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A three-site mesoscopic ring provides an ideal setting for an exact calculation of the bond current
when the ring is threaded by an Aharonov-Bohm flux. The bond current is a measurable outcome
of the coherent properties of the quantum phase. However the coherence is impeded by noise when
the ring is put in contact with an environment. This coherence-to-incoherence transition is analyzed
in detail here for both classical (Gaussian and telegraphic) and quantum noise and a comparative
assessment is made when the quantum noise is governed by a spin-boson Hamiltonian of dissipative
quantum mechanics.
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I. INTRODUCTION

Mesoscopic devices are systems in which basic
quantum mechanical principles can be tested in the
laboratory [1, 2]. Besides, they can be put to
useful applications toward the processing of quantum
information. While the latter hinges on the coherent
properties of the quantum phase, the flip side is that
mesoscopic systems being small are inevitably in coupling
with their environment which is in effect noisy. The noise
at elevated temperatures can be described by classical
stochastic processes but, and more importantly for low-
temperature phenomena, needs to be tackled quantum
mechanically. A theoretical understanding of what the
noise does to the otherwise pure quantum dynamics and
how it can be effectively controlled are important in
ensuring the efficacy of such mesoscopic devices.

In this paper we study this interplay of quantum
coherence and noise-induced decoherence [3–6]. However,
in order to keep the discussion at an analytically tractable
form, we consider a model system of a three-site ring
which is characterized by the interesting occurrence of
a ‘persistent’ (without a battery) bond current when
the ring is threaded by the Aharonov-Bohm flux due to
a perpendicular magnetic field [7, 8]. The Aharonov-
Bohm effect is a distinct imprint of the quantum phase
and the concomitant presence of coherence [9]. After
the surprising effect was theoretically predicted in 1959
the resultant bond current has been measured in the
laboratory [10–13]. The bond current, a transport
property is intriguingly related to orbital magnetism, an
attribute of thermodynamics [14]. To keep the analysis
simple the ring is assumed to be symmetric, i.e., all
site energies are the same (as would happen in the
absence of any disorder) in which the dynamics takes
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FIG. 1. (color online) Schematic of a three-site mesoscopic
ring.

place through quantum tunneling of a single electron
from site to site (Fig. 1). As far as the environmental
influence is concerned we adopt the well-known classical
stochastic processes of Gaussian and Telegraph forms
[15] and for quantum noise, the spin-boson model of
dissipative quantum systems [16–19].

With the known result for the bond current, previewed
in the beginning of the next section, our aim in this
paper is to endow the ring Hamiltonian with explicitly
time-dependent properties in order to account for the
fluctuating effect of the environment, and calculate the
time-dependent current. Thus, the tunneling energy J
is either written in terms of a stochastic process f(t) as
[J + ∆f(t)], or the variable f(t) is viewed to live in a
large Hilbert space of a quantum heat bath representing
the fluctuating influence of the environment of the ring.

Given these introductory remarks on the scope of the
present investigation, the paper is organized as follows.
The basic formulation needed for fulfilling the objective
of this study is presented in Sec. II. In Sec. IIIA, we treat
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the case of classical noise for the well-known situation in
which f(t) is a Gaussian stochastic process and adapt it
for the computation of the bond current that allows us
also to introduce the cumulant expansion scheme for the
stochastically averaged time-evolution operator [20–23].
As contrasting examples, Sec. III B and III C are devoted
to a two-state Telegraph process (TP) (symmetric and
asymmetric respectively) description of f(t) and once
again, certain exact results are presented for graphical
comparison with the Gaussian case of Sec. IIIA. In Sec.
IV, we move on to the quantum domain and view f(t)
in the language of a spin-boson system. The results for
classical noise, derived in Sec. III, and those for the
quantum noise, dealt with in Sec. IV, are now analysed
together. Also the conditions under which a TP emerges
from a spin-boson Hamiltonian are elucidated in this
section. Finally, Sec. V contains our concluding remarks.

