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We propose an analytical method to achieve 
complete energy conversion in sum 
frequency generation based on Lewis-
Riesenfeld invariants theory. This technique, 
derived from a two-level atom transition in 
quantum mechanics, is more efficient and 
robust than conventional methods. In our 
scheme, the quasi-adiabatic single control 
parameter model is established, and the 
value of single control parameter is selected 
to make the initial eigenstate perfectly 
converted to the final eigenstate we need. 
Corresponds to the nonlinear frequency 
conversion process, the nonlinear crystal 
structure is designed with the inverse 
engineering of optimal control theory, which 
is robust against the perturbations in the 
coupling coefficient and phase mismatch, 
including pump intensity and crystal 
polarization period variations, and results in 
almost 100% conversion efficiency at any 
crystal length. It is demonstrated that the 
frequency conversion can be achieved in the 
wavelength range of 2.6 μm -3.6 μm with a 
spectral bandwidth of the conversion 
efficiency over 50% approaching to 400 nm 
when the crystal length L=1 mm. 

1 Introduction  

Optical frequency conversion is a phenomenon that 
the nonlinear response of light waves with different 
frequencies in nonlinear materials produces light 
with different third frequencies, which has broad 
application prospects in quantum optics, new light 
sources, holographic imaging, biological imaging 
and sensing and other fields[1]. Generally speaking, 
the highly efficient frequency conversion process 
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needs to satisfy the phase matching condition or 
quasi-phase matching condition, so that the phase 
matching Δk=0. Phase matching is the 
manifestation of momentum conservation in the 
process of nonlinear light-wave interaction, which 
directly determines the efficiency of nonlinear 
frequency conversion. When the phase mismatch is 
large, the conversion efficiency is very low. There 
are several ways to adjust the birefringence by 
adjusting the angle of propagation of the wave 
through the nonlinear crystal or the temperature of 
the crystal, or to compensate for the phase 
mismatch of the wave vector by changing the 
polarization period of the crystal. Unfortunately, 
neither of above standard frequency conversion 
technologies can provide simultaneously highly 
efficient and broadband frequency conversion, 
which is of great practical importance for many 
applications. 

In the last decade, Suchowski et al. have 
theoretically proposed a completely different 
efficient, robust and broadband frequency 
conversion method, named adiabatic frequency 
conversion technique, by comparing the frequency 
conversion process to the dynamics of a two-level 
atomic system Landau-Zener(LZ) theorem based 
on undepleted pump approximation and have 
demonstrated this method experimentally by the 
chirped polarized nonlinear crystals are designed 
without phase matching [2-8]. In addition, Andery 
Markov et al.[9] show that it is feasible to achieve 
adiabatic process by setting the temperature 
gradient in the crystal; Xun Liu et al.[10]proposed 
an adiabatic conversion method based on electro-
optic effects. All of these methods illustrate the 
nature of adiabatic theory: it is a process requiring 
long distance evolution to achieve efficient 
frequency conversion, i.e., the adiabatic conditions 
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strictly limit the phase mismatch changing very 
slowly from very large negative values to very large 
positive values and requiring high pumping 
intensity [11].  

In the other hand, “shortcuts to adiabaticity” 
(STA) method [12-15], providing a physical model 
in quantum control theory to speed up the above 
quantum adiabatic slow process by a fast path, the 
final result of slow adiabatic evolution can also be 
obtained at the same time. The adiabatic scheme 
designed based on quantum adiabatic shortcut 
technology includes three methods: transition-less 
quantum driving [16], super-adiabatic method (LR) 
quantum invariants [17] and inverse engineering 
based on Lewis-Riesenfeld [18]. Especially, Lewis-
Riesenfeld invariant theory, combining time-
dependent perturbation theory and optimal control 
theory [19, 20], reduces the influence of different 
perturbations on the system evolution and 
increases system robustness against error noise. 
This technique is beyond the conventional 
adiabatic limits, and is now commonly used to 
design different types of efficient and robust 
photonic waveguide devices based on the analogies 
between quantum mechanics and wave optics, such 
as adiabatic couplers [21-27] and polarization 
conversion devices[28], which has a shorter 
evolutionary length than Landau-Zener adiabatic 
designs and can achieve 100% conversion efficiency. 

