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Although quantum entanglement has already been verified experimentally and applied in quan-
tum computing, quantum sensing and quantum networks, most of the existing measures cannot
characterize the entanglement faithfully. In this work, by exploiting the Schmidt decomposition of a
bipartite state |ψ〉AB , we first establish a one-to-one correspondence relation between the character-
istic polynomial of the reduced state ρA and the polynomials its trace. Then we introduce a family of
entanglement measures which are given by the complete eigenvalues of the reduced density matrices
of the system. Specific measures called informationally complete entanglement measures (ICEMs)
are presented to illustrate the advantages. It is demonstrated that such ICEMs can characterize
finer and distinguish better the entanglement than existing well-known entanglement measures.
They also give rise to criteria of state transformations under local operation and classical commu-
nication. Moreover, we show that the ICEMs can be efficiently estimated on a quantum computer.
The fully separability, entanglement and genuine multipartite entanglement can detected faithfully
on quantum devices.

PACS numbers:

Introduction–Quantum entanglement is the striking
feature of quantum states which exhibits correlations
that cannot be accounted for classically. It is the
fundamental resource and plays an important role in
many quantum information processing such as quantum
communications [1–4], quantum cryptography [5–8] and
quantum computing [9–11]. Quantifying the entangle-
ment has become a very important issue for both theo-
retical and potentially practical reasons.

Various measures of entanglement have been proposed
in recent years [12–20], such as concurrence [17, 21–23],
negativity [24, 25], entanglement of formation [17, 19, 26],
relative entropy of entanglement [20] and Renyi entropy
entanglement [26]. In Ref. [27–30], the authors pre-
sented a family of concurrence monotones by means of
the polynomials of the Schmidt coefficients, in order to
show that these measures can characterize more informa-
tion related to entanglement. Recently, in Ref. [31] the
authors provided a family of multipartite entanglement
measures called concentratable entanglements. In [32],
the the authors proposed a new parameterized bipartite
entanglement monotone named q-concurrence by general
Tsallis entropy. These quantum entanglement measures
make further progresses on the characterization of quan-
tum entanglement. In fact, these measures are given by
part of the Schmidt coefficients of a given pure entangled
state. In fact, the characterization of the entanglement
can be improved by taking into account of all the Schmidt
coefficients of a pure entangled state.

In this paper, we first give a one-to-one correspondence
between the coefficients of the characteristic polynomial
of a quantum state ρ and the traces of its powers. For a

pure state |ψ〉 the trace of the power of its reduced state
quantifies completely the correlations as all the Schmidt
coefficients of |ψ〉 have been taken into account. Then,
we introduce a family of quantities called informationally
complete entanglement measures (ICEMs) to character-
ize the entanglement of arbitrary n-qudit pure states. For
any mixed state ρ, we define the ICEMs via the average
on that of pure states in the pure state decomposition
of ρ, minimized over all possible pure state decomposi-
tions of ρ. We prove that each ICEM does not increase
under local quantum operations assisted with classical
communications on average, namely, these ICEMs are
entanglement monotones. We present examples to show
the superiorities of our ICEM in identifying quantum en-
tanglement by comparing with other existing measures.
Moreover, we show that the ICEM is related to the trans-
formation between states under local operation and clas-
sical communication (LOCC). Finally, we discuss how to
efficiently estimate the ICEMs on a quantum computer.

Informationally complete entanglement measures
(ICEMs)–Let |ψ〉AB be a pure state of a composite
system A and B with individual dimension d. In suitable
local bases a bipartite pure state ψAB has the Schmidt
decomposition form, |ψ〉AB =

∑d

i=1

√
λi|ii〉, where

λi are the Schmidt coefficients satisfying
∑d

i λi = 1.
Denote ρA and ρB the reduced density matrices of
ρAB = |ψ〉AB〈ψ| with respect to the subsystems A and
B, respectively. ρA and ρB have the same eigenvalues
given by the Schmidt coefficients λi. Many important
properties of a quantum state are contained in the
eigenvalues of the reduced density matrices. A reduced
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state ρA has the characteristic polynomial,

F (λ) = Πdi=1(λ − λi)

= a0λ
d − a1λ

d−1 + a2λ
d−2

+ · · ·+ (−1)d−1ad−1λ+ (−1)dad, (1)

where a0 = 1, ak =
∑

{ij}⊆S Πkj=1λij for k = 1, 2, ..., d,

{ij} is a subset of S (S = {1, 2, ..., d}) with k elements.
Thus, the entanglement properties of a state |ψ〉AB are
encoded in all the coefficients ak of the characteristic
polynomial. For instance, the generalized concurrence
[21, 33],

C(|ψ〉AB) =
√

d

d− 1
[1− Tr(ρ2A)], (2)

is given by the coefficient a2 as 1− Tr(ρ2A) = 2a2.

