g. circuit size and depth).

• Scalability: The circuit scales in our benchmark vary widely, ranging
from 2 qubits up to > 50 qubits, which are divided into three classes, i.e.
small-scale (< 20 qubits), medium-scale (20 − 50 qubits) and large-scale
(> 50 qubits).

• Easy-to-use: All the circuits in our benchmark are described using the
OpenQASM quantum assembly language and provided as “.qasm” files.
Furthermore, most of them can be converted to other representations such
as Q#, PyQuil, Cirq, etc. through q-convert tool, which is available online:
http://quantum-circuit.com/qconvert.

• Evolvement: For most of the quantum circuits in our benchmark, we
provide a series of scripts for users to generate quantum circuits of an
arbitrary number of qubits. This ensures that our benchmark can evolve
as the available circuit scales of quantum technologies increase.

Our benchmark can work with different evaluation metrics to verify quantum
software — comparing and assessing the effectiveness and efficiency of quan-
tum and classical (simulation) algorithms designed for quantum circuits. The
circuits in our benchmark are collected from researches in a variety of fields,
including equivalence checking [Hon+21a; WLY21], circuit testing [CY22] and
circuit optimizing [AMM14; Nam+18]. This improves the diversity and prac-
tical feasibility of the benchmark. On this basis, the circuit types and scales
are further extended and standardized to form a scalable and evolvable bench-
mark. To demonstrate the validity, all quantum circuits in our benchmark are
implemented and validated by Qiskit [Qis] — an open source SDK for quantum
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computation, and QCOR [Ngu+20] — a programming language and a compiler
for the heterogeneous quantum-classical model of computation.

This paper is organised as follows: we start from the basic type of quantum
circuits, namely combinational quantum circuits in Section 2, which includes
some fundamental quantum algorithms, reversible circuits, qubit mapping and
random quantum circuits. Then dynamic, sequential and variational quantum
circuits are presented in Sections 3, 4 and 5, respectively. In Section 6, we
validate all quantum circuits on Qiskit and QCOR. In the last section, we discuss
some example applications of the benchmarks. Of course, we hope that this
benchmark can be used by other researchers. The benchmark VeriQBench is
released at: https://github.com/Veri-Q/Benchmark.

2 Combinational Quantum Circuits

The most basic and commonly used type of quantum circuit is the combina-
tional quantum circuit, with examples including some of the popular quantum
algorithms such as the Bernstein-Vazirani algorithm, quantum Fourier trans-
form and quantum phase estimation. In our benchmark, we include the most
commonly used combinational circuits and divide them into four categories:
quantum algorithms, reversible circuits, circuits for qubit mapping, and ran-
dom quantum circuits.

2.1 Quantum Algorithms

2.1.1 Bernstein-Vazirani Algorithm

Description. Bernstein-Vazirani algorithm [BV97] is an algorithm that can be
used to find the hidden string s given a boolean function f(x), where f(x) =
〈s, x〉 = s0x0 ⊕ s1x1 ⊕ · · · ⊕ snxn. For the classical algorithm, it normally needs
O(n) times to complete this task using a bit-by-bit inquiring method. But, it
only needs O(1) times using the Bernstein-Vazirani algorithm suppose that you
are given an orcle Os, where Os |x〉 |y〉 = |x〉 |f(x)⊕ y〉.

First, apply a series of Hadamard gates to state |0〉 · · · |0〉 |1〉 to change the

state to 1√
2
n

∑2n−1
x=0 |x〉 ⊗ |0〉−|1〉√

2
. Then, applying the oracle, the state will

become 1√
2
n

∑2n−1
x=0 (−1)〈s,x〉 |x〉 ⊗ |0〉−|1〉√

2
. Finally, apply a series of Hadamard

gates, and the final state will change to |s〉 |1〉. At the end, measuring the first
n qubits gives the value of s.

For s = 101 and s = 111, the corresponding circuits are shown in Figure 1.
In these two circuits, an X gate is added at the last qubit to change the initial
state from |0〉 to |1〉, and the CNOT gates are used for implementing the oracle.
For these circuits, setting input state |0〉 · · · |0〉 and measuring at the end will
give the hidden string s.
OpenQASM Code. The following gives the description of the circuit for
s = 101 using OpenQASM 2.0.
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H • H ✌✌✌

H H ✌✌✌

H • H ✌✌✌

X H H
(a)

H • H ✌✌✌

H • H ✌✌✌

H • H ✌✌✌

X H H
(b)

Figure 1: Two examples of the Bernstein-Vazirani algorithm, where (a) s = 101
and (b) s = 111.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[4];

4 creg c[4];

5 h q[0];

6 h q[1];

7 h q[2];

8 x q[3];

9 h q[3];

10 cx q[0],q[3];

11 cx q[2],q[3];

12 h q[0];

13 h q[1];

14 h q[2];

15 h q[3];

Generation Script. The circuit for arbitrary hidden string s can be generated
using the following code. For this circuit, the number of qubits is expected to
be one more than the length of the hidden string.

1 def gen_bv(qubits , hiddenString ):

2

3 cir = QuantumCircuit (qubits , qubits)

4

5 for i in range(qubits - 1):

6 cir.h(i)

7

8 cir.x(qubits - 1)

9 cir.h(qubits - 1)

10 hiddenString = list ( hiddenString )

11 for i in range(len( hiddenString )):

12 if hiddenString [i] == ”1”:
13 cir.cx(i, qubits - 1)

14

15 for i in range(qubits ):

16 cir.h(i)

17

18 return cir.qasm ()
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2.1.2 Quantum Fourier Transform

Description. Quantum Fourier transform [NC02] is a commonly used algo-
rithm in quantum computing. It turns an input state |j〉 to its Fourier trans-
form.

QFT |j〉 = 1√
N

N−1
∑

k=0

e2πijk/N |k〉 .

The circuit for 3-qubit quantum Fourier transform is shown in Figure 2. It
is easy to observe from this circuit that the quantum Fourier transform can be
implemented using a series of Hadamard gates and a set of Control-Rk gates,
where

Rk =

[

1 0

0 e2πi/2
k

]

.

|j1〉 H • • |0〉+ e0.j1j2j3 |1〉
|j2〉 R2 H • |0〉+ e0.j2j3 |1〉
|j3〉 R3 R2 H |0〉+ e0.j3 |1〉

Figure 2: Quantum circuit for Fourier Transform.