II. FORMULATION

The Hamiltonian for a symmetric three-site ring can
be written as

H = −J(|1〉 〈2|+ |2〉 〈3|+ |3〉 〈1|+ h.a.), (1)

where h.a. denotes Hermitian adjoint, |i〉 denotes the
state of the site i for i = 1, 2, 3, and J is a (real) tunneling
energy, assumed the same between sites, which however
becomes complex in the presence of a perpendicular
magnetic field when the Hamiltonian becomes

HR = −J [exp (−iφ)(|1〉 〈2|+ |2〉 〈3|+ |3〉 〈1|)+h.a.], (2)

where the subscript R stands for ‘ring’ while φ is the
Aharonov-Bohm phase (assumed identical for a pair of
sites) given in terms of the charge e of the electron, the
speed of light c, the magnetic field B and the area A of
the triangle shown in Fig. 1 as

φ =
eBA

c
. (3)

(Here the Planck constant has been set equal to unity.)
The rate of leakage of the electron from any given site,

say 1, is given by

d

dt
|1〉 〈1| = i[H, |1〉 〈1|] =− iJ(eiφ |2〉 〈1| − e−iφ |1〉 〈2|)

− iJ(e−iφ |3〉 〈1| − eiφ |1〉 〈3|).
(4)

The first term on the right of Eq. (4) within the round
brackets has the interpretation of the current from site
1 to site 2 (clockwise) while the second term the current
from the site 1 to 3 (counter-clockwise). Since the
particle number is conserved the left-hand side in the
ground quantum mechanical state must vanish. Thus,
the expectation value of the electric current, say from

site 1 to 2 – which can be measured by sticking-in an
ammeter between the sites 1 and 2 – is given by

I = 2eJ〈i(eiφ |2〉 〈1| − e−iφ |1〉 〈2|)〉
= 4eJ Im〈eiφ |2〉 〈1| 〉, (5)

where e is the electronic charge. The angular brackets
〈...〉 denote the expectation value in the ground state
of the Hamiltonian in Eq. (2). The latter being a 3 × 3
matrix can be easily diagonalized to yield the eigenvalues
and eigenfunctions over which the expectation value can
be computed [8]. Hence,

I = 4eJ Im {eiφ〈j12〉}, here, (6)

j12 = |2〉 〈1| , 〈j12〉 =
∑
m

〈m|j12|m〉 , (7)

where the summation is over the different eigenfunctions
m of HR (three, in this case) that can be written down
as [8]

|m = +〉 =
1

2
√

3

−1− i
√

3

−1 + i
√

3
2

 ,

|m = 0〉 =
1√
3

1
1
1

 ,

|m = −〉 =
1

2
√

3

−1 + i
√

3

−1− i
√

3
2

 , (8)

associated with the eigenvalues

λ+ = J(cosφ+
√

3 sinφ),

λ0 = −2J cosφ,

λ− = J(cosφ−
√

3 sinφ). (9)

Some straightforward algebra yields

I = 4eJ sinφ. (10)

From φ(B) = −φ(−B) follows that I(B) = −I(−B),
explicitly demonstrating the effect of time-reversal.

In the presence of a stochastic process f(t) the
Hamiltonian can be modified as

HR(t) = −[J + ∆f(t)]Π , (11)
where,
Π = [exp (−iφ)(|1〉 〈2|+ |2〉 〈3|+ |3〉 〈1|) + h.a.]. (12)

It is evident that [HR(t),HR(t′)] = 0, which implies
that HR(t), once diagonalized, will remain diagonal for
all times. The physical meaning is there is no energy
exchange between the system at hand and its surrounding
bath giving rise to the so-called “adiabatic decoherence”
[24–26].
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From Eq. (6) and (7) the time-dependent current can
be computed from

