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Recent work has revealed the cen-
tral role played by the Kirkwood-Dirac
quasiprobability (KDQ) as a tool to prop-
erly account for non-classical features in
the context of condensed matter physics
(scrambling, dynamical phase transitions)
metrology (standard and post-selected),
thermodynamics (power output and fluc-
tuation theorems), foundations (contextu-
ality, anomalous weak values) and more.
Given the growing relevance of the KDQ
across the quantum sciences, our aim is
two-fold: First, we highlight the role
played by quasiprobabilities in character-
izing the statistics of quantum observables
and processes in the presence of measure-
ment incompatibility. In this way, we show
how the KDQ naturally underpins and
unifies quantum correlators, quantum cur-
rents, Loschmidt echoes, and weak values.
Second, we provide novel theoretical and
experimental perspectives by discussing a
wide variety of schemes to access the KDQ
and its non-classicality features.
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1 Introduction

The existence of incompatible physical observ-
ables is one of the features that better distin-
guishes quantum physics from classical mechan-
ics. In fact, incompatible observables are at the
basis of Heisenberg’s uncertainty relations [1, 2];
they imply information-disturbance trade-offs of
quantum measurements [3| and lead to the impos-
sibility of describing quantum processes in purely
classical terms.

The incompatibility of physical observables
also limits our ability to associate to their mea-
surement outcomes joint probability distribu-
tions. A well-known example is represented by
the formulation of the quantum mechanics of
continuous variable systems in phase-space [4—
8]. Classically, the state of a physical system can
be represented by a joint probability distribution

over its phase-space. Instead, a quantum state
can be represented in phase-space by means of
the Wigner distribution [4, 6]. Due to the comple-
mentarity of the position and momentum opera-
tors, the Wigner distribution satisfies all but one
of Kolmogorov’s axioms of the probability the-
ory. In fact, the Wigner distribution is a real,
normalized distribution but, in general, it can as-
sume negative values. Such objects are known
as quasiprobabilities. Conceptually these are nat-
urally understood as extensions of probabilities
when some events are inaccessible [9]. Because
of the ordering ambiguities arising from the non-
commutativity of quantum operators, infinitely
many alternative quasiprobabilities exist [10], in-
cluding discrete versions of the Wigner function
used to describe finite-dimensional systems [11-
14].

Less known than the Wigner function(s) is
the quasiprobability introduced independently by
Kirkwood [15] in the 30’s and Dirac [16] in the
40’s, which goes under the name of Kirkwood-
Dirac quasiprobability (KDQ). Originally formu-
lated as a representation of the quantum state,
the KDQ is a joint quasiprobability distribution
for incompatible observables. As the Wigner
function, the KDQ violates one of Kolmogorov
axioms, since it can assume negative and complex
values. Better suited for discrete quantum sys-
tems without a proper analogue of position and
momentum operators, the KDQ has been an ob-
ject of intense investigation together with its real
part, the so-called Margenau-Hill quasiprobabil-
ity (MHQ) [17-26].

One line of investigation looked at the non-
positivity of the KDQ — its negative or complex
values — as a measure of non-classicality [25, 27].
In fact, the mutual non-commutativity of the
quantum observables and the state entering the
definition of the KDQ is not a sufficient condition
for the appearance of non-positivity [25]. The lat-
ter can hence be interpreted as a stronger form of
non-classicality than non-commutativity. From
a foundational perspective, non-positivity of the
KDQ has been shown to imply a strong form of
non-classicality, i.e., contextuality [23, 28|, in a

suitably defined operational scenario’.

"More formally: when the KDQ takes a non-positive
value, there are associated operational scenarios involving
weak measurement schemes and the verification of a pre-
cise set of operational equivalences whose outcome statis-
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Another line of investigation looked at the
non-positivity of the KDQ through the lenses of
its physical significance. Non-real values of the
KDQ can be connected to measurement distur-
bances [29-32] and to the enhanced power out-
put of a quantum engine [33], while negative
values herald advantages in quantum metrolog-
ical setups [34, 35]. The MHQ and its negative
values have been investigated in the context of
quantum thermodynamics [19, 20, 24|, showing
that it is a plausible quasiprobability distribu-
tion for extending fluctuation theorems to the
full quantum regime. It can also relate viola-
tions of certain heat-flow bounds between two
correlated baths with negativity and thus non-
classicality [24]. Recently, quasiprobabilities have
been also employed to describe work statistics [36]
in quadratic fermionic models [37], as the quan-
tum Ising model [38].

In this context, the aim of our work is two-fold.
On the one hand, we highlight the role played
by quasiprobabilities in characterizing the statis-
tics of quantum observables and processes. On
the other hand, we focus on ways to both ac-
cess the full quasiprobability and witness its non-
positivity. In particular, the structure of the work
is the following.

The first part of this work aims at collect-
ing arguments supporting the use of the KDQ
and MHQ as appropriate tools to characterize
the statistics of incompatible observables mea-
surements in contexts ranging from condensed
matter to quantum statistical mechanics and
thermodynamics (section 2.1-3). We highlight
often-unnoticed relations between MHQ/KDQ
and quantum correlators, currents, linear re-
sponse theory, weak values, and work quasiprob-
abilities. We present a new relation between the
KDQ and the Loschmidt echo and demonstrate a
no-go theorem supporting the use of quasiprob-
abilities as natural extensions of probabilities in
the presence of non-commutativity. We briefly
relate the latter to a long-standing discussion ap-
pearing in quantum thermodynamics. This will
premise the main body of the paper (sections
4-5-6), which deals with reconstruction schemes
for the MHQ and KDQ), non-classicality witness,
and experimental perspectives. The reconstruc-
tion schemes (section 4) fall into different cate-

tics cannot be explained by any non-contextual ontological
model.

gories: some of which were presented before (di-
rect reconstruction schemes), others appeared in
the literature but their relevance for the KDQ was
not realized before (weak two-point-measurement
protocol, cloning schemes), and additional ones
are novel to this work (block-encoding scheme,
interferometric scheme).

The non-classicality tests (section 5) for the
KDQ - via characteristic function, moments
Hamburger problem, SWAP test — and experi-
mental perspectives (section 6) are all novel to
this work. In section 6, in particular, we advance
a proposal to realize, with nitrogen-vacancy (NV)
centers in diamond at room temperature, an in-
terferometric scheme aimed both at the recon-
struction of the KDQ and at the implementa-
tion of the non-classicality tests. We conclude
the paper in section 7 with an overview of our re-
sults and the impact they have on both future
theoretical investigations and experimental im-
plementations on current quantum technological
platforms.

With the KDQ being a rising star as a tool of
choice across quantum information science, quan-
tum thermodynamics, condensed matter, and
statistical physics, we hope the present work can
be a useful contribution to the readers most in-
terested in its physical interpretation and mea-
surement.

Remark on the notation: Throughout the pa-
per, the reduced Planck constant A is set to 1,
unless otherwise specified.

2 Why quasiprobabilities?

2.1 A no-go theorem on the characterization
of incompatible observables in quantum theory

It is general wisdom that one cannot define joint
probabilities for the measurement outcomes of
non-commuting observables (such as position and
momentum) due to measurement disturbance.
However, this statement is not entirely correct
and simple counterexamples can be constructed
[25, 39]. In particular, the obstacle posed by non-
commutativity can be presented in the form of
a precise no-go theorem. Thus, consider a pro-
cess represented by a quantum channel &, i.e.,
a completely-positive trace-preserving (CPTP)
map, evolving a quantum state p in the time in-
terval [0,¢] [40]. Also let A(0) = >, a;(0)IL;(0)
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and B(t) = >2;by(t)Ef(t) be (in general) time-
dependent observables in the Schrédinger repre-
sentation, written in terms of their spectral de-
composition with II and = the corresponding pro-
jection operators. Then,

Theorem 1 (No-go). The  relation
[H;(O),EI(Ef(t))] # 0 holds, for some i,f
(non-commutativity), if and only if there exists
no joint probability distribution p;r(p) satisfying
the following properties for every initial state p:
(a) The joint

marginals:

> piflp) =
f
Z pif(p) =

distribution has the correct

Tr (IL(0)p) , (1)

Tr (Br(0)&:(p)),  (2)

(b) The joint distribution is convex-linear in p.
That is, if p = > pppr, then pif(p) =
i prpif(pr) Vi, [

The proof, which makes use of Proposition 1
in Ref. [41] (see also Theorem 1.3.1 of [42] and
Lemma 1 of [43]), is presented in Appendix A.

This no-go theorem sets the stage for
quasiprobabilities. In fact, it can be circumvented
in three ways:

Violating assumption (a). One can define a
joint distribution describing the outcome statis-
tics of A(0) and B(t) as measured under a spe-
cific sequential protocol. The first measure-
ment, over some approximation of A(0), will in-
duce a corresponding disturbance to the outcome
statistics of B(t). One can thus look for opti-
mal schemes in terms of information-disturbance
trade-offs [41, 44-46]. These are trade-offs be-
tween how precisely we can access A(0) and how
much we disturb the outcome statistics of a sub-
sequent measurement of B(t).

Violating assumption (b). That is, p;r(p) has
to be non-linearin p. Linearity in p is justified by
the wish to preserve the standard rules of prop-
agation of probabilities, which themselves can be
seen as an extension of logic [9, 47]. Suppose
one prepares either py or pr depending on the
outcome of a fair coin toss. The overall p;(p)
ought to satisty pif(p) = 5pi(pr) + 3pif(pr)-
A violation of this condition can occur due to
a non-linear dependence of p;¢(p) on the initial
state p. This can happen because the measure-
ment scheme defining p;r(p) depends on p [48, 49]

or pi¢(p) has an explicit dependence on a given
decomposition of the density operator into pure
states [50]. It also occurs when the definition im-
plicitly employs (incompatible) measurements on
multiple copies of p [39, 51, 52|, e.g.,

pir(p) = Tr (IL;(0)p) Tr (Z¢(H)E(p)) . (3)

See Refs. [53-55] for further discussion.

Violating pif(p) € RT while keeping
>ifPif(p) = 1. This leads to the concept
of quasiprobability, which has a long history
going back to the phase-space representations
of quantum mechanics by Kirkwood, Dirac,
Wigner, and others [15, 16, 39, 56|, and finds
modern applications in the context of quantum
optics, quantum foundations, quantum informa-
tion science and quantum computing [57-59].
If we wish to maintain the basic structure
of probability theory while incorporating the
quantum mechanical novelty of the existence of
non-accessible events, we are naturally led to
quasiprobabilities. For another point of view
leading to the same conclusion, see Ref. [9].