OpenQASM Code. The OpenQASM 2.0 description of this circuit is shown
below.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[3];

4 creg c[3];

5 h q[0];

6 cu1(pi /2) q[0],q[1];

7 cu1(pi /4) q[0],q[2];

8 h q[1];

9 cu1(pi /2) q[1],q[2];

10 h q[2];

Generation Script. The circuit for arbitrary number of qubits quantum
Fourier transform can be generated using the following code. This code ex-
tended the circuit shown in Figure 2 to arbitrary qubits.

1 def gen_qft(qubits ):

2

3 cir = QuantumCircuit (qubits , qubits)

4 for q in range(qubits ):

5 cir.h(q)

6 for tar in range(q + 1, qubits ):

7 theta = np.pi / 2 ** (tar - q)

8 cir.cu1(theta , q, tar)

9

10 return cir.qasm ()
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2.1.3 Quantum Phase Estimation

Description. Phase estimation [NC02] is an algorithm that can be used to
estimate the phase ϕ in an eigenvalue of a unitary U , where U |ψ〉 = e2πiϕ |ψ〉
for some |ψ〉. The corresponding circuit is shown in Figure 3.

|0〉 H • H • ✌✌✌

|0〉 H • R†
2 H ✌✌✌

|φ〉 / U U2

Figure 3: Quantum circuit for phase estimation.

The process can be conducted by first constructing an superposition state

and then applying a series of controlled-U2k gates. Then, an inverse quantum
Fourier transform can be used to extract the corresponding value of the phase.

OpenQASM Code. The following gives the OpenQASM 2.0 description of
this circuit. In this circuit, we suppose that U is a single qubit diagonal matrix

U =

[

1 0
0 e2πiϕ

]

,

and here we take ϕ = 1/1024 as an example.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[4];

4 creg c[4];

5 h q[0];

6 h q[1];

7 h q[2];

8 cu1(pi /512) q[2],q[3];

9 cu1(pi /256) q[1],q[3];

10 cu1(pi /128) q[0],q[3];

11 h q[0];

12 cu1(-pi /2) q[0],q[1];

13 cu1(-pi /4) q[0],q[2];

14 h q[1];

15 cu1(-pi /2) q[1],q[2];

16 h q[2];

Generation Script. The python code for generating the circuits is as follows.
You can assign the number of qubits of the circuit and also the phase ϕ. Then,
running this circuit will give the estimation of the phase to a precision restricted
by the number of qubits.

1 def gen_pe(qubits ,the_phase ):

2

3 cir= QuantumCircuit (qubits +1, qubits +1)
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4

5 for q in range(qubits ):

6 cir.h(q)

7

8 for q in range(qubits -1,-1,-1):

9 cir.cu1(np.pi*the_phase *2**(qubits -q),q,qubits)

10

11 for q in range(qubits ):

12 cir.h(q)

13 for tar in range(q+1, qubits ):

14 cir.cu1(-np.pi /(2**( tar -q)),q,tar)

15

16 return cir.qasm ()

2.1.4 Grover’s Algorithm

Description. Grover’s algorithm [Gro96] is one of the most commonly used
algorithms in quantum computing to search the solution of an integer function.

Suppose you are given an oracle O such that O |x〉 = (−1)f(x) |x〉, then

initialise the state to be the equal superposition state |ψ〉 = 1
N1/2

∑N−1
x=0 |x〉,

and iteratively apply the Grover operator

G = (2 |ψ〉 〈ψ| − I)O,

and finally measure all the qubits, you will get a solution of the function f(x)
with a probability close to 1.

Figure 4 gives an example of the Grover’s algorithm. Here, f(x) = x1 · x2,
running this circuit and measuring at the end will obtain 11, which is the solution
of this function.

H • H X • X H

H • H X H H X H

H H

Figure 4: An example of Grover’s algorithm. Here, f(x) is a 2-bit function and
f(x) = x1 · x2.

OpenQASM Code. The OpenQASM 2.0 description of this circuit is as fol-
lows.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[3];

4 creg c[3];

5 h q[0];

6 h q[1];

7 h q[2];
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8 ccx q[0],q[1],q[2];

9 h q[0];

10 h q[1];

11 x q[0];

12 x q[1];

13 h q[1];

14 cx q[0],q[1];

15 h q[1];

16 x q[0];

17 x q[1];

18 h q[0];

19 h q[1];

20 h q[2];

Generation Script. The python code for generating circuits for arbitrary
qubits Grover’s search is as follows. In this code, you can assign the number of
qubits n of the search space, where the solution is |1〉⊗n

. Then there will be
one qubit serving as oracle workspace and n− 2 qubits as ancilla qubits. Thus,
the circuit will totally have 2n − 1 qubits and the Cn(X) will be decomposed
to a series of CCX (i.e. Toffoli) gates using the ancilla qubits.

1 def gen_grover (qubits , r):

2 cir = QuantumCircuit (2 * qubits - 1)

3 # add H

4 for q in range(qubits ):

5 cir.h(q)

6 cir.h(2 * qubits - 2)

7 for k in range(r):

8 # add t o f o l l i

9 cir.ccx(0, 1, qubits)

10 for q in range(2, qubits ):

11 cir.ccx(q, q + qubits - 2, q + qubits - 1)

12 for q in range(qubits - 2, 1, -1):

13 cir.ccx(q, q + qubits - 2, q + qubits - 1)

14 if qubits > 2:

15 cir.ccx(0, 1, qubits)

16 # add H

17 for q in range(qubits ):

18 cir.h(q)

19 # add X

20 for q in range(qubits ):

21 cir.x(q)

22 cir.h(qubits - 1)

23 if qubits == 2:

24 cir.cx(0, 1)

25 elif qubits == 3:

26 cir.ccx(0, 1, 2)

27 else :

28 cir.ccx(0, 1, qubits)

29 for q in range(2, qubits - 2):
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30 cir.ccx(q, q + qubits - 2, q + qubits - 1)

