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We study the spatial performance of the entangling gate proposed by H. Levine et al. (Phys. Rev.
Lett. 123, 170503 (2019)). This gate is based on a Rydberg blockade technique and consists of just
two global laser pulses which drive nearby atoms. We analyze the multilevel Zeeman structure of
interacting 87Rb Rydberg atoms and model two experimentally available excitation schemes using
specific driving beams geometry and polarization. In particular, we estimate the blockade shift
dependence on inter-atomic distance and angle with respect to the quantization axis. In addition, we
show that using Rydberg d-states, in contrast to s-states, leads to a pronounced angular dependence
of the blockade shift and gate fidelity.

PACS numbers: pacs

I. INTRODUCTION

One of the biggest challenges of modern atomic physics
and quantum optics is an implementation of quantum
computing at the physical level [1]. An ensemble of
trapped neutral atoms is an attractive platform for large
quantum information systems, which demonstrates high
potential for scalability and can easily support up to hun-
dreds of qubits in a single array [2–4]. The developed
trapping techniques allow for precise individual control
and manipulation at the single-qubit level as well as high
isolation from the environment.

For decades, the main bottleneck of this platform has
been the lack of robust and efficient techniques for im-
plementing multi-qubit entangling gates. The existing
protocols [5–7] with Rydberg-atom based techniques typ-
ically being the tool of choice [8] still suffer from low
operational fidelity, which does not allow one to imple-
ment large-scale fault-tolerant quantum computing and
which is mostly caused by imperfect coherent control of
ground-Rydberg excitation [1]. Furthermore, the over-
whelming complexity of Rydberg atoms short-range in-
teraction may manifest itself in undesired effects poten-
tially negating the protocol efficiency [9, 10]. However,
recent advances in Rydberg atom control [11, 12] opened
new opportunities for realization of entangling gates, in
particular resulting in a new approach to the controlled-
phase gate [13]. This gate is based on a novel protocol
consisting of two global laser pulses which drive nearby
atoms within the Rydberg blockade regime and experi-
mentally reaches fidelity up to 97.4(3)%. This protocol
is also experimentally convenient since only global pulses
are required, thus eliminating the requirement for fast
switching of the addressing beams between the atoms
during the protocol.

Since the gate operation was considered in [13] only for
one-dimensional arrays of atoms, the next natural step

towards parallel multiqubit quantum computing would
be to generalize it to the case of two-dimensional (or
even three-dimensional) optical lattices. For this pur-
pose, in this article we analyze the spatial performance
of the gate based on a particular choice of the Rydberg
states of 87Rb atoms with different angular momentum
quantum numbers and inter-atomic distances. In con-
trast to [14, 15], where the general angular dependence
of several interacting Rydberg atoms was studied, our
goal will be to find a state that is optimal in terms of the
two-qubit entangling CZ gate fidelity. We also analyze
the multilevel Zeeman structure of interacting Rydberg
atoms and model two experimentally available excitation
schemes using specific driving beams geometry and po-
larizations to obtain strong van der Waals interactions
allowing for single-atom excitation only. The obtained
results will be a helpful reference for an effective choice
of proper geometry and will be of particular interest for
quantum computing experiments with Rydberg atoms.

The remainder of the article is organized as follows. In
Sec. II A we provide a brief description of the controlled-
phase gate of interest and consider basic requirements
for its implementation. In Sec. II B we discuss how the
van der Waals interaction between two Rydberg atoms
depends on interatomic separations and angular momen-
tum channels. Based on this analysis in Sec. II C we es-
timate the blockade shift dependence on the interatomic
distance and angle with respect to the quantization axis.
Finally, in Sec. III we calculate fidelity of the controlled-
phase gate for different spatial configurations.
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FIG. 1: (a) Sequence of two global pulses providing coupling
between qubit ∣b⟩-states and Rydberg ∣r⟩ states of atoms A
and B. The driving fields’ Rabi frequencies are ΩA = ΩB and
ξ is the respective phase shift between the pulses. (b) If both
atoms are in the lower spin states ∣a⟩ the pulse sequence does
not change their collective state, and the phase shift φaa is ac-
cumulated only due to the Stark effect. (c) If atom A occupies
a Zeeman state ∣b⟩ belonging to the upper hyperfine sublevel
and atom B is in a state ∣a⟩ belonging to the lower sublevel,
the pulse sequence coupled with the Rydberg state ∣r⟩ initi-
ates a two-level transition between collective states ∣b, a⟩ and
∣r, a⟩ with a Rabi frequency ΩA. The evolution of the system
from the initial state ∣a, b⟩ is symmetric due to equivalence
of the control fields acting on the atoms. The phase shift ξ
is chosen to guarantee that the system population returns to
the initial state.(d) If both atoms occupy the state ∣b⟩, their
excitation by the pulses to states ∣r⟩ shifts the energy level by
a value δR and eliminates the coupling to the state ∣r, r⟩ in
the Rydberg blockade regime. In this case, the effective Rabi
frequency is enhanced by a factor