In this work, we focus on Kirkwood-Dirac
quasiprobabilities. This choice is supported by
the numerous applications across the quantum
sciences and their clear relation to fundamen-
tal questions in statistical mechanics and con-
densed matter physics, as we are going to clarify
in the next section. Before doing so, however, we
want to relate the current discussion with a long-
standing debate in quantum thermodynamics.

2.2 The no-go theorem in a thermodynamic
context

In quantum thermodynamics we often focus on
the statistics of energy fluctuations, with A(0)
and B(t) representing the Hamiltonian operator
at the initial and final times. As the Hamiltonian
at different times, in general, does not commute
with itself or with the quantum state at hand,
much of the previous discussion around Theo-
rem 1 applies to this context. Indeed:

Violating assumption (a). One can consider
disturbing measurement schemes that do not re-
cover the marginals over an initial and a final en-
ergy measurement. In quantum thermodynam-
ics, the most well-known protocol of this kind
is the celebrated two-point measurement (TPM)
scheme [60-72], whereby one simply measures
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H(0) at the initial time and sequentially H(t)
at the final time (defined explicitly in Eq. (8)).
This is an extremal choice among the strategies
violating assumption (a), since the distribution
over H(0) is error-free and all the disturbance is
pushed onto the outcomes’ statistics of the second
energy measurement. The marginal energy distri-
butions at times 0 and ¢ in the TPM scheme are,
respectively,

> v =
f

dopif =
)

with D(p) = 3, Tr(I1;(0)p)IL;(0) denoting the de-
phasing channel in the eigenbasis of the initial
Hamiltonian H(0). Alternative protocols violat-
ing (a) can be constructed where some error on
H(0) is tolerated to decrease the disturbance on
H(t) according to a given cost function [46].

Violating assumption (b). The first way to in-
duce the breakdown of assumption (b) is to char-
acterize energy-change fluctuations by means of
a protocol that depends on the initial state, thus
entailing a non-linearity of p;r(p) in p. Along
this direction, it is worth mentioning the Bayesian
network approach recently introduced in [49, 73],
which involves an initial measurement in the
eigenbasis of the system density operator. We
also refer to [74] for further discussion. As a gen-
eral comment, any dependence of the measure-
ment protocol on the initial state seems to be
in contradiction with the definition of energy in
classical thermodynamics that does not depend
on the particular phase-space distribution taken
as the input ensemble. Another measurement
strategy where assumption (b) may be violated,
without introducing an explicit state-dependence
of the protocol, is the end-point measurement
(EPM) approach [51, 52, 75]. This definition puts
together the energy statistics of two incompati-
ble measurement schemes performed respectively
at times 0 and ¢, and, in fact, it corresponds to
Eq. (3), which is also reported in Ref. [39]. One
unsatisfactory aspect of this choice is that by def-
inition the joint probability distribution displays
no correlations between the initial and final out-
comes, such that the expected classical limit can-
not be recovered, thus contradicting classical in-
tuition.

Violating p;¢(p) > 0. This is the quasiprobabil-
ity approach in which the statistics of the stochas-

Tr (I13(0)p) (4)

Tr (E1Er()D(p)  (5)

tic variable AE = E; — FE; are described by a
complex number p;f(p) satisfying 3=, ¢ piy(p) = 1,
linear in p and with the correct marginals.

It is natural to compare the above perspective
with no-go theorems that attempted to formalize
the obstacles that every proposal must face when
defining and measuring energy-change fluctua-
tions in the quantum regime. These theorems rely
on ‘natural’ thermodynamic assumptions, such as
the recovery of results from stochastic thermody-
namics for special classes of states |74, 76]. The-
orem 1, which we have introduced in section 2.1,
instead, gives a purely information-theoretic ac-
count of the issue. In fact, Theorem 1 forbids
the existence of a linear joint probability distribu-
tion over the outcomes of sequential energy mea-
surements, whenever incompatibility arises. This
holds independently of the specific thermody-
namic assumptions at play. The value of this sim-
ple observation is that all the tools and insights
coming from the study of incompatible measure-
ments in quantum mechanics can be readily ap-
plied to the thermodynamic question of defining
energy-change fluctuations.

For a more detailed discussion of the relation
between Theorem 1 and recent no-go theorems on
the definition of work fluctuations in the quantum
regime |74, 76|, see Appendix B.

3 The physics behind the Kirkwood-
Dirac quasiprobability

The following considerations aim to provide sup-
porting evidence for the use of the Kirkwood-
Dirac quasiprobability distribution as a central
object in the study of non-commuting observables
and their physical consequences in a wide range of
fields. We do not wish to make here any ‘unique-
ness’ argument since, as it is well-known, the exis-
tence of alternative quasiprobabilities is directly
related to the ordering ambiguities of quantum
mechanics [39, 77, 78|. Rather, we will show how
the KDQ brings forth a rich structure that is of-
ten left implicit in considerations of statistical
mechanics and condensed matter physics.

3.1 The quasiprobability behind quantum cor-
relators

Given the two observables A(0) and B(t) intro-
duced in section 2.1, the KD quasiprobability en-
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codes the information on their correlations under
the process &, which occurs in the time interval
[0, ¢] (we shall omit the subscript ¢ when no confu-
sion arises). A standard definition of the (quan-
tum) two-time correlation function between the
two observables is [40, 79|

(EN(B)A) =Tr (E1(B(1)AO)) .  (6)

where ET is the adjoint? of £ that evolves the ob-
servable B in Heisenberg representation, and p
is the initial quantum state of the system. Upon
writing the two observables in terms of their spec-
tral decomposition, as introduced before, we see
that the object

air(p) = Tr (ENE;O)L0) p) . (7)

encodes the whole information for reconstructing
the correlation function. Eq. (7), where the pair
(i, f) labels the eigenvalues of the observables at
the initial and final times, is the definition of
the KDQ distribution, which can then be seen
as the quasiprobability behind quantum correla-
tors. In this regard, it should be noted that the
KD quasiprobability is itself a two-time correla-
tion function between the elements of two PVMs
(Projective Valued Measures) associated to A(0)
and B(t).

The KDQ satisfies properties (a)-(b) of Theo-
rem 1. Furthermore, if any pair among p, II; and
I1;, ET(Ef) are mutually commuting, then Eq. (7)
reduces to

pif M(p) = Tr (€ (IL;(0)pIL(0)) Ef (1)) . (8)

The right-hand-side of Eq. (8) is the joint prob-
ability of the outcomes (i,f) in a sequential pro-
jective measurement of A(0) followed by the dy-
namics £ and by the final measurement of B(t).
This is the joint statistics of the so-called two-
point-measurement (TPM) scheme [60], as was
briefly discussed in section 2.2. Hence, nega-
tive/complex values disappear and a stochastic
interpretation is possible. Note that, also when
[p,ET(E¢)] = 0, g; is positive” while not reducing
to Eq. (8).

"Recall that, if £(p) = Y, Ki(p)K! is a Kraus de-
composition of £, then the adjoint is defined as £f(p) =
> K!(p)K;. Thus, for a unitary evolution U, we would
have £T(p) = UTpU.

5The proof of this can be found in Appendix D, see
Eq. (78).

Effective near-commutativity of p, II; and
EtE= ) can be achieved both by coarse-graining of
the measurement operators |24, 80| or by decoher-
ence, which makes the initial state approximately
commuting with the initial measurement opera-
tor. However, we recall that there are instances
for which g;; € [0, 1] despite the presence of non-
commutativity [25]. This means that the non-
positivity of the KDQ is a stronger form of non-
classicality than non-commutativity. Nonethe-
less, there is a close quantifiable relation between
the non-classicality witnessed by the negativity
of the MHQ, and non-commutativity, at least for
unitary quantum processes. In fact, the following
result can be proven:

Lemma 1.1 (Non-existence of fully classical co-
herence). Given an arbitrary unitary quantum
process with unitary operator U, an initial state
p and an observable A such that [p, A] # 0, it
is always possible to find an observable B, with
(B, A] # 0, such that Re(g;¢) < 0 for some (i, f).

A proof of this theorem, following the deriva-
tion in the Appendix of [81], is reported in Ap-
pendix C. We also refer the reader to the results
in [25] for related results.

Lemma 1.1 states that the quantum coherence
of an initial state p, with respect to an observable
A at t = 0, can always give rise to negativity of
the MHQ distribution, given an appropriate sec-
ond observable is chosen at the later time ¢. The
theorem offers a recipe for constructing a suitable
observable B such that non-positivity is present.
More specifically, Re(g;r) < 0 for some (i, f),
whenever UTZ #U is equal to a projector onto any
eigenstate of the anti-commutator {p,II;} associ-
ated with a negative eigenvalue.

3.2 Linear response theory

Given the connection between the KDQ g;¢(p)
and two-time correlation functions of the observ-
ables of interest, it is not surprising that linear
response theory and KDQ are linked via the so-
called fluctuation-dissipation theorems. To show
this, consider the unitary dynamics 4 generated
by H(t) = H(0) — A(t)A, with A a perturbation

4“What follows, as well as the connection to the KDQ,
can be generalized to the case in which the unperturbed
dynamics is open and Markovian while the system is sub-
jected to a unitary perturbation. See also the discussion
in [82, 83].
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and A(t) nonzero only for ¢ > 0. Looking at the
change in the average value of the observable B(t)
from time 0 to ¢, in the linear response regime,
one gets

A(B(t)) ~ /Ot AP ap(t', t)dt, (9)

where A(B(t)) = Tr (B(t)p(t)) — Tr (B(0)p). In
Eq. (9), ®ap(t',t) is the linear response func-
tion [84-86|:

Dp(t 1) = z'Tr( [A(t’),é(t)] p), (10)

where here O(t) = OtO(t) e~ O denotes
a generic observable O evolved according to the
unperturbed dynamics. For an initial thermal
state, Eq. (9) reduces to the well-known Kubo’s
formula. More generally, if the initial state is a
fixed point of the unperturbed evolution, the lin-
ear response function assumes the convolutional
form @ (t — ') = iTr ([A, B(t - ¥)]p) [$3, 87].

