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Variational and perturbative relativistic energies are computed and compared for two-electron atoms
and molecules with low nuclear charge numbers. In general, good agreement of the two approaches
is observed. Remaining deviations can be attributed to higher-order relativistic, also called non-
radiative quantum electrodynamics (QED), corrections of the perturbative approach that are auto-
matically included in the variational solution of the no-pair Dirac–Coulomb–Breit (DCB) equation
to all orders of the α fine-structure constant. The analysis of the polynomial α dependence of the
DCB energy makes it possible to determine the leading-order relativistic correction to the non-
relativistic energy to high precision without regularization. Contributions from the Breit–Pauli
Hamiltonian, for which expectation values converge slowly due the singular terms, are implicitly
included in the variational procedure. The α dependence of the no-pair DCB energy shows that the
higher-order (α4Eh) non-radiative QED correction is 5 % of the leading-order (α3Eh) non-radiative
QED correction for Z = 2 (He), but it is 40 % already for Z = 4 (Be2+), which indicates that
resummation provided by the variational procedure is important already for intermediate nuclear
charge numbers.
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I. INTRODUCTION

The non-relativistic quantum electrodynamics framework, which systematically includes all rela-
tivistic and quantum electrodynamics (QED) corrections to the non-relativistic energy with increas-
ing powers of the α fine structure constant is the current state of the art for small and light atomic
and molecular systems [1–10]. Higher precision or higher charge numbers assume the derivation
and evaluation of high-order perturbative corrections.

The current state of the art for two-electron systems in the non-relativistic QED framework
corresponds to α4Eh (in atomic units), which is equivalent to mα6 in natural units [3, 11]. The
α5Eh-order corrections have been evaluated for triplet states of the helium atom [9] aiming to
resolve current discrepancy of theory and experiment [12–16]. The corresponding terms for singlet
states have not been completed, yet.

Although the non-relativistic plus relativistic and QED separation has been traditionally (for
good reasons) pursued to produce state-of-the-art theoretical values [8, 15, 17–23], it is possible
to partition the relativistic QED problem differently. The relativistic QED problem of atoms and
molecules has two (three) ‘small’ parameters, the α fine structure constant, the Zα nuclear charge
number multiple of α (and the electron-nucleus mass ratio, which is not considered in the present
work, since the nuclei are fixed). Although α = 1/137.035 999 084 ≈ 0.007 3 [24] is indeed small,
resummation of the perturbation series for Zα would be ideal to cover larger nuclear charge values.

As a starting point for two-electron systems, we consider the Bethe–Salpeter [25] equation, a
relativistic QED wave equation. Following Salpeter’s calculation for positronium [26] and Sucher’s
calculation for the electronic problem of helium [27], this equation can be rearranged to an exact
equal-times form

(H +H∆)Ψ(r1, r2) = EΨ(r1, r2), (1)

where r1, r2 ∈ R3 are the Cartesian coordinates of the two particles, H is the positive-energy
projected two-electron Hamiltonian with instantaneous (Coulomb or Breit) interaction (I),

H = h1 + h2 + Λ++IΛ++ , (2)

hi = cαipi + βmic
2 +U1[4] (i = 1, 2) labels the one-particle Dirac Hamiltonians in the U external

Coulomb field of fixed nuclei, and

H∆ = Λ++I(1− Λ++)− Λ−−I +Hε (3)

is a correction term with Hε, which contains an integral for the relative energy [27] of two parti-
cles, and it carries pair corrections and retardation corrections. Radiative corrections can also be
incorporated in Hε. During the derivation [26, 27], starting out from the interaction of elementary
spin-1/2 particles, the two-particle (electron) positive-energy Dirac–Coulomb(–Breit) Hamiltonian
emerges and Λ++ (Λ−−) projects onto the positive-(negative-)energy states of two electrons moving
in the external field without electron-electron interactions.

Following Sucher, H∆ may be considered as perturbation to the positive-energy projected (also
called no-pair) Hamiltonian, H. So, the present work is concerned with the numerical solution of
the

HΨ = EΨ (4)

sixteen-component wave equation for the instantaneous Coulomb (C) and Coulomb–Breit (CB)
interactions. The Breit interaction is either included in the variational solution to obtain the no-pair
(++) Dirac–Coulomb–Breit (DCB) energy, E++

DCB, or it is computed as a first-order perturbation

to the no-pair Dirac–Coulomb (DC) energy (E++
DC ),

〈B〉DC = 〈Ψ++
DC |B|Ψ++

DC〉 , (5)

and it is labelled as E++
DC〈B〉 = E++

DC + 〈B〉DC.

In 1958, Sucher introduced the non-relativistic (Pauli) approximation to the no-pair DC wave
function to arrive at numerical predictions. Using modern computers, we solve the DC and DCB
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equations numerically to a precision, where comparison with the perturbative treatment (up to the
known orders) is interesting and, so far, unexplored. This paper is the concluding part of a series
of papers [28–30] which report the development of fundamental algorithmic and implementation
details of this programme together with the first numerical tests aiming at a parts-per-billion
(1:109) relative precision for the convergence of the variational energy, as well as comparison with
benchmark perturbative relativistic corrections.

II. SIXTEEN-COMPONENT VARIATIONAL METHODOLOGY

The explicit matrix form of the no-pair Dirac–Coulomb–Breit Hamiltonian for two particles is

H(1, 2) =

Λ++



V 1[4] + U1[4] cσ

[4]
2 · p2 cσ

[4]
1 · p1 B[4]

cσ
[4]
2 · p2 V 1[4] + (U − 2m2c2)1[4] B[4] cσ

[4]
1 · p1

cσ
[4]
1 · p1 B[4] V 1[4] + (U − 2m1c2)1[4] cσ

[4]
2 · p2

B[4] cσ
[4]
1 · p1 cσ

[4]
2 · p2 V 1[4] + (U − 2m12c2)1[4]


Λ++ (6)

with m12 = m1 + m2, pi = −i( ∂
∂rix

, ∂
∂riy

, ∂
∂riz

) (i = 1, 2), σ
[4]
1 = (σx ⊗ 1[2], σy ⊗ 1[2], σz ⊗ 1[2])

and σ
[4]
2 = (1[2] ⊗ σx, 1[2] ⊗ σy, 1[2] ⊗ σz), where σx, σy, and σz are the 2 × 2 Pauli matrices, and

U =
∑2
i=1

∑Nnuc

a=1 qiZa/|ri−Ra| is the external Coulomb potential of the nuclei. We note that the
operator in Eq. (6) already contains a −2mic

2 shift (i = 1, 2) for computational convenience and
for a straightforward matching of the non-relativistic energy scale.

Regarding the particle-particle interactions in Eq. (6), the Coulomb potential,

V =
q1q2

r12
, (7)

is along the diagonal, whereas, the B[4] blocks, corresponding to the Breit potential, can be found
on the anti diagonal of the Hamiltonian matrix,

B[4] = G[4] − q1q2

2

3∑

i=1

3∑

j=1

σ
[4]
1i
σ

[4]
2j

{
∇1i

∇2j
r12

}
. (8)

The first term of B[4] is called the Gaunt interaction, which reads as

G[4] = −q1q2

r12
σ

[4]
1 · σ

[4]
2 = −q1q2

r12




1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1


 . (9)

The Λ++ projector is constructed using the electronic states (also called positive-energy states,
which is to be understood without the −2mic

2 shift) of Eq. (6) by discarding the V and B particle-
particle interaction terms.