31 cir.ccx(qubits - 2, 2 * qubits - 4, qubits - 1)

32

33 for q in range(qubits - 3, 1, -1):

34 cir.ccx(q, q + qubits - 2, q + qubits - 1)

35 if qubits > 2:

36 cir.ccx(0, 1, qubits)

37 cir.h(qubits - 1)

38 # add X

39 for q in range(qubits ):

40 cir.x(q)

41 # add H

42 for q in range(qubits ):

43 cir.h(q)

44

45 cir.h(2 * qubits - 2)

46 return cir.qasm ()

2.1.5 Quantum Adder

Description. Quantum adder is a quantum circuit to implement add operation
on two bit strings. For example, if we compute ’2+3=5’, then we represent the
input string as ’010’ and ’011’, and the expected output bit string is ’101’. The
implementation of the quantum adder circuit is illustrated as follows, and the
additional qubits are used to store the carry bit [CS08].

OpenQASM Code. The OpenQASM description of 3-bit adder circuit is
shown as follows.

q0 : • •
q1 : • •
q2 : • •
q3 : • •
q4 : • •
q5 : • •
q6 : • •
q7 : • •
q8 : • •
q9 :

Figure 5: Circuit of 3-bit adder
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1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[10];

4 ccx q[1],q[2],q[3];

5 cx q[1],q[2];

6 ccx q[4],q[5],q[6];

7 cx q[4],q[5];

8 ccx q[7],q[8],q[9];

9 cx q[7],q[8];

10 ccx q[0],q[2],q[3];

11 ccx q[3],q[5],q[6];

12 ccx q[6],q[8],q[9];

13 cx q[0],q[2];

14 cx q[3],q[5];

15 cx q[6],q[8];

Generation Script. The python code for generating an adder circuit is as
follows, the function takes the number of qubits as the input and outputs the
OpenQASM text of the circuit.

1 def header(nq):

2 str = ””
3 str += ”OPENQASM 2 . 0 ; \ n”
4 str += ” in c l ud e \” q e l i b 1 . i n c \” ;\ n”
5 str += ” qreg q[%d ] ; \ n”%(nq)
6 return str

7

8 def carry_gate (s):

9 str= ’ ’
10 str+=” ccx q[%d ] , q[%d ] , q[%d ] ; \ n”%(s+1, s+2, s+3)

11 str+=”cx q[%d ] , q[%d ] ; \ n”%(s+1, s+2)

12 return str

13

14 def adder(numq ):

15 str = ” //Adder with %d qub i t s input .\ n”%numq
16 str += header (3* numq +1)

17 for i in range(numq ):

18 str += carry_gate (3*i)

19 for i in range(numq ):

20 str +=” ccx q[%d ] , q[%d ] , q[%d ] ; \ n”%(3*i, 3*i+2, 3*i+3)

21 for i in range(numq ):

22 str +=”cx q[%d ] , q[%d ] ; \ n”%(3*i, 3*i+2)

23 return str

2.2 Reversible Circuits

Description. A classical n-bit reversible gate is a bijective mapping f from
the set {0, 1}n of n-bit data onto itself. Thus the vector of input states can
always be reconstructed from the vector of output states. A combinational
logic circuit is reversible if it only contains reversible gates and has no fan-out.
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Classical reversible circuits may be implemented in quantum technology and
have important applications in many quantum algorithms such as the arithmetic
module of Shor’s Algorithm and the oracle of Grover’s Algorithm.

We collect the classical reversible circuits in the Reversible Logic Synthesis
Benchmarks Page [Mas]. The following are the elementary gates they used:

Definition 1 A generalized Toffoli gate TOF(x1, x2, ..., xn; xn+1) is a gate
which maps a Boolean pattern (x1, x2, ..., xn, xn+1) to (x1, x2, ..., xn, xn+1+
x1x2 . . . xn), where ”+” is a modula-2 addition.

Examples:

1. NOT gate is a TOF(∅; a) gate.

2. CNOT gate is a TOF(a; b) gate.

3. Original Toffoli gate is a TOF(a, b; c).

Definition 2 A generalized Fredkin gate FRE(x1, x2, ..., xn; xn+1, xn+2) is
a gate which maps Boolean pattern (x1, x2, ..., xn, xn+1, xn+2) to (x1, x2, ...,
xn, xn+2, xn+1) if and only if Boolean product x1x2 . . . xn = 1, otherwise the
pattern is unchanged.

Examples:

1. SWAP gate is a FRE(∅; a, b) gate.

2. Original Fredkin gate is a FRE(a; b, c) gate.

OpenQASM Code. We translate their circuit description into the Open-
QASM 2.0 format. The following gives an example of the reversible 5-bit adder
circuit.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[11];

4 cx q[3], q[2];

5 cx q[5], q[4];

6 cx q[7], q[6];

7 cx q[9], q[8];

8 cx q[9], q[10];

9 cx q[7], q[9];

10 cx q[5], q[7];

11 cx q[3], q[5];

12 ccx q[0], q[1], q[3];

13 ccx q[2], q[3], q[5];

14 ccx q[4], q[5], q[7];

15 ccx q[6], q[7], q[9];

16 ccx q[8], q[9], q[10];

17 cx q[9], q[8];

18 ccx q[6], q[7], q[9];
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19 cx q[7], q[6];

20 ccx q[4], q[5], q[7];

21 cx q[5], q[4];

22 ccx q[2], q[3], q[5];

23 cx q[3], q[2];

24 ccx q[0], q[1], q[3];

25 cx q[3], q[5];

26 cx q[5], q[7];

27 cx q[7], q[9];

28 cx q[1], q[0];

29 cx q[3], q[2];

30 cx q[5], q[4];

31 cx q[7], q[6];

32 cx q[9], q[8];

2.3 Qubit Mapping

Description. On the current superconducting quantum processors, 2-qubit
gates are usually unavailable for arbitrary pairs of qubits but only for a small
part of them. In order to make all the 2-qubit gates in a circuit available on
a specific quantum chip, we have to map the qubits in the circuit to those on
the quantum chip and insert some SWAP gates. Meanwhile, we want to make
sure that the modified circuit is optimal on depth or the number of inserted
SWAP gates. However, since the above problem, known as the qubit mapping
problem, is NP-complete, it is difficult to theoretically evaluate the performance
of different algorithms. Instead, the performance can be evaluated through
benchmarks. [TC20b] presents an algorithm to generate benchmarks of the
qubit mapping problems on specific quantum processors along with optimal
solutions. We have implemented the generating algorithm in Python. The
input and output of the implementation are described below:

The set of qubit pairs which are available for 2-qubit gates is given by the
edge set E of a graph G. Given depth d, gate count N and the proportion of
2-qubit gates p2, a random quantum circuit which can be executed on the graph
G is generated along with an optimal qubit mapping of depth d.