In this paper, we propose a quasi-adiabatic (QA) 
single control parameter model with the 
application of Lewis-Riesenfeld invariants, which 
can achieve STA during frequency upconversion by 
designing the coupling coefficient and structure of 
nonlinear crystal polarization period. In our model, 
the coupling coefficient is constant and the phase 
mismatch is a variable related to the coupling 
coefficient and propagation distance z. By 
combining the Lewis-Riesenfeld invariants theory 
with the optimal control theory[19, 20], the 
optimal schemes against the perturbation of 
coupling coefficient perturbation and phase 
mismatch can be designed respectively. These 
optimal schemes allow us to calculate the optimal 
solution of the coupling coefficient corresponding to 
any crystal length, thus the design of the crystal 
polarization period by this scheme can achieve a 
conversion efficiency of almost 100%. Further, 
considering the crystal length L =1 mm as an 
example for numerical calculation, it shows that 
our scheme can provide efficient broadband sum 

frequency generation in the 2.6 μm - 3.6 μm 
wavelength range with a spectral bandwidth 
approaching to 400 nm bandwidth. Compared with 
the conventional invariant method, the quasi-
adiabatic model has a smaller coupling coefficient, 
which means that complete energy conversion can 
be achieved with a lower pump intensity. The 
numerical results show that our optimal schemes 
are robust against the influence of the pump 
intensity variations and the crystal polarization 
periodic processing error. Finally, the comparation 
between Landau-Zener adiabatic frequency 
conversion and quasi-adiabatic method is carried 
out, the advantages of our method are 
demonstrated. We prove that the scheme based on 
Lewis-Riesenfeld invariant engineering can keep 
complete and robust energy conversion by sum 
frequency generation at any crystal length in weak 
signal upconversion. 

2 Quasi-adiabatic single control 
parameter model  

We consider an upconversion process in which two 
light fields of different angular frequencies (ω1 and 
ω2) interact inside a nonlinear crystal to produce a 
light field of ω3, where 1, 2, and 3 are signal light, 
pump light and upconversion light respectively, 
satisfying the conditions ω1 + ω2 =ω3. If the pump 
intensity is much larger than the signal light, it can 
be regarded as no loss in the propagation process, 
which means that the undepleted pump 
approximation is applied, the pump amplitude A2, 
can be considered to be constant along the 
propagation. Then, considering the plane wave 
approximation condition and ignoring the group 
velocity dispersion, the three-wave coupling 
process of frequency upconversion can be written 
in the form of linear equations[2, 3], 
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respectively, 2
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Therefore, the sum frequency process can be 
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It is shown that Eq (2) is formally equivalent to 
the time-dependent Schrödinger equation, so the 
frequency conversion between coupled waves is 
similar to the population transfer between two-
level atom. Next, we will design the coupling 
constant and phase mismatch Δk through the 
combination of invariant-based inverse engineering 
and perturbation theory to achieve an efficient and 
robust sum frequency process. 

According to the Hamiltonian H0 of the sum 
frequency system given above, the dynamic 
invariant I(z) is[18] 
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where θ≡ θ(z) and β≡ β(z) are z-dependent angles, 
Ω0 is an arbitrary constant. The eigenstates of the 
invariant I(z) have the same form as that of H0, 
which can be expressed as 
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with eigenvalues 
0 / 2    . 

By constructing the Lewis-Riesenfeld invariant 
theory, dynamic invariants can be used to 

represent arbitrary solution of the time-dependent 
Schrödinger equation, in general the system state 
can be written as 

  ,( )) (ni z
nn nz c ze     (5) 

where the cn are z-independent amplitudes and 

 n z  is the eigenvector of I(z). Lewis-Riesenfeld 

invariant phase is expressed as 
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θ ≡ θ(z) and β≡ β(z) can be given by the invariant 
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     sin ,z z z     (7) 
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The following is a discussion on the value of 
coupling coefficient κ. On the one hand, since the 
conventional Lewis-Riesenfeld invariant is 
proposed in the two-level atomic transition, and 
the Hamiltonian of the two-level system is[29] 
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where Ω(t) represents the Rabi frequency of the 
outer field laser corresponding to the coupling 
coefficient κ in Eq. (2). Generally speaking, the 
Rabi frequency is regarded as a time dependent 
pulse function. In fact, if the energy total of the 

laser (  
0
Ω t

T
W dt  ) is the same, then the energy 

level transition can be achieved as well, that is, the 
Rabi frequency and coupling coefficient can be set 
to a constant.  