We solve the HΨ = EΨ wave equation with the no-pair Dirac–Coulomb (Eq. (6) without the
B block) and Dirac–Coulomb–Breit operators using a variational-like procedure, a two-particle
restricted kinetic balance condition (vide infra), and explicitly correlated Gaussian basis functions
[28–30].

For a single particle, the (four-component) wave function can be partitioned to large (l, first two)
and small (s, last two) components. A good basis representation is provided by the (restricted)
kinetic balance condition [31, 32]

ψs =
σ[2]p

2mc
ψl , (10)

connecting the basis function of the small and large components. A block-wise direct product
[28, 33–36] is commonly used for the two(many)-particle problem, which is used also in Eq. (6).
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The corresponding block structure of the two-particle wave function, highlighting the large (l) and
small (s) component blocks, is

Ψ(r1, r2) =




ψll(r1, r2)
ψls(r1, r2)
ψsl(r1, r2)
ψss(r1, r2)


 . (11)

We have implemented [28–30] the simplest two-particle generalization of the restricted kinetic
balance, Eq. (10), in the two-particle basis set in the sense of a transformation or metric [31]:

HKB = X†HX , X = diag


1[4],

(
σ

[4]
2 p2

)

2m2c
,

(
σ

[4]
1 p1

)

2m1c
,

(
σ

[4]
1 p1

)(
σ

[4]
2 p2

)

4m1m2c2


 . (12)

The transformed operators for the DC and the DCB problem are given in Refs. [29] and [30],
respectively.

The sixteen-component wave function is written as a linear-combination of anti-symmetrized [28]
spinor functions

Ψ(r1, r2) = A
Nb∑

i=1

16∑

χ=1

ciχdχΘi (r1, r2;Ai, si) , (13)

where the spatial part is represented by explicitly correlated Gaussians functions (ECGs),

Θi (r1, r2;Ai, si) = exp
[
−(r − si)T

(
Ai ⊗ 1[3]

)
(r − si)

]
. (14)

For low Z systems, it is convenient to work in the LS coupling scheme. We optimized the
ECG parameterization for the ground (and first excited state) by minimization of the ground (and
first excited) totally symmetric, non-relativistic singlet energy. To be able to generate (relatively)
large basis sets and to achieve good (parts-per-billion relative) convergence of not only the non-
relativistic, but also the DC〈B〉 and DCB energies, the value of the energy functional, which we
minimized, was incremented by a ‘penalty’ term [37, 38] that helped us to generate and optimize
ECG basis functions that are less linearly dependent (and thus, well represented in double precision
arithmetic). The same basis set was used to construct the non-interacting problem, Eq. (6) without
V and B, and the positive-energy projector. We used the cutting projection approach and checked
some of the results with the complex scaling (CCR) projector [29]. The triplet contributions are
estimated to be small (in perturbative relativistic computations, they appear at α4Eh order [3, 11]),
and will be reported for the present framework in the future.

All computations have been carried out with an implementation of the outlined algorithm (see
also Refs. [28–30]) in the QUANTEN computer program, used in pre-Born–Oppenheimer, non-
adiabatic, and (regularized) perturbative relativistic computations [18, 19, 21, 39–41]. Throughout
this work, Hartree atomic units are used and the speed of light is c = α−1a0Eh/~ with α−1 =
137.035 999 084 [24].

III. COMPARISON OF THE PERTURBATIVE AND VARIATIONAL ENERGIES

The Dirac–Coulomb–Breit energies, E++
DC〈B〉 and E++

DCB, obtained from sixteen-component com-

putations in this work are compared with perturbation theory results precisely evaluated with
well-converged non-relativistic wave functions (taken from benchmark literature values).

The aim of this comparison is three-fold.
(a) First, it is a numerical check, whether the sixteen-component approach can reproduce the

established perturbative benchmarks with a parts-per-billion (ppb) precision, which corresponds
to an energy resolution that is relevant for the current experiment-theory comparison.

(b) Second, it is about understanding the variational results. The sixteen-component variational
computation includes a ‘resummation’ of the perturbation series in Zα for part of the problem.
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Identification of the relevant higher-order perturbative corrections provides an additional check
for the implementation and for a good understanding of the developed variational relativistic
methodology.

(c) Third, after completion of (a) and (b), we may estimate the importance of missing orders
of the perturbative approach, since the sixteen-component computation provides all Zα orders for
the relevant part of the problem.

The present comparison provides a starting point for further developments aiming at the inclu-
sion of missing ‘effects’, in particular, contributions from the H∆ term in Eq. (3), including pair
correction, retardation, etc., as well as radiative corrections and motion of the nuclei.

A. Perturbative energy expressions

The leading, α2Eh, order, often called ‘relativistic correction’ to the non-relativistic energy is
obtained by a perturbative approach, either by the Foldy–Wouthuysen transformation [42] or by
Sucher’s approach [27] (in some steps reminiscent of the later Douglas–Kroll transformation [43])
for the Dirac–Coulomb (DC) and Dirac–Coulomb–Breit (DCB) Hamiltonians. The energy up to
second order in α (in atomic units) reads as

E
(2)
DCB = E(0)

nr + α2〈Ψnr|H(2)
DCB|Ψnr〉 = E(0)

nr + α2〈H(2)
DC +H

(2)
B 〉nr , (15)

where Ψnr is the non-relativistic wave function and the 〈O〉nr = 〈Ψnr|O|Ψnr〉 short notation is
introduced. Furthermore,

H
(2)
DC = −1

8

2∑

i=1

(∇2
i )

2 +
π

2

2∑

i=1

Nnuc∑

A=1

ZAδ(riA)− π
2∑

i=1

2∑

j>i

δ(rij) , (16)

H
(2)
B = HOO + 2π

2∑

i=1

2∑

j>i

δ(rij) (17)

with

HOO = −
2∑

i=1

2∑

j>i

1

2rij

(
pipj +

rij(rijpi)pj
r2
ij

)
. (18)

To obtain precise correction values, regularization techniques [41, 44, 45] have been used to
pinpoint the value of the non-relativistic expectation value of the singular terms, δ(riA), δ(rij),
and (∇2

i )
2.

Furthermore, we have noticed in earlier work [29, 30] that the ‘non-radiative QED’ corrections
of the perturbative scheme are ‘visible’ at the current ppb convergence level already for Z = 1.
For this reason, we collect the relevant positive-energy corrections from Sucher’s work [27] in the
following paragraphs. It is important to point out that these terms contribute to the α3Eh-order
perturbative corrections, but provide only part of the full correction at this order, which was first
derived by Araki (1957) [46] and Sucher (1958) [27].

a. Leading-order non-radiative QED corrections (α3Eh) to the no-pair energy
The two-Coulomb-photon exchange correction (p. 52, Eq. (3.99) [27]) is

ε++
CC = −

(
π

2
+

5

3

)
〈δ(r12)〉nr ≈ −3.237 〈δ(r12)〉nr . (19)

The correction due to one (instantaneous) Breit photon exchange with resummation for the
Coulomb ladder (p. 80, Eq. (5.64) [27]) is

ε++
CB = 4

(π
2

+ 1
)
〈δ(r12)〉nr ≈ 10.283 〈δ(r12)〉nr . (20)
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Table I. The no-pair DC energy with first-order perturbative Breit correction, E++
DC〈B〉 in Eh, and the

no-pair DCB energy, E++
DCB in Eh. The differences from the α2Eh- and α3Eh-order perturbative energies,

δ(2) and δ(3) in nEh, are also shown. Ground-state energies are reported unless otherwise indicated. For
up to Z = 2 systems, all digits are significant, for Li+ (Be2+) the last one (two) digits are estimated to be
uncertain.