√

2 (see text for details).

II. TWO-QUBIT RYDBERG CZ GATE

A. Protocol description

In this section we provide a brief description of the
controlled-phase protocol for the two-qubit entangling
CZ-gate originally proposed in [13]. One of the key ad-
vantages of this protocol is that it implies the control
pulses driving both atoms simultaneously, which follows
the idea of global operations in trapped ion systems [16].
The qubits are encoded into the hyperfine clock tran-
sition of alkali-metal atoms A and B, where the lower
(logical “0”) and the upper (logical “1”) spin sublevels
are denoted as ∣a⟩A,B and ∣b⟩A,B respectively. We assume
that the two-photon excitation process provides coupling
of the qubit states ∣b⟩A,B to the Rydberg sublevels ∣r⟩A,B
with effective Rabi frequencies ΩA = ΩB = Ω and two-
photon detunings ∆A = ∆B = ∆. The sequence of two
control pulses with a relative phase shift ξ is shown in
Fig. 1(a). Figs. 1(b-d) illustrate how the different basis
states are transformed. A strategic goal of the inter-

action process is to ensure the necessary phases in the
output state and the return of qubit’s occupations to the
initial states. A proper adjustment of the experimental
parameters, such as the pulse duration τ , phase ξ and
the ∆/Ω ratio, allows one to calibrate the performed uni-
tary transformation for an implementation of the desired
CZ-gate. Let us assume that we originally prepare our
system in the following state:

∣ψ⟩A ⊗ ∣ψ⟩B = 1√
2
[∣a⟩ + ∣b⟩]A ⊗

1√
2
[∣a⟩ + ∣b⟩]B , (2.1)

where we make use of the interaction representation with
respect to the internal degrees of freedom of both atoms.
Its transformation by the control pulse sequence results
in the following output state

∣ψ⟩AB =
1

2
[eiφaa ∣a, a⟩ + eiφab ∣a, b⟩ + eiφba ∣b, a⟩ + eiφbb ∣b, b⟩]AB

∝ 1

2
[∣a, a⟩ − eiφ∣a, b⟩ − eiφ∣b, a⟩ − e2iφ∣b, b⟩]AB (2.2)

where each of the collective basis states accumulates a
controllable phase shift, and both qubits accumulate a
global phase φ which can be compensated by an addi-
tional spin rotation in an experiment. Note that despite
being not involved in the two-photon excitation process,
the qubit states ∣a⟩ accumulate a global phase shift ϕa
associated with the Stark shifts induced to the hyper-
fine sublevels by the driving lasers. Hence, the first basis
state ∣a, a⟩ acquires a phase shift φaa = 2ϕa, see Fig. 1(b).

The basis state ∣b, b⟩ experiences an excitation by the
two-photon pulses. In an ideal scenario of a perfect Ryd-
berg blockade this process can be approximated by Rabi
oscillations between ∣b, b⟩ and [∣r, b⟩ + ∣b, r⟩]/

√
2 states,

parameterized by an enhanced Rabi frequency
√

2Ω, see
Fig. 1(d). The protocol implies that a complete Rabi
oscillation cycle is performed during the first (2π)-pulse
period τ . This requires one to choose the pulse duration

as τ = 2π/
√

2∣Ω∣2 +∆2 and makes the acquired phase φbb
insensitive to the laser phase jump ξ, such that φbb = ∆τ .