By introducing the spectralization of the ob-
servables entering the linear response function, it
is immediate to see that the latter is characterized
by the imaginary part of a quantity that closely
resembles Eq. (7). In fact, identifying II;(¢') and
=k (t) as the projectors associated to the observ-
ables A(t') and B(t), we have

ap(t',t) =2 a;(t)br(t) Im Gx(p),  (11)
ik

with a;(t') and bg(t) eigenvalues of A(t') and
B(t), and gjx(p) = Tr (Zx(t) IL;(¥') p). The distri-
bution g;i(p) has the form of a KDQ as defined
before’. Hence, the linear response function is
directly related to the imaginary part of the KD(Q
that encodes the correlations of the observable of
interest B(t) and the perturbation. This is con-
nected to the fact that the so-called weak wval-
ues [88] are linked to the linear response under a
unitary perturbation [31] and that, as we will dis-
cuss in the following, weak values can be under-
stood as conditional KDQs, bridging the results
of [31] with the current discussion. Furthermore,
in [33] this connection between linear response
theory and the KDQ has been shown to witness,

“Notice that the KDQ defined in Eq. (7), which is as-
sociated to a quantum process, depends on the two end-
points of the process, with the initial time assumed at
t' = 0. In the case of interest here, these end-points are
't

together with an operational equivalence, non-
classicality in the form of contextuality.

Before moving on, let us draw another impor-
tant link between the KDQ and the linear re-
sponse theory. Consider the situation in which
the quantum state p) of a physical system de-
pends on the external parameter A and it is af-
fected by a small change of such parameter. In
this case, a time-independent observable B in the
linear regime changes according to

A(By) = Tr (B(px — p)) = XBA (12)

where x% is the static susceptibility of B. This
quantity can be expressed as a function of the
linear response function introduced before in
Eq. (9). In fact, the static susceptibility is ob-
tained by integrating over time the linear re-
sponse function for ¢ — oo when the perturba-
tion is assumed constant in time, i.e., A(t) = X\ =
constant [87].

A set-up in which the quantum state of a sys-
tem depends on an external parameter is the
premise of quantum metrology. This connection
has been investigated in [87], where it was shown
that the static susceptibility is

b= ST (B(hopt oA (13)

In Eq. (13), Ap is an observable known as
the symmetric logarithmic derivative (SLD) that
is the central object in computing the quan-
tum Fisher information and thus the quantum
Cramér-Rao bound [89, 90|, pillars of quantum
metrology. Expanding Ag, B as Ag = >_; Mill;
and B =} ; b=y, we obtain

X5 =>_ AibsReqir(p), (14)
i,f

with ¢;r(p) = Tr (pIL;Z). Hence, the static sus-
ceptibility can be formally written as a function of
the real part of the KDQ measuring the correla-
tions between the observable of interest A and the
SLD. For an initial thermal state, Eq. (14) yields
the standard form of the fluctuation-dissipation
theorem (see Appendix A in [87]), while x% co-
incides with the quantum Fisher information for
B = Ap.

In short, here our discussion shows how the
KDQ is behind several results in linear response
theory and their ramifications in thermodynam-
ics and metrology.
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3.3 Quantum currents

The KDQ), being a way to characterize quantum
correlations of incompatible observables, also en-
ters implicitly in quantum many-body and con-
densed matter physics.

The first example is represented by quantum
currents which are a central concept in quantum
transport and non-equilibrium thermodynamics.
Consider a classical stochastic dynamics on a set
of discrete states {|i)}. These could label distinct
sites in a lattice, or distinct energy states. A
standard definition of probability current between
states 7 and ¢ at a given time ¢ is given by [91]

Jinj(t) = Wij(t) — Wii(t) (15)
that corresponds to the difference between the
joint probability of being in ¢ and jumping to j
(W;j) minus the probability of the opposite tra-
jectory. The current satisfies the continuity equa-
tion for the probability p; of being in state |j):

dpj
E = ZJZ# Ji—>j (t)

(16)

Now consider a quantum system evolving uni-
tarily between the states |7). As discussed in [92],
for a quantum system subject to unitary dynam-
ics, Egs. (15) and (16) are valid provided that

Wij(t) = Re dqi;(p(t)), (17)

where

6qi;(p(t)) = (18

Tr (p(&)IL (U (¢, ¢ + di)TL (¢ + dE)U (£, + dt))

In Eq. (18), II;(¢) denotes the projectors associ-
ated to the event “the state at time ¢ is |#)”, and
U(t,t + dt) is the unitary evolution from time ¢
to t + dt. Therefore, we can conclude that the
KDQ is implicit also in the description of quan-
tum currents [92].

Furthermore, very recently it has been shown
that the MHQ emerges naturally when consid-
ering the energy density in space, and energy
current, of a quantum system [26]. In particu-
lar, in [26] the MHQ) is identified as the relevant
quasiprobability from a first principle derivation,
by taking the non-relativistic limit of the energy
density of a spin-1/2 field described by Dirac’s
equations.

3.4 Loschmidt echo

Another relevant appearance of the KDQ is in
connection with the Loschmidt echo [93, 94]. The
Loschmidt echo is a measure of the revival occur-
ring when an imperfect time-reversal procedure is
applied to a complex quantum system [94], and
it has many applications from studies of deco-
herence to chaos theory and information scram-
bling in many-body systems [95-103]. In many-
body physics the Loschmidt echo is the central
object to study the so-called dynamical quantum
phase transitions [104-111|. In fact, dynamical
quantum phase transitions are defined as non-
analytic behaviours in time of the Loschmidt am-
plitude [104], which we shall now define.

For initial pure states, the Loschmidt am-
plitude is defined simply as the projection of
the time evolved state onto the initial state,
ie., (vole ™ |¢hg). Instead, for initial mixed
states, relevant for example to account for ther-
mal states, various generalizations exist. In [104,
112, 113|, the so-called Generalized Loschmidt
Echo (GLE) is defined as

Gp(t) = Tr (pU(2,0)), (19)

where p is again the initial state and U(t,0) the
unitary operator that rules the time evolution of
the quantum system with Hamiltonian H in the
interval [0, t].

We now introduce a further extension of the
GLE, defined over two distinct time instants. For
this purpose, let us consider a quantum quench
where a parameter of the system Hamiltonian is
suddenly changed at time ¢ = 0. We indicate
with Hyp = >; E;I1; the initial Hamiltonian (for
t <0) and with H = 3~ E/Z; the Hamiltonian
after the quench. Taking the Fourier transform
(FT) of the GLE G,(t), one obtains

G(w) =21 d(w—Ef)py,
7

(20)

where p; = Tr(pZ=f). Eq. (20) is a point dis-
tribution over the final energy after the quench.
Hence, the Loschmidt echo in Eq. (19) is just the
inverse Fourier transform of the final energy dis-
tribution [114]. This suggests a natural general-
ization. Consider the point distribution over the
energy variation across the quench, i.e.,

Glw,w') =4y 6(w' + E)d(w — Ep) i (21)
if
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\ | GLE({'=0) | Extended GLE \

G,(t',t) | Tr(pU(t,0)) T (pVi(E,0)U(t,0))
FT(gp) 27 Z 5(w - E‘f)p‘f 47 Z 5((4/ + El)(s(w - Ef)qif
f i,f

Table 1: GLE vs. Extended GLE

with g;; denoting the joint KDQ for the random
variable Ef — E;. Accordingly, an extended GLE
is achieved by applying the inverse Fourier trans-
form to G(w,w’). We get

Gt t) = Tr (pVI(#,0)U®0),  (22)
where V(#',0) = e "0 is the propagator that
governs the unquenched dynamics, and U(t,0)
the propagator of the quenched dynamics. In
analogy to Eq. (19), the Loschmidt echo in (22)
is the characteristic function of the KDQ for the
random variable Ef — E;. Clearly, the latter con-
tains more information than Eq. (19), which is
recovered as a marginal or by setting ¢ = 0:
Go(t' = 0,t) = Tr(pU(t,0)) (see also Table 1).
In general, our extended GLE also encodes addi-
tional information about initial coherence terms
of p in the basis of Hy. For pure states, Eq. (22)
reads

(e ™ot e gy, (23)

and so captures the notion of (non-)invertibility
of the dynamics originated by Hy via the dynam-
ics from H.

The observation that the extended GLE
G,(t',t) is nothing more than the characteristic
function of a KDQ implies that there could be
techniques to experimentally probe it. In this re-
gard, as we will discuss in section 4.2, the charac-
teristic function of the KDQ can be accessed via
an interferometric scheme. Moreover, in section 6
we also put forward an experimental proposal in-
volving NV centers in diamond to interferomet-
rically determine the characteristic function of a
generic KDQ distribution and thus G,(t',t).

3.5 Weak values are conditional Kirkwood-
Dirac quasiprobability averages

First introduced by Aharonov et. al. [88], weak
values have been extensively studied and re-
lated to experimental techniques for signal am-
plification, quantum state reconstruction, and
non-classicality witness [115]. Recently, they

have been related to non-classical advantages in
metrology [33, 34| and associated to proofs of con-
textuality [23, 28]. In fact, some of these results
are phrased in terms of weak values and some in
terms of KDQ, but it is important to realize that
the KDQ offers a unified perspective.

To see this, let us consider the special case of
the KDQ ¢;r in Eq. (7) where the input state
is pure, p = |¢Y)v|, the dynamics is unitary
and the final projector is rank-1. Hence, setting

UTE(t)U = ‘§f><§f|, iy reads as

o R (531 ,

Gif =(IENE I TLi[4) Qf7<§f|¢> qr (i)w,
(24)

where ¢; = [¥[&), and (IL)w =

(E¢|TL;]ap) (Eflap) is the original definition of
the weak value of II; with initial state |¢)) and
post-selection |{f). Thus, the weak value (II;)w
of a projector II; is the conditional KDQ
_ dif _ (&)
Gy == = = (w. (25)
T TGl

Therefore, the weak value (A)y of an observable
A =", a;11; is the following average under such
conditional KDQ [116]:

_ A _ g, b 5,
A= Ty T 20y T 2o (2

We can conclude that weak values have an ob-
vious interpretation and a natural generalization
when seen through the lenses of the KDQ, which
unifies disparate points of views in the litera-
ture [21]. In this regard, the so-called anoma-
lous weak values of an observable A, i.e., instances
in which Re(A)y lies outside the boundaries of
the spectrum of A, have attracted particular at-
tention [28, 115]. Anomalous weak values can
only occur when Re(Il;)y < 0 for some projector
I1; |28], meaning that they are directly associated
to the non-positivity of the corresponding KDQ.

3.6 Non-commutatitivity in thermodynamics
and the Kirkwood-Dirac quasiprobability

In the quantum regime, also energy and energy-
change fluctuations are subject to specific con-
straints originating from the postulates of quan-
tum mechanics. This is evident when characteriz-
ing the statistics of thermodynamic quantities de-
fined over two times, e.g., work fluctuations, deal-
ing with the unavoidable information-disturbance
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trade-offs inherent in every measurement scheme.
For example, the TPM scheme extracts the statis-
tics of energy-change at two times while destroy-
ing quantum coherence and correlation in the en-
ergy eigenbasis. This has motivated various re-
cent works [19, 49, 51, 52, 117-122] proposing al-
ternative schemes to the TPM one (see Ref. [123]
for a review).