On the other hand, if κ varies with the 
propagation distance z, observing the expression 
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this way the duty cycle in nonlinear susceptibility 
is a function of the spatial variation of the 
propagation distance z. While for nonlinear crystals, 
it is very difficult to realize the elaborate processing 
of duty cycle and polarization period in a short 
crystal simultaneously. More importantly, the 
pump intensity of the conventional invariant 
scheme is so high that exceed the damage threshold 
of the crystal, which will be explained in detail 
below.  

Therefore, we set the coupling coefficient is a 
constant, and the phase mismatch Δk is regarded 
as a variable varying with the propagation distance 
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z in our scheme, that is, the polarization period of 
the crystal is variable with the duty cycle D =0.5. 
By this design, we obtain a design scheme whose 
crystal structure is similar to that of adiabatic 
chirped crystal with a lower pump intensity, which 
is called quasi-adiabatic model. 

Then we take the derivative of Eq. (7) with 
respect to z:  

( ) ( ) cos ( ),z z z      (10) 

substituting Eqs. (7) and (10) into Eq. (8), a new 
form for the phase mismatch can be obtained: 

2

2

( )
Δ ( ) cot ( )

)
1

1

(

( )

zz
k z z

z

 




  
    

  
   

 

  (11) 

This means that for different coupling 
coefficients, corresponding Δk evolution schemes 
can be found to satisfy our requirements. The 
trajectory of state evolution between them can be 
parametrized according to one of the eigenstates 

 1 z  of the invariant. In order to achieve 

complete energy conversion between signal light 
and upconversion light, by using  1 z  in Eq. 

(4), the boundary conditions of the initial and final 
states can be set as 
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In the invariant-based engineering, since the 
system evolves strictly according to Eq. (4), we can 
choose arbitrary interpolation function θ and use 
inverse engineering to design system parameters as 
long as the initial and final states are guaranteed 
to satisfy the state of complete energy conversion. 
Observing Eq. (11), in order to ensure the complete 
energy conversion of the initial and final states and 
the existence of Δk at the boundary, the following 
boundary conditions are set: 
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In order to satisfy the boundary conditions, the 
smooth interpolation function is assumed to be of 
the form of a polynomial ansatz[30], let 
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where L is the length of crystal, and 
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Thereby, after satisfying the boundary 
conditions, the coupling coefficient κ and phase 
mismatch Δk design still have a great degree of 
freedom without satisfying the strict adiabatic 
conditions[5]. Different coupling coefficient 
corresponds to different interpolation function, 
that is to say, the evolution of eigenstates of the 
system is mainly determined by the selection of 
coupling coefficient This degree of freedom allows 
us to combine inverse engineering with optimal 
control to select the most robust state dynamics for 
demand-based design engineering in the presence of 
various perturbations and systematic errors while 
achieving complete energy conversion.  

3 Optimal schemes against different 
perturbations  

In this section, some perturbations during the 
evolution of the system are considered, which will 
influence the robustness of the conversion efficiency. 
In order to ensure the robustness of the system, we 
combine LR invariants with optimal theory to 
propose an optimal scheme for perturbations. 
System errors shall be considered to consist of 
perturbations of phase mismatch and coupling 
coefficient,  σ σ / 2x z   H [20], where σx, 

σz is the Pauli matrix, ηκ, ηΔk is the error amplitude, 
which will be given below for different influence.  

Now, considering an ideal, unperturbed original 
Hamiltonian H0, the system Hamiltonian with 
perturbation is expressed as

0 ' H H H . Under 

such conditions, the final state of the conversion 
efficiency is written[20] as 
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We define coupling coefficient error sensitivity 
and detuning error sensitivity by perturbation 
theory, with the consideration of the second-order 
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approximation, respectively 
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where      2m z z z   . 