Generation Script. An example of our implementation of QUEKO is shown
below:

1 from QUEKO import QUEKO

2

3 edges = [(0, 1), (1, 2), (1, 3), (3, 4)]

4 prob = QUEKO(edges=edges , depth=5, gateCount =10, p2 =0.3)

5

6 # pr i n t the genera ted OpenQASM program

7 print(prob .qasm2)

8

9 # pr i n t the op t ima l s o l u t i on , where the $ i$−th q u b i t

10 # shou ld be mapped to the $ i$−th e l ement o f the l i s t .

11 print(”//” + prob .optimalMapping )

13



OpenQASM Code. A sample output of the above program is:

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[5];

4 cx q[1], q[2];

5 t q[4];

6 x q[1];

7 h q[0];

8 z q[3];

9 cx q[1], q[3];

10 y q[3];

11 cx q[4], q[2];

12 h q[3];

13 y q[2];

14

15 //[2, 3, 1, 4, 0]

Note that the gate cx q[4], q[2] is not available on the graph given by
edges. However, if we apply the map

0 7→ 2, 1 7→ 3, 2 7→ 1, 3 7→ 4, 4 7→ 0

to the qubits in the above program, all the cx are then available on the
graph.

2.4 Random Circuits

2.4.1 Random Clifford Circuits

Description. Clifford operation plays an important role in quantum error
correction, randomized benchmarking protocols and quantum circuit simula-
tion. By definition, Clifford operation is a unitary operation taking elements
of Gn to elements of Gn, where Gn is the Pauli group on n qubits. Any n-
qubit Clifford operation can be simulated using O(n2) Hadamard, phase and
controlled-NOT gates. Clifford group elements are important and frequently en-
countered subsets of physical-level and fault-tolerant quantum circuits [Bra+21],
and sometimes an entire quantum algorithm can be a Clifford circuit (e.g., Bern-
stein–Vazirani [NC02]).

The Clifford group is a unitary 2-design. That is, a random uniformly dis-
tributed element of the Clifford group has exactly the same second order mo-
ments as the Haar random unitary operation. This means the random Clifford
operations can serve as a substitute for Haar random unitaries in any application
that depends only on the second order moments. In Qiskit, the random Clifford
is sampled using the method of [BM21]. Then the Clifford circuit is synthesized
by the method in [AG04] and optimized by the method in [Bra+21].

Generation Script. The script for generating random Clifford circuit is as
follows.

14



1 from qiskit import quantum_info

2

3 def gen_rand_cliff (n):

4

5 cliff= quantum_info . random_clifford (n)

6 AG=quantum_info . decompose_clifford (cliff ,method= ’AG’ )
7 GD=quantum_info . decompose_clifford (cliff ,method= ’ greedy ’ )
8

9 return AG.qasm (),GD.qasm ()

OpenQASM Code. The following gives a 3-qubit random Clifford circuit in
OpenQASM 2.0 format.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[3];

4 s q[0];

5 h q[0];

6 s q[1];

7 h q[1];

8 s q[1];

9 h q[2];

10 cx q[2],q[1];

11 cx q[1],q[0];

12 cx q[0],q[2];

13 h q[1];

14 s q[2];

15 h q[2];

16 cx q[2],q[1];

17 s q[2];

18 x q[0];

19 z q[1];

2.4.2 Quantum Volume

Description. Quantum volume [Cro+19] is a metric that can be used to mea-
sure the capabilities and error rates of a quantum computer. It quantifies the
largest random circuit of equal width and depth that the computer can success-
fully implement. The circuit model used for measuring quantum volume is as
follows.

π

SU(4)

π

SU(4) · · ·

π

SU(4)· · ·
SU(4) SU(4) · · · SU(4)· · ·
SU(4) SU(4) · · · SU(4)· · ·

Figure 6: The circuit model for quantum volume.

Here, π is a permutation of qubits, and every SU(4) represents a 2-qubit

15



unitary gate sampled from the Haar measure on SU(4). There will be d layers
of this module if the depth of the circuit is d, and if the number of qubits in the
circuit is odd, then every layer will have an idle qubit.

In our benchmark, we give a series of circuits for quantum volume con-
structed on basic quantum gates. And the SU(4) gates are decomposed using
qiskit.

OpenQASM Code. The following is an example of the quantum volume
circuit with qubits 2 depth 2, and these circuits are decomposed to cx and u3
gate using the standard QASM representation.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[2];

4 creg c[2];

5 u3 (0.10690831 , -1.8026866 ,0.78825838) q[0];

6 u3 (2.4950187 , -3.5814199 ,2.5427764) q[1];

7 cx q[0],q[1];

8 u3 (0.82807016, -3*pi/2,pi/2) q[0];

9 u3(pi/2,-pi , -2.8687452) q[1];

10 cx q[0],q[1];

11 u3 (0.20800243 ,0 , -3* pi /2) q[0];

12 u3(pi/2,0,-3* pi /2) q[1];

13 cx q[0],q[1];

14 u3 (2.0104954 ,1.3664259 , -1.5218768) q[0];

15 u3 (0.94734104 , -0.84662394 ,3.2456914) q[1];

16 u3 (1.143506 , -3.1351223 , -0.55632777) q[0];

17 u3 (1.3587079 , -3.1777958 ,0.27175853) q[1];

18 cx q[0],q[1];

19 u3 (1.0096868 , -3* pi/2,pi/2) q[0];

20 u3(pi/2,-pi , -3.0848291) q[1];

21 cx q[0],q[1];

22 u3 (0.61517883 ,0 , -3* pi /2) q[0];

23 u3(pi/2,0,-3* pi /2) q[1];

24 cx q[0],q[1];

25 u3 (0.09341401 , -1.4199754 ,4.7299314) q[0];

26 u3 (0.45442386 , -2.4437295 ,1.2711765) q[1];

Generation Script. The script for generating circuit for arbitrary qubits and
arbitrary depth is as follows.

