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Abstract

In this paper, we consider the secret-string-learning problem in the teacher-student setting:
the teacher has a secret string s ∈ {0, 1}n, and the student wants to learn the secret s by
question-answer interactions with the teacher, where at each time, the student can ask the
teacher with a pair (x, q) ∈ {0, 1}n × {0, 1, · · · , n − 1} and the teacher returns a bit given by
the oracle fs(x, q) that indicates whether the length of the longest common prefix of s and x is
greater than q or not. Our contributions are as follows.

(i) We prove that any classical deterministic algorithm needs at least n queries to the oracle
fs to learn the n-bit secret string s in both the worst case and the average case, and also
present an optimal classical deterministic algorithm learning any s using n queries.

(ii) We obtain a quantum algorithm learning the n-bit secret string s with certainty using
dn/2e queries to the oracle fs, thus proving a double speedup over classical counterparts.

(iii) Experimental demonstrations of our quantum algorithm on the IBM cloud quantum com-
puter are presented, with average success probabilities of 85.3% and 82.5% for all cases
with n = 2 and n = 3 , respectively.

1 Introduction

Strings are one of the most basic structures in mathematics and computer science. A string is an
abstract data structure consisting of a sequence of zero or more letters over a non-empty finite
alphabet. The study of string processing methods is a fundamental concern in computer science,
which turns out to have a wide range of applications in areas such as information theory, artificial
intelligence, computational biology and linguistics. String problems have been extensively studied
in classical computing for decades, and numerous effective algorithms to deal with them have been
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proposed, including exact string matching [1, 2], finding patterns in a string [3, 4], and many others
[5].

Naturally, string problems have also attracted much attention from the quantum computing
community over the past two decades. In 2003, a quantum algorithm for exact string matching by
Ramesh and Vinay provided a near-quadratic speedup over the fastest known classical algorithms [6].
In 2017 Montarano developed a quantum algorithm that is super-polynomially faster than the best
possible classical ones for d-dimensional pattern matching problem on average-case inputs [7]. In
2021, Niroula and Nam designed a quantum pattern matching algorithm from the perspective of
circuit implementation [8]. Recently, some other string problems have also been investigated by
focusing on novel quantum algorithms [9, 10, 11].

As one of the most important string problems, string learning has attracted much interest in
both the classical and quantum computing models since it has interesting applications in data
mining and cyber security. Typically, there are two parties called a teacher and a student. The
teacher has a secret bit string s of length n and the student wants to identify this secret string by
asking a certain number of queries to an oracle that answers some piece of information of s. The
goal is to learn s using as few queries as possible. To date, there have been many wonderful results
in quantum and classical settings for this problem with different oracle types, including the index
oracle [12], inner product oracle [13], substring oracle [14, 15], balance oracle in counterfeit coin
problem[16], and subset OR oracle in combinatorial group testing [17, 18, 19].

In this paper, we explore the power of another oracle as the length of the Longest Common Prefix
(LCP) of two strings, which is a well-known string similarity metric used in data structures and
algorithms [20, 21]. Afshani et al. [22] used this oracle to consider the hidden permutation problem
that comes from Mastermind game and evolutionary computation. To the best of our knowledge,
there has not been any work related to string learning based on this oracle in the quantum setting.
Hence, in this paper we consider quantum algorithms based on the LCP information to learn
a secret string. More specifically, the problem is described in the teacher-student setting: the
teacher has a secret bit string s ∈ {0, 1}n, and the student wants to learn the secret s using as few
queries to the teacher as possible, where at each time, the student can ask the teacher with a pair
(x, q) ∈ {0, 1}n × {0, 1, · · · , n − 1} and the teacher returns a bit given by the oracle fs(x, q) that
indicates whether the length of the LCP of s and x is greater than the integer q or not. We manage
to present a quantum algorithm that can offer an advantage over the best classical algorithm for
solving this problem.