E++
DC〈B〉 δ

(2)
DC〈B〉

a
δ

(3)
DC〈B〉

a
E++

DCB δ
(2)
DC〈B〉

a
δ

(3)
DC〈B〉

a
δ

(3)
DCB

a

H2
b −1.174 486 622 45 1 −1.174 486 635 32 −14 −4

H+
3

b −1.343 847 366 50 0 −1.343 847 381 35 −21 −4

HeH+b −2.978 807 919 261 −16 −2.978 808 003 177 −100 −38

H− −0.527 756 279 74 0 −0.527 756 281 5 −2 −1
He (2S) c −2.146 082 355 13 −11 −2.146 082 363 5 −19 −13
He (1S) c −2.903 828 032 279 −13 −2.903 828 121 190 −102 −37
Li+ −7.280 540 978 1300 −161 −7.280 541 443 835 −626 −301
Be2+ −13.657 788 729 3175 −995 −13.657 790 100 1804 −2366 −1436

a δ
(n)
x = E++

x − E(n)
x with n = 2, 3 and x stands for DC〈B〉 or DCB. The expressions for E

(n)
x are

listed in Eqs. (15)–(23) and the reference non-relativistic energy and integral values are collected

in Table S13. We note that δ
(2)
DC〈B〉 = δ

(2)
DCB.

b Electronic ground state for the nuclear-nuclear distance, Req = 1.4 bohr, 1.65 bohr, and
1.46 bohr for H2, H+

3 , and HeH+, respectively.
c 1S and 2S are used for 1 and 2 1S0, respectively.

We note that this correction corresponds to the unretarded (Breit) part of the transverse photon
exchange (Ref. [27] uses the Coulomb gauge for this part), and the retardation correction to this
term is evaluated separately (not considered in this work).

Finally, the correction due to the exchange of two (retarded) transverse photons according to
Sucher (p. 93, Eq. (6.9b++) [27]) is

ε++
TT = −π

2
〈δ(r12)〉nr ≈ −1.571 〈δ(r12)〉nr . (21)

It is necessary to note that this term includes retardation effects, whereas our computation, does
not. For this reason, the comparison of this term with the results of the variational DCB compu-
tation is only approximate and not fully quantitative.

In summary, the following α3Eh-order perturbative energies will be used for comparison with
the DC〈B〉 and DCB sixteen-component computations,

E
(3)
DC〈B〉 = E

(2)
DCB + α3(ε++

CC + ε++
CB ) = E

(2)
DCB + α3

(
3π

2
+

7

3

)
〈δ(r12)〉nr (22)

≈ E(2)
DCB + α3 7.046 〈δ(r12)〉nr ,

where we note that E
(2)
DCB = E

(2)
DC〈B〉 (α2Eh order), and

E
(3)
DCB ≈ E

(2)
DCB + α3(ε++

CC + ε++
CB + ε++

TT ) = E
(2)
DCB + α3

(
π +

7

3

)
〈δ(r12)〉nr (23)

≈ E(2)
DCB + α3 5.475 〈δ(r12)〉nr ,

where, in particular, the single Breit and two-transverse corrections sum to

(ε++
CB + ε++

TT ) α3 =

(
4 +

3π

2

)
〈δ(r12)〉nr α

3 ≈ 8.712 〈δ(r12)〉nr α
3 . (24)
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B. Sixteen-component, variational results

Table I shows the sixteen-component, no-pair DC〈B〉 and DCB energies computed in this work
and their comparison with the α2Eh- and α3Eh-order perturbative results. The DC〈B〉 and DCB
energies reported in this table differ from our earlier work [28, 30]. (The entries of the earlier
reported tables for the Breit energies were in an error due to a programming mistake during the
construction of the sixteen-component submatrices for pairs of ECG functions. It did not affect
the DC (singlet) energies [29], but affected the energies including the Breit interaction [30].)

According to Table I, the deviation of the variational results from the α2Eh-order energies is
on the order of a few 10 nEh for Z = 1, whereas it is a few 100 nEh already for Z = 2. For a
better comparison, it is necessary to include the α3Eh-order (non-radiative QED) corrections to the
perturbative energy. The relevant terms correspond to the two-Coulomb-photon, ε++

CC , Eq. (19),

the Coulomb-Breit-photon, ε++
CB , Eq. (20), and the Breit-Breit-photon exchange corrections (for

the positive-energy states). The last correction can be approximated with the (more complete)
two-transverse photon exchange correction, Eq. (21) (that is available from [27]).

It was shown in Ref. [29] that inclusion of the α3Eh-order, positive-energy Coulomb-ladder
correction, ε++

CC , in the perturbative energy closes the gap between the perturbative and variational

energies for the lowest Z values. Most importantly for the present work, inclusion of ε++
CC and ε++

CB ,
reduces the deviation for the no-pair DC〈B〉 energy from the perturbative value to near 0 nEh for
Z = 1 and to ca. 10 nEh for Z = 2.

Regarding the variational DCB energy, there is a non-negligible remainder between the varia-

tional, E++
DCB, and perturbative energies, E

(3)
DCB, Eq. (23), a few nEh for Z = 1 and a few tens

of nEh for Z = 2. This small, remaining deviation must be due to the fact that the sixteen-
component computation reported in this work (a) does not include retardation, but (b) includes
‘effects’ beyond α3Eh order.

First of all, E++
DCB includes the exchange of two and more (unretarded) Breit photons. To

constrain the number of Breit photon exchanges, instead of the variational DCB computation, we
can consider perturbative corrections due to the Breit interaction to the sixteen-component DC
wave function. The first-order correction,

〈B〉DC,n = 〈Ψ++
DC,n|X†B(1, 2)X|Ψ++

DC,n〉 , (25)

corresponds to a single Breit-photon exchange (in addition to the Coulomb ladder), while the first-
and second-order perturbative corrections [30],

P(2)
n {B} = 〈B〉DC,n +

∑

i6=n

∣∣∣〈Ψ++
DC,i|X†B(1, 2)X|Ψ++

DC,n〉
∣∣∣
2

E++
DC,i − E++

DC,n

, (26)

account for the effect of one- and two- (non-crossing) Breit photons.

We have numerically observed that E++
DC + P(2)

n {B} reproduces E++
DCB within a few nEh (Ta-

bles S1–S8), which indicates that the energy is dominated by at most two Breit-photon exchanges
in all systems studied in this work (up to Z = 4).

In Table I, a relatively good agreement can be observed with the α3Eh-order perturbative energies
for Z = 1 and 2, but we observe a larger deviation between the sixteen-component and perturbative
results for Z = 3 and 4, which indicates that inclusion of higher-order perturbative corrections
would be necessary for a good (better) agreement. The non-radiative, singlet part of the α4Eh

correction (after cancelling divergences) has been reported for both He (1S) and (2S) to be −11 nEh

[3], which is in an excellent agreement with the δ
(3)
DC〈B〉 = −11 and −13 nEh values in Table I. It is

necessary to note that the comparison is only approximate, since the perturbative value contains
contributions also from other ‘effects’. We note that α4Eh-order computations have been reported
in Ref. [47] for Z = 3 and 4 (Li+ and Be2+) ground states, but we could not separate the non-
radiative QED part from the given data.

