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In a previous work [J. Chem. Phys. 155, 244111 (2021)], we found counterexamples to the fundamental Hohenberg–
Kohn theorem from density-functional theory in finite-lattice systems represented by graphs. Here, we demonstrate that
this only occurs at very peculiar and rare densities, those where density sets arising from degenerate ground states, called
degeneracy regions, touch each other or the boundary of the whole density domain. Degeneracy regions are shown to
generally be in the shape of the convex hull of an algebraic variety, even in the continuum setting. The geometry arising
between density regions and the potentials that create them is analyzed and explained with examples that, among other
shapes, feature the Roman surface.

I. INTRODUCTION

The mapping from potentials to the corresponding one-
particle ground-state density in a many-particle quantum sys-
tem and the possibility of its inversion forms the basis of
density-functional theory (DFT) [1–4] and many of its variants
[5–9]. This theory is widely employed in electronic-structure
calculations, allowing for a good balance between accuracy
and computational cost. The problem can also be viewed as a
control problem, where a potential that produces a given target
density is sought. Despite its prominent role, the topological
structure of the density-potential mapping is poorly studied,
even within ground-state DFT. Notable exceptions are a work
by Ullrich and Kohn [10] and a recent paper by Garrigue [11].
The former investigated the dimensionality of sets in potential
space preserving a certain degeneracy in a finite-lattice system.
This indicated that while degeneracy is quite common in the
density domain, it remains rare in potential space (yet, the lat-
ter statement does not follow in their proof that fails to consider
possible linear dependencies of conditions, see Section V).
Such finite-lattice systems are a frequent object of investiga-
tion in quantum mechanics, especially in solid-state physics,
where their most basic realization is the important Hubbard
model [12; 13]. In DFT, finite-lattice systems also naturally
arise with the choice of a finite basis of localized orbitals and
consequently are of prime importance for the whole field [14].

The authors of the paper at hand also started their inquiries
in this area by focusing on finite-lattice systems, generalized by
graphs, and a number of surprising results were already found,
including the nullity of the celebrated Hohenberg–Kohn theo-
rem for systems with special symmetry [15]. The studied ex-
amples suggested a far-reaching conjecture on the special ge-
ometry of the mapping, about the connection between densi-
ties that arise from degenerate ground states, later called de-
generacy regions, and those for which the Hohenberg–Kohn
theorem fails, as well as their corresponding potentials. This
conjecture will be proven here (Section VI), but first the shape
of such degeneracy regions will be clarified, with the surpris-
ing discovery of highly intricate objects from algebraic geom-
etry, e.g., the Roman surface, for which we give a basic clas-
sification (Sections II-III). With the same techniques we give
precise conditions where non-pure-state v-representable den-
sities, a concept from DFT, arise (Section IV). To establish a
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link to the full geometry of the mapping, the study of Ullrich
and Kohn [10] is rendered more precise and a new proof based
on Rellich’s theorem is provided (Section V). The examples
are all for small lattice systems and spinless fermions, but it
must be stressed that the results from Sections II-IV also ap-
ply to continuum systems and everything can also be extended
to incorporate spin by simply including additional internal de-
grees of freedom. Since this work can be considered a sequel
to our previous paper [15], we recommend looking there for a
deepened understanding.

The vector space that includes one-particle densities shall
generally be denotedDens and similarlyPot is the vector space
of one-body potentials. In a lattice system with M vertices
this means that Dens = Pot = RM , while in a continuum
setting one can choose Dens = L1(R3) ∩ L3(R3) and Pot =
L∞(R3)+L3/2(R3), its topological dual, like in Lieb [16]. We
define the density map ρ : H → Dens,Ψ 7→ ⟨Ψ, ρ̂Ψ⟩/∥Ψ∥2
(also we use ρ : D → Dens,Γ 7→ Tr(ρ̂Γ) on the set of all
density matrices for ensemble states D) that takes fermionic
many-particle states in Hilbert space to their respective one-
particle density via the density operator ρ̂ [4]. We study a class
of Hamiltonians Hv = H0 + V that only differ with respect
to their real, scalar one-body potential v. Here, H0 is the fixed
(internal) part that is always assumed to be real (i.e., it does
not include a vector potential, or, more generally, allows for
time-reversal symmetry), while V is the operator acting on H
that corresponds to the one-body potential v. The following
lemma will be important for the choice of eigenvectors of such
Hamiltonians.

