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Quantum processes cannot be reduced, in a nontrivial way, to classical processes without spec-
ifying the context in the description of a measurement procedure. This requirement is implied by
the Kochen-Specker theorem in the outcome-deterministic case and, more generally, by the Gleason
theorem. The latter establishes that there is only one non-contextual classical model compatible
with quantum theory, the one that trivially identifies the quantum state with the classical state.
However, this model requires a breaking of the unitary evolution to account for macroscopic real-
ism. Thus, a causal classical model compatible with the unitary evolution of the quantum state is
necessarily contextual at some extent. Inspired by well-known results in quantum communication
complexity, we consider a particular class of hidden variable theories by assuming that the amount
of information about the measurement context is finite. Aiming at establishing some general fea-
tures of these theories, we first present a generalized version of the Gleason theorem and provide
a simple proof of it. Assuming that Gleason’s hypotheses hold only locally for ‘small’ changes of
the measurement procedure, we obtain almost the same conclusion of the original theorem about
the functional form of the probability measure. An additional constant and a relaxed property of
the ‘density operator’ are the only two differences from the original result. By this generalization
of the Gleason theorem and the assumption of finite information for the context, we prove that the
probabilities over three or more outcomes of a projective measurement must be linear functions of
the projectors associated with the outcomes, given the information on the context.

I. INTRODUCTION

In the formalism of quantum theory, the possible out-
comes of a von Neumann measurement are labeled by
projectors. This description provides an operationally
exhaustive summary of the whole measurement proce-
dure and contains the complete information that is rele-
vant for distinguishing two events that occur with differ-
ent probability for some preparation procedure. Further-
more, this labeling is also minimal, that is, it does not dis-
tinguish events that always occur with the same probabil-
ity. Given a measurement, the outcomes are identified by
a set ofM commuting projectors, say {Ê1, Ê2, · · · , ÊM},

with
∑M

n=1 Ên = 1. The probability of outcome Êk, say

µ(Êk), is given by the Born rule

µ(Êk) = Tr(Êk ρ̂), (1)

where ρ̂ is the density operator, which gives the statis-
tically relevant information about the preparation pro-
cedure. The additional information about the measure-
ment procedure that is irrelevant for the computation of
µ(Êk) is referred as context. For example, the projectors

Ê2, Ê3, . . . , ÊM are part of the context for the outcome
Ê1, as they are not relevant for computing µ(Ê1).
Although this formalism is operationally exhaustive

and minimal, it does not provide a unified description
of observed and observing systems. Indeed, two differ-
ent languages are used for the experimental apparatus
and the quantum system under observation. On the one
hand the experimental apparatus is described by a purely
classical language that specifies for example the position
and orientation of beam splitters, mirrors or crystals in
a quantum optics experiment. On the other hand the
quantum system is indirectly described by the operations

performed on the experimental apparatus. The quantum
state is not meant as a classical object, such as a field,
but it is a mere container of information about the prepa-
ration procedure. This formalism is completely silent on
the actual state of affairs of each single quantum sys-
tem. Is it possible to have a unified description that
puts experimental apparatus and quantum system on the
same footing? Various no-go theorems show that this
embedding of quantum processes in the classical frame-
work is not possible without apparently unphysical conse-
quences, such as non-locality [1, 2] and, more generally,
contextuality [3]. The latter refers to a dependence of
the outcomes on the details of the measurement imple-
mentation that are irrelevant for the computation of the
quantum probabilities µ(Êk). Apart from foundational
motivations concerning the interpretation of the quan-
tum formalism, a classical embedding of quantum the-
ory is important in the context of quantum information
theory, since no-go theorems concerning this embedding
make the gap between quantum and classical informa-
tion more definite. For example, Bell theorem led to the
discovery of quantum cryptographic protocols exploiting
non-locality as a resource [4]. In quantum communica-
tion complexity, classical simulations are relevant for set-
ting a limit on the advantages offered by quantum chan-
nels.
Hidden variable (HV) theories [5], also known as on-

tological theories, are one possible classical reinterpreta-
tion of quantum processes. In a HV theory, there is no
dichotomy between classical and microscopic quantum
world. Any system is always supposed to be in some
well-defined classical state, say x, which is an element
of a classical space, X . According to the present ter-
minology [6], we will refer to the classical state and the
classical space as ontic state and ontological space, respec-
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tively. Given a preparation procedure, the system is set
in an ontic state according to some probability distribu-
tion that depends on the preparation procedure. When
a measurement is performed, the probability of an out-
come is conditioned by the ontic state. If the outcome
is completely determined, then the ontological theory is
said to be outcome-deterministic.