Denote A(ρA) = {a1, a2, ..., ad}, with a1, a2, ..., ad the
coefficients of the characteristic polynomial of ρA as given
in Eq. (1), and T (ρA) = {Tr(ρA),Tr(ρ2A), ...,Tr(ρdA)}.
The number of elements in the sets A(ρA) and T (ρA) are
related to the Schmidt rank of |ψ〉AB. We first present
a one-to-one correspondence between the set A(ρA) and
T (ρA), see proof in the Supplemental Material I.

Lemma–Given an bipartite pure quantum state |ψ〉AB,
the sets of A(ρA) and T (ρA) have the following relations,

ak+1 =
1

k + 1

k∑

l=0

(−1)lak−lTr(ρ
l+1
A ), (3)

where a0 = 1, k = 0, 1, ..., d− 1.

Given a pure quantum state |ψ〉AB with Schmidt rank
d = r + 1 (the number of nonzero Schmidt coefficients),
by using step-by-step the iterations of Eq. (3) one can
get each element ai of A(ρA) as the linear functions of
the elements ρiA in T (ρA). Furthermore, from the re-
lation ak =

∑
{ij}⊆S Πkj=1λij , k = 1, 2, ..., d, one can

get the eigenvalues of ρA. Namely, the quantum pure
state |ψ〉AB is fully characterized by T (ρA). We can ob-
tain the following informationally complete entanglement
measure, see proof in the Supplemental Material II.

Theorem 1.–For bipartite state |ψ〉AB with Schmidt
rank R(|ψ〉AB) = r + 1, the ICEM is defined by

C(|ψ〉AB) = 1− 1

2r

r∑

i=0

P irTr(ρ
i+1
A ), (4)

is a well defined measure of quantum entanglement,
where P ir = r!

(r−i)! .

For mixed state ρAB, the ICEM is de-
fined by the convex roof extension, C(ρAB) =
min{pj ,|ψj〉AB}

∑
j pjC(|ψj〉AB) with the minimiza-

tion taking over all possible pure state decompositions
{pj, |ψj〉AB} of ρAB. In fact, one can use the convex
combination of any elements in set T (ρA) to define
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FIG. 1: The horizontal and vertical axes represent β1 and β2,
respectively. The points on the ellipse represent the states sat-

isfying C(|φ1〉AB) = C(|φ2〉AB) and C̃(|φ1〉AB) = C̃(|φ2〉AB).

an entanglement measure. The measure Eq. (4)
contains all the elements in the set T (ρA). According
to Eq. (4), when R(|ψ〉AB) = 2 (r = 1), we have
C(|ψ〉AB) = 1

2 (1 − Tr(ρ2A)), which coincides with the
traditional entanglement measure concurrence (2).
It implies that for fewer parameterized states, their
entanglement can be characterized in a simpler way.
However, the concurrence does not capture the complete
information of entanglement for higher ranked states.

Advantages and applications–To show the advantage
of the ICEM, let us make a comparison with some
other entanglement measures. In Ref. [31], the au-
thors introduce a family of quantities called concentrat-
able entanglements C̃(|ψ〉AB) by using the convex of lo-

cal purities Tr(ρ2A), C̃(|ψ〉AB) = 1 − 1
2s

∑
{A′} Trρ

2
A′ ,

where {A′} is a subset of {A}, s is the cardinality of
the set {A}, and the summation goes over all possi-
ble subset {A′}. Consider the following rank-3 states:

|φ1〉AB =
√

1
2 |00〉 +

√
1
3 |11〉 +

√
1
6 |22〉 and |φ2〉AB =

√
β1|00〉 +

√
β2|11〉 +

√
1− β1 − β2|22〉. By calculation

(see proof in Supplemental Material III), we have that
C(|φ1〉AB) = C(|φ2〉AB) for the concurrence defined in

Eq. (2) and C̃(|φ1〉AB) = C̃(|φ2〉AB) for the measure
given in Ref. [31] for all the states |φ2〉AB in the ellipse
in Fig. 1.