To disentangle the contribution of the different α orders, and hence, to have a more direct
comparison with the perturbative results, we have studied the α dependence of E++

DC〈B〉 and E++
DCB.
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Table II. H− (1S): Convergence of the quartic α polynomial coefficients (only significant digits shown)
obtained by fitting to sixteen-component energy computations (see also Figs. 1 and 2 of this work and
Fig. 3 of Ref. [29]). Nb is the number of the ECG basis functions.

E++
DC−α2〈H(2)

DC〉nr

〈δ(r12)〉nr

〈B〉DC−α2〈H(2)
B 〉nr

〈δ(r12)〉nr
E++

DCB−E
++
DC−α2〈H(2)

B 〉nr
〈δ(r12)〉nr

fit: c2α2 + c3α3 + c4α4 b2α2 + b3α3 + b4α4 b̃2α2 + b̃3α3 + b̃4α4

Nb c2 c3 c4 b2 b3 b4 b̃2 b̃3 b̃4
300 0.0034 −0.9 −115 −0.0094 3.25 264 −0.0051 1.72 228
400 0.00853 −3.32 −19.7 −0.01479 9.891 7.0 −0.01359 7.534 31.9
500 0.00001 −3.262 −23.1 −0.00815 10.050 5.7 −0.008113 7.878 21.5
600 −0.00003 −3.26 −23.2 −0.00846 10.049 5.7 −0.008106 7.877 21.5

Sucher [27] a −3.237 10.283 8.712
∆ b −0.02 −0.234 −0.835

a Ref. [27]: c3,Su58 = −
(
π
2

+ 5
3

)
≈ −3.237; b3,Su58 = 4

(
π
2

+ 1
)
≈ 10.283; b̃3,Su58 = 4 + 3π

2
≈ 8.712.

b ∆: deviation of the α3Eh-order coefficient of this work and of Sucher’s analytic expressions [27].

IV. FINE-STRUCTURE CONSTANT DEPENDENCE OF THE
DIRAC–COULOMB–BREIT ENERGIES

The sixteen-component DC〈B〉 and DCB computations have been repeated with slightly different
values used for the α coupling constant of the electromagnetic interaction (Figs. 1 and 2). A quartic
polynomial of α was fitted to the computed series of E++

DC〈B〉(α) and E++
DCB(α) energies. The

fitted coefficients of the α polynomial can be directly compared with the perturbative corrections,
Eqs. (15)–(23), corresponding to the same order in α. We call this approach the α-scaling procedure
(to the analysis of the sixteen-component results).

A. Comparison of the α3Eh contributions

For a start, we note that the ‘α-scaling’ procedure was already successfully used for E++
DC (α) in

Ref. [29] and resulted in two important observations. First, the α3Eh-order term of the polynomial
fitted to the E++

DC (α) points,

c3 α
3 = −3.26(1) 〈δ(r12)〉nr α

3 , (27)

is in an excellent agreement with Sucher’s positive-energy two-Coulomb-photon correction, ε++
CC ,

Eq. (19) [27].
Regarding the Breit term, a similar α-scaling procedure resulted in contradictory observations

in Ref. [30]. It has turned out very recently that the contradictory observations were caused by a
programming error in the construction of the DC(B) matrix. After noting and correcting this error,
we have recomputed all reported values. The (singlet) DC energies [28, 29] did not change, but the
DC〈B〉 and DCB energies [28, 29] were affected. In the present work, we report the recomputed
values and enlarged the basis sets for some of the systems, so it is possible now to achieve a
(sub-)ppb-level of relative precision for the variational energy including the Breit interaction.

First of all, both the E++
DC〈B〉(α) and E++

DCB(α) data points (corresponding to a series of slightly

different α values) can be fitted well with a quartic polynomial of α. For practical numerical
reasons, we did not fit a general, fourth-order polynomial directly to E++

DC〈B〉(α), but we subtracted

a good approximate value for the ‘large’ leading-order (α2Eh) relativistic correction, i.e., 〈B〉DC−
α2〈H(2)

B 〉nr. We emphasize that the second term, α2〈H(2)
B 〉nr, is a simple quadratic function of α,

since the 〈H(2)
B 〉nr non-relativistic Breit correction is independent of α in atomic units. To bring

the several systems studied in this work to the same scale, we divided the difference by 〈δ(r12)〉nr

(Fig. 1). For the generation of the figure and the α polynomials, we used the 〈H(2)
B 〉nr and 〈δ(r12)〉nr

values evaluated ‘directly’ (without regularization) in the (largest) spatial ECG basis set used for
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HeH+ : −0.00562α2 + 10.164α3 − 1.3α4

H+
3 : −0.00686α2 + 10.125α3 − 2.6α4

Figure 1. Dependence of the Breit correction to the no-pair DC energy, 〈B〉DC, on the α coupling constant
of the electromagnetic interaction. Hartree atomic units are used and α0 labels 1/137.035 999 084 [24].
The data points, used for fitting the polynomials, were computed at the α = 1/(α0 + n), n = −50, . . . , 50

values. The 〈H(2)
B 〉nr and 〈δ(r12)〉nr values used to prepare this figure were calculated by ‘direct’ integration

(without regularization, Table S14).

the sixteen-component computations (Table S14).
From a computational point of view, it was the most difficult to have a stable α fit for H− in

double precision arithmetic (due to the smallness of 〈δ(r12)〉nr), and for this reason, we show the
convergence of the fitted coefficients with respect to the basis set size in Table II. For all other
systems studied in this work, the fitting was numerically more robust.

The α3Eh-order term in 〈B〉DC(α) (Fig. 1) is obtained from the cubic term of the fit,

b3 〈δ(r12)〉nr α
3 = 10.1(2) 〈δ(r12)〉nr α

3 , (28)

which is in an excellent agreement with the perturbative correction due to a single Breit photon in
addition to the Coulomb ladder (for the positve-energy states), ε++

CB α3, Eq. (20). As to E++
DCB(α)

(Fig. 2), we obtain the α3Eh-order term as

b̃3 〈δ(r12)〉nr α
3 = 8.98(25) 〈δ(r12)〉nr α

3 . (29)

This value can be compared with the α3Eh-order positive-energy correction of the one- and two-
Breit photon exchanges (in addition to the Coulomb ladder), ε++

CB α3 + ε++
BB α3. Instead of the

exchange of two Breit-photons, Sucher reported the exchange of two transverse (retarded) photons,
Eq. (21), and (ε++

CB + ε++
TT ) α3, Eq. (24), which is in a reasonable agreement with our numerical

result for the non-retarded value, Eq. (29), but the deviation is non-negligible.
We note that the excellent agreement of the variational and corresponding perturbative energies

is observed only for the no-pair Hamiltonian, as defined in Secs. I and II with the projector of
the non-interacting electrons in the field of the fixed nuclei. Regarding the ‘bare’ (unprojected)
DC(B) operators, or the positive-energy projected DC(B) operator with different projectors (free-
particle or modified Z values), none of them resulted in a good numerical agreement with the
well-established perturbative expressions of the ‘non-relativistic’ QED operators.
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Figure 2. Dependence of the no-pair DCB and DC energy difference on the α coupling constant of the
electromagnetic interaction. Hartree atomic units are used and α0 labels 1/137.035 999 084 [24]. The data
points, used for fitting the polynomials, were computed at the α = 1/(α0 +n), n = −50, . . . , 50 values. The

〈H(2)
B 〉nr and 〈δ(r12)〉nr values used to prepare this figure were calculated by ‘direct’ integration (without

regularization, Table S14).