The de Broglie-Bohm (dBB) theory is a particular ex-
ample of outcome-deterministic HV theory. In this case,
the quantum state assumes the role of an actual physical
field that pilots the dynamics of the particles. Thus,
the ontic state x is identified with the wave-function
and the positions of the particles. Another example is
given by the Beltrametti-Bugajski (BB) model. Differ-
ently from dBB theory, the ontic state is identified with
only the quantum state, which is not supplemented by
any additional variable. Furthermore, the BB model is
not outcome-deterministic. In more general HV theo-
ries, the ontic state does not necessarily contain the full
information about the quantum state, which is instead
encoded into the statistical behavior of many identically
prepared realizations. We call an ontological theory triv-
ial if, for any measurement, the outcome probabilities,
given an ontic state x, are equal to the quantum prob-
abilities, given some quantum state |ψ〉. In this case, x
can be identified with |ψ〉. According to this definition,
the BB model is a trivial ontological theory. Any trivial
HV theory is essentially equivalent to the BB model. The
dBB theory, being deterministic, is a counterexample of
nontrivial HV theory.

In their seminal article [3], Kochen and Specker showed
that any outcome-deterministic ontological theory is
measurement-contextual. In other words, the minimal
labeling of an event with a projector is not sufficient to
describe consistently a measurement procedure. In Ref.
[6], it was pointed out that the outcome determinism
is a necessary condition for inferring the measurement
contextuality. Indeed the BB model is an example of
measurement-noncontextual ontological theory, which is
not outcome-deterministic. In fact the BB model is the
only noncontextual ontological theory [7]. Equivalently,
quantum mechanics is essentially the only theory that
employs the minimal labeling in the description of the
events. In Ref. [7], we argued that the BB model, be-
ing a trivial HV theory, is not sufficient for introducing
realism in the quantum phenomena, unless the unitar-
ity of the evolution is broken. Thus, we concluded that
the measurement contextuality should be introduced to
some extent. What is the minimal amount of required
information about the context? It is a well-known result
of quantum information that a finite amount of classi-
cal communication is sufficient to reproduce classically
the quantum correlations in an Einstein-Podolsky-Rosen
(EPR) experiment [11]. This kind of correlations pro-
vides a particular example of measurement contextual-
ity [5]. Inspired by this result of quantum information,
we consider a particular class of HV theories by assuming
that the amount of relevant information about the mea-

surement context is always finite. Using this hypothesis
and a generalized version of the Gleason theorem, we
prove that the probability of an event must be a lin-
ear function of the projector associated with the event,
given the information on the context. This result pro-
vides an example illustrating the relevance of the gener-
alized Gleason theorem. As remarked in the conclusion,
this theorem can turn to be useful for solving some gen-
eral questions in quantum information.
The paper is organized as follows. In Sec. II we in-

troduce the hypothesis that the amount of relevant in-
formation about the context in a HV theory is finite. By
this hypothesis, we show that the ontological theory is
somehow noncontextual for ‘small’ changes of the mea-
surement procedure. In Sec. III, we prove the generalized
Gleason theorem. Assuming that Gleason’s hypotheses
hold only locally for ‘small’ changes of the measurement
procedure, we obtain almost the same conclusion of the
original theorem about the functional form of the prob-
ability measure. An additional constant and a relaxed
property of the ‘density operator’ are the two only differ-
ences from the original result. The proof is much simpler
than Gleason’s proof. Furthermore the Gleason theorem
can be derived as a corollary from this generalization. In
Sec. IV, we derive the general form of the probability
of an event in a HV theory by using the hypothesis in
Sec. II and the generalized Gleason theorem. Finally,
the conclusion and the perspectives are drawn.

II. FINITE AMOUNT OF INFORMATION

ABOUT THE CONTEXT

Let us first introduce the framework of an ontological
theory. For convenience, in the following we will asso-
ciate projective measurements with ordered M -tuples of
projectors. A quantum system is described by an on-
tic state, x, which is an element of an ontological space,
X . When the quantum system is prepared in a quantum
state |ψ〉, its ontic state is set according to a probability
distribution ρ(x|ψ, η) which depends on |ψ〉 and, possibly,
an additional parameter, η, representing the preparation
context. Thus, we have the mapping

(|ψ〉, η) → ρ(x|ψ, η), (2)

where (|ψ〉, η) represents the preparation procedure.