〈j12(t)〉 =
∑
m

〈m| (ei
∫ t
0
dt′HR(t′)j12e

−i
∫ t
0
dt′HR(t′))av |m〉

(13)

while 〈j12(0)〉 =
∑
m

〈m|2〉〈1|m〉 , (14)

where (. . . )av denotes either a stochastic average (for
classical noise) or a quantum bath-average (for quantum
noise), specified in Sec. IV. Because HR(t) can be
diagonalized once and for all, we have

S†HR(t)S = −[J + ∆f(t)]Π̃ , (15)

where, S = 1
2
√
3

−1− i
√

3 2 −1 + i
√

3

−1 + i
√

3 2 −1− i
√

3
2 2 2

 and Π̃ =

diag
(
−(cosφ+

√
3 sinφ), 2 cosφ, −(cosφ−

√
3 sinφ)

)
≡

diag
(
λ̃+, λ̃0, λ̃−

)
.

From Eq. (13),

〈j12(t)〉

=
∑
mnn′

Smn

(
exp

{
i
[
Jt+ ∆

∫ t

0

dt′f(t′)
](λnn′

J

)})
av

〈n|S†j12S |n′〉S
†
n′m, λnn′ = λn − λn′ .

(16)

Using the site representation

|1〉 =

1
0
0

 , |2〉 =

0
1
0

 , |3〉 =

0
0
1

 . (17)

and some algebra, we can show that

〈n|S†j12S |n′〉 =
−1 + i

√
3

2
δn+δn′−, and∑

m

Sm+S−m 〈+|S†j12S |−〉 = 1. (18)

From Eq. (6) and (16) then, the time-dependent current
can be written as

I(t) = 4eJ Im{eiφ exp(iλ+−t)[U(t)]av}, where, (19)

[U(t)]av =
[

exp
(
i∆

∫ t

0

dt′f(t′)
(λ+−

J

))]
av
, (20)

and, λ+− = 2
√

3J sinφ.

Clearly, at time t = 0, the current matches with the
initial value expression given in Eq. (10). Here [U(t)]av
is the averaged time-evolution operator the calculation
of which will be the focus of attention in the subsequent
sections.

A remark is in order concerning the physical meaning
of the initial value I(0) and the final value I(∞) on

the current. Recalling that the Aharonov-Bohm phase
originates from a magnetic flux, the latter is envisaged
to have been switched-on, at an infinite past. Thus, at
time t = 0, the ring is expected to come to a steady state
(and we do not enquire how) wherein usual quantum
mechanics applies, yielding the bond current I(0) given
by Eq. (10). Next, the equilibrium is disturbed by
switching-on, at t = 0, a stochastic process f(t) giving
rise to the operative Hamiltonian in Eq. (11). The
further time evolution has two parts: (a) a ‘coherent’ one
dictated by the bare J in Eq. (11), and (b) an ‘incoherent’
one governed by f(t). Hence, in the infinite future, the
disruptive effects of f(t) are expected to lead to a zero
current: I(∞) = 0, as is borne out by numerical plots
given below.

III. BOND CURRENT UNDER A CLASSICAL
NOISE

A. Gaussian case

As stated at the outset our first task is to assume that
the environment of the mesoscopic ring is a classical heat
bath that creates a fluctuating tunneling energy governed
by a Gaussian stochastic process. For calculating the
averaged time-evolution operator it is most convenient
then to invoke the cumulant expansion theorem [15,
20, 27] because, for a Gaussian process, all cumulants
beyond the second one are zero. The cumulant expansion
theorem will turn out to be handy for the later treatment
of quantum noise, in Sec. IV as well. In Eq. (20) then

[U(t)]av = exp{iδ
∫ t

0

dt′〈〈f(t′)〉〉

−δ2
∫ t

0

dt′
∫ t′

0

dt′′〈〈f(t′)f(t′′)〉〉}, (21)

where the double angular brackets 〈〈...〉〉 denote
cumulant averages. Because the mean noise vanishes the
first integral in the exponent is zero while the Doob’s
theorem yields [27]

〈〈f(t′)f(t′′)〉〉 = 〈f2〉 exp(−γt), (22)