Despite the intense interest raised by these
questions, the research line about quantum en-
ergy fluctuations mostly developed independently
of notions such as Heisenberg’s uncertainty re-
lations, information-disturbance trade-offs, and
quasiprobability representations, which are the
go-to tools employed when dealing with non-
commutativity in other contexts.
ple, within quantum mechanics or quantum op-
tics, we are used to the idea that the non-
commutativity between observables such as the
position X and momentum P implies that the
more information a scheme extracts about one,
the more the statistics of the other will be dis-
turbed [124]. In addition, we are also used to
saying that the Wigner quasiprobability provides
a useful description of the joint distribution of
(x,p), with the negativity being a useful notion of
non-classicality [59, 125, 126]. But in the context
of work fluctuations, where the two measured ob-
servables are the system’s Hamiltonian at two dif-
ferent times and the dynamics originates from the
(coherent) time-dependent driving of the Hamil-
tonian of the system [127], the debate has focused
on what is the “right” definition of work. How-
ever, the question of witnessing and quantifying
the underlying non-commutativity has not fea-
tured prominently.

For exam-

Operationally we are dealing with the same
phenomenon. The statistics of X and P, in gen-
eral, depends on the order in which they are mea-
sured. In the context of work fluctuations in a
closed system, where we want to measure energy
at two times, the two following protocols can be
considered:

1. The energy at the initial time ¢ = 0 is mea-
sured, the system is evolved, and then we
also measure the energy at the final time
t = 7. The work w is identified with the
difference between the two energy outcomes.

2. The system is evolved and the energy at the
final time ¢ = 7 is measured. The reverse

dynamics is implemented, and we measure
the energy at the initial time ¢ = 0. The
work w is (minus) the difference between the
two energy outcomes.

While the second scheme may appear slightly
odd, it is clear that classically the two are ex-
actly equivalent, Quantum mechanically, in gen-
eral, they are not. One is the analogue of mea-
suring X followed by P, and the other is the
analogue of measuring P followed by X. It is
this non-commutativity that leads to multiple in-
equivalent definitions of work, and the quasiprob-
abilities as a tool to quantify non-classical fluctu-
ations of thermodynamic quantities.

In conclusion, this discussion implies that
quasiprobabilities (and in particular the
KDQ/MHQ) emerge naturally also when
we assess the statistics of thermodynamic
quantities involving non-commuting
surements, such as work, in the quantum
regime [19, 20, 24, 36, 128, 129].

mea-

4 Measuring the Kirkwood-Dirac

quasiprobability

There are several schemes that allow to access the
KD quasiprobabilities:

A. Weak two-point-measurement (WTPM) pro-
tocol that we formalise by following the con-
siderations in Ref. [18]. This scheme re-
lies on the ability to perform non-selective
coarse-grained measurements of A followed
by strong measurements of B, and allows to
implicitly reconstruct Re g;¢(p)

B. Interferometric schemes to reconstruct the
characteristic function of the KDQ distribu-
tion. These require an ancilla qubit and the
ability to perform unitary operations involv-
ing A and B as Hamiltonians.

C. The cloning approach proposed in [130, 131].
D. Direct reconstruction schemes [132, 133].
E. Block-encoding schemes [134].

Next, we discuss in detail each of the aforemen-
tioned solutions by highlighting possible differ-
ences. Note that only ‘A’ and ‘D’ were discussed
before in the context of reconstructing the KDQ
distribution.
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4.1 Weak two-point-measurement protocol
Let us introduce the state
pns,i = pipi + (1 — pi)p; (27)

where NS stands for “non-selective”, p; =
Tr (pII;) and

pi = Hippini ) (28)
__ (I—=1L)p(I — 1I;)
S e @

pNs,; can be obtained by performing non-
selective projective measurements with projec-
tors {II;,I — II;} or, equivalently, by preparation
of the states p; and p; with the corresponding
probabilities. From an experimental point of
view, the WTPM protocol requires three sets of
measurements:

Scheme 1 (TPM)

e Prepare the initial state p.

Measure the quantum observable A.

Evolve under the quantum map £.

Measure the quantum observable B.

This is the well-known two-point measurement
(TPM) scheme for the initial and final observ-
ables A and B respectively [135], which grants
access to the joint probability distribution of

Eq. (8).

Scheme 2 (weak TPM)

e Prepare the initial state p.

e Perform the projective, non-selecting mea-
surement {II;, I —II;} (or skip the first two
steps and directly prepare png.;).

e Evolve under the quantum map £.
e Measure the quantum observable B.

This allows to compute the joint probabilities
Py M = Tr (E(pns)Ef (1))

Scheme 3 (final measurement only)

e Prepare the initial state p.

e Evolve under the open quantum map €.

e Measure the quantum observable B.

In this way, we get the probability distribution
p?ND = Tr(E(p)=f(t)) where END stands for
“end-time energy measurement’.

Therefore, by means of projective measure-
ments only, one can reconstruct (cf. Eq. (14) of
Ref. [18])

Reas = o+ L (B0 - Ay (o)
It should be noted that, for the particular case
of a single qubit system, the TPM and END (ap-
pearing in the literature also as end-point mea-
surement scheme — EPM [51, 52|) schemes suffice
to completely characterize Regq;y. Remarkably,
one of the main strengths of the WTPM pro-
tocol is its similarity with the usual TPM one;
the only new element being the preparation of
pns or measurement of {II;, I — II;}. This leads
us to believe that the WTPM protocol could
be implemented in most experimental platforms
where the energy variation statistics have already
been measured with a TPM scheme. A non-
exhaustive list for the latter includes NV centers
in diamond [68, 71], single ions [62, 63, 65|, su-
perconducting qubits [66], and entangled photon
pairs [70, 72]. For an experimental implementa-
tion of the WTPM protocol and an illustrative
representation of the schemes 1-3, we refer the
reader to [36] where, in a three-level system with
NV centers, the MHQ Reg;; characterizing the
work distribution in a unitary process is recon-
structed and its negativity is witnessed. Then,
it is shown how the negativity can be used to
enhance the work extraction beyond what is clas-
sically achievable.

Finally, it is worth noting that, in princi-
ple, also Img;¢ can be inferred, but it requires
the ability to perform selective phase-rotations
exp(imll;/2) of the state ET(Z;(t)), as argued in
Ref. [18].

4.2 Interferometric measurement of the
Kirkwood-Dirac characteristic function

An equivalent way of characterising the KDQ, g;,
is through its characteristic function

Z Qifeibf (t)v+ia;(0)u
/Z:7f
— Ty (5T(€iB(t)v)eiA(0)up) . (31)

x(u,v) =
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The KDQ can be then recovered by means of the
inverse Fourier transform.

Let us see how the characteristic function can
be accessed experimentally. Consider a quan-
tum system S characterized by its Hamiltonian
Hg, and the external environment E initially in a
product state pg ® pg. The composite system
SE evolves unitarily under Usg, meaning that
Usg achieves the dynamics £ on the system S
upon tracing out the environment. Introducing
an ancillary qubit system A and the controlled
unitaries we have

Cy = |0>A<O| ® Isg + |1>A<1| ® Vsg, (32)

where Vgg is a unitary gate acting on SE. As
shown in Fig. 1, the interferometric protocol is
the following [136-138|:

e Prepare the system S in the state pg and the
ancilla in the state [+)4 = (]0)a +|1)4)/V2
(e.g., by applying a Hadamard gate to |0)4).

o Apply Cy, with Ve = ei(B(t)‘@HE)“USE.

e Apply a Pauli X gate to the ancilla.

o Apply Cy, with Vsg o = Usg e(A0)BIe)u
e Apply a Pauli X and a Hadamard gate on
the ancilla.

e Measure either X or Y of the ancilla state.

As shown in [136-138], the average value of the
final X and Y measurements provide the real and
imaginary parts, Re x(u, v) and Im x(u, v) respec-
tively, given that

Trsg (ei(B(t)(X)]IE)vUSEei(A(O)(X)]IE)u(ps ® pE)U§E>
=Tr (ET(eiB(t)”)eiA(O)“ps) = x(u,v). (33)

To overcome possible numerical instabilities of
the inverse Fourier transform, one can further
adopt a reconstruction procedure based on esti-
mation theory, thus taking as input specific values
of the KDQ characteristic function, as proposed
in [139].

Note that the interferometric scheme has been
implemented experimentally in [61] to infer the
work distribution that arises from the TPM
scheme. As we are going to discuss in more detail
in section 6, the same experimental set-up in [61]
could be used to determine the KDQ by prepar-
ing initial states pg which are not diagonal in the
energy basis of H(0).

S Ps
E 7e

Figure 1: Interferometric scheme for the extraction of
the characteristic function, evaluated on the real line
(axis of real numbers in the complex plane), as described
in the main text. For further details see also Refs. [136,
138].

4.3 Cloning scheme and generalizations

In [116, 130, 131], the measurement scheme called
cloning scheme was proposed to access correla-
tion functions. Such a scheme was subsequently
realized experimentally in [140]. We have already
discussed the relation between the KDQ and cor-
relations functions, so it then comes as no surprise
that the cloning scheme can be used to recon-
struct the KDQ distribution of a quantum system
S [116]. We here follow the notation of Buscemi
et al., to derive the following expression for the
real part of the KDQ:

d+1

Reqir = Tr (@ &)[R(ps)](IL; @ Ef))

(1o &R (o)L 0 ).

(34)

Here d is the dimension of the system’s Hilbert
space and R (_y are the optimal symmetric (anti-
symmetric) cloners of S for any state pg. Specifi-
cally, R+ are defined as [141]

Rﬂ%%—diﬁ)<d®%>P, (35)

where P* are the symmetric (anti-symmetric)
projectors on the Hilbert space of two copies of
the system, i.e., P* = (I + S)/2 with S the
swap operator (thus S, by definition, is such that
Sla) ® |b) = |b) & |a) V|a),|b)). The scheme to
reconstruct the MHQ, Re g;y, is then as follows:

e Introduce an ancilla A of the same dimen-
sion as the system, prepared in the maxi-
mally mixed state.

e Perform the projective measurements with
projectors { PT, P~ }.
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e On the post-measurement state, apply the
open map &£ on the quantum system S.

e Perform the measurement {II;} on A and
{E¢} on S.

Accordingly, by denoting with p, ;s the proba-
bility that in the above scheme one records the
outcome + followed by the outcomes (7, f) and
similarly for p_ ;r, one obtains

d+1 d—1
Re qif = ?Pﬁif - Tpf,if- (36)

It is worth noting that the scheme can be readily
realized by adapting simple quantum optical ex-
periments, as it was observed elsewhere [130]. A
similar procedure, somewhat more involved, can
be used to reconstruct also Im g;¢ [130].