Lemma 1. If Hv is real symmetric and has a g-dimensional
eigenspaceU with eigenvalueE then this space is spanned by g
real orthonormal vectors {Φk}gk=1 with complex coefficients,
U = spanC{Φ1, . . . ,Φg}.

Proof. For the g-dimensional eigenspace U with eigenvalue E
choose a general basis {Ψk}gk=1. Then observe that since Hv

and E are real, the real and imaginary part of those vectors are
eigenvectors as well, Hv ReΨk = E ReΨk and Hv ImΨk =
E ImΨk. This gives a total of 2g real eigenvectors that span
the whole U with complex coefficients, from which one can get
g real and orthonormal eigenvectors {Φk}gk=1 by the Gram–
Schmidt process that span the same space.

In particular, we can always already choose an orthonormal
basis of real eigenstates to span the ground-state eigenspace,
a property that we will use extensively below. The following
theorem allows us in principle to switch any discussion about
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ground states over to just densities. This implies an enormous
reduction of complexity.

Theorem 2. Assume that two Hamiltonians Hv = H0 +
V,Hv′ = H0 + V ′ that differ only in their scalar one-body
potentials v, v′ share a common ground-state density ρ. Then
an (ensemble) ground state Ψ (Γ) of Hv with density ρ is also
an (ensemble) ground state of Hv′ and vice versa.

This result means that to every ground-state density ρ we
can assign a ground state Ψ(ρ) (or, more generally, a class of
ground states or ensembles with the same density), irrespective
of the present potential. As such, this is well-known as a part
of the Hohenberg–Kohn theorem and is individually called a
weak HK-like result sometimes [17]. We refer to our previ-
ous work [15] and a recent review article [18] for two distinct
proofs of the above theorem. Already Theorem 2 allows to de-
fine a universal energy functional FHK(ρ) = ⟨Ψ(ρ), H0Ψ(ρ)⟩
for every ground-state density ρ that gives the lowest possible
internal (kinetic plus interactions) energy of a pure state with
the prescribed density. It is customary to instead use the much
more well-behaved constrained-search functional over ensem-
ble states F (ρ) = infΓ7→ρ Tr(H0Γ) [16] that is convex and
equal to FHK on the latter functional’s domain. Any ground-
state density ρ to a potential v will then minimize the functional
F (ρ)+ ⟨v, ρ⟩ since this gives the total energy E(v). An excel-
lent mathematical review on the universal functionals in DFT
is Lewin et al. [19].

The second part of the Hohenberg–Kohn theorem, which
then maps ground states to unique potentials (modulo a con-
stant) and in conjunction establishes the mapping from ground-
state densities to potentials, is omitted here. While it holds in
the continuum case for a large class of potentials [20], it gen-
erally fails for finite lattice systems [15] that will serve as the
prime examples in this work. Where it fails, we find densi-
ties that can be represented by multiple potentials that differ in
more than an additive constant. Such densities we call non-
uniquely v-representable (“non-uv”) and one observes that
they always arise when degeneracy regions touch, a feature that
is the main element of our geometry theorem in Section VI.
Thus we start by investigating the shape of such density sets.