Table III. Leading-order (α2Eh) relativistic corrections from the variational procedure without regular-

ization: α2E
(2)
DCB: leading-order DCB energy obtained by direct evaluation; Oα2 [E++

DC〈B〉] and Oα2 [E++
DCB]:

α2Eh-order fitted terms to the DC〈B〉 and DCB energies. Deviations are listed, in nEh, from the regularized

reference value, α2E
(2)
DCB,rg (Table S13).

H− He (2S) He (1S) Li+ Be2+ H2 H+
3 HeH+

α2E
(2)
DCB − α2E

(2)
DCB,rg 1.7 21 −18 296 766 9.0 9.3 55

Oα2 [E++
DC〈B〉]− α2E

(2)
DCB,rg 0.4 0.5 4.0 13 31 1.1 1.6 1.1

Oα2 [E++
DCB]− α2E

(2)
DCB,rg 0.5 0.4 3.2 13 19 1.1 1.6 0.6

Afterall, this numerical observation is not so surprising, if we consider the emergence of the
no-pair Dirac–Coulomb–Breit operator (with unretarded electron-electron interaction) from the
Bethe–Salpeter QED wave equation following Salpeter’s [26] and Sucher’s [27] calculation. In this
context, a historical note about the Breit equation [48] (eigenvalue equation for DCB without
positive-energy projection, ‘bare’ DCB) may also be relevant as it was pointed out by Douglas and
Kroll [43]. When Breit used his equation in a perturbative procedure, he had to omit an ‘extra’
term to have good agreement with experiment. This erroneous term was shown by Brown and
Ravenhall [49] to correspond to a contribution from negative-energy intermediate states, which,
according to Dirac’s hole theory, had to be discarded.
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B. Leading-order, α2Eh, relativistic corrections without regularization

The α2Eh-order term obtained from the DC computation with an ECG spatial basis set (op-
timized for the non-relativistic energy to a ppb relative precision) reproduced the regularized,
perturbative benchmark DC energy to a ppb precision [29]. At the same time, the error of the
perturbative DC energy by direct integration in the ECG basis was an order of magnitude larger
[29, 41].

In the present work, we observe a similar improvement for the α2Eh-order contribution obtained
from the α polynomial fit to the variational E++

DC〈B〉 and E++
DCB energies in comparison with the

perturbative DCB energy (expectation value of the Breit–Pauli Hamiltonian).
This behaviour is highlighted in Table III (see also Tables S9–S12), in which the α2Eh energies

obtained from the α-scaling approach are compared with perturbative values obtained by direct
or regularized integration. The improvement can be explained by the fact that the ‘singular’
operators of the Breit–Pauli Hamiltonian are implicitly included in the sixteen-component Dirac–
Coulomb–Breit operator, for which the eigenvalue equation is solved variationally, i.e., the linear
combination coefficients of the kinetically balanced ECG basis set are relaxed in a variational
manner. Thereby, the relativistic corrections are not a posteriori computed as expectation values,
but they are automatically included in the variational energy computation.

To generate Figs. 1 and 2 and the fitted α polynomials, we used the ‘own basis’ value (direct

evaluation) of 〈δ(r12)〉nr and 〈H(2)
B 〉nr (Table S14). Then, using the fitted coefficients and these two

integral values, we obtained the leading-order (α2Eh) relativistic correction (Table III) ‘carried by’
the sixteen-component DC(B) energy.

All in all, the α2Eh-order contribution to the DCB energy is an order of magnitude more ac-
curate than the perturbative correction by direct integration in comparison with the benchmark,
regularized value.

C. Higher-order (α4Eh) relativistic corrections

The α4Eh-order contribution to the DC(B) energy increases with an increasing Z value. Based
on the α-scaling plots, we can observe that the ratio of the α4Eh to α3Eh contribution is 5 and
10 % for Z = 2 (ground state) for the DCB and the DC energy, respectively, but this ratio is
already 40 and 50 % for Z = 4 (ground state). Hence, ‘resummation’ in Zα of the perturbative
series appears to be important for the total energies, E++

DC , E
++
DC〈B〉, E

++
DCB (Table IV) already for

intermediate Z values.
Regarding the Breit term, the first-order Breit correction to the Coulomb interaction has impor-

tant contribution at orders α2Eh and α3Eh, but the α4Eh-order contribution to the no-pair energy
remains relatively small (for the systems studied in this work).

The only outlier from these observations is He (2S). The large a4α/a3 ratio for the DC (and
similarly for the DC〈B〉 and DCB) energy can be understood by noting that the 〈δ(r12)〉nr factor
(Table S13), and thus, the thrid-order correction, is very small. The third-order DC energy con-
tribution (known to be proportional to 〈δ(r12)〉nr based on perturbation theory, Eq. (19)) is −11
and −135 Eh for He (2S) and (1S), respectively, whereas the fourth-order terms are comparable,
−12 Eh for both He (2S) and (1S).
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Table IV. Relative importance of the α4Eh- and α3Eh-order contributions to the no-pair Dirac–
Coulomb, Breit, and Dirac–Coulomb–Breit energies. The energy contribution is to be understood as
(a3α

3 + a4α
4)〈δ(r12)〉nr.

E++
DC (α) 〈B〉DC(α) E++

DC〈B〉(α) E++
DCB(α)

Ref. [29] Fig. 1

a3 a4
a4α
a3

% a3 a4
a4α
a3

% a3 a4
a4α
a3

% a3 a4
a4α
a3

%

H2 −3.27 −6.59 1 10.04 2.6 0 6.77 −3.99 0 4.60 8.41 1
H+

3 −3.27 −5.27 1 10.13 −2.6 0 6.86 −7.87 −1 4.67 4.73 1
HeH+ −3.27 −44.5 10 10.16 −1.3 0 6.89 −45.8 −5 4.73 −39.7 −6
H− −3.26 −23.6 5 10.05 5.7 0 6.79 −17.9 −2 4.62 −1.6 0
He (2S)−3.26 −470 105 10.13 1.2 0 6.87 −469 −50 4.71 −473 −73
He (1S)−3.27 −40.3 9 10.18 1.9 0 6.91 −38.4 −4 4.75 −35.3 −5
Li+ −3.26 −109 24 10.22 4.3 0 6.96 −105 −11 4.80 −112 −17
Be2+ −3.25 −241 54 10.22 11 1 6.97 −230 −24 4.80 −246 −37
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V. SUMMARY AND CONCLUSION