Then the conversion efficiency can be rewritten 
as 2 2

Δ ΔP 1 k kq q     . It can be found that the 

perturbation is related to the coupling coefficient 
and phase mismatch, so the perturbation can be 
nullified by selecting appropriate interpolation 
function, which is of great significance to maintain 
the robustness of the system. 

3.1 Δk -optimal scheme  

First, we discuss the optimal scheme for the 
perturbation of phase mismatch Δk. In the process 
of frequency conversion, the processing error of 
crystal period is usually regarded as the 
perturbation of Δk, i.e., consider perturbation 

/ 2σzH ,so the error amplitude ηΔk can be 

rewritten as  
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and error sensitivity is shown in Eq. (17). To 
ensure maximum conversion efficiency, the error 
sensitivity needs to be nullified in the presence of 
perturbations. Observing Eq. (17), the parameters 
that determines the value of qΔk is the coupling 
coefficient κ and crystal length L, and different 
crystal length L corresponds to different coupling 
coefficient κ of the optimal schemes. By numerical 
calculation, when L=1mm, the coupling coefficient 
κ =76.23 cm-1 corresponding the minimum error 
sensitivity qΔk =3.6723×10-8 m2. This is because 
there is second-order approximation for error 
sensitivity, so the result that are approximately 
equal to 0. By substituting it into Eq. (11), 
combining the relationship between coupling 
coefficient and pump amplitude and phase 
mismatch (the polarization period of PPLN), the 
pump amplitude A2 as a function of the crystal 
length L and the polarization period Λ as a function 
of the propagation direction can be expressed as 

2
1 3
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In addition, the pump intensity is calculated 
through 2

2 0 0 22 /I n A  , where n2 is the 

pump refraction index, ε0=8.82×10-12 F/m and 
μ0=4π×10-7 H/m. The optimization of pump 
intensity as shown in red curve of Fig. 1, and the 
black curve of Fig. 1 represents the pump intensity 
calculated by the conventional LR invariant. There 
is an inverse relationship between the pump 
intensity and the length of the crystal. When L =1 
mm, quasi-adiabatic optimal scheme for Δk needs 
pump intensity 455 MW/cm2, which is 11 times 
less than conventional scheme. 

 

 

Figure 1 The relationship between pump intensity and 
crystal length, the black curve is conventional LR 
model, the red curve is the Δk -optimal scheme in QA 
model, and the blue curve is κ-optimal scheme in QA 
model. Inset: QA model are magnified 

 
 

We set the crystal length to 1mm, at which point 
the optimal polarization period scheme based on 
inverse engineering for Δk perturbation is shown 
in Fig. 2(a). Then Runge-Kutta method is used to 
simulate the design with 5 mol % magnesium oxide 
doped lithium niobate (MgO: LiNbO3) crystal. We 
choose the pump wavelength is 1.064μm, with the 
signal wave center wavelength is 3 μm, and the 
definition of conversion efficiency is  

 
 

2
3

2
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A

A
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Figure 2 The crystal polarization period is optimal for 
different perturbations. (a) Δk -optimal scheme. (b) κ -
optimal scheme.  
 
 

The interaction between signal light and 
upconversion light in system evolution is shown in 
Fig. 3(a). When L=1mm, 100% conversion 
efficiency can be achieved. Then, the relationship 
between the conversion efficiency and crystal 
length is researched, as shown in black curve of Fig. 
4. which means that for arbitrary length of crystal, 
complete frequency conversion can be achieved by 
applying appropriate pump intensity and crystal 
structure. It is found in the inset that when the 
crystal length L<0.1mm, the conversion efficiency 
increases gradually from 0 to 100%, and then 
remains unchanged. Theoretically, the conversion 
efficiency should always be 100%, which is not 
realized because there is a minimum limit of crystal 
length related to the crystal polarization period and 
the number of periods set. Therefore, it can be 
approximated that 100% conversion efficiency can 
be achieved with arbitrary short length under the 
correct boundary setting. In addition, according to 

the LZ adiabatic frequency conversion theory, we 
choose the same coupling coefficient and the 
extreme value of the phase mismatch Δk for 
simulation comparison with a linear chirp profile of 
phase mismatch Δk under the parameter condition 
of phase mismatch Δk optimization, and find that 
for the adiabatic theory, only the crystal length 
L=2 mm can achieve highly efficient conversion 
efficiency with a rapid and violent oscillation 
asymptotic conversion efficiency profile as shown 
in the red curve of Fig. 4. 
 