γ being the dissipation parameter, and

δ ≡ 2
√

3∆ sinφ. (23)

Carrying out the double integrals [28] in Eq. (21) and
substituting in Eq. (19) the current is given by

I(t) = 4eJ sin
[
φ+

δJt

∆

]
e
− δ2
γ2

(γt−1+e−γt)
. (24)

This equation allows for separate discussion of weak
and strong dissipation. In the weak damping case (γt <<
1),

I(t) = 4eJ sin
[
φ+

δJt

∆

]
e−

δ2t2

2 (1− γt3 ), (25)
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(a) (b)

FIG. 2. (color online) Plot of Persistent current with time for a comparative study between Symmetric TP (solid blue line)
and Gaussian Process (dashed red line): (a) for weak dissipation, the respective parameters are 2ν = γ = 3

4
(b) for strong

dissipation, the parameters are 2ν = γ = 3. For both of the plots, e = 1 = J,∆ = 1
2
, φ = π

3
, and δ is given in Eq. (23).

whereas strong damping (γt >> 1) yields

I(t) = 4eJ sin
[
φ+

δJt

∆

]
e−

δ2

γ t. (26)

In the next subsection we will compare these results
with those for the symmetric TP.

B. Telegraphic process – symmetric case

As shown by Blume [29] the telegraph process (TP) is
a special case of a stationary Markov process in which
the stochasticity is restricted to two states |+) and |−)
(denoted by |a), |b)...below), i.e., f(t) jumps between
two values +1 and −1. The Laplace transform of the
averaged time-development operator in Eq. (20) is given
by

[U(s)]av =
∑
ab

pa(a|(s1− iF −W )−1|b), (27)

where s is the Laplace transform variable, pa is the a-
priori probability of the stochastic state |a), F is a 2× 2
diagonal matrix with elements given by the two allowed
frequencies:

F =

(
δ 0
0 −δ

)
. (28)

The central quantity for the underlying Markov process
is the rate matrix W given by

W = 2ν

(
−p− p−
p+ −p+

)
, (29)

where ν is the jump rate. The matrix ofW is constructed
on the basis of two distinct attributes:

(i) conservation of probability∑
b

(a|W |b) =0, all a′s, (30)

and (ii) detailed balance of transitions
pa(a|W |b) =pb(b|W |a).

(31)

The jump matrix for a TP has the interesting property
[23]:

W = 2ν(T − 1), (32)

where the transition matrix T satisfies

(a|T |b) = pb, (33)

independent of the initial state |a). This special property
of the T - matrix allows [U(s)]av to be expressed in terms
of the ‘static’ time-development operator albeit with a
self-energy correction that has the structure of a random
phase approximation[23]:

[U(s)]av =
[U0(s+ 2ν)]av

1− 2ν[U0(s+ 2ν)]av
, (34)

where,

[U0(s+ 2ν)]av =
∑
a

pa(s+ 2ν − iF a)−1. (35)

We are now ready to discuss the symmetric case in which
the a-priori probabilities of the occurrence of the two
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assigned values of f(t) are identical, i.e., p+ = p− = 1
2 .

In that case Eq. (34) and (35) yield, after some algebra

[U(s)]av =
(s+ 2ν)

s(s+ 2ν) + δ2
, (36)

from which the corresponding expression in the time-
domain can be easily written down:

[U(t)]av =
1

2

{
1− ν√

ν2 − δ2
}
e−νt−

√
ν2−δ2t

+
1

2

{
1 +

ν√
ν2 − δ2

}
e−νt+

√
ν2−δ2t. (37)

It may be pertinent to mention here that [U(t)]av,
directly obtainable from Eq. (27) by Laplace-inverting,
can be straightaway calculated in the time domain, in
order to arrive at Eq. (37), by following the procedure
outlined in [30, 31].