1 from qiskit. quantum_info . synthesis \

2 import two_qubit_cnot_decompose

3 def random_SU (n):

4 X = (np.random.randn(n, n) + 1j * np.random.randn(n, n))

5 Q, R = linalg.qr(X)

6 Q /= pow(linalg.det(Q), 1/n)

7 return Q

8

9 def gen_qv(qubits , depth):

10 cir = QuantumCircuit (qubits , qubits)
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11 for j in range(depth):

12 perm = np.random. permutation (qubits)

13 for k in range(qubits // 2):

14 q = [int(perm [2 * k]), int(perm [2 * k + 1])]

15 SU = random_SU (4)

16 decomposed_SU = two_qubit_cnot_decompose(SU)

17 for gate in decomposed_SU :

18 i0 = q[gate [1][0]. index]

19 if gate [0]. name == ”cx ”:
20 i1 = q[gate [1][1]. index]

21 qv.cx(i0 , i1)

22 elif gate [0]. name == ”u1”:
23 qv.u1(gate [0]. params [2], i0)

24 elif gate [0]. name == ”u2”:
25 qv.u2(gate [0]. params [1], \

26 gate [0]. params [2], i0)

27 elif gate [0]. name == ”u3”:
28 qv.u3(gate [0]. params [0], \

29 gate [0]. params[1], gate [0]. params [2], i0)

30 elif gate [0]. name == ” id ”:
31 pass

32 return cir.qasm ()

2.4.3 Supremacy Circuits

Random circuits have been widely used in works related to the quantum supremacy
[Boi+18]. Since there are already some benchmarks with such circuits, we just
include the existing and commonly used circuits directly in our benchmark. One
of such benchmark is GRCS 1. GRCS provides a lot of random circuits, but all
in a ’.txt’ format and not given in the standard OpenQASM language. In our
benchmark, we give the OpenQASM version of the random circuits shown in
GRCS.

3 Dynamic Quantum Circuits

Dynamic quantum circuit is a model of quantum computation, in which quan-
tum algorithms can be executed in a more flexible classical-quantum hybrid
way, which can sometimes reduce the costs of quantum resources. The dynamic
quantum circuit is adopted as an alternative and beneficial way for executing
quantum algorithms on NISQ devices. Our benchmark includes a series of dy-
namic quantum circuits.

The biggest difference between dynamic quantum circuits and conventional
quantum circuits is that measurements will usually appear in the middle of the
circuit, and a series of classically controlled gates will be applied according to
the results of the measurements.

1https://github.com/sboixo/GRCS
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3.1 Quantum Teleportation

Description. One of the simplest examples of dynamic quantum circuits is
teleportation. Teleportation is a protocol for transmitting a qubit between two
users by sending two classical bits of information [Ben+93].

OpenQASM Code. The corresponding circuit and the OpenQASM 2.0 de-
scription are as follows. The first qubit belongs to Alice and the last qubit
belongs to Bob. By first applying a series of quantum gates and sending the
measurement result to Bob, Bob can obtain the state of the first qubit of Alice
by applying a series of gates according to the measurement information.

|ϕ〉 • H ✌✌✌ •

|0〉 ✌✌✌

|0〉 H • X Z |ϕ〉

Figure 7: Dynamic quantum circuit for Teleportation.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[3];

4 creg c0 [1];

5 creg c1 [1];

6 creg c2 [1];

7 h q[2];

8 cx q[2],q[1];

9 cx q[0],q[1];

10 h q[0];

11 measure q[1] -> c1 [0];

12 if(c1 ==1) x q[2];

13 measure q[0] -> c0 [0];

14 if(c0 ==1) z q[2];

3.2 Semiclassical Fourier Transform

Description. The quantum Fourier transform can also be represented as a
dynamic quantum circuit form [GN96]. The following gives the detailed infor-
mation of the dynamic version of the quantum Fourier transform. From Figure
2 and Figure 8 you can see that all the controlled-Rk gates are replaced by a
measurement and classically controlled Rk gates.

The advantage of using this dynamic quantum circuit is that there is no need
to apply 2-qubit gates during the process, all the 2-qubit gates can be replaced
by single-qubit gates chosen according to the measurement results.

OpenQASM Code. Following gives the OpenQASM description of the dy-
namic version of quantum Fourier transform.
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|j1〉 H ✌✌✌ •
|j2〉 R2 H ✌✌✌

|j3〉 R3 R2 H ✌✌✌

Figure 8: Dynamic quantum circuit for Fourier transform.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[3];

4 creg c0 [1];

5 creg c1 [1];

6 creg c2 [1];

7 h q[0];

8 measure q[0] -> c0 [0];

9 if(c0 ==1) u1(pi /2) q[1];

10 if(c0 ==1) u1(pi /4) q[2];

11 h q[1];

12 measure q[1] -> c1 [0];

13 if(c1 ==1) u1(pi /2) q[2];

14 h q[2];

15 measure q[2] -> c2 [0];

Generation Script. Similar to the conventional quantum circuit, the corre-
sponding circuit can be generated as follows.

1 def gen_dqc_qft (qubits ):

2

3 cir= QuantumCircuit (qubits)

4

5 for q in range(qubits ):

6 cir.h(q)

7 c= ClassicalRegister (1, ’ c ’ +str(q))
8 cir. add_register (c)

9 cir.measure (q,c)

10 for tar in range(q + 1, qubits ):

11 theta = np.pi / 2 ** (tar - q)

12 cir.u1(theta ,tar ). c_if (c, 1)

13

14 return cir.qasm ()

3.3 Iterative Phase Estimation

Description. Since the quantum phase estimation uses the inverse quantum
Fourier transform as a subroutine, it can also be executed as a dynamic quantum
circuit. The dynamic version of quantum phase estimation is as follows.