 

 

Figure 3 Evolution of the normalized intensity in the 
crystal along propagation distance z. (a) Δk -optimal 
scheme. (b) κ-optimal scheme. 
 
 

Then the input wavelength is varied from 2.6 μm 
to 3.6 μm with a central wavelength of 3 μm. The 
spectral acceptance bandwidth of signal wave, i.e., 
full width ratio at half maximum of conversion 
efficiency, of different crystal lengths is obtained 
based on this design, as shown in Fig. 5(a). When 
the crystal length L=1 mm, spectral acceptance 
bandwidth is 393 nm with the guarantee that the 
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conversion efficiency exceeds 90% in the 
wavelength range of 2.9μm to 3.1μm, but with the 
increase of the length of the crystal, the bandwidth 
reduced to 40nm in L=20 mm. This is remarkable 
since these bandwidths are generally inversely 
proportional to the length of bulk nonlinear crystal. 
The black dotted lines and red dotted line 
represent the conversion bandwidth of the 
conventional invariant method using the detuning 
optimal scheme and LZ adiabatic method 
respectively when the crystal length L=1 mm. By 
contrast, it is found that the spectral bandwidth of 
our quasi-adiabatic method is 28 nm smaller than 
that of the conventional LR invariant method 
under the condition of the same crystal size. At this 
time, although the bandwidth of LZ adiabatic 
method is 339 nm, its maximum conversion 
efficiency is only 64%, this's because our scheme 
doesn't need to satisfy strict adiabatic conditions. 
 

 

Figure 4 The conversion efficiency of the two adiabatic 
methods varies with crystal length. Red curve is the LZ 
adiabatic scheme with the parameters of Δk -optimal 
scheme, blue curve is the LZ adiabatic scheme with the 
parameters of κ-optimal scheme and the black curve is 
QA model. Inset: conversion efficiency when crystal length 
less than 0.1mm. 

 
 
It is found that the conversion efficiency profile 

is not smooth with some spectral ripple. This is due 
to the interaction with large phase mismatch at the 
beginning and end, which means that when light 
waves enter or leave the nonlinear medium, there 
are abrupt changes in system parameters. It’s 
essentially wave coupling on or off, phase mismatch 
is finite when light waves enter or leave nonlinear 
media, so that the system doesn’t evolve 

adiabatically between the eigenstates. Instead, it 
excites the superposition of these eigenstates, and 
spectral ripples are the manifestations of mutual 
interference between these eigenstates. This is 
consistent with the bandwidth profile produced by 
an adiabatic crystal without an apodization 
procedure[5, 31]. 

 

 

Figure 5 The conversion efficiency and spectral 
acceptance bandwidth of different crystal lengths with 
different optimization for perturbations. (a) Δk -optimal 
scheme. (b) κ-optimal scheme. 
 
 

Next, we consider the effect of perturbation on 
conversion efficiency, which is shown in the Fig. 6, 
where the black curves in a, b are the change of 
conversion efficiency in the geometrical 
imperfection (e.g., crystal polarization period 
processing error) and pump intensity variation 
respectively and the black dotted line shows the 
optimal results of the traditional LR invariant 
method, and the blue dotted line shows the 
robustness of the LZ adiabatic method. For the 
polarization period, when the processing error is 
between -20% to +20%, the frequency conversion 
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can be realized, and it has strong robustness with 
the almost 100% conversion efficiency between -1% 
to 1% in the inset. The profile of this curve isn’t 
symmetrical, because when the crystal period 
increases or decreases by the same value, the 
change of phase mismatch Δk is not the same, and 
the system has higher tolerance when the crystal 
period increases. And LZ adiabatic method has a 
lower robustness against this perturbation. It’s 
because that LZ adiabatic method has a strict limit 
on the rate of change of phase mismatch, but QA 
model doesn’t have. When the pump intensity 
variation is in the range -25% to +10%, it has a 
high tolerance over 80%, as well as when the actual 
pump intensity is less than the set, there is a higher 
tolerance at the condition of small variation. 
Overall, the result shows the desired robustness 
against two kinds of perturbations at a short 
crystal length, as a result of our optimal scheme.  