Variational and perturbative relativistic energies are computed and compared for two-electron
atoms and molecules with low nuclear charge numbers. In general, good agreement of the two
approaches is observed. Remaining deviations can be attributed to higher-order relativistic, also
called non-radiative quantum electrodynamics (QED), corrections of the perturbative approach
that are automatically included in the variational solution of the no-pair Dirac–Coulomb–Breit
(DCB) equation to all orders of the α fine-structure constant. The analysis of the polynomial
α dependence of the DCB energy makes it possible to determine the leading-order relativistic
correction to the non-relativistic energy to high precision without regularization. Contributions
from the Breit–Pauli Hamiltonian, for which expectation values converge slowly due the singular
terms, are implicitly included in the variational procedure. The α dependence of the no-pair DCB
energy shows that the higher-order (α4Eh) non-radiative QED correction is 5 % of the leading-order
(α3Eh) non-radiative QED correction for Z = 2 (He), but it is 40 % already for Z = 4 (Be2+),
which indicates that resummation provided by the variational procedure is important already for
intermediate nuclear charge numbers.
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S1. CONVERGENCE TABLES

Table S1. H− ground state (1 1S0): Convergence of the energy, in Eh, with respect to the Nb number of
explicitly correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–Coulomb projected
(E++

DC ), Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative correction (〈B〉DC,

P(2)
DC{B}) energies are shown. Double precision arithmetic and a penalty value (that controls the overlap

of the generated ECG functions) of 0.99 was used.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

300 −0.527 750 974 1 −0.527 756 691 0 −0.527 756 233 3 −0.527 756 234 6 −0.527 756 234 6
400 −0.527 751 015 5 −0.527 756 732 1 −0.527 756 277 4 −0.527 756 279 6 −0.527 756 279 6
500 −0.527 751 016 4 −0.527 756 733 0 −0.527 756 278 5 −0.527 756 280 1 −0.527 756 280 7
600 −0.527 751 016 4 −0.527 756 733 0 −0.527 756 278 6 −0.527 756 280 8 −0.527 756 280 7

E − E(2)
DCB

b 0.000 000 074 0 0.000 000 005 2 0.000 000 005 3

E − E(3)
DC〈B〉

c −0.000 000 000 1 −0.000 000 002 3 −0.000 000 002 2

E − E(3)
DCB

d −0.000 000 000 6 −0.000 000 000 5

a Enr = −0.527 751 016 5 Eh [50].
b E

(2)
DCB = −0.527 756 286 0 Eh [50].

c E
(3)
DC〈B〉 = −0.527 756 278 5 Eh .

d E
(3)
DCB = −0.527 756 280 2 Eh .

Table S2. He (2 1S0, 2S): Convergence of the energy, in Eh, with respect to the Nb number of explicitly
correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–Coulomb projected (E++

DC ),

Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative correction (〈B〉DC, P(2)
DC{B})

energies are shown. Double precision arithmetic and a penalty value (that controls the overlap of the
generated ECG functions) of 0.99 was used.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

100 −2.145 973 294 −2.146 084 035 −2.146 081 584 −2.146 081 588 −2.146 081 588
200 −2.145 974 011 −2.146 084 756 −2.146 082 320 −2.146 082 327 −2.146 082 327
300 −2.145 974 045 −2.146 084 789 −2.146 082 353 −2.146 082 361 −2.146 082 361
400 −2.145 974 046 −2.146 084 791 −2.146 082 355 −2.146 082 363 −2.146 082 363

E − E(2)
DCB

b 0.000 000 013 0.000 000 005 0.000 000 005

E − E(3)
DC〈B〉

c −0.000 000 011 −0.000 000 019 −0.000 000 019

E − E(3)
DCB

d −0.000 000 013 −0.000 000 013

a Enr = −2.145 974 046 Eh [50].
b E

(2)
DCB = −2.146 082 368 Eh [51].

c E
(3)
DC〈B〉 = −2.146 082 344 Eh.

d E
(3)
DCB = −2.146 082 350 Eh.
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Table S3. He (1 1S0, 1S): Convergence of the energy, in Eh, with respect to the Nb number of explicitly
correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–Coulomb projected (E++

DC ),

Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative correction (〈B〉DC, P(2)
DC{B})

energies are shown. Double precision arithmetic and a penalty value (that controls the overlap of the
generated ECG functions) of 0.99 was used.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

200 −2.903 724 363 9 −2.903 856 618 3 −2.903 828 014 6 −2.903 828 103 4 −2.903 828 103 0
300 −2.903 724 375 0 −2.903 856 629 8 −2.903 828 029 3 −2.903 828 118 7 −2.903 828 118 3
400 −2.903 724 376 3 −2.903 856 631 3 −2.903 828 031 5 −2.903 828 121 2 −2.903 828 120 7
500 −2.903 724 376 6 −2.903 856 631 5 −2.903 828 031 9 −2.903 828 121 5 −2.903 828 121 1
700 −2.903 724 376 6 −2.903 856 631 6 −2.903 828 031 9 −2.903 828 121 5 −2.903 828 121 1

E − E(2)
DCB

b 0.000 000 278 7 0.000 000 189 1 0.000 000 189 5

E − E(3)
DC〈B〉

c −0.000 000 012 5 −0.000 000 102 0 −0.000 000 101 7

E − E(3)
DCB

d −0.000 000 037 2 −0.000 000 036 8

a Enr = −2.903 724 377 0 Eh [50].
b E

(2)
DCB = −2.903 828 310 6 Eh [50].

c E
(3)
DC〈B〉 = −2.903 828 019 5 Eh .

d E
(3)
DCB = −2.903 828 084 4 Eh .

Table S4. Li+ (1 1S0): Convergence of the energy, in Eh, with respect to the Nb number of explicitly
correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–Coulomb projected (E++

DC ),

Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative correction (〈B〉DC, P(2)
DC{B})

energies are shown.

Nb
a Enr E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

100 −7.279 913 057 −7.280 698 534 −7.280 540 513 −7.280 540 955 −7.280 540 953
200 −7.279 913 380 −7.280 698 868 −7.280 540 943 −7.280 541 409 −7.280 541 407
300 −7.279 913 409 −7.280 698 887 −7.280 540 964 −7.280 541 431 −7.280 541 429
400 −7.279 913 410 −7.280 698 899 −7.280 540 978 −7.280 541 445 −7.280 541 443

E − E(2)
DCB

b 0.000 001 300 0.000 000 833 0.000 000 835

E − E(3)
DC〈B〉

c −0.000 000 161 −0.000 000 628 −0.000 000 626

E − E(3)
DCB

d −0.000 000 303 −0.000 000 301

a Enr = −7.279 913 413 Eh [50].
b E

(2)
DCB = −7.280 542 278 Eh [50].

c E
(3)
DC〈B〉 = −7.280 540 817 Eh .

d E
(3)
DCB = −7.280 541 143 Eh .
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Table S5. Be2+ (1 1S0): Convergence of the energy, in Eh, with respect to the Nb number of explicitly
correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–Coulomb projected (E++

DC ),

Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative correction (〈B〉DC, P(2)
DC{B})

energies are shown.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

100 −13.655 565 910 −13.658 257 248 −13.657 788 246 −13.657 789 601 −13.657 789 595
200 −13.655 566 229 −13.658 257 596 −13.657 788 720 −13.657 790 097 −13.657 790 090
300 −13.655 566 234 −13.658 257 602 −13.657 788 729 −13.657 790 107 −13.657 790 100

E − E(2)
DCB

b 0.000 003 175 0.000 001 797 0.000 001 804

E − E(3)
DC〈B〉

c −0.000 000 995 −0.000 002 373 −0.000 002 366

E − E(3)
DCB

d −0.000 001 443 −0.000 001 436

a Enr = −13.655 566 238 Eh [50].
b E

(2)
DCB = −13.657 791 904 Eh [50].

c E
(3)
DC〈B〉 = −13.657 787 730 Eh.

d E
(3)
DCB = −13.657 788 664 Eh.