When a measurement M = (Ê1, Ê2, · · · , ÊM ) is per-

formed, the probability of an outcome Êk, is conditioned
by the value of x. Differently from the quantum for-
malism, in general the probability also depends on the
whole set M, not just Êk. The other projectors give the
measurement context for the event Êk. This dependence
is not the only possible kind of contextuality. We de-
note by τ the additional context. Thus, a measurement
procedure is specified by the pair (M, τ), which is asso-
ciated with a conditional probability of having outcome
Êk given x, that is,

(M, τ) → P (Êk|x,M, τ). (3)
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The set M is complete, that is, the sum of the projectors
in M is the identity operator,

∑

k

Êk = 1̂. (4)

The probability distribution P satisfies the normalization
equation

M
∑

k=1

P (Êk|x,M, τ) = 1. (5)

The ontological model reproduces a process of state
preparation and subsequent measurement if the equality

∫

dxP (Êk|x,M, τ)ρ(x|ψ, η) = 〈ψ|Êk|ψ〉 (6)

is satisfied, where the integral is defined according to
some measure on X . In quantum communication com-
plexity, this equation describes the simulation of a noise-
less quantum channel with subsequent projective mea-
surement.
Hereafter, we consider the class of ontological theories

for which the amount of relevant information about the
measurement context is finite. Thus, we assume that the
conditional probability in Eq. (3) takes the form

P (Êk|x,M, τ) =
∑

n

µ(Êk|x, n)Pc(n|x,M, τ), (7)

If the worst-case amount of information is finite, then
the sum in Eq. (7) is over a finite number of elements.
More generally, we only assume that the index n is dis-
crete and the summation

∑

n Pc(n|x,M, τ) converges to
1. Note that the probability distribution Pc explicitly de-
pends on the ontic state, that is, the information about
the context generally depends on the value x in each sin-
gle realization. Indeed, in the EPR scenario, this depen-
dence is necessary if the context is summarized by a finite
amount of information [12]. Also note that there is a re-

dundancy in the definition of µ(Êk|x, n), since the index

n can contain some information about Êk. This implies
that there could be a conflict between the value of n
and Êk. For example, if the probability Pc(n

′|x,M, τ) is
equal to zero for some n′ and for every (M, τ) such that

Ek is equal to some E′
k, then µ(Ê

′
k|x, n

′) is left indeter-

minate. Indeed, denoting by P (Êk, n|x,M, τ) the joint

probability of Êk and n, we have that

µ(Ê′
k|x, n

′) =
P (Ê′

k, n
′|x,M, τ)

Pc(n′|x,M, τ)
for Êk = Ê′

k

and both the numerators and denominators are zero.
This point is important for correctly deriving the prop-
erties of the conditional probability µ(Êk|x, n). In par-

ticular, the normalization condition
∑

k µ(Êk|x, n) = 1

is required only if n is consistent with Êk for every k,

that is, if Pc(n|x,M, τ) 6= 0 for some τ . Similarly, the

non-negativity condition µ(Êk|x, n) ≥ 0 holds if Êk and
n are consistent.
To state concisely the normalization condition for

µ(Êk|x, n), let us introduce some set definition. We de-
note by Ω the set containing all the elements M. This
set, endowed with a Riemannian metric, is a Riemannian
manifold. It has disjoint subsets and each subset contains
elements whose projectors Êk have fixed rank.

Definition 1 Ωn(x) is the the largest subset of Ω such
that, for every M ∈ Ωn(x), Pc(n|x,M, τ) 6= 0 for some
τ .

In other words, the set Ωn(x) contains all the measure-
ments that are consistent with the context index n. The
sets Ωn(x) cover the set Ω, that is,

∪n Ωn(x) = Ω. (8)

Given this definition, the normalization of the condi-
tional probability µ(Êk|x, n) and its non-negativity can
be stated as follows.

(Ê1, · · · , ÊM ) ∈ Ωn(x) ⇒
{

∑M
k=1 µ(Êk|x, n) = 1

µ(Êk|x, n) ≥ 0 k ∈ {1, . . . ,M}
.

(9)

This property, the normalization of Pc(n|x,M, τ) and
its non-negativity guarantee that the probability distri-
bution P (Êk|x,M, τ) defined by Eq. (7) is normalized
and non-negative.
Since the family of sets Ωn(x) is countable, we can re-

place these sets with open sets by removing zero-measure
boundaries. The resulting family is identical to the orig-
inal one up to a negligible zero-measure set of measure-
ments. Thus, we can just assume that the sets Ωn(x) are
open without loss of generality. Furthermore, we can as-
sume that they are connected. Indeed, if the sets are not
connected, we first can write them as union of connected
sets,

Ωn(x) = ∪kΩn,k(x) (10)

and replace the probability distribution Pc(n|x,M, τ)
with

Pc(n, k|x,M, τ) ≡ Pc(n|x,M, τ) δ[M ∈ Ωn,k(x)], (11)

where δ[true] = 1 and δ[false] = 0. Then, we can rename
the pair (n, k) by using only one discrete index n. In
this way, we obtain a new model and new corresponding
sets Ωn(x) that are open and connected. Thus, we can
assume that the sets Ωn(x) satisfy the following.