 

  

 

Figure 6 Tolerance of different perturbations in different 
optimal schemes. Black curve is a univariate model κ-
optimal scheme and red curve is Δk -optimal scheme. (a) 
Crystal polarization period processing error. (b) Pump 
intensity variation. 

3.2 κ-optimal scheme 

Next, we apply the optimal protocol for robustness 
against the perturbation of coupling coefficient κ 
caused by pump intensity variation, i.e., 

κ σ / 2x H  , with the error amplitude ηκ can 

be rewritten as  

1 3
κ 1 22

1 3

,
4

A
c k k

 
    (23) 

which is obtained from Eqs. (6), (14), and (18) 
to design a crystal at a length of L =1 mm, and 
the error sensitivity is shown in Eq. (18). The 
coupling coefficient corresponding to the 
perturbation optimal solution, i.e., κ=61.33 cm-1, 
qκ=1.2328×10-6 m2, which can be substituted into 
Eqs. (20) and (21) to obtain the optimal 
polarization period scheme for the perturbation of 
coupling coefficient, as shown in Fig. 2(b). This 
optimal scheme is 17 times lower than the pump 
intensity required by conventional theory, as 
shown in the blue curve in Fig. 1. Again, we take 
the same parameters as the previous section and 
calculate the other parameters for the frequency 
conversion. The interaction between signal light 
and upconversion light in system evolution is 
shown in Fig. 3(b). Under this design, complete 
energy transfer can also be achieved when L=1 
mm. The evolution process is different and our 
design is sensitive to changes in crystal length when 
the other parameters is determined. The blue curve 
in Fig. 4 represents the LZ adiabatic evolution 
under the parameter condition of coupling 
optimization, which requires L  2mm to achieve 
high conversion efficiency. 

The bandwidth of our QA model in Fig. 5(b) is 
345nm when L=1 mm, which is larger than LZ 
adiabatic method, and when L=20 mm, the 
bandwidth is 17 nm. Moreover, the conversion 
efficiency profile has a fast attenuation near the 
central wavelength, because wavelength changes 
mainly affect phase mismatch, so the optimization 
of phase mismatch Δk has greater tolerance 
against polarization period processing error.  

The effect of actual parameter variation is 
considered, the red curves in Fig. 6 represents the 
relationship between pump intensity variation, 
polarization period processing error and conversion 
efficiency based on the κ-optimal scheme 
respectively. Since the polarization period only 
affects the phase mismatch, the optimal scheme for 
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the perturbation of coupling coefficient κ is 
relatively poor in the robustness of the polarization 
period processing error. Nevertheless, a 95% 
conversion efficiency can still be achieved with an 
error of -1% to 1%. 

When the pump intensity varies between -25% 
and 25%, conversion efficiency is greater than 80%, 
and if the actual pump intensity ratio is larger than 
the set, there is a higher tolerance at the condition 
of large variation. For the optimization of pump 
light intensity variation, the conversion efficiency 
of κ optimal scheme is more robust than that of 
Δk, because the pump intensity variation mainly 
affects the coupling coefficient κ. As well as the 
conventional invariant method has an advantage 
because it optimizes both θ and β variables 
simultaneously. When the variation is small, the 
quasi-adiabatic method is nearly as robust as the 
conventional method, and all of these methods is 
more robust tan the LZ adiabatic method.  