The main results of this paper are stated as follows. First, we prove that any classical deter-
ministic algorithm needs at least n queries to fs to learn the n-bit secret string s in both the worst
case and the average case, and also present a classical deterministic algorithm learning any s with
exact n queries as an optimal one. Second, we propose a quantum algorithm that learns the n-bit
secret string s with certainty using dn/2e queries to the oracle fs, thus proving a double speedup
over classical counterparts. Third, we demonstrate our quantum algorithm on the IBM cloud quan-
tum computer using quantum circuit synthesis, compilation and optimization techniques. In the
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experiment, the average success probabilities for all cases with n = 2 and n = 3 achieve 85.3% and
82.5%, respectively, which show the feasibility of implementing our quantum algorithm. Finally, we
conclude this paper and put forward an interesting open problem that is worthy of further study.

2 Results

2.1 The problem: learning a secret string

We can describe the problem (learning a secret string) in the teacher-student setting: the teacher
has a n-bit secret string s ∈ {0, 1}n, and the student wants to learn the secret s by question-answer
interactions with the teacher. In this paper, we suppose that at each time, the student can ask the
teacher with a pair (x, q) ∈ {0, 1}n × {0, 1, · · · , n − 1}, and the teacher returns a bit given by the
oracle

fs(x, q) :=

0, lcp(s, x) ≤ q;

1, lcp(s, x) > q,
(1)

where
lcp(s, x) := max{i ∈ {0, 1, · · · , n}|∀j ≤ i : xj = sj} (2)

represents the length of the Longest Common Prefix (LCP) of s and x.
When designing algorithms for solving this problem, we hope to query the oracle fs as little as

possible.

2.2 Optimal classical algorithm

In this section, we propose a classical deterministic algorithm for the secret string learning problem
defined above, and further prove its optimality in terms of both the worst-case and the average-case
query complexity.

Algorithm 1: Classical algorithm for learning secret string s ∈ {0, 1}n

Input: A query oracle fs defined in Eq. (1).
Output: The secret string s.

1 x← 0n.
2 for q = 0 to n− 1 do
3 if fs(x, q) = 0 then
4 xq+1 ← xq+1 ⊕ 1 ;
5 end
6 end
7 return s← x;

Theorem 1. (1) There is a classical deterministic algorithm learning any n-bit secret string s using
n queries to the oracle fs; (2) Any classical deterministic algorithm needs at least n queries to learn
the secret string s in both the worst case and the average case.

3



Proof. For solving the problem, we propose a classical deterministic algorithm named Algorithm 1,
which starts from querying (x = 0n, q = 0) and then assigns the query data in each step depending
on the results from previous queries by Eq.(1). In this way, each time one bit of the secret string
s is identified using one query according to the previous query outcomes, and as a result the total
query complexity is exactly n for any secret s. More intuitively, the whole process of Algorithm 1
can be described as a binary decision tree with height n indicating its query complexity, and we
present the case with n = 3 in Figure 1 for illustration.

Now we prove the lower bound for the query complexity of this problem (i.e. in the worst
case) by information-theoretic argument. In general, any classical deterministic algorithm for this
problem can be described in terms of a binary decision tree that queries different (x, q) in each
internal node and identifies secret s in each leaf node (i.e. external node), with its height being the
query complexity of the algorithm. Considering the fact that any binary tree with height h has at
most 2h leaf nodes, we conclude that the height of any binary tree with total 2n leaf nodes is at
least n. That is, any classical deterministic algorithm for the secret learning problem needs at least
n queries in the worst case.

Moreover, we can prove the average-case query complexity of any classical deterministic algo-
rithm is no less than n. Note that the path length from the root node to a leaf node in a binary tree
indicates the number of queries to identify a secret string s in an algorithm, our proof can be derived
from a fact about binary trees revealed as follows. The external path length (EPL) of a tree is de-
fined as the sum of path lengths of all its leaf nodes, and the minimum value of the EPL of a binary
decision tree with N leaves is known as N(log2N + 1+ γ − 2γ) with γ = dlog2Ne − log2N ∈ [0, 1)

[23]. Hence, the minimum average path length of all N leaf nodes is log2N +1+γ−2γ . Here in our
case we consider binary trees corresponding to classical query algorithms with N = 2n and γ = 0,
where the minimum EPL is n2n and the minimum average-case query complexity is n.

In summary, our classical Algorithm 1 achieves optimality in terms of both worst- and average-
case query complexity.

2.3 Quantum algorithm with speedup

In this section, we present a quantum algorithm that shows a speedup over any classical deterministic
algorithm for learning the secret string s.