The advantage of the phase estimation implemented by the dynamic quan-
tum circuit is that the circuit can be executed with only 2-qubit gates, and more
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|0〉 H • H ✌✌✌

|0〉 H • R†
2 H ✌✌✌

|ϕ〉 / U U2

Figure 9: Quantum circuit for phase estimation.

details are shown in [Cór+21].

OpenQASM Code. The following gives the dynamic version of 3-qubit phase
estimation.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[3];

4 creg c0 [1];

5 creg c1 [1];

6 h q[0];

7 h q[1];

8 cu1(pi /512) q[1],q[2];

9 cu1(pi /256) q[0],q[2];

10 h q[0];

11 measure q[0] -> c0 [0];

12 if(c0 ==1) u1(-pi /2) q[1];

13 h q[1];

14 measure q[1] -> c1 [0];

Generation Script. The code for generating dynamic quantum phase estima-
tion circuit of any qubit number is as follows.

1 def gen_dqc_pe (qubits , the_phase ):

2 cir = QuantumCircuit (qubits + 1)

3

4 for q in range(qubits ):

5 cir.h(q)

6

7 for q in range(qubits - 1, -1, -1):

8 cir.cu1(np.pi*the_phase *2**(qubits -q),q,qubits)

9

10 for q in range(qubits ):

11 cir.h(q)

12 c = ClassicalRegister (1, ’ c ’ + str(q))

13 cir. add_register (c)

14 cir.measure (q, c)

15 for tar in range(q + 1, qubits ):

16 theta = np.pi / 2 ** (tar - q)

17 cir.u1(-theta , tar). c_if (c, 1)

18

19 return cir.qasm ()
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3.4 Quantum Error correction

Description. Another example of dynamic quantum circuits is the circuit for
quantum error correction, where a quantum state must first experience a period
of syndrome measurement, and then be recovered according to the measurement
result.

OpenQASM Code. The following gives the circuit model of error correction
as well as the OpenQASM 2.0 description of the bit-flip and phase-flip code
[NC02].

• •
R• •

• •
|0〉 ✌✌✌ •

|0〉 ✌✌✌ •

|0〉 ✌✌✌ •

Figure 10: A circuit model for Quantum Error correction.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[6];

4 creg c[6];

5 cx q[0],q[3];

6 cx q[1],q[3];

7 cx q[1],q[4];

8 cx q[2],q[4];

9 cx q[0],q[5];

10 cx q[2],q[5];

11 measure q[3] -> c[3];

12 measure q[4] -> c[4];

13 measure q[5] -> c[5];

14 if(c==5) x q[0];

15 if(c==6) x q[1];

16 if(c==3) x q[2];

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[6];

4 creg c[6];

5 h q[0];

6 h q[1];

7 h q[2];

8 cx q[0],q[3];

9 cx q[1],q[3];

10 cx q[1],q[4];

21



11 cx q[2],q[4];

12 cx q[0],q[5];

13 cx q[2],q[5];

14 measure q[3] -> c[3];

15 measure q[4] -> c[4];

16 measure q[5] -> c[5];

17 if(c==5) x q[0];

18 if(c==6) x q[1];

19 if(c==3) x q[2];

20 h q[0];

21 h q[1];

22 h q[2];

3.5 State Injection

Description. State injection is the technique for implementing some quantum
gates using a dynamic scheme. The basic idea is that the effect of this gate
can be implemented by using a special state and a series of gates that can be
implemented more simply.

OpenQASM Code. The following gives the circuit and the OpenQASM
scripts for the dynamic implementation of the S and T gate [Rya+17].

|ψ〉 • Z S |ψ〉

|0〉+ i |1〉 ✌✌✌
(a)

|ψ〉 • S T |ψ〉

|0〉+ e
iπ
4 |1〉 ✌✌✌

(b)

Figure 11: The quantum circuits for state injection, (a) implementation of S
gate, (b) implementation of T gate.

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
3 qreg q[2];

4 creg c0 [1];

5 creg c1 [1];

6 h q[0];

7 h q[0];

8 cx q[0],q[1];

9 measure q[1] -> c1 [0];

10 if(c1 ==1) z q[0];

1 OPENQASM 2.0;

2 include ” q e l i b 1 . i n c ”;
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3 qreg q[2];

4 creg c0 [1];

5 creg c1 [1];

6 h q[0];

7 h q[0];

8 cx q[0],q[1];

9 measure q[1] -> c1 [0];

10 if(c1 ==1) u1(pi /2) q[0];

4 Sequential Quantum Circuits

Sequential quantum circuits [LP09; WLY21] are a new breed of quantum circuits
that incorporate a clock signal. They can be understood as a generalization of
classical (synchrounous) logic circuits. From another point of view, sequential
quantum circuits are a special type of dynamic quantum circuits, since interme-
diate measurements are intended to perform at the end of each time step.

Sequential quantum circuits are useful in describing algorithms with loops
and quantum feedback, e.g., Repeat-Until-Success circuits [PS14] and quantum
walks [Kem03]. In this section, we select some of the examples of sequential
quantum circuits and explain how we benchmark them in OpenQASM.

4.1 Repeat-Until-Success

Description. Repeat-Until-Success circuits [PS14] are a bunch of efficient im-
plementations of quantum logic gates which make good use of intermediate
measurements as feedback. Figure 12 shows a sequential quantum circuit for
repeat-until-success implementation of quantum gate

V3 =
I + 2iZ√

5
.

On this basis, we design several benchmarks.

q = |0〉 H T H • T † H T • H T H ✌✌✌

p = |ψ〉 > Z Z Z

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Figure 12: A sequential quantum circuit for repeat-until-success implementation
of V3. This figure is taken from [WLY21].

OpenQASM Code. In Figure 12, q is the only input variable (qubit) while
p is the only internal variable (qubit). At each time step, the qubit q will be
measured in the computational basis indicating whether the implementation
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succeeds. We abstract the main process of the repeat-until-success implemen-
tation of V3 in OpenQASM as follows.