The two-photon process couples the basis states ∣a, b⟩
and ∣b, a⟩ to states ∣a, r⟩ and ∣r, a⟩ respectively and initi-
ates the two-level dynamics with the corresponding Rabi
frequency Ω, see Fig. 1(c). The laser phase shift can be
chosen to minimize leakage to the excited states, such
that the control sequence returns the atoms to the qubit
states ∣b⟩, and the phase shifts φab = φba = ∆τ − ξ +ϕa +π
are acquired.

The correspondence between the last two lines in (2.2)
can be achieved by adjusting the ratio between the two-
photon detuning and the effective Rabi frequency ∆/Ω,
which also defines a global phase shift φ. The latter
can be compensated via a global spin rotation to con-
vert the CZ transformation to its conventional form:
diag(1,−1,−1,−1).

Note that the realization of the protocol implies that
the qubit states ∣b⟩ of both atoms are coupled to the cor-
responding Rydberg states ∣r⟩ via an effective two-level
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transition scheme, that guarantees the required Rabi os-
cillations dynamics of the atomic population between
the coupled states. Another necessary condition is a
strong Rydberg blockade regime. Both of these require-
ments can be fulfilled by proper selection of an excitation
scheme and a particular Rydberg state ∣r⟩, which we dis-
cuss in the section below.

B. Dipole interaction in the Rydberg states

To estimate the effective level shift δR preventing the sys-
tem from entering the doubly-excited state (see Fig. 1(d))
and necessary for further fidelity estimation, one needs
to consider in detail the Rydberg-Rydberg dipole interac-
tion giving rise to the shift. In a situation where the two
Rydberg atoms are separated well enough, the descrip-
tion of the arising dipole interaction is effectively split
into different angular structure channels of the form

nlj + nlj → nAlAjA + nBlBjB , (2.3)

where n, l, j is the set of quantum numbers describing the
initially populated Rydberg state and nA,B , lA,B , jA,B
describe the intermediately populated two-atom states.
For Rydberg interactions, the hyperfine splitting does
not play a major role and thus this degree of freedom
is omitted. Typically, several channels simultaneously
contribute to the long-range interaction of the two atoms
and the overall Hamiltonian is written as a sum of van
der Waals type Hamiltonians over the relevant individual
channels (2.3):

ĤvdW =∑
k

C
(k)
6

R6
D̂k (2.4)

with D̂k being dyad-type operators reproducing angu-
lar dependence of the interaction for a particular k-th
channel, thoroughly described in [17], R being the in-
teratomic distance1. For a particular index k defining
the angular structure of the interaction (i.e. the indices

lA, jA, lB , jB), the C
(k)
6 coefficient incorporates the de-

pendence on the atomic energy level structure in the
vicinity of the considered Rydberg state and is given by
the following sum over the principle numbers of the cou-
pled channels:

C
(k)
6 = ∑

nA,nB

c2α2

−δAB
(RnAlA

nl RnBlB
nl )

2
, (2.5)

where α is the fine-structure constant and we set h̵ = 1.
In practice, only a small number of states make a con-
siderable contribution to the van der Waals interaction

1 Operators D̂k can be naturally linked with a set of irreducible
tensor operators, defined for each atom in the basis of the angular
momentum states belonging to a particular atomic multiplet, see
[18–20]

and for every particular channel k the sum is reduced
to a certain subset of nearby-lying Rydberg states with
smallest energy defects

δAB = EnAlAjA +EnBlBjB − 2Enlj , (2.6)

where the energy of highly excited state of an alkali-metal
atom with nearly hydrogenic potential is given by

Enlj = −
1

2
mec

2 α2

(n +∆l)2
− 1

2
mec

2α
4

n4
( n

j + 1
2

− 3

4
) + . . . ,

(2.7)
where me is the electron mass and the omitted higher
relativistic corrections are denoted by ellipses [21, 22].
An angular momentum dependent quantum defect ∆l

accounts for the corrections to the Coulomb potential by
the core electrons and vanishes with increasing l. The
number of terms to include in the sum (2.5) varies based
on the chosen initial state. Generally, states with higher
angular momentum produce more relevant terms in the
sum as the energy defects of the nearby states are smaller.
The radial matrix elements are given by

Rn
′l′

nl = ⟨n′l′∣r∣nl⟩ = ∫ rχ∗n′l′(r)χnl(r)dr, (2.8)

where χnl are the corresponding radial atomic wavefunc-
tions in the effective potential.