As a generalisation, we can define an entire
family of cloning schemes. For this purpose, let
us consider as in Ref. [130] the linear map

T(p)=SI®p), (37)

where S is, once again, the swap operator. Note
that

iy = Tr (T E)T (p)(IL; @ Ef)) . (38)

Now, 7 can be decomposed as T = P — ik,
where both P and K are Hermiticity-preserving.
In turn, Hermiticity-preserving maps can be de-
composed as a linear combination of CP maps,
ie, P = >, A9 and K = > nsFs [130].
Both ), Qs and ), F; are trace-preserving, thus
meaning that O, and Fs are quantum instru-
ments [142|. Therefore,

Regiy = > ATr (1 E€)Qs(p)(IL; @ Ey))

) (39)
Imgis =Y 1sTr (1@ &) Fs(p)(I; ® Ey)) .

s (40)

In this way, each term of Reg;y and Img;y can
be evaluated by implementing, respectively, the
quantum instrument {Qs} or {Fs}. We thus have
a scheme for every different decomposition of P

and K.

4.4 Direct reconstruction schemes

When considering pair of observables with mutu-
ally overlapping sets of eigenstates, i.e., (a;|bs) #

0Vi, f, the KDQ gives a complete and unique
characterization of a quantum state (see, e.g.,
Ref. [18]):

p= Dlailolby) lai)es) =2 LlaiXer]

if if
(41)
with qGif = Tr (Efﬂip), Ef = ’bf><bf’ and II; =
|a;)ail-

Clearly, full tomography would allow recon-
structing the KDQ in these settings, but that is
not practical beyond the simplest systems. More
promising are methods for the direct reconstruc-
tion of specific elements of a generic density ma-
trix, since these allow for direct access to the
corresponding elements of the KDQ distribution.
In [132, 133, 143-147], the authors propose sev-
eral schemes for direct measurement of the KD
representation of the wave-function/density ma-
trix of a quantum system. The original propos-
als employed weak measurements [132, 133, 148]
— in fact, recall from section 3 that the KDQ
is closely related to weak values, and the latter
can be accessed via weak measurements — but di-
rect reconstruction schemes have been extended
to strong measurements and experimentally im-
plemented in quantum optics setups [143-147].

Following [133|, which generalizes the re-
sults in [132] to mixed states, we can further
propose two schemes involving weak measure-
ments. These schemes hinge on the fact that,
to access a KDQ distribution, the product of
non-commuting observables needs to be mea-
sured. Let us thus consider the two observables
A and £7(B). In this regard, notice that, since
the adjoint of a quantum channel (i.e., £T) is
Hermiticity-preserving, £(B) is an observable.
As shown in Eq. (7), the KDQ is obtained if we
can measure the quantities Tr (Hi(O)pgT(Ef (t)))
for any pair of indices ¢, f. Each scheme that
follows requires the use of two quantum point-
ers, representing quantum ancillary degrees of
freedom, to which the quantum system has to
be weakly coupled. Thanks to this coupling, one
can obtain approximate expressions that connect
the desired correlation functions arising from the
KDQ distribution to the correlations of the two
pointers’ observables that are directly measured.

Scheme 1 This first scheme was initially proposed
in [149], further analyzed in [150, 151], and exper-
imentally implemented in [152]. It consists of two
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sequential independent weak measurements, via
a system quantum-pointer coupling (here a one-
dimensional continuous variable pointer is con-
sidered). Each one of the two chosen system’s
observables is coupled with the momentum oper-
ator of a corresponding pointer. The evolution is
thus represented by

Ur = exp (ig2t€T(Ef(t)) ®I® P2)
X exp (iglt IL o P ® ]1) (42)

where P, denotes the momentum operator of
the k-th pointer (similar expressions are obtained
considering 2-level quantum pointers [147]).

Assume the initial states of the pointers to be
uncorrelated Gaussians with width o in the po-
sition representation. It can be shown that in
the limit g1g2t/0 < 1, the evolution induces the
pointer shifts

(9192) " (20 /) (LaLa) g =~ T (E1(Z4 (1))
(13)
where Ly = X /20 + iPyo (Xj being the k-th
pointer’s position operator) and the average
(aqo) s is performed over the final state of the
pointers.

Scheme 2 The second scheme is based on condi-
tional, sequential weak measurements. The cou-
pling of the quantum system to the pointers is
given by

Up = exp (*iggth(Ef(t)) X1 ® Pg)
x exp (—igptll; ® D1 ® 1) (44)

with Dy = X} or P;. One gets:

e For D = P and in the limit gpgot?/o < 1,
the final position of the pointer 2 is shifted
on average by

(Xo)s ~ (gpgat®) ReTr (£1(2¢(6))hp) ,

while there is no shift in the expectation
value of the momentum.

e For D = X and in the limit gxgst’oc <
1, the final momentum of the pointer 2 is
shifted on average by

(Py) s ~ (2gx g2t202)ImTr <5T(Ef(t))ﬂip) .

From the expressions above, we can conclude that
for the estimation of the quantum correlation
functions Tr (Hi(O) pST(Ef(t))) one needs to be
able to implement the unitary couplings between
the system observables I1;(0), £ET(Z4(¢)) and the
two quantum pointers, and then perform pointer
measurements [147|. This is fairly limiting since
often £T is not known. However in the case of uni-
tary dynamics the situation is considerably im-
proved: if a quantum circuit for the unitary dy-
namics U is known, UT can be obtained by run-
ning it in reverse.

As mentioned before, for direct detection of the
density matrix the schemes above have been gen-
eralized to the case of strong measurements. For-
mally, in [147] the authors show that a scheme
analogous to Scheme 1 can be used outside
the approximation g¢jgot/o < 1 (thus entail-
ing strong measurements). This generalization
of Scheme 1 has been shown to offer advantages
both in reducing statistical errors for the direct
detection of density matrices and in terms of
resources when compared to quantum state to-
mography, especially for high-dimensional sys-
tems [147]. In fact, Scheme 1 and its general-
ization involve performing d + 1 unitary opera-
tions, projective measurements of the system on
the basis of the observable A, and a small num-
ber of pointer measurements (between three and
eight usually suffice, see [147]), in contrast to the
O(d?) independent projective measurements re-
quired for full quantum state tomography.

4.5 Block-encoding scheme

Block-encoding methods allow to implement non-
unitary matrices on quantum computing architec-
tures as blocks of a unitary gate applied to a com-
posite quantum system (i.e., two or more qubits).
Specifically, here we resort to block-encoding al-
gorithms for the estimation of n-time correlation
functions [134] to devise yet another scheme for
the reconstruction of the full KD(Q distribution.
Such a scheme works for any quantum system for
which we can prepare a purification of p and sub-
ject to unitary dynamics. For more details on
quantum algorithms and block-encoding, the in-
terested reader may refer to Ref. [153].

Consider a quantum system of interest S (with
dimension d) initialized in the pure quantum
state |¢), and take two ancillary qubits A; and
Ag in |0) at ¢ = 0. The Hilbert space of the com-
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posite system is then the 4d-dimensional space
H=Husp @HA @ Hs.

Given our two observables A and B, we encode
their projectors in two unitary operations acting
on the system and one of the ancillary qubit as

U, =14, ® Ly, I 4+ 14, ® o @ (I - 1Iy),
(45)
Uz, =4, @14, ® Zp + 0 @14, @ (1 - ).
(46)

The block-encoding scheme to reconstruct the
KDQ then proceeds as follow:

e Act with the unitary Ugy,, on the system and
the first ancilla.

e Apply U to S. At this point, the state of the
composite system is transformed as

10)[0}[¢) — 10)|0)UTL;[4h)+[0)| 1)U (I—11;) ).

(47)

e Apply the unitary Uz, on the system and

the second ancilla.

e Apply the inverse unitary UT to S. As a
result, we end-up with the quantum state

Usk|0)|0)[v) = [0)|0)U'=;UTL|v)

+[0)DUTEU (T - T0) )

+[DI0)UT(1 - Ep)Z,UTL[Y)

+ DU - EHUT - )[Y),
(48)

where Ugg = UTUEf UUn,.

e Perform a Hadamard test to estimate the
overlap between Upg|0)|0)|¢)) and the initial
state ]0)]0)]¢)). The corresponding circuit,
employing a third qubit ancilla, is presented
in Fig. 2.

To see why this works, note that for quantum
systems initialized in a pure state and undergoing
unitary dynamics, the KDQ equals to

gy = (Y|UTE;UIL 1Y), (49)
which can be immediately seen to equal the esti-
mate overlap.

Llagd

S 1w

A1)

A,10)

Figure 2: Circuit representation of the block-encoding

scheme, including the Hadamard test, for the recon-
struction of KDQ distributions. In the Hadamard test,
a phase gate P(—m/2) = (1) has to be added af-

ter the application of the first Hadamard gate, with the
aim to also access the imaginary part of the overlap. By
removing the phase gate, one can also access the real
part of the overlap. The crossing lines denote a SWAP
unitary.

5 Testing non-classicality

The KDQ in general can present negative or com-
plex values (non-reality). These represent a sig-
nature of non-classicality that is at the basis of
several quantum advantages investigated in the
existing literature |31, 34, 35, 154, 155]. The non-
classicality function of the KDQ can be defined
via the quantity [22, 25]

Rlg(p)] = =1+ lais(p) (50)
if

where g(p) denotes the matrix containing all KD
quasiprobabilities. As proved in Appendix D,
N has good properties to be a measure of non-
classicality. Specifically,

P1 Faithfulness: R[g(p)] = 0 if and only if q(p)
is a joint probability distribution.

P2 Convemity:  Rlpq,(p) + (1 — p)aa(p)] <
pR[gi(p)] + (1 — p)R[gy(p)], with p € [0, 1].

P3 Non-commutativity witness: If R[g(p)] > 0,
then there is a choice of the indices i, f for
which p, I1;(0) and ET(Z¢(¢)) are all mutually
non-commuting operators.

P4 Monotone under decoherence: Consider the
decoherence dynamics Ds = (1 — s)[ + sD,
where s € [0,1] and D is a transformation
that removes off-diagonal elements either in
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the basis {II;} or in any basis obtained by
orthogonalizing and completing £7(Z¢) to a
basis. Then, R[g(D,(0))] < Rla(p)].