1 def qrus () qubit:q, qubit:p

2 {

3 h q;

4 t q;

5 h q;

6 ctrl @ z q, p;

7 inv @ t q;

8 h q;

9 t q;

10 ctrl @ z q, p;

11 h q;

12 t q;

13 h q;

14 z p;

15 bit result;

16 result = measure q;

17 }

Next, we will show how to use the function above to execute the sequential
quantum circuit for one time step. Before the main process of the sequential
circuit, we need to initialize the internal variable, which is qubit p in our case.
The following code sets p to |+〉.

1 qubit p;

2 h p; // p = |+>

Every time before calling the function qrus(), we need to prepare input
qubit q beforehand.

1 qubit q;

2 reset q; // q = |0>

Now we are ready to call qrus().

1 qrus (q, p);

After calling qrus(q, p), you can obtain the measurement outcome of the
sequential quantum circuit as follows.

1 bit x;

2 x = measure q;

Here, we note that qubit q has already been measured in the execution of
qrus(p, q) before that of x = measure q;. Nevertheless, the measurement
outcome is always retrieved from a correct probability distribution. The reason
we encapsulate measurements in the main process of the sequential circuit (i.e.,
qrus() in our case) is to ensure that a measurement must be performed at each
time step.
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4.2 Quantum Walk

Description. Quantum walks [ADZ93; Kem03; Amb+01] are quantum gener-
alizations of classical random walks, and have many applications in quantum
algorithms. As an illustrative example (see Figure 13), we consider a quantum
walk on a circle (with positions |0〉p , |1〉p , |2〉p , |3〉p) with an absorbing boundary
|3〉p. Here, Toss is the toss operator

Toss : |0〉c |i〉p → |0〉c |(i+ 1) mod 4〉p ,
|1〉c |i〉p → |1〉c |(i− 1) mod 4〉p ,

which translates the position conditioned on the coin state.

d ✌✌✌

c > H

Tossp1 > •
p2 > •

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Figure 13: A sequential quantum circuit for quantum walk. This figure is taken
from [WLY21].

OpenQASM Code. In Figure 13, d is the only input variable (qubit),
and c, p1, p2 are the output variables (qubits). The OpenQASM code for the
sequential quantum circuit in Figure 13 is as follows.

1 OPENQASM 3.0;

2

3 include ” s td ga t e s . i n c ”;
4

5 gate coin q

6 {

7 h q;

8 }

9

10 gate shift0 p1 , p2

11 {

12 ctrl @ x p2 , p1;

13 x p2;

14 }

15

16 gate shift1 p1 , p2

17 {
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18 x p2;

19 ctrl @ x p2 , p1;

20 }

21

22 gate toss c, p1 , p2

23 {

24 x c;

25 ctrl @ shift0 c, p1 , p2;

26 x c;

27 ctrl @ shift1 c, p1 , p2;

28 }

29

30 def qwalk() qubit:d, qubit:c, qubit:p1 , qubit:p2

31 {

32 coin c;

33 toss c, p1 , p2;

34 ctrl @ ctrl @ x p1 , p2 , d;

35 bit result;

36 result = measure d;

37 }

Similar to the use of the code in repeat-until-success circuits, after initializing
qubit d, a call to qwalk(d, c, p1, p2) will result in one step of quantum walk.

4.3 Classical Control

Description. For the convenience to control the behaviour of quantum systems,
we consider a class of sequential quantum circuits with their input variables in
the computational basis. For example, in Figure 14, the input variables q1 and
q2 control which kind of quantum gates is performed on p1, p2, p3. In order
to retrieve some information from the sequential quantum circuit, we use a
detective qubit (an input variable) d with it being initialized to |0〉.

OpenQASM Code. The OpenQASM code for the sequential quantum
circuit in Figure 14 is as follows.

1 OPENQASM 3.0;

2

3 include ” s td ga t e s . i n c ”;
4

5 def qctrl() qubit:d, qubit:q1 , qubit:q2 , qubit:p1 , qubit:p2 , qubit:p3

6 {

7 ctrl (4) @ x q1 , q2 , p1 , p2 , p3;

8 negctrl (2) @ q1 , q2 , p1;

9 negctrl @ ctrl @ h q1 , q2 , p2;

10 ctrl @ negctrl @ q1 , q2 , p3;

11 cx p1 , d;

12 bit result [3];

13 result [0] = measure d;

14 result [1] = measure q1;

15 result [2] = measure q2;
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d = |0〉 ✌✌✌

q1 • • ✌✌✌

q2 • • ✌✌✌

p1 > • H •

p2 > • H

p3 > H

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Figure 14: A sequential quantum circuit for classical control. This figure is
taken from [WLY21].

16 }

After initializing input variables d, q1, q2, we can call qctrl(d, q1, q2,

d1, d2, d3) for one time step of the computation.

5 Variational Quantum Circuits

The benchmark on variational quantum circuits (VQCs, or parameterized quan-
tum circuits) aims to provide VQC templates of variational quantum algorithms,
including variational quantum eigensolver (VQE).

5.1 Variational Quantum Eigensolver

Description. Solving the ground state energy (minimum eigenvalue) of a
Hamiltonian is fundamental in quantum chemistry and condensed matter physics.
By using various VQCs to model wavefunctions, VQE converts the minimum
eigenvalue problem into optimization over parameters of VQCs. The reader can
refer to a review [Til+21] for comprehensive knowledge.

Generation Script. In the benchmark, we provide a Python script named
BenchmarkVQE.py to generate OpenQASM files for VQCs used in VQE lit-

erature. The different types of VQCs (ansatz) we currently support and the
corresponding arguments are as follows:

• Hardware-efficient ansatz, --ansatz hea .

• Unitary coupled cluster (UCC) ansatz, --ansatz ucc .

• Symmetry-preserving ansatz, --ansatz spa .
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After specifying the ansatz, there are some arguments (e.g., number of
qubits) left to set. For detailed usage, please refer to our repository in GitHub.

For example, the following command

1 python benchmark_vqe .py --ansatz hea --num_qubits 2

will generate an OpenQASM file output.qasm for hardware-efficient ansatz

with 2 qubits and all parameters randomly.

OpenQASM Code. An example is as follows.