The Hamiltonian (2.4) acts within the Hilbert sub-
space spanned by the degenerate Zeeman sublevels
∣mA⟩⊗ ∣mB⟩ ≡ ∣mAmB⟩ of the initial two-atom Rydberg
state, where mA and mB are the projections of the total
angular momenta jA and jB on the quantization axis. It
produces a set of eigenvectors ∣ϕ⟩ and eigenenergies ∆Eϕ,
which are necessary for blockade shift calculations:

ĤvdW ∣ϕ⟩ = ∆Eϕ ∣ϕ⟩ . (2.9)

The choice of the van der Waals form for the Hamilto-
nian (2.4) will be justified further by the calculation of
the resulting Rydberg defects given by (2.6) which are an
order of magnitude larger then the corresponding block-
ade shifts (see Fig. 5).

The Rydberg states we consider are ∣70s(2S1/2)⟩ and

∣70d(2D3/2)⟩ for 87Rb. The choice corresponds to typi-
cal values of n used in experiments and is a reasonable
balance between larger values of the blockade shift and
higher polarizability giving rise to increased sensitivity
to external electric fields.

For ∣70s(2S1/2)⟩, the contributing angular structure
channels (2.3) are:

1.s1/2 + s1/2 → p1/2 + p1/2,
2.s1/2 + s1/2 → p1/2 + p3/2,
3.s1/2 + s1/2 → p3/2 + p3/2.

(2.10)

The sum in C
(k)
6 coefficients to a good approximation

could be reduced to one or two terms only and for each
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channel evaluates to C
(1)
6 = 437 GHz⋅µm6, C

(2)
6 = 1132

GHz⋅µm6, C
(3)
6 = 799 GHz⋅µm6. This allows us to com-

pute the sought-for spectrum of the interaction Hamilto-
nian (2.4).

For ∣70d(2D3/2)⟩, more angular structure channels
(2.3) contribute to the interaction:

1.d3/2 + d3/2 → p3/2 + p3/2,
2.d3/2 + d3/2 → p3/2 + p1/2,
3.d3/2 + d3/2 → p1/2 + p1/2,
4.d3/2 + d3/2 → p3/2 + f5/2,
5.d3/2 + d3/2 → p1/2 + f5/2,
6.d3/2 + d3/2 → f5/2 + f5/2.

(2.11)

The sum in C6 coefficients is reduced to two or three clos-

est states and evaluates to C
(1)
6 = 68 GHz⋅µm6, C

(2)
6 = 57

GHz⋅µm6, C
(3)
6 = 57 GHz⋅µm6, C

(4)
6 = −2827 GHz⋅µm6,

C
(5)
6 = −6070 GHz⋅µm6, C

(6)
6 = −32 GHz⋅µm6.

C. Blockade shift

The coupling to the Rydberg state of choice is supposed
to proceed via a two-photon process allowed by the selec-
tion rules. The gate operating scenario shown in Fig. 1(d)
involves a pair of atoms being pumped simultaneously
into the Rydberg state. In this situation, the doubly-
excited state of the pair appears to be shifted from the
resonance by a value of the mean blockade shift δR, given
by [17]:

1

δ2R
=∑

ϕ

κ2ϕ

∆E2
ϕ

, (2.12)

where the sum is taken over the spectrum of Rydberg in-
teraction Hamiltonian (2.4) with eigenenergies ∆Eϕ and
overlap factors κϕ = ⟨ϕ∣Ψ⟩. Here ∣ϕ⟩ is a particular inter-
action eigenstate and ∣Ψ⟩ is the two-atom Zeeman state
which we attempt to populate with the laser field. In
order to determine the form of ∣Ψ⟩ we need to specify the
particular schemes of two-photon ground-Rydberg exci-
tation. Considered geometries and transition diagrams
are shown in Figs. 2(a,b).