Table S6. H2 molecule (X 1Σ+
g , Rpp = 1.4 bohr): Convergence of the energy, in Eh, with respect to the Nb

number of explicitly correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–Coulomb
projected (E++

DC ), Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative correction

(〈B〉DC, P(2)
DC{B}) energies are shown.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

128 −1.174 475 542 7 −1.174 489 583 −1.174 486 441 −1.174 486 451 −1.174 486 451
256 −1.174 475 697 9 −1.174 489 738 −1.174 486 604 −1.174 486 617 −1.174 486 617
512 −1.174 475 712 8 −1.174 489 753 −1.174 486 620 −1.174 486 633 −1.174 486 633
700 −1.174 475 713 6 −1.174 489 754 −1.174 486 621 −1.174 486 635 −1.174 486 635
800 −1.174 475 713 6 −1.174 489 754 −1.174 486 621 −1.174 486 635 −1.174 486 635
1000 −1.174 475 713 6 −1.174 489 754 −1.174 486 621 −1.174 486 635 −1.174 486 635
1200 −1.174 475 713 9 −1.174 489 754 −1.174 486 622 −1.174 486 635 −1.174 486 635

E − E(2)
DCB

b 0.000 000 045 0.000 000 032 0.000 000 032

E − E(3)
DC〈B〉

c −0.000 000 001 −0.000 000 014 −0.000 000 014

E − E(3)
DCB

d −0.000 000 004 −0.000 000 004

a Enr = −1.174 475 714 2 Eh [11].
b E

(2)
DCB = −1.174 486 667 Eh [11, 52].

c E
(3)
DC〈B〉 = −1.174 486 621 Eh.

d E
(3)
DCB = −1.174 486 631 Eh.
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Table S7. H+
3 molecular ion (ground state, Rpp = 1.65 bohr): Convergence of the energy, in Eh, with respect

to the Nb number of explicitly correlated Gaussian (ECG) basis functions. The non-relativistic (nr), Dirac–
Coulomb projected (E++

DC ), Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit perturbative

correction (〈B〉DC, P(2)
DC{B}) energies are shown. The basis set size corresponds to the use of D3h point-

group symmetry in the computations.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

100 −1.343 835 248 6 −1.343 850 149 −1.343 846 977 −1.343 846 988 −1.343 846 988
200 −1.343 835 605 7 −1.343 850 507 −1.343 847 343 −1.343 847 357 −1.343 847 357
300 −1.343 835 623 1 −1.343 850 524 −1.343 847 363 −1.343 847 378 −1.343 847 378
400 −1.343 835 624 9 −1.343 850 526 −1.343 847 365 −1.343 847 380 −1.343 847 380
500 −1.343 835 625 3 −1.343 850 527 −1.343 847 366 −1.343 847 381 −1.343 847 381
600 −1.343 835 625 4 −1.343 850 527 −1.343 847 366 −1.343 847 381 −1.343 847 381

E − E(2)
DCB

b 0.000 000 050 0.000 000 035 0.000 000 035

E − E(3)
DC〈B〉

c 0.000 000 000 −0.000 000 015 −0.000 000 015

E − E(3)
DCB

d −0.000 000 004 −0.000 000 004

a Enr = −1.343 835 625 4 Eh [41].
b E

(2)
DCB = −1.343 847 416 Eh [41].

c E
(3)
DC〈B〉 = −1.343 847 366 Eh.

d E
(3)
DCB = −1.343 847 377 Eh.

Table S8. HeH+ molecular ion (ground state, Rαp = 1.46 bohr): Convergence of the energy, in Eh, with
respect to the Nb number of explicitly correlated Gaussian (ECG) basis functions. The non-relativistic
(nr), Dirac–Coulomb projected (E++

DC ), Dirac–Coulomb–Breit projected (E++
DCB), and E++

DC with Breit per-

turbative correction (〈B〉DC, P(2)
DC{B}) energies are shown.

Nb Enr
a E++

DC E++
DC + 〈B〉DC E++

DC + P(2)
DC{B} E++

DCB

400 −2.978 706 548 8 −2.978 834 584 −2.978 807 858 −2.978 807 941 −2.978 807 941
600 −2.978 706 593 3 −2.978 834 630 −2.978 807 912 −2.978 807 996 −2.978 807 996
800 −2.978 706 597 3 −2.978 834 634 −2.978 807 917 −2.978 808 002 −2.978 808 001
1000 −2.978 706 598 2 −2.978 834 635 −2.978 807 918 −2.978 808 003 −2.978 808 003
1200 −2.978 706 598 5 −2.978 834 635 −2.978 807 919 −2.978 808 004 −2.978 808 003

E − E(2)
DCB

b 0.000 000 261 0.000 000 176 0.000 000 177

E − E(3)
DC〈B〉

c −0.000 000 016 −0.000 000 101 −0.000 000 100

E − E(3)
DCB

d −0.000 000 039 −0.000 000 038

a Enr = −2.978 706 598 5 Eh [28–30] (& this work).
b E

(2)
DCB = −2.978 808 180 Eh [28].

c E
(3)
DC〈B〉 = −2.978 807 903 Eh.

d E
(3)
DCB = −2.978 807 965 Eh.
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S2. LEADING-ORDER CORRECTIONS FROM α SCALING

Table S9. Leading-order DC correction in units of α2Eh. 〈H(2)
DC〉nr: direct evaluation of the expectation

value of the perturbative DC correction terms, Eq. (16), in the largest ECG basis set (Tables S1–S8);
Oα2 [E++

DC ]/α2: second-order coefficient (c2) of the α dependence of the DC++ energy fitted with a third-

order polynomial (see also Ref. [29]). 〈H(2)
DC〉rg: regularized reference values for the perturbative DC

corrections are collected (with citations) in Table S13.

H− He (2S) He (1S) Li+ Be2+ H2 H+
3 HeH+

〈H(2)
DC〉nr −0.107 279 −2.078 929 −2.481 823 −14.731 566 −50.477 690 −0.263 240 −0.279 367 −2.401 315

Oα2 [E++
DC ]/α2 −0.107 279 −2.079 251 −2.480 832 −14.734 771 −50.485 217 −0.263 250 −0.279 386 −2.401 752

〈H(2)
DC〉rg (ref.) −0.107 283 −2.079 256 −2.480 848 −14.734 859 −50.485 330 −0.263 255 −0.279 399 −2.401 709

Table S10. Deviation, in nEh, of the leading-order (α2Eh) DC correction obtained by direct evaluation,

α2〈H(2)
DC〉nr, as the second-order term for the α dependence of the DC energy, Oα2 [E++

DC ], from the regular-

ized reference value, α2〈H(2)
DC〉rg, (Table S13).