Once again then, the weak damping case (ν < δ(∼
t−1)) yields for the current

I(t) = 4eJe−νt sin
[
φ+

δJt

∆

][
cos(ρt) +

ν

ρ
sin(ρt)

]
, (38)

where ρ =
√
δ2 − ν2; while strong damping (ν >> δ)

leads to

I(t) = 4eJ sin
[
φ+

δJt

∆

]
e−

δ2

2ν t. (39)

To facilitate numerical comparison between the
Gaussian and the symmetric TP cases, we weigh the
results in Eq. (26) and (39) respectively and set γ = 2ν
in Fig. 2 for the entire range of damping.

We now compare the current for the Gaussian case
with that for the symmetric TP in Fig. 2a for weak
dissipation and in Fig. 2b for strong dissipation. With
the identification of the respective parameters as γ and
ν we find that the results have similarities as well as
dissimilarities. For weak dissipation, though the profiles
of current are almost overlapping for very small period of
initial time, they differ by a large margin with increasing
time. The reason is clear: for TP in weak dissipation,
relaxation occurs in the presence of the superposition of
two distinct frequencies ±δ. On the other hand, for the
case of strong dissipation, both of the current profiles
exactly overlap with each other as they follow the exact
same equations (Eq. (26) and (39)).

C. Telegraphic process – asymmetric case

In the more general case of asymmetric jumps, p+ 6=
p−, and we may introduce an asymmetry parameter q =
p+ − p−. From Eq. (34) and (35) we now have

[U(s)]av =
(s+ 2ν) + iqδ

s(s+ 2ν) + δ(δ − i2νq)
, (40)

The Laplace-inversion of Eq. (40) reads

[U(t)]av =
1

2

{
1− ν + iqδ√

ν2 − (δ′)2

}
e−νt−

√
ν2−(δ′)2t

+
1

2

{
1 +

ν + iqδ√
ν2 − (δ′)2

}
e−νt+

√
ν2−(δ′)2t, (41)

where (δ′)2 = δ(δ − i2νq) = δ2 − i2νqδ.
Once again, the same expression can be directly arrived

at by employing exponentiation of 2×2 matrices as shown
in [30, 31].

Now [U(t)]av is complex and hence its real and
imaginary parts have to be dealt with separately to yield
for the current

I(t) = 4eJ

{
sin
[
φ+

δJt

∆

]
Re[U(t)]av

+ cos
[
φ+

δJt

∆

]
Im[U(t)]av

}
, (42)

One can easily calculate the real and imaginary part
of [U(t)]av, i.e., Re[U(t)]av and Im[U(t)]av , starting from
Eq. (41).

At this point, we present the current for the case of
asymmetric TP in Fig. 3a for weak dissipation and in
Fig. 3b for strong dissipation. We have plotted the
current for the asymmetric TP for two different values
of the asymmetry parameter q. The solid blue line is for
asymmetric TP with q = 0.2 for both weak and strong
dissipation limit. The dashed red line is for asymmetric
TP with q = 0 (again, for both the limiting cases) which
agrees with that of the symmetric TP when the a-priori
probabilities are the same. This fact is indeed true, as
for q = 0, Eq. (40) and (41) immediately reduce to Eq.
(36) and (37) respectively. Also, by comparing Fig. 3a
and 3b, we can conclude that current relaxes at a higher
value of time in the limiting case of strong dissipation
than that of the weak dissipation.

IV. BOND CURRENT UNDER A QUANTUM
NOISE

For describing decoherence properties in the realm
of quantum mechanics it is important to view the
environment as a quantum heat bath unlike the classical
cases treated in Sec. III. We attempt to do that here by
viewing the fluctuating term f(t) as a two-state process,
like the telegraph situation, but now given explicitly in
terms of Pauli pseudo-spin operators which are coupled
to bosonic fields as in the celebrated spin-boson model
for dissipative quantum systems [16, 17, 32]. The ring
Hamiltonian is then a generalized form of Eq. (11):

HR =− [J + ∆σz]Π +
E0

2
σz + σx

∑
j

gj(bj + b†j)

+
∑
j

ωjb
†
jbj . (43)
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(a) (b)

FIG. 3. (color online) Plot of Persistent current with time for Asymmetric TP with q = 0.2 (solid blue line) and Asymmetric
TP with q = 0 (dashed red line): (a) for weak dissipation, the dissipation parameter is ν = 5

4
(b) for strong dissipation, the

parameter is ν = 3. For both of the plots, e = 1 = J,∆ = 1
2
, φ = π

3
, and δ is given in Eq. (23).