In our calculations we consider two 87Rb atoms and
specify the hyperfine qubit states as ∣a⟩ = ∣5s(2S1/2);F0 =
1,M0 = 0⟩ and ∣b⟩ = ∣5s(2S1/2);F0 = 2,M0 = 0⟩. The
qubit state ∣b⟩ is coupled to the considered Rydberg states
∣r⟩ via the two-photon excitation process initiated by
two counter-propagating beams linearly-polarized along
z-axis as shown in Fig. 2(c). Note that only a single
intermediate state ∣e⟩ = ∣6p(2P1/2);F = 1,M = 0⟩ con-
tributes to the ladder-type two-photon excitation process
in this excitation geometry due to convenient selection

FIG. 2: The transition diagrams for 87Rb driven by two
counter-propagating and linearly polarized light beams. The
participating states are specified by the concrete numbers of
the total electronic and nuclear spin angular momenta and
their projections. The used energy configuration of 87Rb is
effectively two-level and provides coupling of the qubit state
∣b⟩ only with a single Rydberg state ∣r⟩ having the principal
quantum number n = 70. We consider excitation to the Ry-
dberg states with two different combinations of orbital and
total angular momenta: (a) lr = 0, jr = 1/2, when only one
excited sublevel ∣r⟩ = ∣Fr = 2,Mr = 0⟩ is involved in the exci-
tation process; (b) lr = 2, jr = 3/2, when two Rydberg sub-
levels ∣Fr = 0,Mr = 0⟩ and ∣Fr = 2,Mr = 0⟩ are coupled to
the qubit ∣b⟩ state, and form the coherent superpositions of
mutually-orthogonal “bright” (involved into the two-photon
interaction process) and “dark” (isolated from the coherent
coupling) states. (c) Excitation geometry: driving fields are
linearly polarized along the z-axis. We consider the blockade
shift as a function of the interatomic distance R and the angle
between the molecular axis and the z-axis θ.

rules which allow us to minimize the losses due to inco-
herent scattering and ignore the negative effect of photon
recoil.2

Excitation to ∣70s(2S1/2)⟩ selects a single Zeeman state
∣r⟩ = ∣Fr = 2,Mr = 0⟩, see Fig. 2(a). Thus ∣Ψ⟩ has the
following form in the basis of two-atom projections of
angular momentum ∣mA⟩⊗ ∣mB⟩, where the projection of

2 We assume that the atoms are trapped in optical tweezers with
the beam axis along the z direction at all times excluding the
course of the protocol. The counter-propagating driving beams
push atoms in the transverse plane, where they have tighter con-
finement than in the axial direction and can be effectively frozen
via a Raman sideband cooling protocol.
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the nuclear spin is ignored:

∣Ψs⟩ = 1
√

2
[∣+ 1

2
⟩ + ∣− 1

2
⟩]
A
⊗ 1
√

2
[∣+ 1

2
⟩ + ∣− 1

2
⟩]
B

= 1
2
(∣+ 1

2
,+ 1

2
⟩ + ∣− 1

2
,− 1

2
⟩ + ∣+ 1

2
,− 1

2
⟩ + ∣− 1

2
,+ 1

2
⟩),

(2.13)

For the ∣70d(2D3/2)⟩ state two Rydberg sublevels are ac-
cessed via two-photon transitions: ∣Fr = 0,Mr = 0⟩ and
∣Fr = 2,Mr = 0⟩, see Fig. 2(b). Thus, a slightly more com-
plicated ‘bright state’ is selected in the excitation process
∣r⟩ = [∣0,0⟩ − ∣2,0⟩]/

√
2, while the orthogonal ‘dark state’

[∣0,0⟩+ ∣2,0⟩]/
√

2 is insensitive to the coherent coupling.
This leads to the following form of the double Rydberg
state written in the uncoupled basis

∣Ψd⟩ = 1
√

2
[∣+ 1

2
⟩ − ∣− 1

2
⟩]
A
⊗ 1
√

2
[∣+ 1

2
⟩ − ∣− 1

2
⟩]
B

= 1
2
(∣+ 1

2
,+ 1

2
⟩ + ∣− 1

2
,− 1

2
⟩ − ∣+ 1

2
,− 1

2
⟩ − ∣− 1

2
,+ 1

2
⟩).