Property 1 The sets Ωn(x) are open and connected for
every n and every x.
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A measurement (Ê1 + Ê2, . . . , ÊM ) ≡ Mc can be im-
plemented as the coarse graining of the measurement
(Ê1, Ê2, · · · , ÊM ) = M. Thus, we have the inference

M ∈ Ωn(x) ⇒ Mc ∈ Ωn(x). (12)

Indeed, if M ∈ Ωn(x), then there is a context τ such that
Pc(n|x,Mc, τ) 6= 0. In general, the opposite inference is
not true, that is,

Mc ∈ Ωn(x) 6⇒ M ∈ Ωn(x). (13)

Indeed, the measurement Mc could be implemented
without involving a coarse graining of M. Thus, the two
measurements could be associated with different values
of the context index n.
For the following discussions, it is useful to define the

operators Pk.

Definition 2 Let S be a set of ordered m-tuples. PkS
with k ∈ {1, . . . ,m} is a set such that an element p is in
PkS if and only if there is an M -tuple b in S whose k-th
component is equal to p.

Thus, the operator Pk is a kind of Cartesian projector.
Similarly, let us define the operators Pkl.

Definition 3 Let S be a set of ordered m-tuples. PklS
with k, l ∈ {1, . . . ,m} and k 6= l is a set of pairs such
that an element (p1, p2) is in Pk,lS if and only if there is
an M -tuple b in S whose k-th and l-th components are
equal to p1 and p2, respectively.

By inference (12), we have that property (9) is equivalent
to the following ones

Ê ∈ PkΩn(x) ⇒ µ(Ê|x, n) ≥ 0, (14)

(Ê1, Ê2) ∈ PklΩn(x) ⇒

µ(Ê1|x, n) + µ(Ê2|x, n) = µ(Ê1 + Ê2|x, n),
(15)

µ(1̂) = 1. (16)

III. GENERALIZED GLEASON THEOREM

Before introducing the generalized Gleason theorem,
let us briefly review the original theorem [8]. In the
axiomatic formulation of quantum mechanics, each out-
come is labeled by a projector Ê and the probability of
Ê, say µ(Ê), is given by the Born rule

µ(Ê) = tr(Êρ̂), (17)

where ρ̂ is the density operator representing the state
of the quantum system. This measure satisfies the two
properties

µ(Ê) ≥ 0, (18)
M
∑

i=1

µ(Êi) = 1, (19)

where {Ê1, · · · , ÊM} is any complete set of commuting

projectors (so that
∑M

k=1 Êk = 1̂). Eq. (19) is equivalent
to the following conditions,

µ(1̂) = 1, (20)

for every pair {Ê1, Ê2} of commuting projectors

⇒ µ(Ê1) + µ(Ê2) = µ(Ê1 + Ê2).
(21)

Provided that the Hilbert space dimension is greater
than 2, Gleason’s theorem states that any measure with
properties (18) and (19) [or, equivalently, properties
(18,20,21)] has the form (17), where ρ̂ is a non-negative
operator with trace one. This result provides a way for
reducing the axiomatic basis of quantum mechanics. In-
deed, it shows that the Born rule can be inferred by the
assumption that every outcome is associated with a pro-
jector and every complete set of commuting projectors
represents a complete set of measurement outcomes.

Theorem 1 (Gleason’s theorem) For a Hilbert space of

dimension greater than 2, a measure µ(Ê) that satisfies

properties (18) and (19) has the form µ(Ê) = tr(Êρ̂),
where ρ̂ is a Hermitian non-negative definite matrix with
trace equal to 1. Equivalently, the same conclusion holds
if properties (18,20,21) are satisfied.

Now, we present a generalization that has weaker hy-
potheses than Gleason’s theorem and the almost identical
conclusion. It requires that the Gleason hypotheses hold
locally in some open subset of Ω. We only introduce the
additional hypothesis that µ(Ê) is a generalized function
(mathematical distribution) [9] for which the derivatives
are well-defined in the domain of µ. Indeed, this can be
considered the only case that is physically relevant. It
is worth stressing that we are not assuming the stronger
hypothesis of differentiability. Indeed, a piecewise differ-
entiable function with discontinuities along some zero-
measure subset is an example of mathematical distribu-
tion. More generally, integrable functions on compact
sets are physically relevant examples of distributions. A
distribution is formally defined as a functional from a
set of test functions to R. With an abuse of notation,
we will represent distributions as conventional functions.
Our hypothesis on the function µ is complementary to
the non-negativity hypothesis used by Gleason [8], which
is not required by the generalized Gleason theorem. The
latter property, in the original theorem, rules out highly
discontinuous unbounded functions satisfying the addi-
tion rule in inference (21).