The following shows the relationship between 
signal light intensity and conversion efficiency. 
When the approximation of undepleted pump is 
not satisfied, as shown in the Fig. 7, for the two 
optimal schemes, when the ratio of the signal light 
amplitude to the pump light amplitude is less than 
0.1 and 0.05, the conversion efficiency remains 
almost unchanged at 100%, and then the 
conversion efficiency gradually decreases. When 
the intensity of signal wave and pump wave is 
equal, the conversion efficiency is 77% and 70%, 
respectively. Additionally, when the signal 
intensity is less than μW/cm2, as shown in the inset 
of Fig. 7, the conversion efficiency contains almost 
100%. This is due to when the signal light intensity 
is very weak, the undepleted pumping 
approximation is perfectly satisfied. According to 
our theory, the final state of the evolution of the 
system is set as a complete conversion of up-
conversion light, as shown in Eq. (12). Therefore, 
as long as the boundary conditions of Eq. (13) are 
satisfied, the coupling coefficient κ and phase 
mismatch Δk obtained by inverse engineering 
can ensure that the conversion efficiency is 
always close to 100%. This shows that our 
method is more suitable for the frequency 
conversion process of small signals. 

 

Figure 7 The relation between different signal light 
amplitudes and conversion efficiency. Inset: Conversion 
efficiency of signal light with low intensity 

4  Discussion and conclusion 
In this paper, based on the analogy between the 
wave equations of light propagation in nonlinear 
crystals and the dynamics of two-level atomic 
systems, we propose a quasi-adiabatic single 
control parameter model based on the STA Lewis-
Riesenfeld invariant and optimal theory. The 
model shows that when the initial and final states 
of the system are given, by changing the values of 
single control parameters, the interpolation 
functions of different profiles are selected, and the 
robustness of the system changes correspondingly. 
By using optimal theory, the optimal solution of 
single control parameter is obtained, and the most 
robust evolution path of the system under different 
perturbations is obtained. Under the setting of the 
single control parameter, i.e., coupling coefficient κ 
is constant, and considering the effects of two kinds 
of perturbations, i.e., coupling coefficient and phase 
mismatch, the nonlinear crystal structure that is 
robust to different perturbations is obtained by 
inverse engineering of phase mismatch Δk. This 
method can accelerate adiabatic techniques for 
frequency conversion to achieve almost 100% 
efficient nonlinear frequency conversion at any 
crystal length, which means complete energy 
conversion can be achieved in shorter distances. 
Furthermore, by designing the κ-optimal and Δk-
optimal scheme, when the small crystal size L=1 
mm, the spectral acceptance bandwidth of 393 nm 
and 345 nm is achieved in the mid-infrared signal 
light from 2.6 μm to 3.6 μm respectively. In 
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addition, the pump intensity of the κ-optimal and 
Δk-optimal scheme is 17 and 11 times lower than 
that of the conventional scheme respectively, but 
this is at the cost of sacrificing little robustness of 
the system. Afterward the robustness of the Δk 
optimization against crystal period variation as 
well as κ optimization against pump intensity 
variation is discussed. Obviously, the emphasis of 
the two optimal schemes is different, we need to 
take a tradeoff in the target parameters to ensure 
that one of the indicator parameters is better, 
which depends on the importance of the parameter 
in the system. Even so, our method is superior to 
LZ adiabatic theory under the condition of the 
same parameters, and if the error sensitive 
coefficient is discussed to a higher order term, more 
robust results can be obtained. Finally, the 
relationship between signal light intensity and 
conversion efficiency shows that when the signal 
light intensity is less than 1% of the pump intensity, 
high conversion efficiency process can be 
theoretically realized, because our theory is based 
on the approximation of undepleted pump, which 
can convert the weak signal light well. 

In conclusion, we confirm numerically that the 
invariant-based inverse engineering approach 
manages to efficiently convert the optical beam 
frequency with shorter propagation distance, as 
compared to LZ adiabatic scheme. Combining with 
perturbation theory, different nonlinear crystal 
structures can be designed with more freedom by 
using quasi-adiabatic model that are robust against 
perturbations due to different variables. This 
method can be applied to design efficient optical 
converters to upconvert weak mid-infrared signals, 
we believe that this technique provides a new 
design idea in highly efficient frequency conversion 
process. 
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