(2.14)

Note again, that the dependence on the nuclear spin
degree of freedom is omitted in the above expressions,
since the effects connected with hyperfine interactions do
not play any significant role in estimating the blockade
shift. However, they are of great importance when con-
sidering the Rydberg excitation geometry and are thus
included in the further fidelity analysis as shown in the
transition diagrams of Fig. 2(a,b).

The overlap factors κϕ are evaluated by switching to
a common reference frame, which makes the factors de-
pendent on the angle θ between the interatomic axis and
the polarization of the driving field. A further comment
on the observed angular dependency from a semiclassical
prospective is given in the Appendix A.

The blockade shift δR is thus dependent on two spatial
parameters: the interatomic distance R and the angle θ,
see Fig. 2(c). For the two considered Rydberg states, the
blockade shift spatial dependence is plotted in the upper
panels of Fig. 5, 6.

III. RESULTS AND DISCUSSION

In this section we present the results of our numerical
simulations for fidelity of the entanglement protocol. We
analyze the results and compare the cases of different ex-
perimentally accessible excitation geometries to optimize
the entanglement preparation.

A. Fidelity analysis

Fidelity of reproduction of an ideal output state ∣ψ⟩AB
defined by (2.2) can be estimated as follows

F = ⟨ψ∣ρ̂∣ψ⟩AB , (3.1)

where ρ̂ is the density operator of the mixed spin state
incorporating incoherent processes associated with finite

FIG. 3: Fidelity F of the entangled state prepared by a CZ
transform via a controlled phase protocol as a function of the
effective Rabi frequency ∣Ω∣ at varied values of the Rydberg
blockade shift δR/2π = 30, 40, 50, 60 MHz. The oscillations
indicate the probability of simultaneous occupation of ∣r⟩ by
atoms A and B.

FIG. 4: CZ-gate fidelity F = F(R, θ) as a function of spatial
and angular parameters z = R cos θ, y = R sin θ for the exci-
tation schemes shown in Fig. 2(a) (left panel) and Fig. 2(b)
(right panel). The shaded area corresponds to relatively short
distances of several microns, where the interatomic potential
deviates from ∼ R−6 scaling (see text for more details).

radiative lifetime of the Rydberg state ∣r⟩ and the chan-
nels of incoherent Rayleigh and Raman scattering of the
driving fields via intermediate states. It also accounts for
the protocol imperfection due to the simultaneous occu-
pation of the Rydberg state by both atoms A and B.
The problem of blockade leakage may become critical if
the condition ∣Ω∣ ≪ δR is not fulfilled and here we mainly
discuss the spatial variations of δR which subsequently
lead to spatial dependence of the gate fidelity. Hence,
we omit the description of the calculation scheme we use
to derive the density operator of the output state, which
will be published elsewhere [23].

In Fig. 3 we show the CZ-gate fidelity at varied and
given values of blockade shifts δR/2π = 30, 40, 50, 60
MHz as a function of the effective Rabi frequency Ω. If
the effective Rabi frequency increases the probability am-
plitude of double excitation of the Rydberg state becomes
non-negligible, which results in extra phase shifts in the
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prepared entangled state and its deviations from the ideal
state ∣ψ⟩AB . The probability of double occupation os-
cillates with frequency and amplitude depending on the
ratio δR/∣Ω∣ which is shown in Fig. 3. In the opposite
limit of small Ω and long excitation pulses τ the entan-
glement fidelity is reduced by the irreversible incoherent
processes. In our further calculations we set ∣Ω∣/2π ≃ 7
MHz, which corresponds to the CZ-gate time of 2τ ≃ 180
ns and provides the entanglement fidelity of F ≃ 0.997 in
the perfect blockade limit. The dependence of fidelity on
the lifetime of the considered Rydberg state ∣70s(2S1/2)⟩
or ∣70d(2D3/2)⟩ at selected blockade shifts δR is weak and
unresolved in Fig. 3 within the plot scale for the tested
calculation domain.