II. STATE SUBSPACES UNDER THE DENSITY MAP

Let U be a g-dimensional subspace of a given Hilbert space
H spanned by real vectors {Φk}gk=1 with complex coefficients.
The Hilbert space can be H = CL, L =

(
M
N

)
, in the case

of N spinless fermionic particles on an M -vertex lattice [15,
Sec. II.B], or the usual anti-symmetric many-particle Hilbert
space for continuum systems H = ΛNL2(R3). It is possible
to extend to particles with spin by including the internal de-
grees of freedom into the Hilbert space of the individual par-
ticles. Later, the subspace U will be the space of g-fold de-
generate ground states of a Hamiltonian Hv and so we call g
the degree. We are interested in the image of U under ρ. Let
x = (x1, . . . , xg) ∈ Cg , ∥x∥ = 1, be the coordinates for a
normalized state Ψ ∈ U with respect to the real, orthonormal
subspace basis {Φk}gk=1 of U . The density is then evaluated

as

ρ(Ψ) =

g∑
k=1

|xk|2ρ(Φk) +

g∑
k,l=1
k<l

2Re(x∗
kxl)⟨Φk, ρ̂Φl⟩ (1)

and we will later also use the notation ρ(x) for a fixed basis
{Φk}gk=1. We can also define the density map for ensembles
Γ ∈ D in U , i.e., ΓH ⊆ U , that we call ρ as well. If Pj are the
projections on orthonormal pure statesΨj from the subspaceU
and Γ =

∑
j wjPj is a density matrix with coefficients wj ≥

0,
∑

j wj = 1, then we define accordingly

ρ(Γ) =
∑
j

wjρ(Ψj). (2)

For the further discussion we define the concept of a density
region as the set of all densities belonging to states in U . Later
this will be a degeneracy region, the set of all densities belong-
ing to states in the ground-state eigenspaceU for a given poten-
tial v. Therein, we differentiate three levels, by first mapping
only UR = spanR{Φ1, . . . ,Φg}, i.e., the subspace spanned by
the basis vectors with only real expansion coefficients, then the
linear span U = spanC{Φ1, . . . ,Φg} for general, complex ex-
pansion coefficients (which just means the whole subspace),
and lastly by forming the full density region as all densities
from that subspace including mixed states.

DR = ρ(UR) (3a)
DC = ρ(U) (3b)
D = ρ({Γ ∈ D | ΓH ⊆ U}) (3c)

From the definition we see that the density region does not de-
pend on the choice of basis forU and thatDC is limited to pure-
state densities, while D also includes non-pure-state densities
(see Section IV where it is shown that in general DC ̸= D).
That DR ⊆ DC follows by definition and D includes the pre-
vious two sets, since D is the set of all convex combinations
of pure-state densities as expressed in (2). We thus find the
following sequence of inclusions,

DR ⊆ DC ⊆ D. (4)

As the continuous image of a compact and connected set those
sets are all compact and connected. In order to get DC from
DR we define the segment set for an arbitrary set X in a vector
space as

segX = {λx+ (1− λ)y | x, y ∈ X, 0 ≤ λ ≤ 1}. (5)

Hence, instead of taking an arbitrary, finite number of points
and form their convex combination, like in the convex hull, we
only take two points in the segment set. The segment set is
equivalent to the geometric join, as introduced in Bárány and
Karasev [21], of a set with itself. The construction of DC from
DR is then furnished by the following lemma.

Lemma 3. DC = segDR.

Proof. Take any density in DC, then it must be the density of
a normalized Ψ ∈ U . Such a vector can always be split up
into its real and imaginary part as Ψ =

√
λΨ1 + i

√
1− λΨ2
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with 0 ≤ λ ≤ 1 and Ψ1,Ψ2 ∈ spanR{Φ1, . . . ,Φg}, both
normalized as well. Now,

ρ(Ψ) = ⟨Ψ, ρ̂Ψ⟩ = λ⟨Ψ1, ρ̂Ψ1⟩+ (1− λ)⟨Ψ2, ρ̂Ψ2⟩
= λρ(Ψ1) + (1− λ)ρ(Ψ2),

(6)

where the mixed term cancels since Ψ1 and Ψ2 are real. Since
ρ(Ψ1), ρ(Ψ2) ∈ DR this proves the assertion.

By (2) the ρ(Γ) is a convex combination of pure-state densi-
ties and it holds D = chDC, the convex hull, so the following
result follows directly from Lemma 3.