1 OPENQASM 2.0;

2 include ” q e l i b . i n c ”;
3

4 qreg qs [2];

5

6 // Rotation

7 rz (2.3528045139656477) qs [0];

8 rx (5.056468340910666) qs [0];

9 rz (4.830262154311054) qs [0];

10 rz (5.826369114279527) qs [1];

11 rx (0.6640310016450327) qs [1];

12 rz (4.350196740814403) qs [1];

13 // Entangling

14 cx qs[0], qs [1];

15 // Rotation

16 rz (1.2300646901838261) qs [0];

17 rx (4.3476867872279685) qs [0];

18 rz (4.04916881465231) qs [0];

19 rz (3.1235589418914618) qs [1];

20 rx (3.5136963947870354) qs [1];

21 rz (2.656998011183734) qs [1];

22 // Entangling

23 cx qs[0], qs [1];

24 // Rotation

25 rz (1.7224607753970849) qs [0];

26 rx (5.561609408659551) qs [0];

27 rz (4.58779861660491) qs [0];

28 rz (6.2727331716861245) qs [1];

29 rx (4.711224351664875) qs [1];

30 rz (4.872654473631725) qs [1];

6 Validation

All our benchmark circuits are validated by Qiskit [Qis] and QCOR [Ngu+20].
For OpenQASM 2.0 descriptions, Qiskit is used. To run an example named
in file.qasm, simply navigate to its directory and execute the codes in python:

1 qc = qiskit. QuantumCircuit .from_qasm_file ( ’ . / i n f i l e . qasm ’ )
2 simulator = qiskit.Aer. get_backend ( ’ a e r s imu l a t o r ’ )
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Table 1: Example Applications

Example Applications Used VeriQBench Benchmark Circuits

Equivalence Checking [BW20b; Hon+21b] QFT, Grover, Dynamic (Section 3)

Fault Simulation BV, QFT

Circuit Optimization [Nam+18; AMM14] QFT, Reversible (Section 2.2)

ATPG [Ber17; CY22] Grover, BV, QFT, QV

Qubit Mapping [TC20b; TC20a] Generated Circuits (Section 2.3)

Model Checking [GNP05] Teleportation

3 qc = qiskit. transpile (qc , simulator )

4 result = simulator .run(qc , shots=1, memory=True ). result ()

For OpenQASM 3.0 descriptions, QCOR is used. To run an example named
in file.qasm, simply navigate to its directory and execute:

1 qcor -shots 1024 in_file.qasm

2 ./a.out

The simulation can be accelerated using TNQVM [McC+18], which leverages
tensor network theory to simulate quantum circuits. To run the above example
with TNQVM acceleration, simply execute:

1 qcor -qpu tnqvm[tnqvm -visitor :exatn] -shots 1024 in_file .qasm

2 ./a.out

For more details, we refer the readers to the official documentation and user
guides [AID].

7 Example Applications

To demonstrate the utility, in this section, we discuss some example applications
and point out how the benckmark circuits of VeriQBench are used there. A
summary of these applications is presented in Table 1.

• Equivalence Checking of Quantum Circuits : Equivalence checking is to
check if two quantum circuits are functionally equivalent [VMH07; YM10;
BW20b; BW20a; Hon+21b; Hon+21a; WLY21]. The circuits for quan-
tum Fourier transform and Grover’s algorithms have been used in work
[BW20b] to demonstrate the effectiveness of their equivalence checking
methods. Also, the circuits given in Section 3 have been used in testing
the algorithm developed in [Hon+21b] for checking equivalence of dy-
namic quantum circuits, and the circuits such as Bernstein-Vazirani and
quantum Fourier transform and quantum volume have been used in the
approximate equivalence checking of noisy quantum circuits [Hon+21a].
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The circuits given in Section 4 have been used in equivalence checking of
sequential quantum circuits [WLY21].

• Fault Simulation of Quantum Circuits : Given a quantum circuit and its
faulty implementation, fault simulation is to calculate the fidelity between
the expected output state and the actually obtained output state [Hua+21;
Che+21; Isa+21; Hua]. The work is performed on combinational quan-
tum circuits, including Bernstein-Vazirani and Quantum Fourier Trans-
form with realistic fault models proposed in [Hsi+20].

• Circuit Optimization: Quantum circuit optimization [Mas+08; Pra+06;
SM13; AMM14; Nam+18] aims to reduce the complexity of a quantum
circuit, where the complexity, depending on the scenario, can be quantified
by the size, depth, T-count or T-depth of the quantum circuit. The re-
versible circuits such as divisibility checkers have been used to benchmark
the quantum circuit optimization algorithms [Nam+18; AMM14].

• Automatic Test Pattern Generation (ATPG): Quantum ATPG algorithms
[PPH12; Ber17; CY22] aim to generate specific test patterns based on
the structure and fault model of the quantum circuit, where the test
patterns include a set of input vectors and corresponding outputs vec-
tors. The Combinational Quantum Circuits including Grover’s algorithm,
Bernstein-Vazirani, Quantum Fourier Transform and Quantum Volume
with the unitary fault model have been used to demonstrate the effective-
ness of the ATPG algorithms in [Ber17; CY22].

• Qubit Mapping: The target of qubit mapping is to assign a physical qubit
on a quantum chip to every logical qubit in a quantum circuit, while op-
timizing the performance of the circuit [Mas+08; SSP14; LSJ14; WLD14;
PS16; Sir+18; ZPW18; CSU19; WBZ19; LDX19; Bha+19; Mur+19; TQ19;
Siv+20]. One of the most important performance metrics of quantum cir-
cuits is the depth of the circuit. The method for generating qubit mapping
problems with optimal solutions for depth in this benchmark was proposed
in [TC20b], and was used to evaluate the qubit mapping tools in [TC20a].

• Model Checking Quantum Systems : Model-checking is one of the most
successful verification techniques with numerous applications in hardware
and software industries. It has been generalised to check various prop-
erties of quantum systems, including quantum cryptographic protocols
[GNP08], quantum programs [YF21] and quantum circuits [Yin21]. The
teleportation circuit in Section 3.1 has been used in probabilistic model
checking algorithm of quantum protocols [GNP05].
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