P5 Monotone under coarse-graining: Suppose
41r(p) = Yierfer ¢if(p), where I, I are
disjoint subsets partitioning the indices {i},
{/}. Then, X[g'(p)] < Xla(p)]

As already mentioned R[g(p)] > 0 is stronger
than non-commutativity [25, 25]. If only the real
part of the KDQ (i.e., the MHQ) is considered, we
can replace in Eq. (50) the KDQ with its real part
so that the non-classicality defined in Eq. (50) re-
duces to the negativity of the MHQ. This is still
a measure of non-classicality with applications in
quantum metrology and quantum thermodynam-
ics [24, 34].

Of course, if the full quasiprobability distribu-
tion can be reconstructed, then one can trivially
check for its negativity and imaginary parts. This
means that all the methods introduced in section
4 allow for this possibility, with a different de-
gree of complexity depending on the experimen-
tal platforms and systems of interest. However,
in general, reconstructing the full quasiprobabil-
ity distribution can be a tall order, in particular
when considering multilevel or continuous vari-
able systems. We thus explore also alternative
routes to witness non-classicality.

5.1 Characteristic function as a witness of non-
classicality

As described in Section 4.2, the characteristic
function of the KDQ distribution can be mea-
sured via an interferometric scheme. Clearly,
upon measuring x(u,v) in an open set in R?, one
can (approximately) reconstruct the full distribu-
tion by way of the inverse Fourier transform, like
it was performed for the case of the work distri-
bution stemming from the TPM scheme in [61].
However, we can also consider a less “ex-
pensive” route to witness non-classicality. In
fact, Bochner’s theorem [156-158] states that the
Fourier transform of a probability measure over
R™ 4s necessarily a normalized, continuous, pos-
itive semi-definite function from the R™ to the
complex numbers. A function x : R"™ — C is pos-
itive semi-definite if for any x7,...,x, € R™ the
matrix with elements a;; = x(x; — x;) is posi-
tive semi-definite. This means that, if the KDQ

characteristic function violates the positive semi-
definite condition, then X > 0.

A first check on the KDQ characteristic func-
tion consists in looking for violations of the
condition x(—u,—v) = x*(u,v) implied by the
positive-semi-definite definition. This condition
is violated only when Im(g;r) # 0. Thus, the
violation of the condition x(—u,—v) = x*(u,v)
serves as a witness of complex values in the KDQs
and, correspondingly, as a witness of the KDQ
non-classicality function.

Hence, violations of the positive-semi-definite
condition can be observed by performing the fol-
lowing steps: (i) Measuring interferometrically
the KDQ characteristic function at n > 3 points
X1,...,X, in R2 % (ii) constructing the n x n ma-
trix with elements «;; = x(x; — x;), and (%ii)
looking for a negative eigenvalue. In this regard,
since x(0,0) = 1 by definition, in principle we
can always measure the characteristic function in
n — 1 points of R? in order to perform the n-th
order test of positivity. See Fig. 6 in the next
section for an example of this methodology.

In order to look for negativity specifically (as
opposed to non-reality of the KDQ), one just
needs to extract the characteristic function of the
MHQ distribution from the one of the KDQs.
This is easily done by using the properties of the
Fourier transform, i.e.,

(s 2) = 3 (i, 0) + xip (<, —2)).
61)

5.2  Moments as a witness of negativity

Another way to test the negativity of the MHQ
distribution is to look at the inequalities that the
moments of a proper probability distribution have
to obey. Such inequalities, indeed, could be vio-
lated if negativity is present.

The moments of the MHQ distribution are de-
fined by my =3, ; q%H(bf —a;)*. Now, we want
to explore what we can learn about the negativity
of the MHQ) distribution, given a finite number of
moments. The problem of determining whether
there exists a probability distribution for a given
set of moments is known as the Hamburger prob-
lem [159], and its solution is known: a necessary

®The positivity conditions for n = 1,2 are auto-
matically satisfied by the definition of the characteristic
function and the normalization of the KDQ that imply
x(0,0) = 1 and |x(x)| < 1Vz € R?.
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and sufficient condition is the positivity of the
moment matrix

mp m2 Mms3

M = mo M3 M4 ... ZO‘ (52)

Inequalities can be deduced by imposing the pos-
itivity of the leading principal minors of M.
Specifically, the positivity of the first non-trivial
leading principal minor requires that mg > m?,
which corresponds to the positivity of the vari-
ance. This is always satisfied by the MHQ dis-
tribution. The subsequent inequality is obtained
by demanding that the determinant of the princi-
pal minor obtained from the first three rows and
columns is positive, i.e.,

—m3 —m3 —mimg+mae(2mims+my) > 0. (53)
More complex inequalities can be attained by it-
erating the procedure.

The remaining question is how to access these
MHQ moments. Here, we propose an interfero-
metric scheme (see Fig. 3), using a single qubit
probe, to measure every moment my for an ar-
bitrary quantum system dynamics described by
the quantum map £. First of all, for the MHQ
distribution, a simple calculation returns the k-th
moment my as

=y (”) (1) ReTr (B()"*A(0)"p).

s=0
(54)
where B(t) = £T(B(t)) is the second measure-
ment observable in Heisenberg representation un-
der the action of the channel. Thus, it suffices to
provide a scheme to measure

Re Tr ( B(t)?A(0)p) , (55)

with a,b integers. The interferometric scheme
starts by letting the quantum system interact
with the probe qubit via the interaction Hamil-
tonian Hiy = gA(0)*® 0. In the linear response
regime, this interaction generates the unitary

Vit)=1®1 —itgA(0)* @0, . (56)

After this interaction, we let the system evolve
under the quantum map £. Then, we measure
the observable B(t)? at time ¢ for the system and

Ao A

Figure 3: Interferometric scheme for the direct measure-
ment of the MHQ moments, as described in the main
text.

the probe qubit in the |£) basis. This allows to
reconstruct the average value

A= ((B(t) @ on)V(D)p@ @)V (). (57)

where p denotes the initial state of the system,
while ¢ the initial state of the probe. Using

VeV ~ pep—itg(H(0)* p&0.o—pH(0) ©¢0.),
(58)

we thus obtain
A ~ Tr (B(t)bp) Tr (o2¢)
— 21gTr (o9) Re Tr ( B(t)?A(0)p) (59)

In conclusion, as long as ¢ is chosen so that
Tr (oyp) # 0, in the linear response regime one
gets

Re Tr (B(1)A(0)p) ~ (60)

LTr (B(t)bp) Tr(ozp) — A
291 Tr (oyp)

All the terms on the right-hand-side of Eq. (60)
can be accessed experimentally. In fact, A can be
obtained through the scheme that we have just
described, while Tr(B(t)°p) = Tr(B(t)*E(p)) can
be determined by measuring B(t)? on the evolved
state of the system. Finally, the expectation val-
ues Tr(o,p) and Tr(oyp) involving the qubit
probe are known or can be easily measured ex-
perimentally. The main difficulty of the scheme
—akin to the one of the interferometric protocol
described in section 4- seems to reside in realiz-
ing the interaction Hamiltonian Hjy.

5.3 A SWAP test quantifying non-classicality

Finally, we propose a method aimed at extracting
directly the information about non-classicality by
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Figure 4. Scheme for the direct estimation of negativity
in KDQ distributions for unitary processes via a SWAP
test.

performing only projective measurements on two
copies of a quantum system (d-dimensional in
general) undergoing unitary dynamics.

Let us consider a system initially prepared in
a pure state |¢) and undergoing the unitary dy-
namics U. Notice that the extension to mixed
states can be obtained by repeating the scheme
below for each eigenstate of the initial density
matrix, or considering a purification theorem.

The KDQ for a couple of observables A =
>iall; and B = 37, bf=f can be then written
as

gif = (WIUTEUTLIY) = (Yulbiv,s) /o™,
(61)
where |[¢y) = Uly) and

[ivs) = EfUTL) [/ oM.

Here pE}PM is the probability that the projective

measurement, of A followed by U and the projec-
tive measurement of B returns outcomes (i, f),
which is the aforementioned TPM scheme.

Now, let us consider the scheme in Fig. 4. This
scheme requires an ancillary qubit and two copies
of the system initialized in the initial state |1).
The first part of the scheme amounts to letting
one copy of the system evolve under the unitary
evolution while the other copy is subjected to a
TPM scheme which allows to estimate pchM. The
part of the circuit in the grey-shaded area then
performs a controlled SWAP gate between the
two copies of the system.

The final probability for a ¢, measurement on
the ancillary qubit to have outcome 0 is given by

pa0) = 3 (14 [Wolbion)P) . (62

Thus, one can get that

|gif| = \/pinPM\/ZpA(O) -1, (63)

which then can be directly used in Eq. (50).

6 Experimental perspectives

As we have discussed so far, the KDQ appears
throughout quantum physics and encodes the
correlations between quantum observables. Ad-
ditionally, non-positivity of KDQ distributions
is also responsible for several quantum advan-
tages [31, 34, 154, 155, 160].

This motivates the proposal of measurement
schemes like the ones presented in sections 4 and
5. Some protocols are connected to the litera-
ture on weak values. Schemes devised for the to-
mographic reconstruction of quantum state den-
sity matrices [132, 143-147] in quantum optics
set-ups can be repurposed for KDQ reconstruc-
tions. Other schemes among the ones discussed
in sections 4 and 5 have the potential to be ap-
plied in set-ups other than quantum optics. In
this regard, our attention is especially focused on
Ref. [61] which reports the first experimental as-
sessment of fluctuation relations for a quantum
spin-1/2 system that undergoes a closed quantum
non-adiabatic evolution. In such an experiment,
the TPM distribution of work is reconstructed
through the inverse Fourier transform of the ex-
perimentally sampled work characteristic func-
tion. The work characteristic function is mea-
sured by means of the interferometric scheme de-
scribed in section 4.2. There, we showed that this
scheme, when applied to systems initialized in a
quantum state with initial coherence in the en-
ergy basis, allows to access the full KDQ distribu-
tion. Hence, the same experiment as in [61] could
be used to directly witness the non-classicality of
the KDQ distribution. 7

“A word of caution is in order here. When speaking of
work distribution, we are identifying a stochastic variable
wir = by(t) —a;(0) that is characterized by the quasiprob-
ability distribution P(w) = Eif qifo(w — bs(t) + ai(0)).
Note that in P(w) the observables A and B are now iden-
tified with the Hamiltonian of the system at the initial
and final times. This means that the characteristic func-
tion of the work distribution is provided by Eq. (31) with
x(u) = x(—u,u). Accordingly, on the one hand, the prob-
lem of determining the work characteristic function simpli-
fies, due to the fact that now x(u) is a function of a single
variable u. On the other hand, P(w) is a coarse-grained in-
stance of the original quasiprobabilities ¢;y and thus, in ac-
cordance with (P5) in section 5, its non-classicality is less
or equal to the one of the full KDQ distribution returned
by the set {gif} of KDQ. As a result, the non-observation
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Figure 5: Quasiprobabilities for the quantum dynamics governed by the Hamiltonian in Eq. (64). On the left panel,
the KDQs show both negative and imaginary terms in case the system is initialized in the state |+) in the initial
energy basis. Instead, in the right panel we plot the KDQs when the system is initialized in a thermal state of the
initial Hamiltonian, with § = (27 x 2.2)’1 ms. In this case the KDQ distribution of work is positive and coincides
with the corresponding distribution returned by the TPM scheme.