The quantum oracle associated with fs(x, q) in Eq. (1) is a quantum unitary operator, Os,
defined by its action on the computational basis:

|x, q〉 |y〉 Os−−→ |x, q〉 |y ⊕ fs(x, q)〉 , (3)

where |x, q〉 is the query register and |y〉 is a single oracle qubit. Therefore, when we initialize the
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Figure 1: Binary decision tree for illustrating classical Algorithm 1 with n = 3. The value 0 or
1 along each edge is the outcome after querying (x, q) in blue circle nodes under a certain secret
s ∈ {0, 1}3 by Eq. (1), and any secret string s can be identified in an orange square node (i.e. leaf
node) after three queries.

oracle qubit as |y〉 = |−〉 = (|0〉 − |1〉)/
√
2, we have

|x, q〉 |−〉 Os−−→

|x, q〉 |−〉 , fs(x, q) = 0;

− |x, q〉 |−〉 , fs(x, q) = 1,
(4)

which can be summarized as

|x, q〉 |−〉 Os−−→ (−1)fs(x,q) |x, q〉 |−〉 . (5)

Note the state of the oracle qubit remains unchanged in this process, and thus can be omitted in
the description of the action of oracle Os for convenience as

|x, q〉 Os−−→ (−1)fs(x,q) |x, q〉 . (6)

In fact, similar ¡°phase kickback¡± effects [24] and associated oracle simplifications have been
explored and exploited in adapting some well-known quantum query algorithms, including Deutsch-
Jozsa algorith [25, 26], Bernstein-Vazirani algorithm [27, 28], and Grover search algorithm [29, 30].
In the following, we can directly design quantum query algorithms using the quantum oracle Os in
Eq. (6) when all other involved operators only act on the query register.

Theorem 2. There is a quantum algorithm learning the n-bit secret string s with certainty using
dn/2e queries to the oracle fs.

Proof. We describe our quantum algorithm for addressing the case with even n as depicted in
Figure 2, and the odd n cases can be handled in a similar way. The essence of our algorithm is to
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Figure 2: Schematic of the overall circuit for quantum learning algorithm with even n, which
applies n/2 subroutines Mi (i=1,2,...,n/2) to the n-qubit x register together with the t-qubit q
register initialized as

∣∣0(n+t)〉 . The working principle of each Mi that consists of a quantum oracle
Os in Eq. (6) and several fixed operators is illustrated in Lemma 1, and the output of the final
measurement is exactly the target secret string s.

identify two bits of any n-bit secret string s at a time by applying one quantum oracle combined
with other operators to a certain quantum superposition state, and thus the total query number is
n/2 throughout the algorithm.

For even n and t = dlog2(n)e, the input data (x, q) is encoded by a x register with n qubits
combined with a q register with t qubits, and the whole quantum circuit consists of n/2 subroutines
{Mi : i = 1, 2, ..., n/2}, where each Mi can be broken into four steps:

(1) Apply two Hadamard gates H⊗2 to qubits 2i− 1 and 2i in the x register.
(2) Apply an operator Qi to the q register that can transform a t-qubit state

∣∣q(i−1)〉 into ∣∣q(i)〉
with q(0) = 0 and q(i) = 2i− 1 for i ≥ 1.

(3) Apply the quantum oracle operator Os described in Eq. (6) to all (n+ t) qubits.
(4) Apply a 4× 4 unitary operator

R =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 (7)

to qubits 2i− 1 and 2i.
As a result, the application ofM1,M2, . . . ,Mn/2 on the initial input state

∣∣0n+t〉 would produce
the final output state |x = s〉 |q = n− 1〉, and thus the target string s can be identified by measuring
the n-qubit x register in the computational basis. To explicitly explain the working principle of the
above quantum algorithm, we reveal the overall effect of each subroutine Mi in Lemma 1 in detail.