H− He (2S) He (1S) Li+ Be2+ H2 H+
3 HeH+

α2E
(2)
DC − α2〈H(2)

DC〉rg 0.2 17.4 −52 175 407 0.8 1.7 21

Oα2 [E++
DC ]− α2〈H(2)

DC〉rg 0.2 0.3 0.9 4.7 6.0 0.3 0.7 −2.3

Table S11. Breit corrections in α2Eh units. 〈H(2)
B 〉nr: the expectation value (without regularization) of

the perturbative correction, Eq. (17), in the largest ECG basis set (Tables S1–S8); Oα2 [〈B〉DC]/α2 and
Oα2 [E++

DCB−E
++
DC ]/α2: second-order coefficient of the quartic α polynomial fitted to 〈B〉DC and E++

DCB−E
++
DC ;

and 〈H(2)
B 〉rg: regularized reference value of the expectation value of Eq. (17) with the non-relativistic wave

function (Table S13).

H− He (2S) He (1S) Li+ Be2+ H2 H+
3 HeH+

α2〈H(2)
B 〉nr 0.008 355 0.045 150 0.529 738 2.927 750 8.696 609 0.057 721 0.058 126 0.494 761

Oα2 [〈B〉DC]/α2 0.008 332 0.045 095 0.529 153 2.925 643 8.690 333 0.057 582 0.058 000 0.494 192
Oα2 [E++

DCB − E
++
DC ]/α2 0.008 333 0.045 092 0.529 138 2.925 643 8.690 108 0.057 582 0.058 000 0.494 183

α2〈H(2)
B 〉rg (ref.) 0.008 328 0.045 090 0.529 093 2.925 486 8.689 865 0.057 567 0.057 983 0.494 128

Table S12. Deviation, in nEh, of the leading-order Breit correction (α2Eh) obtained by direct (non-

regularized) expectation value of the perturbative expression, α2〈H(2)
B 〉nr, second-order coefficient in the α

polynomial fit (Figs. 1 and 2) of the 〈B〉DC and of the E++
DCB − E

++
DC energies from the regularized, α2Eh

order perturbative reference value, α2〈H(2)
B 〉rg.

H− He (2S) He (1S) Li+ Be2+ H2 H+
3 HeH+

α2E
(2)
B − α2〈H(2)

B 〉rg 1.4 3.2 34 121 359 8.2 7.6 33.7

Oα2 [〈B〉DC]− α2〈H(2)
B 〉rg 0.2 0.3 3.2 8.4 25 0.8 0.9 3.4

Oα2 [E++
DCB − E++

DC ]− α2〈H(2)
B 〉rg 0.3 0.1 2.4 8.4 13 0.8 0.9 2.9



20

S3. NON-RELATIVISTIC ENERGIES AND PERTURBATIVE CORRECTIONS

Table S13. Reference values for the non-relativistic energy and expectation values for the relativistic cor-
rection terms with the non-relativistic wave function. 〈O〉rg labels regularized evaluation of the expectation
value of the singular operators with the non-relativistic wave function. Ground-state values are shown,
unless otherwise indicated.

Enr − 1
8

∑
i〈(p

2
i )

2〉rg
∑
i,a Za〈δ(ria)〉rg 〈δ(r12)〉rg 〈HOO〉nr Ref.

H− −0.527 751 016 −0.615 640 0.329 106 0.002 738 −0.008 875 [50]
He (2S) −2.145 974 046 −10.279 669 5.237 843 0.008 648 −0.009 253 [53]
He (1S) −2.903 724 377 −13.522 017 7.241 717 0.106 345 −0.139 095 [50]
Li+ −7.279 913 413 −77.636 788 41.112 057 0.533 723 −0.427 992 [50]
Be2+ −13.655 566 238 −261.819 623 137.585 380 1.522 895 −0.878 769 [50]

H2
a −1.174 475 714 −1.654 745 0.919 336 0.016 743 −0.047 634 [11]

H+
3

a −1.343 835 625 −1.933 424 1.089 655 0.018 335 −0.057 218 [41]
HeH+ a −2.978 706 599 −13.419 287 7.216 253 0.101 122 −0.141 242 [28–30]

〈H(2)
DC〉rg 〈H(2)

B 〉rg 〈H(2)
DC +H

(2)
B 〉rg E

(2)
DC E

(2)
DCB Ref.

H− −0.107 283 0.008 328 −0.098 955 −0.527 756 730 −0.527 756 286 [50]
He (2S) −2.079 256 0.045 090 −2.034 166 −2.146 084 769 −2.146 082 368 [53]
He (1S) −2.480 848 0.529 093 −1.951 755 −2.903 856 486 −2.903 828 311 [50]
Li+ −14.734 859 2.925 486 −11.809 373 −7.280 698 064 −7.280 542 278 [50]
Be2+ −50.485 330 8.689 865 −41.795 465 −13.658 254 651 −13.657 791 904 [50]

H2
a −0.263 255 0.057 567 −0.205 689 −1.174 489 733 −1.174 486 667 [11]

H+
3

a −0.279 399 0.057 983 −0.221 416 −1.343 850 503 −1.343 847 416 [41]
HeH+ a −2.401 709 0.494 128 −1.907 581 −2.978 834 493 −2.978 808 180 [28]

a Rpp = 1.4 bohr, Rpp = 1.65 bohr, Rpp = 1.46 bohr.

Table S14. Non-relativistic energy and expectation values of the relativistic correction terms obtained in
‘direct’ (non-regularized) computation with the non-relativistic wave function using the largest basis sets
used in this work (Tables S1–S8). In this table, 〈O〉nr means direct (non-regularized) evaluation of the
expectation value with the non-relativistic wave function. Ground-state values are shown, unless otherwise
indicated.

Enr − 1
8

∑
i〈(p

2
i )

2〉nr
∑
i,a Za〈δ(ria)〉nr 〈δ(r12)〉nr 〈HOO〉nr

H− −0.527 751 016 −0.615 429 0.328 980 0.002 742 −0.008 875
He (2S) −2.145 974 046 −10.273 526 5.234 159 0.008 659 −0.009 253
He (1S) −2.903 724 377 −13.517 694 7.238 965 0.106 445 −0.139 095
Li+ −7.279 913 410 −77.562 651 41.067 671 0.534 083 −0.427 992
Be2+ −13.655 566 234 −261.660 823 137.491 296 1.523 969 −0.878 771

H2
a −1.174 475 714 −1.653 578 0.918 653 0.016 768 −0.047 635

H+
3

a −1.343 835 625 −1.932 048 1.088 845 0.018 358 −0.057 218
HeH+ a −2.978 706 599 −13.406 476 7.208 549 0.101 223 −0.141 242

〈H(2)
DC〉nr 〈H(2)

B 〉nr 〈H(2)
DC +H

(2)
B 〉nr E

(2)
DC E

(2)
DCB

H− −0.107 283 0.008 355 −0.098 928 −0.527 756 729 −0.527 756 284
He (2S) −2.078 929 0.045 150 −2.033 779 −2.146 084 751 −2.146 082 347
He (1S) −2.481 162 0.529 721 −1.951 442 −2.903 856 502 −2.903 828 294
Li+ −14.731 576 2.927 751 −11.803 825 −7.280 697 887 −7.280 541 980
Be2+ −50.477 690 8.696 608 −41.781 082 −13.658 254 239 −13.657 791 133

H2
a −0.263 240 0.057 725 −0.205 516 −1.174 489 732 −1.174 486 658

H+
3

a −0.279 367 0.058 126 −0.221 240 −1.343 850 502 −1.343 847 407
HeH+ a −2.401 316 0.494 763 −1.906 553 −2.978 834 472 −2.978 808 125

a Rpp = 1.4 bohr, Rpp = 1.65 bohr, Rpp = 1.46 bohr.
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