Theorem 2 (Generalization of Gleason’s theorem I) Let
O be a connected open set of complete M -tuples of com-
muting projectors, say (Ê1, . . . , ÊM ), with M > 2. Let

µ(Ê) be a generalized function whose derivatives are well-
defined in ∪iPiO. If the equality

∑

i

µ(Êi) = 1 (22)
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is satisfied for every M -tuple in O, then there is an Her-
mitian operator η̂ and real numbersK1, . . . ,KM such that

Ê ∈ PiO ⇒ µ(Ê) = tr(η̂Ê) +Ki. (23)

If the intersection of PiO and PjO is not empty, then
Ki = Kj.

The theorem can be equivalently stated as follows.

Theorem 3 (Generalization of Gleason’s theorem II)
Let O be a connected open set of incomplete pairs of
commuting projectors. Let µ(Ê) be a distribution whose
derivatives are well-defined in P1O∪P2O. If the property

µ(Ê1) + µ(Ê2) = µ(Ê1 + Ê2), (24)

is satisfied for every pair (Ê1, Ê2) ∈ O, then there is a
Hermitian operator η̂ such that

Ê ∈ PiO ⇒ µ(Ê) = tr(η̂Ê) +Ki ≡ tr(η̂iÊ), (25)

where η̂i = η̂ + (Ki/ri)1̂, ri being the rank of Ê ∈ PiO.
If the intersection of P1O and P2O is not empty, then
K1 = K2 and r1 = r2, so that

Ê ∈ PiO ⇒ µ(Ê) = tr(η̂Ê) (26)

for some Hermitian operator η̂.

It is worth to remark that the operator η̂ in Eq. (25) does
not depend on the index i. Note that, if the additional
hypothesis µ(Êi) ≥ 0 is added, the density operator

η̂i = η̂+(Ki/ri)1̂ is not necessarily non-negative defined.

Indeed, the function tr(η̂iÊ) must be positive only in a
subset of projectors. The two theorems are equivalent.
Indeed, it is clear that Theorem 3 implies Theorem 2.
The other inference comes by taking Ê3 ≡ 1̂ − Ê1 − Ê2

and µ(Ê3) ≡ 1− µ(Ê1)− µ(Ê2) for (Ê1, Ê2) ∈ O.
To prove Theorem 3, we first consider projections onto

one-dimensional spaces. Thus, we assume that Êi ≡ ~φi~φ
†
i

for i = 1, 2, where ~φ1 and ~φ2 are two unit orthogonal

column vectors. We denote by φi;k the components of ~φi
and define the function

f(~φi) ≡ µ(~φi~φ
†
i ),

which is called by Gleason frame function. Under the
restriction of rank-1 projectors, Theorem 3 takes the form
of the following.

Lemma 1 Given a Hilbert space of dimension larger
than 2, let O be an open set of ordered pairs of orthogonal

vectors. If, for any pair (~φ1, ~φ2) ∈ O, the frame function
satisfies the properties

f(~φi) ≥ 0, (27)

f(~φ1) + f(~φ2) = µ(~φ1~φ
†
1 + ~φ2~φ

†
2 ), (28)

then the third-order derivatives of f(~φ) with respect to ~φ
are equal to zero in P1O ∪ P2O. In particular, if O is
connected, then there is a Hermitian operator η̂ and two
constants K1 and K2 such that

~φ ∈ PiO ⇒ f(~φ) = tr(η̂~φ~φ†) +Ki (29)

for i = 1, 2.

Equation (28) states that the sum f(~φ1)+f(~φ2) depends

only on the subspace spanned by the vectors ~φ1 and ~φ2.
Thus, if the pair (~χ1, ~χ2) is in O and the vectors ~χi are

linear combinations of ~φi, then f(~φ1) + f(~φ2) = f(~χ1) +
f(~χ2).

Note that f(~φ) is defined on the unit sphere. As we
will see, it is useful to expand the domain of f to the
whole vector space and introduce the radial constraint

~φ ·
∂f

∂~φ
+ ~φ∗ ·

∂f

∂~φ∗
= 2f. (30)

It is always possible to expand the domain and satisfy this
constraint with a suitable choice of the radial behavior of
f . Indeed, given a function f(~φ) on the unit sphere, the

function f
(

~φ

|~φ|

)

|~φ|2 on the vector space is equal to f(~φ)

on the unit sphere and satisfies Eq. (30).
Proof of Lemma 1. The main task is to prove that