Lemma 1. Denote the integer q(0) = 0, q(i) = 2i−1(i = 1, 2, ..., n/2), and s(i) = s1s2..sq(i)−1 as the
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(2i−2)-bit prefix of s (s(1) = ∅ ). Then each subroutine Mi (i=1,2,...,n/2) consisting of H2i−1, H2i,
Qi, Os, and R as shown in Figure 2 has the effect

Mi : |ψ0〉 =
∣∣∣x = s(i)000n−2i

〉 ∣∣∣q = q(i−1)
〉
→
∣∣∣x = s(i)s2i−1s2i0

n−2i
〉 ∣∣∣q = q(i)

〉
. (8)

Proof. For brevity, we first illustrate some key facts related to our quantum algorithm. We denote
a set of four specific n-bit strings as T = {x(k) = s(i)k0n−2i : k = k1k2 ∈ {0, 1}2}, and according to
the definitions of the functions in Eq. (2) and Eq. (1) we have

lcp(s, x(k)) =


2i− 2, k1 6= s2i−1;

2i− 1, k1 = s2i−1, k2 6= s2i;

≥ 2i, k1k2 = s2i−1s2i

(9)

by noting the (2i− 2)-bit prefix of each x(k) is s(i) = s1s2..s2i−2 and therefore

fs(x
(k), q(i) = 2i− 1) =

0, k 6= s2i−1s2i (three different such k) ;

1, k = s2i−1s2i (only one such k)
(10)

for four x(k) in T . Besides, it can be directly verified that for any k0 ∈ {0, 1}2, the operator R in
Eq. (7) can transform a 2-qubit superposed state into the basis state |k0〉 as

R :
∑

k∈{0,1}2
αk |k〉 → |k0〉 (11)

when the coefficients are

αk =

1
2 , k 6= k0;

−1
2 , k = k0.

(12)

Based on these facts and notations, the overall effect of Mi in Eq. (8) is realized by following steps:
(1) Two Hadamard gates H2i−1H2i and the operator Qi together transform the state |ψ0〉 on

the left hand side of Eq. (8) into

|ψ1〉 =
1

2

∑
k∈{0,1}2

∣∣∣s(i)k0n−2i〉 ∣∣∣q(i)〉 =
1

2

∑
k∈{0,1}2

∣∣∣x(k)〉 ∣∣∣q(i)〉 . (13)

(2) By utilizing Eq. (10), it can be derived the quantum oracle operator Os defined in Eq. (6)
can transform the state |ψ1〉 of Eq. (13) into

|ψ2〉 =
∑

k∈{0,1}2
αk

∣∣∣x(k)〉 ∣∣∣q(i)〉 =
∣∣∣s(i)〉 ( ∑

k∈{0,1}2
αk |k〉)

∣∣0n−2i〉 ∣∣∣q(i)〉 (14)

7



with the coefficients

αk =

1
2 , k 6= s2i−1s2i;

−1
2 , k = s2i−1s2i.

(15)

(3) In the end, the operator R in Eq. (7) acting on qubits 2i − 1 and 2i can transform |ψ2〉 of
Eq. (14) into

|ψ3〉 =
∣∣∣s(i)〉 |s2i−1s2i〉 ∣∣0n−2i〉 ∣∣∣q(i)〉 (16)

by using Eq. (11) and Eq. (12), which thus proves Eq. (8) of Lemma 1.

According to Lemma 1, the subroutines {Mi : i = 1, 2, ..., n/2} in Figure 2 transforms the initial
input state as:

|x = 0n〉|q = 0〉 M1−−→
∣∣x = s1s20

n−2〉|q = 1〉
M2−−→
∣∣x = s1s2s3s40

n−4〉|q = 3〉
M3−−→· · ·

Mn/2−−−→|x = s〉|q = n− 1〉,

and thus the secret string s can be identified by measuring the x register of the output state.
Therefore, the whole quantum algorithm totally employs n/2 quantum oracle queries for identifying
a secret string s, which outperforms classical deterministic algorithms that use at least n queries in
both the worst and average cases (see Theorem 1). This double speedup of our quantum algorithm
comes from the intrinsic quantum parallelism, that is, the ability to evaluate four function values
{fs(x(k), q(i)) : k ∈ {0, 1}2} by each quantum oracle query Os (i.e. from Eq. (13) to Eq. (14) ) and
then to extract two bits of desired information s2i−1s2i by interference via the operator R (i.e. from
Eq. (14) to Eq. (16) ) in each subroutine Mi.