Corollary 4. D = chDR.

This greatly simplifies the analysis of a density region D,
since we can limit ourselves to the study of DR and then just
form the convex hull. In order to get DR, we choose x ∈ Rg ,
∥x∥ = 1, and split the map x 7→ ρ(x) from coordinates to
densities in (1) into two stages. First, form the (g + 1)g/2
second-order monomials x2

k and xkxl that then live in a larger
space,

ν : Rg −→ R(g+1)g/2

(x1, . . . , xg) 7−→ (x2
1, . . . , x

2
g, x1x2, . . . , xg−1xg).

(7)

This map is known as the Veronese embedding in algebraic ge-
ometry [22; 23] and its image of the unit sphere is the Veronese
variety Vg . We immediately see that antipodal points ±x on
the unit sphere are mapped to the same vector, so the map is
usually studied within projective space. Great circles on the
unit sphere are mapped to a ellipses [24, Prop. 3.3]. The sec-
ond stage consists of linearly mapping to densities with a map
P formed by the factors ρk = ρ(Φk) and ρkl = 2⟨Φk, ρ̂Φl⟩ as
given in (1),

ρ =P ◦ ν : Rg −→ Dens

(x1, . . . , xg) 7−→
g∑

k=1

x2
kρk +

g∑
k,l=1
k<l

xkxlρkl.
(8)

The notation with the overlined index has been introduced to
avoid confusion with the density ρi at a certain lattice point.
This already shows that DR is the linear map P applied to
Vg and thus forms a parametrized algebraic variety, while the
whole density region D is then just its convex hull. In order
to arrive at a possible classification for D, we determine its
dimension within density space. This is given by the number
of linearly independent factors ρk and ρkl, that is a total of
(g + 1)g/2 minus the dimension of the kernel (nullity) of P
given by κ = dimkerP , and then finally minus 1 from the
normalization constraint for densities,

dimD =
1

2
(g + 1)g − κ− 1. (9)

Hence, the basic classification of density regions will be
in (g, κ), the degree g ∈ {2, 3, . . .} and the nullity κ ∈
{0, . . . , (g+1)g/2− 1}. That κ = (g+1)g/2− 1 is possible
in principle, but this implies that every state in U is mapped
to the exactly same density, which seems unlikely in the ab-
sence of internal degrees of freedom. This also implies that
all ρkl must be zero, since they sum up to zero and cannot be

equal to the density. The same two assertions also appear in
Garrigue [11, Cor. 1.7] for the conservation of degeneracy in
certain directions of potential variation. The density region is
then just a single point, a singleton set, and no special geom-
etry arises. A larger κ cannot occur because then ρ would be
the zero map. We can now imagine a mapping deg : ρ 7→ g
that assigns to every element of Dens that is the ground-state
density for some potential v (“v-representable”) the degree of
the degeneracy region it belongs to. The “rich structure” [25]
of this map will become apparent in the following examples.

III. FURTHER CLASSIFICATION AND EXAMPLES FOR
DENSITY REGIONS

In this section the setting is the same as before, with U a
g-dimensional subspace of a Hilbert space H that corresponds
to a lattice or a continuum system. The aim is to study and
classify the density regions originating from U . We begin with
the lowest degree g = 2, so the possible nontrivial values for
κ are either 0 or 1. Since x2

1 + x2
2 = 1 on the unit circle, we

choose x1 = cosφ, x2 = sinφ and (8) transforms into

ρ(x) = (cosφ)2ρ1 + (sinφ)2ρ2 + sinφ cosφρ12

=
1 + cos(2φ)

2
ρ1 +

1− cos(2φ)

2
ρ2 +

sin(2φ)

2
ρ12

=
ρ1 + ρ2

2
+

ρ1 − ρ2
2

cos(2φ) +
ρ12
2

sin(2φ).