The pseudo spin operator σz (with the pre-factor ∆)
plays the role of f(t) in the TP wherein the time
dependence of the latter is viewed to arise from the
interaction picture representation:

σz(t) = eit
(
E0
2 σz+HI+HB

)
σz(0)e−it

(
E0
2 σz+HI+HB

)
,

(44)
where HI and HB are the respective coupling
Hamiltonian and the bath Hamiltonian, given by

HI = σx
∑
j

gj(bj + b†j), HB =
∑
j

ωjb
†
jbj , (45)

gi’s being the coupling constants and bj(b
†
j) are bosonic

operators driven by a harmonic bath characterized by
frequencies ωj . Thus, the expanded ring Hamiltonian
now lives in an extended, product Hilbert space of
{Π ⊗ σ ⊗ b}. The underlying idea is that the operator
σx, being purely off-diagonal in the representation of σz,
causes transitions of the latter between +1 and −1 and
vice-versa much akin to the telegraph process and these
transitions are in turn influenced by fluctuating bosonic
fields bj(b

†
j) triggered by the bath HB. The transitions

are in general asymmetric because of the presence of the
energy term E0 which can be comparable to the thermal
energy, leading to detailed-balance factors(cf., Eq. (31)),
as argued in [33, 34]. Our analysis here is very much
in the spirit of a corresponding treatment for a qubit
[35], though we prefer to work here in the Heisenberg
picture as opposed to the Schrödinger picture, and more
importantly, treat the term proportional to ∆ exactly in
order to make contact with the TP, especially for weak
damping.

As indicated in Eq. (13) we would want to calculate
the time-dependence of the current operator via

j12(t) = exp (iHRt)j12(0) exp (−iHRt), (46)

and perform a statistical mechanical average in the
canonical ensemble with the aid of an equilibrium density
operator ρB defined below. Because HR (cf., Eq.
(43)) contains a set of non-commuting operators the two
exponentiated operators to the left and to the right of
j12 will have to be averaged over in juxtaposition which
is a complicated task. Instead, therefore, we would write
the time-development in Eq. (46) in terms of a single
exponentiated operator with the aid of a Liouvillian
HR

× associated withHR though the price we pay is that
we are led to operate within a larger Hilbert space[22, 23].

Retracing the steps as in Eq. (16) and employing the
first-principles Hamiltonian as in Eq. (43) above, we may
write in the Liouvillian formalism (cf., Eq. (7.19) of [17])

〈j12(t)〉 =

exp
(
itJ

δ

∆

)∑
µµ′

(
+ µ,−µ

∣∣ exp [t(iLs −Σ)]
∣∣+ µ′,−µ′

)
,

(47)

where, we recall that |+〉 and |−〉 are the eigenstates of
Π . The Greek indices µ, µ′, etc., are used to denote the
eigenstates of σz, i.e.,

σz |↑〉 = |↑〉 , σz |↓〉 = − |↓〉 , (48)

Here (and below, the script L’s represent the Liouvillians
associated with the corresponding ordinary operators)

Ls = −∆(σzΠ )× +

(
E0

2

)
σ×z , (49)
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the superscript × denoting the corresponding Liouville
operator and Σ the Markovian limit of the self-energy
operator (cf., Eq. (7.20) of [17]):

Σ =
∑
bb′

(
b, b
∣∣ ∫ ∞

0

dt{LIe[i(Ls+LB)t]LI}
∣∣b′, b′)〈b|ρB |b〉,

(50)
ρB being the density matrix for the bath:

ρB =
exp (−HB

kBT
)

Tr[exp (−HB

kBT
)]
, (51)

corresponding to the temperature T of the bath and kB
is the Boltzmann constant here.