Finally, we also refer the reader to [36], where
we discuss the first —to our knowledge— experi-
mental implementation of the weak-TPM scheme.
In Ref. [36], the MHQ distribution is recon-
structed for a three-level quantum system en-
coded in an NV center in diamond, and negativity
is observed.

6.1 Case study

Since we have argued that the set-up of [61], pro-
vided by an NMR system, could be readily used
to reconstruct the KDQ characteristic function,
here we numerically investigate such a system as
a case study. Specifically, we are interested in the
statistics of energy-change fluctuations during a
time-dependent unitary evolution. Thus, the ob-
servables of interest are the Hamiltonian of the
system at the initial and final times of the evolu-
tion.

The quantum system of [61] consists of the
liquid-state NMR spectroscopy of the ' H and 3C
nuclear spins of a chloroform-molecule sample.
Specifically, the 'H spin is used as the ancillary
system, while the driven system is identified with
the 13C spin that in [61] is initialized in an effec-
tive thermal state of the initial Hamiltonian. The
Hamiltonian of the C spin reads as

H(t) = 2nhv(t) (op sin(mt/27) + oy cos(nt/27)) ,
(64)

of non-classicality in the work (quasi)probability distribu-
tion P(w) does not rule-out that R[g(p)] # 0.

where v(t) = v1(1 —t/7) + vot/7, 7 = 0.1 ms,
v1 = 2.5 kHz, and v = 1.0 kHz. Using these
parameters, we can simulate the close dynamics
of the system and obtain the KDQ. In partic-
ular, by initializing the system in the quantum
state |[+) = (|0) + |1))/v/2, where |0), |1) are the
eigenstates of the initial Hamiltonian H(0), the
KDQ presents both negative and imaginary val-
ues. On the other hand, starting from a thermal
state of the initial Hamiltonian leads to a positive
KDQ distribution coinciding with the TPM one,
as shown in Fig. 5.

As discussed in section 5, one can test condi-
tions for nonzero imaginary components of the
KDQ (respectively, for negative real components)
by measuring interferometrically the characteris-
tic function at 2 (respectively, 3) different times.
The appearance of non-classicality in this system
is shown in Fig. 6, where we perform these tests
in our simulations.

6.2 Proposal of solid-state implementation

Interferometric schemes can be also applied to bi-
partite systems other than the NMR set-up of
Ref. [61]. In particular, we propose to consider
a two-qubit system in a solid-state platform, i.e.,
the electronic spin of an NV center in diamond
and the nuclear spin of the nitrogen atom that
forms the NV to realize the scheme in Fig. 1.
Both of these are spin-triplets, but can be treated
as two qubits by selectively addressing the desired
transitions.
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Figure 6: Test of non-classicality for the KDQ distribution of work from the characteristic function evaluated on
the real line (by following the same procedure as in [61]), for the quantum system with Hamiltonian Eq. (64) and
initialized in the state |+). The work characteristic function x(u), provided by Eq. (31) with u = —u, v = wu,
A = H(0) and B = H(t), is plotted as a function of the real parameter u for t = 7 = 0.1 ms. On the left panel,
the condition x(—u) = x*(u) is not respected, given the (small) discrepancy between the imaginary parts. This
signals the existence of imaginary parts in the KDQ distribution. On the right panel, the three curves (solid-blue,
dashed-red, and dot-dashed pink) represent the eigenvalues of the 3 x 3 matrix of elements a;; = xmuq(u; — ;) as
a function of u where u; = 0, us = u and u3z = 2u. For many choices of u, one of the eigenvalues is negative, so
we can conclude that the KDQ distribution (or its real part, i.e., the MHQs) presents negative values.

In our proposal, the NV electronic qubit works
as the ancillary system, while the N nuclear spin
is the system qubit. The expectation value of
oz and o, of the ancilla can be measured with
high fidelity, since the electronic spin state can be
read out optically, due to the different photolumi-
nescence of the spin projections. Then, the sys-
tem Hamiltonian is implemented by driving the
nuclear spin with a radiofrequency signal (with
typical Rabi frequency of the order of tens of
kHz), leaving the electronic spin unaltered. A mi-
crowave signal is used to drive the electronic spin
dynamics, without modifying the nuclear spin.
Hence, local gates can be applied to each spin in-
dividually thanks to the very different excitation
frequencies of the nuclear and electronic spins.
Local gates can be also applied conditioned on
the state of the other spin (see for example [161])
due to the hyperfine coupling. The only effect of
the interaction between the nuclear and electronic
spins is an enhancement of the Rabi driving of the
nuclear spin [162, 163]. Compared to the NMR
implementations [61], this setting would enable
the initialization of the system into a coherent
state, instead of a thermal one, and this would
give access to the KDQ distribution.

We want to stress that employing the interfer-
ometric scheme would allow us to experimentally
access the KDQ characteristic function on the
real line. This entails the reconstruction of the
KDQ distribution (sometimes approximately) via

the inverse Fourier transform. More significantly,
as discussed in section 5, a direct measurement
of the characteristic function can also enable the
test of the non-classicality of the KDQ distribu-
tion and, in turn, of the negativity of the MHQs.

7 Conclusions

In this work, we investigated aspects of the
Kirkwood-Dirac quasiprobability (KDQ) distri-
bution characterizing the joint statistics of incom-
patible observables in a quantum process.

As we show in section 2.1, quasiprobabilities
are the only way to define an object that repro-
duces the correct marginal statistics and respects
the linearity of probability theory. We high-
lighted numerous recent applications in disparate
fields, such as quantum thermodynamics, metrol-
ogy, tomography, chaos theory, measurement-
disturbance, and foundations of quantum me-
chanics. Furthermore, we reviewed the concep-
tual foundations of the KDQ, uncovered some of
its connections to various fields of quantum sci-
ences, and provided novel protocols for its mea-
surement.

Given the growing relevance of the KDQ to the
physical understanding of many quantum pro-
cesses, in this work we have focused on devis-
ing different experimental strategies and mea-
surement schemes to access the KDQ, or in some
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cases, to witness non-classicality encoded in neg-
ative and non-real components of the quasiprob-
ability. Some of the proposed schemes can be im-
plemented in current quantum experiments and
are also suitable for quantum simulation on quan-
tum computing platforms. In order to complete
the picture, we also give experimental perspec-
tives on the feasibility of some of the schemes
discussed, and we propose a possible realization
of an interferometric scheme in a (solid-state) NV
center experiment.

The varied array of measurement schemes for
the reconstruction of the KDQ distribution calls
for a detailed analysis of the most suitable
schemes for each platform of interest. Moreover,
the rephrasing of many of the schemes in a circuit
form also makes them amenable to being imple-
mented on current quantum computing architec-
tures. The investigation of the role of quantum
coherence and quantum correlations in condensed
matter physics via the link between the KDQs
and the Loschmidt echo, as well as the linear re-
sponse theory, also appears to be a fascinating
possibility for further investigations.
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A Proof of Theorem 1

In this Appendix, we provide the proof of the no-go Theorem 1 about the joint distribution of the
outcomes from sequential measurements of, in general non-commuting, observables at different time
instants. Our result can be seen as complementary to the no-go theorems of Refs. |74, 76], since it
does not make explicitly any reference to a particular measurement protocol (e.g. the TPM scheme)
and highlights the constraints provided by the joint measurability in quantum mechanics.

Let us thus consider a process described by the quantum map & acting on the initial quantum state
p. Then, let

A(0) =" ai(0)I1;(0) and  B(t) =D bs(t)Z,(t) (65)
i f

be the observables whose outcomes’ statistics we are interested in. Our aim is to show that there exists
no distribution with joint probabilities p;¢(p) that is (i) a probability distribution linear in p and (%)
admits the correct marginals, unless [I1;(0), &/ (2 #(t))] = 0 for any value of the indices 7, f. In other
terms, we are going to prove that (i) and (%) hold together if and only if [II;(0), SZ(Ef(t))] =0V, f.

We first prove that if the joint distribution p;(p) is both a probability distribution — thus obeying
Kolmogorov’s axioms — that is linear in p, and admits the correct marginals, then [IL;(0), & (2 #(t)] =0
Vi, f (commutativity condition). The convex linearity of p;f(p) on the set of density matrices means
that, by taking p = >, prpr we have p;r(p) = 31 Pepif(pr), while the fact that p;¢(p) is a probability
distribution entails that p;s(p) > 0 and >, ; pif(p) = 1 for any 4, f and for any p. Then, the distribution
pif(A) : A — p;r > 0 can be extended to a linear map from the space of linear operators on the Hilbert
space to real positive numbers. In fact, it is a well-known result that a function convex-linear on a
convex set of operators spanning the space of Hermitian operators, like in our case, can be uniquely
extended to a linear function on this space with the extension being p;f(A) = >, arpir (i) for any
Hermitian operator A = ), aplly. A sketch of the uniqueness of such extension is given in the
footnote [18] of the arXiv preprint [164]| (published version Ref. [165]). Therefore, by exploiting the
Riesz representation theorem, the linearity of p;¢(p) as a function of p implies the existence of a linear
operator M;, depending on the indices 4, f, such that

pir(p) = Tr (Misp) . (66)

Then, since we are assuming p;¢(p) to be a (classical) probability distribution, Tr (M;¢p) > 0 V{3, f}
and thus M;; > 0Vi, f and ), 5 Miy = I, meaning that {M;y} form a positive operator-valued measures
(POVM). Subsequently, let us use the assumption that p;¢(p) has correct marginals for any i, f. This
allows us to write

Sooy = T((X Mig)p) = e (IL(0)p) = Y- Mys = T1(0) (67)
f f !
Sopir = Tr((X Mig)e) = Tr (61(25(1)p) = X My = €] (E4(1). (68)

Accepted in (uantum 2023-09-19, click title to verify. Published under CC-BY 4.0. 32


https://doi.org/10.1088/1367-2630/18/8/083016
https://doi.org/10.1088/1367-2630/18/8/083016
https://doi.org/10.1088/1367-2630/18/8/083016
https://doi.org/10.1088/1367-2630/18/8/083016
https://doi.org/https://doi.org/10.48550/arXiv.0710.5549
https://doi.org/https://doi.org/10.48550/arXiv.0710.5549
https://doi.org/10.48550/arXiv.0710.5549
https://doi.org/10.48550/arXiv.0710.5549
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.101.020401
https://link.aps.org/doi/10.1103/PhysRevLett.101.020401
https://link.aps.org/doi/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://link.aps.org/doi/10.1103/PhysRevLett.78.2690
https://link.aps.org/doi/10.1103/PhysRevLett.78.2690

We can easily observe that one of the marginal observables is projection valued. Hence, from the
Proposition 1 of Ref. [41], we can affirm that the product of marginals commutes, i.e.,

[11:(0), & (E¢(1))] = 0 Vi, f,t (69)

that in turn corresponds to the condition of joint measurability of A(0) and B(t). For completeness, it is
worth mentioning that Proposition 1 of Ref. [41] is based on Theorem 1.3.1 in Ludwig’s book [42], where
a result with same implications is stated for generic observables with possibly continuous spectrum on
infinite-dimensional space, and it is also explicitly proven in Lemma 1 of [43].