∂3f(~φ)
∂φi∂φj∂φk

= 0,

∂3f(~φ)
∂φi∂φj∂φ

∗

k

= 0
(31)

and their complex conjugations. For this purpose, it is
sufficient to prove the real version of these equalities for
a real three-dimensional space.
For any tern {i1, i2, i3} of integers such that i1 6= i2, i3

and i2 6= i3, we write the components φ1;ik and φ2;ik in
the form

φ1;ik ≡ vke
iϕk , φ2;ik ≡ wke

iϕk k ∈ {1, 2, 3}, (32)

where vk and wk are components of two orthogonal three-
dimensional real vectors, ~v and ~w respectively. The task
is reduced to prove that

∂3f(~v)

∂vi∂vj∂vk
= 0, for any i, j, k ∈ {1, 2, 3}. (33)

The generator of a three-dimensional rotation of ~v and ~w
is

R(~a) = ~a ·

(

~v ∧
∂

∂~v
+ ~w ∧

∂

∂ ~w

)

(34)

where ~a gives the rotation axis. For a rotation in the
plane spanned by the orthogonal vectors ~v and ~w, we
have that ~a = ~v ∧ ~w. From Eq. (28), we have that R(~v ∧
~w)[f(~v) + f(~w)] = 0, that is,

(

~w ·
∂

∂~v
− ~v ·

∂

∂ ~w

)

[f(~v) + f(~w)] = 0 (35)
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for every pair of orthogonal vectors ~v and ~w in the domain
of definition of f . The generators of the rotations around
~w and ~v are (~v ∧ ~w) · ∂

∂~v
and (~v ∧ ~w) · ∂

∂ ~w
, respectively.

Applying these operators to both sides of Eq. (35), we
obtain the two equations

∑

ij

(~v ∧ ~w)iwj

∂2f(~v)

∂vi∂vj
= (~v ∧ ~w) ·

∂

∂ ~w
f(~w), (36)

∑

ij

(~v ∧ ~w)ivj
∂2f(~w)

∂wi∂wj

= (~v ∧ ~w) ·
∂

∂~v
f(~v). (37)

Then, we apply again the operator ~w · ∂
∂~v

−~v · ∂
∂ ~w

to both
sides of Eq. (36) and obtain

∑

ij(~v ∧ ~w)i

(

vj
∂2f(~v)
∂vi∂vj

− wj

∑

k wk
∂3f(~v)

∂vi∂vj∂vk

)

=

∑

ij(~v ∧ ~w)ivj ·
∂2f(~w)
∂wi∂wj

.
(38)

Thus, the left-hand side of this equation is equal to the
right-hand side of Eq. (37), that is,

∑

ijk(~v ∧ ~w)iwjwk
∂3f(~v)

∂vi∂vj∂vk
=

(~v ∧ ~w) · ∂
∂~v

[

~v · ∂f(~v)
∂~v

− 2f(~v)
]

.
(39)

From Eq. (30) we have that

~v ·
∂f(~v)

∂~v
− 2f(~v) = 0. (40)

Thus, Eqs. (39) and (40) imply that

∑

ijk

uiwjwk

∂3f(~v)

∂vi∂vj∂vk
= 0 (41)

for every tern {~u,~v, ~w} of orthogonal vectors. This im-
plies that

∑

ijk

wiwjwk

∂3f(~v)

∂vi∂vj∂vk
= 0 (42)

for every pair {~v, ~w} of orthogonal vectors. Indeed, this
equation can be derived from Eq. (41) by considering the
two pairs of orthogonal vectors (~u, ~w) = (~u′∓ ~w′, ~u′± ~w′),
where ~u′ and ~w′ are vectors orthogonal to ~v and with
|~u′| = |~w′|. These two cases and the equations

∑

ijk

u′iw
′
jw

′
k

∂3f(~v)

∂vi∂vj∂vk
=

∑

ijk

u′iu
′
jw

′
k

∂3f(~v)

∂vi∂vj∂vk
= 0

give the two equations (w′
iw

′
jw

′
k ± u′iu

′
ju

′
k)

∂3f
∂vi∂vj∂vk

= 0,

which imply Eq. (42). Thus, every third-order derivative
in the subspace orthogonal to ~v is equal to zero. Further-
more, from Eq. (40) we have that

~v ·
∂3f(~v)