Once again, the L’s represent Liouville operators – LI
is associated with HI while LB is associated with HB.

The formalism outlined here in which LI is treated to
second order in the Born approximation, is in the spirit
of Lindblad, among others [36]. As argued in Chap. 8.4
of [17], the only relevant matrix elements in Eq. (47) are(

+ ↑,− ↑
∣∣...∣∣+ ↑,− ↑ ), (+ ↑,− ↑ ∣∣...∣∣+ ↓,− ↓ )(

+ ↓,− ↓
∣∣...∣∣+ ↑,− ↑ ), and (+ ↓,− ↓ ∣∣...∣∣+ ↓,− ↓ ).

(52)

We find (cf., Appendix 7.A of [17])(
+ ↑,− ↑

∣∣(iLs −Σ)
∣∣+ ↑,− ↑ ) = (−iδ + 2νp−),(

+ ↑,− ↑
∣∣(iLs −Σ)

∣∣+ ↓,− ↓ ) = −2νp−,(
+ ↓,− ↓

∣∣(iLs −Σ)
∣∣+ ↑,− ↑ ) = −2νp+, and(

+ ↓,− ↓
∣∣(iLs −Σ)

∣∣+ ↓,− ↓ ) = (iδ + 2νp+), (53)

where δ = 2
√

3∆ sinφ, and the average probabilities are
given by the normalized Boltzmann factors [37, 38]

p± =
exp

(
± E0

2kBT

)
2 cosh

(
E0

2kBT

) . (54)

Reverting to Sec. III C it is clear that the right-hand
side of Eq. (47) is identical in structure to the 2 × 2
matrix form of [U(t)]av, if we identify −Σ with the rate
matrix W and hence, the rest of the analysis for the
current is the same as for the case of the TP. A similar
connection between decoherence and relaxation of a qubit
(in contact with the environment of a single electron
transistor) and the spectral density of a spin-boson
model in the weak-coupling limit, was shown earlier in
[39]. The redeeming feature of the present treatment

however is that the underlying relaxation rate ν has got
a microscopic structure in terms of the parameters of the
bosonic bath, such that in the weak-coupling and the
Markovian limit (cf., Eq. (1.94) and (8.71) of [17])

2ν =
∑
j

g2j

∫ ∞
−∞

dτ [〈bj(0)b†j(t)〉B+〈b†j(0)bj(t)〉B ], (55)

where the subscript B denotes thermal average over the
bosonic bath.
V. SUMMARY AND CONCLUDING REMARKS

The fascinating effect of the Aharonov-Bohm phase
on the bond current in a three-site mesoscopic ring is
first exactly studied. The bond current being a quantum
coherent property is expected to undergo decoherence
and relaxation when the ring is put in contact with
a heat bath. The resultant decay of the current is
first studied when the environment is viewed to cause
either Gaussian modulation or discrete jump modulation
(under a telegraph process) within a stochastic modeling
of the bath. Comparative figures are employed to
distinguish between the Gaussian and telegraph cases
both in the weak damping and in the strong damping
limits. Having derived these results analytically, we
turn our attention next to the situation in which the
heat bath has to be treated quantum mechanically, in
order to investigate decoherence effects in the quantum
domain, which are expected to be significant at low
temperatures. The much-studied spin-boson model of
a dissipative quantum system is found to be eminently
suitable for critically assessing the limits of validity of
the classical telegraph process. While we do not find
it relevant here to delve into the detailed structure of
the relaxation rate such an analysis can be easily carried
out on the basis of whether the relaxation is driven by
electron or by phonon processes, within the framework of
the spin-boson model (as in [17]). Our derived results for
the time-dependence of the bond current are expected to
be of interest in the contemporary topic of coherence-to-
decoherence transition in mesoscopic devices.
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