However, by using the ICEM in Eq. (4), one can
verify that C(|φ1〉AB) is not equal to C(|φ2〉AB) for all
the states |φ2〉AB in the ellipse except for three states
given by the intersections of the solid red and the dot-
dashed blue lines in Fig. 2. These three intersections are
given by (β1, β2) = (1/2, 1/3), (1/3, 1/2) and (1/6, 1/2),
whose corresponding states are exactly |φ1〉AB. There-
fore, our measure ICEM distinguishes the entanglements
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FIG. 2: The blue (dot-dashed) line is the ICEM of |φ1〉AB ,
and the red (solid-line) line represents the ICEM of |φ〉, as a
function of the states given by the points on the ellipse in Fig.
1.

of |φ1〉AB and |φ2〉AB as long as |φ1〉AB is not equal to

|φ2〉AB. In particular, set β1 = 1
4 and β2 = 9+

√
13

24 . One

has C(|φ1〉AB) = C(|φ2〉AB) =
√
11
4 and C̃(|φ1〉AB) =

C̃(|φ2〉AB) = 11
36 , which implies that both of the en-

tanglement measures cannot tell the difference between
the entanglements of |φ1〉AB and |φ2〉AB. However, our
ICEM shows that |φ1〉AB is more entangled than |φ2〉AB,
C(|φ1〉AB) = 0.5139 > C(|φ2〉AB) = 0.5126. In this sense,
ICEM has advantages over concurrence C and the con-
centratable entanglement measure C̃. By taking another
glance at the definitions of these measure, one sees nat-
urally that the ICEM contains more information about
the quantum states than the concurrence and the concen-
tratable entanglement measure do, as ICEM takes into
account all the coefficients of the characteristic polyno-
mial in Eq. (1), while the latter ones depend only on the
coefficient a2.

Moreover, C(|ψ〉AB) is related to the state transition
under LOCC. ICEM in Eq. (4) can be rewritten as

C(|ψ〉AB) =
∑r

i=0 Ci(|ψ〉AB), where Ci(|ψ〉AB) = P i
r

2r [1 −
Tr(ρi+1

A )], i = 0, 1, ..., r. We have the following criterion
on on state transformation under LOCC, see proof in
Supplemental Material IV.

Proposition 1. If a state |ψ〉AB can be transformed
to |φ〉AB under LOCC, then Ci(|ψ〉AB) ≥ Ci(|φ〉AB) for
i = 1, ..., r.

As an example let us consider [28] |ψ〉AB =
√
0.5|00〉+√

0.4|11〉+
√
0.1|22〉 and |φ〉AB =

√
0.55|00〉+

√
0.3|11〉+√

0.15|22〉. By calculation we have C1(|ψ〉AB) = 0.29 ≤
C1(|φ〉AB) = 0.2925 while C2(|ψ〉AB) = 0.2025 ≥
C2(|φ〉AB) = 0.2008125. From Proposition 1 we have that
neither |ψ〉AB → |φ〉AB nor |φ〉AB → |ψ〉AB , which is in
consistent with the conclusion from the Nielsen theorem
[34].

ICEM for Multipartite systems–Now consider general
n-qudit states. We can define the averaged information-

ally complete entanglement measure for n-partite pure
state |ψ〉A1A2...An

as

C(|ψ〉A1···An
) =

∑

{A}

C(|ψ〉AĀ)
2n − 2

, (5)

where A and Ā is a bipartition of the whole n-qudit sys-
tem A1A2...An, Ā is the complement of A, the summa-
tion goes over all possible bipartitions. When A = ∅ or
A = A1A2...An, we define C(|ψ〉AĀ) = 0. It is verified
that if C(|ψ〉A1···An

) = 0, then |ψ〉A1,A2,...,An
is fully sep-

arable.

Instead of arithmetic mean of ICEM defined in Eq.
(5), one can also use the geometric mean to give another
entanglement measure for multipartite states,

C̃(|ψ〉A1···An
) =

(
Π{A}C(|ψ〉AĀ)

) 1

2n−2 .

C̃(|ψ〉A1···An
) can be used to determine whether a pure

state is genuine entangled. C̃(|ψ〉A1···An
) 6= 0 means

that any possible bipartition is not separable, that is,
|ψ〉A1,A2,...,An

is a genuine entangled pure state.