We now move on to prove the other implication of the theorem, i.e., that if [II;(0), EJ(Ef(t))] =0
Vi, f,t, then p;f(p) is a probability distribution linear in p and with correct marginals. From Eq. (69),
in accordance with the Proposition 1 of Ref. [41], one can state that the joint distribution p;¢(p) —
returned by a sequential quantum measurement scheme — is provided by the following relations:

pis(p) =T (pTL0) €] (54(1))) = Tr (p €] (Z1(1) T(0)) . (70)

The convex linearity of p;f(p) in p follows directly from the linearity of the trace. From Eq. (70) we
also see that the marginals are the correct ones since

> pi(p) = Y Tr (pTL(0) €] (Z4(1) ) = Tx (27 (1)€x(p)) (71)

and

> pir(p) = 3T (pT1(0) €] (F4(1))) = Tr (pTL(0)), (72)
f f

where in the last equality we have used the fact that the adjoint of a CPTP map is unital. Thus, to
conclude the proof, we need to show that the positivity of the joint distribution p;¢(p) follows from
Eq. (70). In this regard, given that the adjoint of a CPTP channel is CP and that the product of
commuting positive semi-definite linear operators is positive semi-definite, from Eq. (70) one gets that
Hi(O)EJ(Ef(t)) = M,y is also positive semi-definite. As a result, p;¢(p) = Tr (p M;f) > 0 V{4, f}, being
the trace of a product of positive semi-definite operators.

B Relation between Theorem 1 and thermodynamic no-go theorems
The no-go theorem by Perarnau-Llobet et. al. [76] includes assumption (b) of Theorem 1 in the main
text and weakens the corresponding assumption (a) to

(a-w) Recover undisturbed average energy-change:

> _pif(p)(Ef — Ei) = Te(H(8)E(p)) — Te(H(0)p). (73)
if

Assumption (a-w) is weaker than (a) in the sense that assumption (a) implies (a-w), while the reverse
is not in general true. Moreover, the no-go theorem in [76] requires a third assumption, i.e.,

(c) Fix the joint distribution p;¢(p) for diagonal states: Whenever [p, H(0)] = 0,

pir(p) = pig " (p) (74)
with p}}PM(p) defined in Eq. (8) in the main text.

The conclusion of [76] is that there exists no joint distribution satisfying at the same time condition
(b) of Theorem 1, and assumptions (a-w) and (c).

While assumption (c) is reasonable in a classical thermodynamic setting (it is indeed inspired by
stochastic thermodynamic considerations), it may appear overly restrictive to impose a special form to
the joint probabilities p;¢(p) for all the diagonal states. Perhaps for this reason, the no-go theorem by
Hovhannisyan et. al. in Ref. [74], while keeping condition (b) of Theorem 1 and (a-w) of [76], replaces
(c) with the less strict assumption (c¢’) that only involves thermal states:
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‘ No-go theorem H Correct marginals (a) ‘ Energy conservation (a-w) ‘ Convex (b) ‘ Recovers TPM (c) ‘ Recovers Jarzynski (¢’) ‘

Ref. [76] X X X
Ref. [74] X X X
Theorem 1 X X

Table 2: Sets of properties that are proven to be mutually incompatible in no-go theorems for the description of
energy-change fluctuations.

(c’) For any thermal state 753 = e #7©) /Ty (e*BH(O)), the Jarzynski equality [166] holds
Fy(H(t)) — Fs(H(0)) =~ log (e EO-EOD) (75)

where 8 > 0, F3(X) = -3~ log Tr (e‘ﬁx) and <e‘5(Ef(t)_Ei(0))> =i pif(15)e FEIO-E(0),

The Jarzynski equality is a cornerstone result in classical non-equilibrium thermodynamics, where
Fg(H(t)) — F3(H(0)) denotes the equilibrium free-energy difference. (c¢’) expresses the wish to define
fluctuations in a way that the Jarzynski equality still holds for initial thermal states, and the no-go
theorem in Ref. [74] proves its incompatibility in conjunction with conditions (a-w) and (b).
Compared to these two results, the strength of our no-go theorem is that it is based on purely
information-theoretic arguments. In particular, assumptions (a) and (b) do not make any explicit
reference to the measurement outcomes F;(0) and Ef(t). Table 2 summarizes these various results.

C Proof of Lemma 1.1

We report here the proof of Lemma 1.1 in the main text. This proof follows from the derivation in
the Appendix of [81], where it is shown that the Hermitian part of the product of two non-commuting
projectors has at least one negative eigenvalue.

Let us thus consider the MHQ given by

ReTr (pTL(O)UTE((H)U) = Tr (UTZ4(1)U {p, TL(0)}) , (76)

where {p,I1;(0)} = pIl; + IL;p. Since here we are considering unitary quantum processes and the
unitary transformation corresponds to a change of basis, we can get rid of the unitary process to get
to the core of the proof. Accordingly, we just need to demonstrate that, given a generic initial state p
and an initial measurement observable A = ", ;II; such that [p, A] # 0, then the Hermitian part of
the product of the state and one of the projectors II; of A has at least one negative eigenvalue. This
conclusion shall be valid for all the projectors II; (with rank > 1) that do not commute with p, i.e.,
[p, A] # 0. Whenever this conclusion holds, the projector UTZ;(#)U, for which Re (g;f) < 0, can be
simply chosen as the rank-1 projector on the eigenstate of {p,II;} with negative eigenvalue.

The proof follows the main steps of the one in the Appendix of [81] that we sketch here for self-
containedness. Let us start by considering G = {p,II;(0)}. If there exists a state-vector |1)) such that
(¥|G|yY) < 0, then G must have at least one negative eigenvalue. In order to determine the form of such
vector [¢), it is worth noting that [p,II;] = 0 if and only if TI;pIT;- = I pIl; =0, where IT;- = T — II,.
This can be easily seen by writing p = IL;pIl; + Hf‘pHi + Hipr- + Hf‘pr‘, and then computing the
commutator [p, IT;]. Then, if IT; and p do not commute ([p, IT;] # 0), we have that IT;pIl;- # 0. This, in
turn, implies that there exist |¢), |¢') such that (¢|I1;pIl;-|¢’) # 0. Moreover, by adjusting the phase
on |¢'), one can ensure that (¢|I1;pIl;|¢’) < 0.

Then, considering the normalized vector |¢)) = II;|¢) + AIT+|¢'), with a real number A, we have

(IGI) = 2 [(SITLpIL | ¢)+ARe (g TLpITH ) (77)
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which can be made negative for A large enough. This concludes the proof since we can now choose
UTE4(t)U as the rank-1 projector on the negative eigenvalue eigenstate of G, or just as |))(¢)| for the
state |1) built as before. Therefore, as a general conclusion, one needs a measurement observable B
of the quantum system and /or a unitary such that the spectralization of UtBU contains the projector
UTZ;(t)U.

D Non-classicality's properties

As discussed in the main text, the non-classicality of the KDQ is estimated via [22, 25|
N[g(p)] = =1+ >, ¢lair(p)], with g(p) denoting the matrix containing all KD quasiprobabili-
ties. Let us summarize here the properties of this measure of non-classicality and for completeness
briefly prove them:

[P1] Faithfulness: R[g] = 0 if and only if g is a probability distribution.

Proof. q;y satisfies 3 ;;qiy = 1. If any element ¢;5 is negative or not real, it follows that laif| > aqiy
and so R(q) > 0. The converse holds too. O

[P2] Convexity: R[pq,(p) + (1 —p)g2(p)] < pRlg1(p)] + (1 — p)R]ga(p)], with p € [0,1]

Proof. Setting g = pg; + (1 — p)q,, the result follows immediately from the convexity of the absolute
value function. ]

[P3] Non-commutativity witness: If R[g(p)] > 0, then there is a choice of 4,f for which
(p,11;(0), E1(Z4(t))) are all mutually non-commuting.

Proof. Let us prove the counterpositive. So for every i, f we have at least a commuting pair. Note
that for each fixed 4, f, ¢;y has the general form Tr(ABC), where one pair among A, B and C' is
commuting and A, B and C are all positive semidefinite operators. Using the cyclic property of the
trace, without loss of generality we can assume [A, B] = 0.

Tr (ABC) = Tr (VAVABC) = Tr (VAVBVBVAC) = Tr (D'D)C). (78)

Note that we used [v/A, B] = 0 and we defined D = v/ BvA. With the above we rewrote Tr (ABC)
as the trace of the product of two positive semidefinite operators, which is nonnegative. Hence,
Tr (ABC) > 0. O

[P4] Monotone under decoherence: Consider the decoherence dynamics Dy = (1 — s)I + sD, where
s € [0,1] and D is a transformation that removes off-diagonal elements either in the basis {II;} or in
any basis obtained by orthogonalizing and completing £T(Z) to a basis. Then, X[g(D;s(p))] < R[g(p)].

Proof. X(q(Ds(p)) < (1 — s)R(q(p)) + sX(q(D(p)) by convexity (P2). Furthermore, by construction
D(p) commutes either with II; for every i or with £7(Ils) for every f. From (P3), it follows that

R(q(D(p)) = 0 and so Ng(D, (p))] < (1 — s)R(a(p)). O

P5] Monotone under coarse-graining: Suppose ¢} = >, q;r, where I, F' are disjoint subsets
IF iel,feF 4if
partitioning the indices {i}, {f}. Then R[q'] < W[q].

Proof. R(q'| =321 ;a7 ;| = X1 | Zierjes Gl < X1y Xierjes 6] = Ral. 0
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