Density plots in Figs. 4(a,b) visualize the calculated fi-
delity as a function of two spatial arguments F = F(R,θ)
for the two considered excitation schemes. We note
that using the ∣70s(2S1/2)⟩ state one obtains an almost
isotropic interaction between the two atoms, which re-
sults in an isotropic behaviour of the blockade shift and
CZ-gate fidelity (left panel). The strong angular depen-
dence arises for the case of excitation via ∣70d(2D3/2)⟩,
that may provide a useful tool for selective addressing of
atoms in the qubit array (right panel). Below we discuss
the dependence of fidelity on the interatomic separation
and its variation with angle in more detail.

The parameters δR and F , calculated as a function
of interatomic separation R, are shown in Fig.5. Here
we specify the angle between the light polarization and
the molecular axis θ = 0 and observe the dependence of
δR ∝ R−6 (upper panel) which is typical for the Rydberg
blockade regime. In contrast, fidelity F = F(R) (lower
panel) shows a non-monotonic behaviour for higher sep-
aration distances caused by its non-trivial oscillatory be-
haviour if the condition ∣Ω∣ ≪ δR is violated. The results
are presented for the two considered Rydberg excita-
tion schemes: ∣70s(2S1/2)⟩ (solid curve) and ∣70d(2D3/2)⟩
(dashed curve).

The angular dependence of the CZ-gate fidelity F =
F(θ) is presented in Fig. 6. The calculations performed
at the interatomic separation R = 5µm and for the
two considered schemes of atomic excitation via cou-
pling of the qubit state ∣b⟩ to the Rydberg states belong-
ing to state ∣70s(2S1/2)⟩ (solid curves) and ∣70d(2D3/2)⟩
(dashed curves). The first choice of Rydberg s-states
provides a nearly isotropic interaction, hence the gate fi-
delity does not depend on the orientation of the atoms
with respect to the driving beams polarization. The situ-
ation is different if Rydberg states belong to the d-orbital,
which results in a strong angular dependence of the block-
ade shift with a global maximum at θ ≃ π/2. Note that
typically, a maximum of δR corresponds to a higher F .
However the lowest values of fidelity are not always re-
produced by the minima of the blockade shift, which is a
further consequence of the non-monotonic behaviour of
fidelity in a weak blockade regime ∣Ω∣ ∼ δR.
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FIG. 5: Blockade shift (upper panel) and CZ-gate fidelity
(lower panel) for excitation schemes via Rydberg states
∣70s(2S1/2)⟩ (solid curves) and ∣70d(2D3/2)⟩ (dashed curves)

in 87Rb as a function of interatomic separation at angle θ = 0,
see Figs. 3(c),4. The energy defects δAB for channels (2.10) of
∣70s(2S1/2)⟩ and channels (2.11) of ∣70d(2D3/2)⟩ of 102

− 103

MHz are at least an order of magnitude larger then the block-
ade shift.

IV. CONCLUSIONS

In this paper we have considered the spatial depen-
dence of fidelity of the atomic spin entanglement protocol
based on the Rydberg blockade technique. We have ana-
lyzed the multilevel Zeeman structure of interacting 87Rb
Rydberg atoms and modelled two experimentally avail-
able two-photon excitation schemes using specific driving
beams geometry and polarizations to obtain strong van
der Waals interactions allowing only single-atom excita-
tion.

The two considered excitation schemes implied ad-
dressing to Rydberg states belonging to ∣70s(2S1/2)⟩ and

∣70d(2D3/2)⟩ manifolds having significantly different an-
gular structure. The nearly isotropic interaction in Ry-
dberg s-states results in a lack of angular dependence
observed for the phase-controlled CZ-gate fidelity. The
use of the lower angular momenta also seems reasonable
to attain the strong Rydberg blockade regime since it
corresponds to higher values of energy defects and less
fine structure channels contributing to the interaction.
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FIG. 6: Angular dependence of the blockade shift (upper
panel) and CZ-gate fidelity (lower panel) for the excitation
schemes via Rydberg states ∣70s(2S1/2)⟩ (solid curves) and

∣70d(2D3/2)⟩ (dashed curves) in 87Rb at the interatomic sep-
aration R = 5µm.