As for mixed multipartite states ρA1···An
, aver-

aged ICEM is defined by the convex roof extension,
E(ρA1···An

) = min{pi,|ψi〉A1···An}
∑
piE(|ψi〉A1···An

),

where E stands for either C or C̃, with the mini-
mization taking over all possible pure state decompo-
sitions {pi, |ψi〉A1···An

} of ρA1···An
. Similar to the case

of multipartite pure states, if C(ρA1···An
) = 0, then

ρA1···An
is fully separable, as each |ψi〉A1···An

of the
ensemble {pi, |ψi〉A1···An

} is fully separable. Whereas,

C̃(ρA1···An
) 6= 0 does not imply that ρA1···An

is a gen-

uine entangled mixed state. In fact, C̃(ρA1···An
) 6= 0

only shows that at least one |ψi〉A1···An
of the ensem-

ble {pi, |ψi〉A1···An
} is a genuine entangled state, but the

combination of all |ψi〉A1···An
(i = 1, 2, ..., n) may still be

biseparable.

Next we consider the efficient computation of entangle-
ment for multi-qudit pure states. A fundamental aspect
is that any ICEM C(|ψ〉AB) of a bipartite state |ψ〉AB can
be efficiently estimated on a quantum computer. In Fig.
3 the kth ancilla qubit is used to perform a controlled
SWAP test on the kth and (k+1)th copy of |ψ〉AB . Given
|ψ〉AB of a multi-qudit pure state under bipartition A and
B with R(|ψ〉AB) = r + 1, as well as r qubit states. Let
p(~z) be the probability of measuring the z bitstring on
the r control qubits. Denote ~z ∈ {0, 1}r the set of all
such bitstrings. We have the following proposition, see
proof in the Supplemental Material V.

Proposition 2. The ICEM of a pure quantum state
|ψ〉AB with R(|ψ〉AB) = r+1 can be computed from the
outcomes of the r-qubit SWAP test,

C(|ψ〉AB) = 1− p(~0r), (6)
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FIG. 3: Circuit for calculating C(|ψ〉AB). Given r+1 copies of
the quantum state |ψ〉AB and r ancilla qubits. The r ancilla
qubits are applied one by one by SWAP test by employing
the kth (k = 1, 2, ..., r) ancilla to perform a controlled swap
test on the kth and (k + 1)th copy of |ψ〉AB .

where p(~0r) denotes the probability of obtaining the all-
zero result from the SWAP test on the r-qubit control
states.

Proposition 2 shows that C(|ψ〉AB) can be computed by
performing the SWAP test on subsystem A and adding
the probabilities of the measurement outcomes that the
controlled qubits are in the state |0〉, which give rise to

the computation of C(|ψ〉A1···An
) and C̃(|ψ〉A1···An

).

Discussion and summary.—The conclusion given in
Lemma can be also generalized to other quantum cor-
relations besides entanglement, as (3) links T (ρ), A(ρ)

and ~λ(ρ) together and establishes one-to-one correspon-
dence among them. As each element in T (ρ) is non-
decreasing, one can built new kinds of quantum correla-
tions via the convex roof construction of T (ρ) on aver-
age under local operations. For example, one may use
T (ρ) instead of Ek(|ψ〉) given in [35] (the sum of the
n − k smallest λ′s) to investigate the related probabil-
ity p(|ψ〉 → |φ〉) of obtaining state |φ〉 from |ψ〉 under
LOCC. One can give a necessary condition for a com-
plete connected quantum networks [36], for instance, any

C̃(|ψ〉AĀ) = 0 implies that |ψ〉A1···An
is not an n-partite

complete connected quantum network. The ICEMs can
also be used to establish genuine entanglement witnesses.
For example, as C1(|ψ〉AB) = 1

2 [1 − Tr(ρ2A)], one gets
C1(|ψ〉A1A2|B) ≤ C1(|ψ〉A1|A2B) + C1(|ψ〉A2|A1B). Since
1+Tr(ρ2AB) ≥ Tr(ρ2A)+Tr(ρ2B) [37], one obtains an gen-
uine entanglement witness by using a similar method pre-

sented in [38].

In summary, we have introduced a method of provid-
ing general framework to quantify the quantum entan-
glement in an informationally complete way. The entan-
glement measures called ICEMs have been presented to
characterize and quantify the multipartite entanglement
of arbitrary n-qudit pure states. By specific examples we
have shown the advantages of ICEMs in distinguishing
the entanglement of different states whose entanglement
can not be identified by some well-know entanglement
measures. We have also shown that the entanglement
in and between the subsystems of a composite quantum
state can be efficiently estimated on a quantum computer
by implementing one-by-one SWAP tests. Moreover, the
ICEMs are also of paramount importance to state tran-
sition under LOCC. Furthermore, the arithmetic and ge-
ometric means of ICEMs can be used to detect the full
separability, entanglement or genuine multipartite entan-
glement faithfully on quantum devices.
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