Finally, we address the case with odd n. The idea is to first obtain the (n− 1)-bit prefix of the
secret s by (n−1)/2 quantum queries following the idea in Lemma 1 and then identify the last bit of s
by a classical query. More precisely, a sequence of (n−1)/2 subroutines {Mi : i = 1, 2, ..., (n− 1)/2}
constructed in the same way as those in Figure 2 are applied to an input state

∣∣0n+t〉 with t =

dlog2(n− 1)e, and then the x register of the output state is measured to obtain a string x ∈ {0, 1}n

revealing s1s2...sn−1 = x1x2...xn−1. Next, one classical query on (x, q = n − 1) is performed to
identify the last bit of s as

sn =

xn ⊕ 1, fs(x, q = n− 1) = 0;

xn, fs(x, q = n− 1) = 1
(17)

according to Eq. (1). Therefore, we employ (n−1)/2 quantum queries and 1 classical query together
to identify s for odd n. Note that there are totally dn/2e queries. Thus, we have completed the
proof of Theorem 2.

In the next section, we demonstrate our quantum algorithm on an IBM cloud quantum computer
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for several problem instances and evaluate the experimental performances.

2.4 Experimental demonstrations on the IBM quantum computer

For demonstrating our quantum algorithm in the commonly used circuit model of quantum compu-
tation, we would employ a simple set of quantum gates consisting of the single-qubit Pauli X and
Z gates, Hadamard gate H, Z-axis rotation gate RZ(θ), square-root of X gate

√
X, together with

the two-qubit controlled-NOT (CNOT) gate. Unitary matrices and circuit symbols for these gates
are listed in Table 1.

Table 1: Unitary matrices and circuit symbols for quantum gates used in this paper.

Quantum Gate Unitary Matrix Circuit Symbol

Pauli-X X :=

(
0 1
1 0

)
X

Pauli-Z Z :=

(
1 0
0 −1

)
Z

Hadamard H := 1√
2

(
1 1
1 −1

)
H

Z-axis rotation RZ(θ) :=

(
e−iθ/2 0

0 eiθ/2

)

square-root of X
√
X := 1

2

(
1 + i 1− i
1− i 1 + i

)
√
X

controlled-NOT CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •

In order to experimentally demonstrate our quantum algorithm on real quantum hardware, e.g.,
IBM cloud superconducting quantum computers [31], a series of key issues need to be taken into
account:

(1) First, the unitary operators Qi, Os, and R shown in Figure 2 are supposed to be explicitly
constructed using basic gates, which is called quantum circuit synthesis. In particular, Qi can be
built from a series of Pauli X gates for converting a basis state

∣∣q(i−1)〉 into
∣∣q(i)〉, the quantum

oracle Os defined in Eq. (6) can be expressed as
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Os =
∑

(x,q)∈{0,1}n+t

(−1)fs(x,q) |x, q〉 〈x, q|, (18)

which is actually a diagonal unitary matrix with diagonal elements ±1 and can be realized by
{CNOT, RZ(θ)} gate set [32, 33], and the operator R in Eq. (7) can be decomposed into R =

(H ⊗ I)(Z ⊗X)CNOT(H ⊗ I) as shown in Fig. 3(b).

00sO =

−
3𝜋

4

−
𝜋

4
−
𝜋

4

−
𝜋

4
−
𝜋

4 +
𝜋

4
+
𝜋

4

(b)

(c)

H Z

X

H
R

0

0 H

0

(a)

sO

X

H
R s

Figure 3: (a) Schematic of the circuit to demonstrate our quantum algorithm for cases with n = 2,
with the fixed operator R of Eq. (7) shown in (b) and the implementation of an oracle operator
example Os=00 = diag(-1,-1,-1,1,1,1,1,1) shown in (c). The details of the employed quantum gates
are listed in Table. 1.