We have shown, that using Rydberg d-states, in con-
trast to s-states, leads to a pronounced angular depen-
dence of the blockade shift and gate fidelity. That,
in turn, may be useful for engineering the strongly
anisotropic interaction of atoms in a two-dimensional lat-
tice.
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Appendix A: Electronic density distribution of
Rydberg s and d-orbitals

The qualitative behavior of highly excited Rydberg states
in the Coulomb potential can be naturally described us-
ing a semiclassical visualization of the excitation process.
Generally, the excited electron moves along an elliptical
trajectory with its action variable quantized according
to the Bohr-Sommerfeld principle. The anisotropy of the
trajectory and its orientation can be incorporated into a
single vector parameter, namely, the Runge–Lenz vector

A = p × l −mee
2r/r = nε, (A1)

where n = r/r and ε are respectively the orbit director
and its eccentricity.

If the reference atom is excited to an s-orbital with
zero orbital momentum l = 0 then intuitively and naively
we could expect that its classical trajectory and the
Runge–Lenz vector would reduce to a line segment and
to its unit director, respectively. However that is not so
and such a comet-type trajectory cannot be simply repro-
duced by an s-orbital, since the former has an asymmetric
charge distribution while the orbital wave-function does
not. Specifics of the electron motion in a hydrogen-like
Coulomb potential is that it admits arbitrary superposi-
tions of the states of same energy but different l’s (dif-
ferent parities). In parabolic coordinates such a super-
position can reveal the new set of states with Az ≠ 0, see
[22]. Then the principal quantum number is given by

n = n1 + n2 + ∣m∣ + 1, (A2)

and the diagonal matrix elements of Az are

Az =
n1 − n2
n

, (A3)

where n1 and n2 are the parabolic quantum numbers and
∣m∣ is the modulus of the azimuthal quantum number.
Once we assume m = 0 and either n1 = n − 1, n2 = 0 or
n1 = 0, n2 = n−1 we arrive at the quantum state optimally
approaching the classical orbit with a zero angular mo-
mentum. Surprisingly, many orbital quantum numbers
l’s are needed to construct such a state.

In a realistic scenario, the states with different l have
different energies and the eigenstate problem can be fairly
resolved only in spherical coordinates. Then the complete
set of the commuting operators specifies the targeted s-
state by its principle quantum number n ∼ 100, and by
a zero projection m = 0 onto an arbitrary quantization
direction. Any deviations for Az ≠ 0 would conflict with
the isotropic charge distribution. Thus, for a highly ex-
cited s-orbital one should imagine its electronic density as
a random isotropic probability distribution of its radial
coordinate, with most typical values lying on a sphere
formed by the apogee points of the classical orbits. In a
semiclassical vision the electron spends most of its time
just near the sphere surface, and we have fulfilled both
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the constraints ⟨A⟩ = 0 (dictated by quantum mechanics)
and ⟨A2⟩→ 1 (suggested by classical description).

If the reference atom is excited to a d-orbital with l = 2
the situation is somewhat different. From the classical
point of view the optical excitation affects both the lin-
ear and the orbital angular momentum of the electron
motion. The classical trajectory becomes elliptical with
⟨A2⟩ ≲ 1 and the excitation by linearly polarized light
provides m = 0 only for the quantization direction along
the light polarization. In a classical visualization of mo-
tion the Runge-Lenz vector is expected to be directed

along the light polarization as well. But the occupied or-
bital has an even probability density function giving rise
to a constraint ⟨A⟩ = 0, i.e. the orbit director should have
a zero projection on any axis. So the electronic density
has a radial distribution, scaled by the separation of the
orbit focuses, and, similarly to the case of the s-orbital,
the most typical values of the radial coordinate belong to
a surface formed by the orbit apogee points. Neverthe-
less, its angular distribution becomes anisotropic and de-
pending on the polar angle, manifesting in an anisotropic
Rydberg blockade effect studied here.
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