∂~v∂vi∂vj
= 0 (43)

for every i, j ∈ {1, 2, 3}. This implies that every third-
order derivative is zero and, thus, Eq. (33) is satisfied.
Identical equations hold for f(~w). Since Eq. (33) holds
for any real three-dimensional subspace of a complex
Hilbert space, also Eqs. (31) and their complex conjuga-

tions hold. Thus, the function f(~φi) must be quadratic

in ~φi. Since the frame function f(~φi) is equal to µ(~φi~φ
†
i ),

the linear terms and the terms in φi;kφi;l and φ
∗
i;kφ

∗
i;l are

equal to zero. In particular, if O is connected, then

f(~φ) = tr(η̂~φ~φ†) +Ki (44)

for ~φ ∈ PiO and i ∈ {1, 2}. The lemma is proved. �

Proof of Theorem 3. We can decompose the two
projectors Ê1 and Ê2 into rank-1 commuting projectors,

say F
(k)
i ,

Ê1 =

r1
∑

k=1

F̂
(k)
1 , Ê2 =

r2
∑

k=1

F̂
(k)
2 , (45)

where ri is the rank of Êi. Since the pair (Ê1, Ê2) is
not complete, we have that r1 + r2 < N , where N is

the dimension of the Hilbert space. Let us denote by ~φki
the vectors such that F̂

(k)
i = ~φki (

~φki )
†. By Lemma (1),

we have that the function µ must be linear in F̂
(k)
i in

each connected set for any decomposition of Ê1 and Ê2.

For example, keeping F̂
(2)
1 , · · · , F̂

(r1)
1 and F̂

(2)
2 , · · · , F̂

(r2)
2

constant. The orthogonal complement, say H⊥, of the

subspace spanned by ~φ21, . . . ,
~φr11 and ~φ22, . . . ,

~φr22 is a vec-
tor subspace of dimension equal to N − r1 − r2 + 2 > 2.
We denote by Π the set of pairs of orthogonal vectors in

H⊥. The set of pairs (~φ11,
~φ12) such that (Ê1, Ê2) ∈ O is

an open set of Π. Thus, by Lemma 1, the third-order

derivatives of µ with respect to ~φ11 and ~φ12 are equal to

zero. This is true for every decomposition of Êi into
rank-1 projectors. This implies that µ is linear in Ê1 and
Ê2 and has the form

µ(Êi) = tr(η̂Êi) +Ki (46)

for any Êi ∈ PiO. If the intersection of P1O and P2O is
not empty, it is trivial that K1 = K2 and r1 = r2. �

Gleason’s theorem is a trivial consequence of theo-
rem 3. Indeed, if the set O in the theorem statement
is the whole set of pairs of commuting projectors with
fixed rank r, then the coefficients Ki in Eq. (25) are in-

dependent of i, Ki = K. Let us define ρ̂ ≡ η̂ +Kr−1
1̂,

Eq. (25) gives

µ(Ê) = tr(ρ̂Ê). (47)

The non-negativity of µ(Ê) and the equality µ(1̂) = 1
imply that ρ̂ is positive semidefinite and with trace equal
to 1.
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IV. FUNCTIONAL FORM OF THE OUTCOME

PROBABILITY IN A HV THEORY

The generalization of the Gleason theorem has an obvi-
ous consequence for the functional form of the conditional
probability µ(Ê|x, n) defined in Sec. II. Let us remind
that this function satisfies the three conditions

Ê ∈ PkΩn(x) ⇒ µ(Ê|x, n) ≥ 0,

(Ê1, Ê2) ∈ PklΩn(x) ⇒

µ(Ê1|x, n) + µ(Ê2|x, n) = µ(Ê1 + Ê2|x, n),

µ(1̂|x, n) = 1.

stated in Eqs. (14,15,16). In particular, the second hy-
pothesis is identical to that used for the generalized Glea-
son theorem. Indeed, according to property 1, the set
PklΩn(x) is a connected open set apart from a negligi-
ble boundary. Thus, the generalized Gleason theorem
implies that

Ê ∈ PkΩ̄n(x) ⇒ µ(Ê|x, n) = tr
[

η̂(x, n)Ê
]

+K(x, n),

(48)
where Ω̄n(x) is the subset of Ωn(x) containing measure-
ments with three or more outcomes. Inferences (9) also
imply that

{Ê1, · · · , ÊM} ∈ Ω̄n(x) ⇒
∑M

k=1

{

tr[Êkη̂(x, n)] +K(x, n)
}

= 1,
(49)

{Ê1, · · · , ÊM} ∈ Ω̄n(x) ⇒

tr[Êkη̂(x, n)] +K(x, n) ≥ 0.
(50)

Note that an outcome-deterministic theory is com-
patible with the equations that we have derived from
the generalized Gleason theorem. Indeed, the onto-
logical theory is outcome-deterministic if, for example,
η̂(x, n) = 0 and K(x, n) is identically equal to 0 or 1
where Pc(n|x,M, τ)ρ(x|ψ, η) is different from zero.
In fact, we have not proved that there is an ontological

model such that the context information is finite, we have
only shown that, if it exists, then it must have some gen-
eral structure. However, an approximate classical pro-
tocol simulating entanglement and quantum channels,
reported in Ref. [10], would suggest that such a model
exists. In this section, we have assumed that the mea-
surement is performed all at once. This justifies why the
context for the event Êk, in general, depends on the whole
set M of projectors. Given multiple commuting measure-
ments, causality imposes some further constraints. Sup-
pose that two-outcome measurements are performed con-
secutively with outcomes {Ê1, 1̂ − Ê1}, {Ê2, 1̂ − Ê2},...,