(2) Second, considering both available physical gates and restricted qubit connectivity of em-
ployed quantum hardware, any synthesized circuit needs to be transpiled into a feasible circuit
that can be executed in the practical hardware platform with acceptable outcomes. This essen-
tial processing procedure, including gate conversion and qubit mapping strategies, is usually called
quantum circuit compilation [34, 35] and has attracted a great deal of attention in the NISQ era
[36, 37, 38, 39, 40, 41]. Here we implement customized circuit compilation procedures aimed at run-
ning each synthesized circuit on the hardware named ibmq_quito with its topology structure shown
in Fig. 4(a) and available gate set Gibm = {CNOT, RZ(θ),

√
X, X}, including a Hadamard gate

decomposition H ' RZ(π/2)
√
(X)RZ(π/2) (differing only by an unimportant global phase factor)

and a CNOT identity as shown in Fig. 4(b) for implementing a CNOT between two unconnected
qubits via four usable CNOT gates.

(3) Finally, we consider to take specific optimization techniques as shown in Fig. 4(c) for further
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reducing the gate counts as well as circuit depth of compiled circuits, including:

RZ gate merging : RZ(θ2)RZ(θ1) = RZ(θ1 + θ2),

CNOT cancellation : CNOT · CNOT = I,

Commutation rules : CNOT(RZ(θ)⊗ I) = (RZ(θ)⊗ I)CNOT,

CNOT(I ⊗RZ(θ2))CNOT(I ⊗RZ(θ1))

=(I ⊗RZ(θ1))CNOT(I ⊗RZ(θ2))CNOT.

(19)

 

H 𝜋/2 𝜋/2𝑋

𝜃1 𝜃2 𝜃1 + 𝜃2

Q0 Q1 Q2

Q3

Q4

ibmq_

quito

(a) (b)

(c)

21 2 1

Figure 4: (a)Topology structure of the IBM quantum hardware ibmq_quito. (b) Gate transforma-
tions used for quantum circuit compilation. (c) Some useful quantum circuit optimization techniques
in Eq. (19).

Based on the above process, we can bridge the gap between our quantum algorithm described
at an abstract level and its practical implementation on real quantum hardware for any problem
size in principle. In the following, we demonstrate the even case with n = 2 and the odd case with
n = 3 on the IBM quantum hardware ibmq_quito.

For n = 2, we use a three-qubit circuit with n = 2 and t = 1 for performing our quantum
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algorithm as shown in Fig. 3(a), where the operator Q1 acting on the q register is a X gate and each
problem instance s determines a specific oracle operator Os in Eq. (18). For example, in Fig. 3(c) we
present a construction of an oracle example Os=00 = diag(-1,-1,-1,1,1,1,1,1) using six CNOT gates
and seven RZ(θ) gates. Next, we compile this circuit into a new one that fits the Q0−Q1−Q2 linear
structure and gate set Gibm of ibmq_quito using the equivalent gate transformations in Fig. 4(b)
followed by the application of optimization techniques in Fig. 4(c), which would lead to a final
transpiled circuit consisting of 9 CNOT, 10 RZ(θ), 4

√
X, and 2 X gates with a circuit depth 15 as

shown in Fig. 5(a). Besides, the oracle constructions and transpiled circuits for other three instances
s = 01, 10, and 11 have similar forms as provided in Supplementary Information A.
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Figure 5: (a) Transpiled circuit acting on three physical qubits {Q0, Q1, Q2} of ibmq_quito for
identifying secret s = 00 as an example, which is obtained from the original circuit in Fig. 3 through
compilation and optimization procedures in Fig. 4. (b) Experimental results for demonstrating all
instances s ∈ {0, 1}2 via their associated transpiled circuits. The success probabilities are 87.7(6)%,
85.8(3)%, 84.8(4)%, and 82.6(3)% for s = 00, 01, 10, and 11, respectively, with 5 trials and the
sample size 8192 (5× 8192 realizations for each s).

All four instances for n = 2 are tested in our experiment, where we employ a figure of merit
called the algorithm success probability (ASP) to denote the probability of correctly identifying the
target string as the experiment outcome. For demonstrating an instance s ∈ {0, 1}2 on the device,
we experimentally implement 5 trials and in each trial we consider 8192 repetitions of the transpiled
circuit to record outcome data for calculating the ASP. At the time the device ibmq_quito was
accessed, the average CNOT error was 1.080 × 10−2 and average readout error was 4.424 × 10−2,
average T1 = 98.55µs (decay time from the excited state to ground state), average T2 = 101.74µs

(decoherence time). As the distributions over possible measurement outcomes show in Fig. 5(b),
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the success probabilities for identifying secret s = 00, 01, 10, and 11 in the experiment are 87.7(6)%,
85.8(3)%, 84.8(4)%, and 82.6(3)%, respectively. As an overall evaluation, the average success prob-
ability defined over all problem instances is 85.3% in the above experimental demonstration.
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Figure 6: (a) Schematic of the quantum circuit followed by a classical query to demonstrate our
quantum algorithm for cases with n = 3, with the fixed operator R shown in Fig. 3(b) and imple-
mentation of an oracle operator example Os=000 = diag(-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1) shown in
(b).