{ÊM , 1̂− ÊM}, where Êk are commuting projectors. Un-
der the hypothesis of causality, the outcome of a mea-
surement cannot be influenced by future measurements.
Thus, we can rearrange the context index n as an M -
tuple of indices (n1, . . . , nM ) ≡ ~n so that the conditional

probability µ of Êk given ~n depends only on the first m
indices, that is,

µ(Ê1|x, ~n) = µ(Ê1|x, n1)
. . .

µ(ÊM |x, ~n) = µ(ÊM |x, n1, . . . , nM ),

(51)

and the conditional probability of the first k indices
n1, . . . , nk depends only on the first k projectors, that
is,

Pc(n1, . . . , nk|x,M, τ) =

Pc(n1, . . . , nk|x, Ê1, . . . , Êk, τ), k ∈ {1, . . . ,M}.
(52)

We conclude this section by discussing a relation be-
tween the hypothesis of finiteness of the contextual in-
formation and a long-standing debate about the nature
of the quantum state, which reached its apex with the
Pusey-Barrett-Rudolph theorem [13]. In the framework
of onthological theories, we can distinguish two possi-
ble cases. In one case, the quantum state is part of the
classical description, so that the quantum state can be
inferred by knowing the ontic state x. More precisely,
two distributions ρ(x|ψ, η) and ρ(x|ψ′, η′) with ψ 6= ψ′

are not overlapped. In the other case, the inference of
the quantum state from the ontic state is not generally
possible. In Ref. [13], it was proved that the second case
takes to a contradiction under a hypothesis of separabil-
ity. Namely, the PBR hypothesis states, shortly speak-
ing, that two spatially separate systems prepared in two
quantum states (so that the overall quantum state is the
product of the states) is associated with statistically in-
dependent classical variables. If the quantum state is
taken as part of the classical description, then there are
scenarios involving multiple measurements such that the
information about the context is infinite. Thus, our hy-
pothesis of finiteness of information has to lead to a break
of the PBR separability condition under some scenario
involving distinct systems and multiple measurements.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a generalization of
the Gleason theorem and illustrated its application by
deriving some general properties of a special class of HV
theories. Apart from their relevance in quantum foun-
dations, these theories are important also in quantum
communication complexity as classical simulation proto-
cols of quantum channels [11, 12]. Assuming that the
amount of relevant information about the measurement
context is finite, we have proved that the probability of
an event for a single measurement with more than two
outcomes must be linear in the projector associated with
the event, given the information about the context. Fur-
ther properties can be deduced considering multiple com-
muting measurements under the assumption of causality.
This generalization of the Gleason theorem can suggest
some clues for finding a classical model that replaces the
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quantum communication of n qubits with a finite amount
of classical communication. At the present, this model
is missing, apart from the Toner-Bacon model for sin-
gle qubit [11] and a two-way communication model re-
ported in Ref. [12]. We found the lower bound 2n− 1 for
the amount of classical one-way communication required
by an exact simulation [14] of n qubits. We have also
discussed a possible relation of this work with the long-
lasting debate on the nature of the quantum state (see
Ref. [13] and references in there).
We conclude by suggesting some other possible exten-

sions of this work. The proof of the generalized Glea-
son theorem requires that the measure µ is a generalized
function [9], for which the derivatives are well-defined.
This condition replaces the non-negativity condition used
by Gleason, which has the same effect of ruling out
highly discontinuous functions. Although our hypothesis
is physically reasonable, it make the generalized Gleason
theorem partially complementary to the original theo-
rem. It would be interesting to find an alternative proof
that requires only the non-negativity hypothesis and pos-
sibly uses an even weaker hypothesis on the set O (see
theorem 3). It is worth noting that the concept of con-

textuality also applies to the preparation procedure [6],
thus we could wonder if also this kind of contextuality
can be summarized by a finite amount of information. In
such a case, we would find that, given this partial infor-
mation on the preparation context, the probability dis-
tribution of the ontic state x should be quadratic in the
quantum state, like a quasi-probability distribution (such
as Glauber-Sudarshan P distribution). In other terms,
the probability distribution ρ(x|ψ, η) would be somehow
piecewise quadratic. Indeed, in Ref. [15] we proved that
ρ(x|ψ, η) cannot be quadratic on the whole Hilbert space,
which is equivalent to say that a HV theory is contex-
tual for a state preparation procedure, as remarked in
Ref. [16].
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