For n = 3, we use a four-qubit circuit with n = 3 and t = 1 followed by a classical query for
performing our quantum algorithm as shown in Fig. 6(a). For example, in Fig. 6(b) we present a
construction of an oracle example Os=000= diag(-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1) using six CNOT
gates and seven RZ(θ) gates. Next, we compile this circuit by assigning four qubits of Fig. 6(a)
to physical qubits {Q0, Q1, Q2, Q3} in the T-shape structure of ibmq_quito in Fig. 4(a) and then
using circuit transformation techniques in Figs. 4(b) and 4(c), which would lead to a final transpiled
circuit consisting of 9 CNOT, 10 RZ(θ), 4

√
X, and 2 X gates with a circuit depth 15 as shown in

Fig. 7(a). Also, the oracle constructions and transpiled circuits for other instances s have similar
forms as provided in Supplementary Information B. For completeness, we experimentally perform
our algorithm by taking 5×8192 repetitions for each one of the eight instances s ∈ {0, 1}3 , and
the success probabilities for identifying each instance are 85.3(7)%, 85.3(4)%, 83.0(9)%, 82.2(6)%,
82.3(5)%, 82.4(1)%, 79.7(4)% and 79.5(5)% as recorded in Fig. 7(b), respectively. As an over-
all evaluation, the average success probability defined over all problem instances is 82.5% in our
experiment.
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Figure 7: (a) Transpiled circuit acting on four physical qubits {Q0, Q1, Q2, Q3} of ibmq_quito
followed by a classical query fs=000(x, 2) for identifying secret s = 000 as an example, which is
obtained from the original circuit in Fig. 6 through compilation and optimization procedures in
Fig. 4. (b) Experimental results for demonstrating all eight instances s ∈ {0, 1}3 via their associated
transpiled circuits together with a classical query, where the corresponding success probabilities are
85.3(7)%, 85.3(4)%, 83.0(9)%, 82.2(6)%, 82.3(5)%, 82.4(1)%, 79.7(4)% and 79.5(5)% , respectively,
with 5 trials and the sample size 8192 for each s.

3 Discussion

In this study, we discussed how to learn a secret string s ∈ {0, 1}n by querying the oracle fs(x, q)
that indicates whether the length of the longest common prefix of s and x is greater than q or
not. We first proved that the classical query complexity of this problem is n in both the worst and
average case as well as gave an optimal classical deterministic algorithm. Then, we proposed an
exact quantum algorithm with dn/2e query complexity for solving any problem instance, which thus
provided a double speedup over its classical counterparts. Finally, we experimentally demonstrated
our quantum algorithm on an IBM cloud quantum device by utilizing specific circuit design and
compilation techniques, where the average success probability for all instances with n = 2 or n = 3
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reached 85.3% or 82.5%, respectively. Also, experiments on our quantum algorithm for larger-
scale secret string problems are likely to be performed by following a similar way. Besides, the
q register used in our quantum algorithm can be alternatively represented by higher-dimensional
qudit (d > 2) systems for experimental demonstrations, e.g., using quantum photonic [42] or nuclear
magnetic resonance (NMR) systems [43]. Since it is not yet clear whether our quantum algorithm
is optimal, in future work we would consider an interesting open problem about the lower bound of
exact or bounded-error quantum query complexity for this secret-string-learning problem.
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Supplementary Information

As mentioned in the main text, we experimentally demonstrate our quantum algorithm for all
cases with n = 2 and n = 3 on the IBM quantum device named ibmq_quito, and the calibration
parameters for the day the device was accessed are shown in Table S1. For completeness, in the
following we give detailed descriptions of all employed quantum circuits.

Table S1: Calibration parameters of ibmq_quito from the IBM quantum website. In the CNOT
error column, i_j indicates that the physical qubits i and j are the control and target for the CNOT
gate, respectively.

Qubit T1 (us) T2 (us) Freq. (GHz) Anharm. (GHz) Readout error ID error
√
x (sx) error Pauli-X error CNOT error

Q0 79.19 126.78 5.301 -0.33148 3.81× 10−2 3.23× 10−4 3.23× 10−4 3.23× 10−4 0_1 : 7.401× 10−3

Q1 117.96 132.4 5.081 -0.31925 4.11× 10−2 2.90× 10−4 2.90× 10−4 2.90× 10−4
1_3 : 1.044× 10−2;

1_2 : 6.435× 10−3;

1_0 : 7.401× 10−3

Q2 95.79 115.86 5.322 -0.33232 7.17× 10−2 2.74× 10−4 2.74× 10−4 2.74× 10−4 2_1 : 6.435× 10−3

Q3 107.55 22.83 5.164 -0.33508 3.41× 10−2 3.44× 10−4 3.44× 10−4 3.44× 10−4
3_4 : 1.890× 10−2;

3_1 : 1.044× 10−2

Q4 92.27 110.84 5.052 -0.31926 3.62× 10−2 4.57× 10−4 4.57× 10−4 4.57× 10−4 4_3 : 1.890× 10−2

A Details of quantum circuits for demonstrating cases with n = 2

As introduced in the main text, the designed quantum oracle and the whole transpiled circuit for
s = 00 have been presented in Fig. 3(c) and Fig. 5(a) of main text, respectively. Similarly, the
oracle constructions of Os in Eq. (18) of the main text and corresponding transpiled circuits for
demonstrating other three cases s=01, 10, and 11 are explicitly shown in Fig. S1 and Fig. S2,
respectively. The experimental results for testing these cases are plotted in Fig. 5 (b) of the main
text.
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Figure S1: Quantum oracle constructions of (a) Os=01 = diag(-1,1,-1,-1,1,1,1,1), (b) Os=10 =
diag(1,1,1,1,-1,-1,-1,1), and (c) Os=11 = diag(1,1,1,1,-1,1,-1,-1), respectively.
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Figure S2: Overall transpiled circuits for demonstrating (a) s = 01, (b) s = 10, and (c) s = 11 on
ibmq_quito, respectively.

20



B Details of quantum circuits for demonstrating cases with n = 3

For demonstrating cases with n = 3, two features of our algorithm are noteworthy. First, it can be
verified that the quantum oracles are the same for any two instances s1s20 and s1s21 as shown in
Fig. S3. Therefore, we only need to design and compile four different quantum circuits in total, that
is, Fig. 7(a) in the main text as well as Fig. S4 below to identify two bits s1s2 ∈ {0, 1}2, supplemented
with a final classical query fs(x, 2) to identify s3 of secret s. For example, the transpiled quantum
circuit inside Fig. 7(a) of the main text together with a query fs=001(x, 2) on the measured outcome
string x can be used for identifying secret s = 001. Second, according to Eq. (17) of the main
text, our algorithm can correctly identify the secret string s when the outcome measured from the
quantum circuit in imperfect experiments is s1s2s3 or s1s2(s3 ⊕ 1), leading to the experimental
success probabilities recorded in Fig. 7(b) of main text for identifying each s.
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Figure S3: Quantum oracle constructions of (a) Os=010(011)= diag(-1,+1,-1,+1,-1,-1,-1,-
1,+1,+1,+1,+1,+1,+1,+1,+1 ), (b) Os=100(101)= diag(+1, +1, +1, +1, +1, +1, +1, +1, -1,-1,-1,-
1,-1,+1,-1,+1), and (c) Os=110(111)= diag(+1, +1, +1, +1, +1, +1, +1, +1, -1,+1,-1,+1,-1,-1,-1,-1),
respectively.
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Figure S4: Overall transpiled quantum circuit acting on four physical qubits {Q0, Q1, Q2, Q3} of
ibmq_quito followed by a classical query fs(x, 2) to identify (a) s=010 or 011, (b) s=100 or 101,
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