(10)

Here, the doubling of the angle φ is a result of the identifica-
tion of antipodal points. The formula shows that all densities
in DR lie on an ellipse with center ρ = 1

2 (ρ1 + ρ2) and axes
1
2 (ρ1−ρ2) and 1

2ρ12. Consequently,D will be the filled ellipse.
If κ = 1 then all three factors ρ1, ρ2, ρ12 span the image ofP as
a 2-dimensional plane in density space, so ρ, 1

2 (ρ1−ρ2),
1
2ρ12

and with them the whole elliptical D lie in a plane through the
origin. But the normalization constraint for densities subtracts
one further dimension, so D actually collapses into a line seg-
ment, as required by (9). If κ = 0 this restriction does not oc-
cur and D will really be a filled ellipse. A simple example for
this case is the ground-state eigenspace for two non-interacting
spinless particles on a lattice with three vertices in the shape
of a triangle that is extensively discussed in Sec. VI.C of Penz
and van Leeuwen [15]. There D forms the incircle of the trian-
gular density domain that itself is the convex hull of the three
extremal densities (1, 1, 0), (1, 0, 1) and (0, 1, 1).

If g = 3 and κ ≥ 2, the maximal dimension of the den-
sity region given by (9) is 3, so we still have a possibility to
easily visualize it. The set DR as the image of V3 under P
with κ = 2 is generally called a Steiner surface [26]. Here
we will limit the discussion to one example which yields the
most famous such surfaces, the Roman surface, while it re-
mains open if other types even appear as density regions. For
this example we utilize again a finite-lattice system with two
non-interacting spinless particles, now in the form of a tetrahe-
dron graph with equal hopping between all vertex pairs. Since
the density is defined on just four vertices, the density space is
R4 while the Pauli exclusion principle and the normalization
of the density additionally yield the restrictions 0 ≤ ρi ≤ 1
and

∑
i ρi = 2. This gives a density domain in the shape of

an octahedron within the three-dimensional affine hyperplane
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defined by the normalization constraint. The density region
DR to be determined here will then be a set within this octahe-
dron. The one-particle Hamiltonian for the given system when
derived from a graph Laplacian [15, Sec. II.D] is

h0 =

 3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 (11)

and for v = 0 has the ground-state orbital

ϕ0 = 1
2 (1, 1, 1, 1) (12)

as well as the 3-fold degenerate first-excited states

ϕ1 = 1
2 (−1,−1, 1, 1) (13)

ϕ2 = 1
2 (−1, 1,−1, 1) (14)

ϕ3 = 1
2 (1,−1,−1, 1) (15)

that all give rise to a uniform density. These orbitals yield the
two-particle Slater determinants Φk = ϕ0 ∧ ϕk, k ∈ {1, 2, 3},
that span the three-dimensional ground-state subspace U . We
note here that for Hamiltonians derived from such graph Lapla-
cians it generally follows from the Perron–Frobenius theorem
that the ground-state orbital is non-degenerate [15, Sec. V.A],
so all our examples will be for N = 2 non-interacting spin-
less particles, where orbitals from the first-excited state also
get filled. Using the orbital expressions we get

ρk,i = ϕ2
0,i + ϕ2

k,i, ρkl,i = 2ϕk,iϕl,i, (16)

where k, l ∈ {1, 2, 3} and i ranges over the lattice sites, i ∈
{1, . . . ,M}. Putting in the numbers this gives

ρk = ρ = 1
2 (1, 1, 1, 1) (17)

ρ12 = 1
2 (1,−1,−1, 1) (18)

ρ13 = 1
2 (−1, 1,−1, 1) (19)

ρ23 = 1
2 (−1,−1, 1, 1). (20)

These vectors now make up the six columns in P and we can
check that indeed κ = dimkerP = 2. For DR as the image
of all x ∈ R3, ∥x∥ = 1, under ρ we get

ρ(x) = ρ

3∑
k=1

x2
k︸ ︷︷ ︸

1

+
1

2

 1 −1 −1 1
−1 1 −1 1
−1 −1 1 1
1 1 1 1


x1x2

x1x3

x2x3

0

 . (21)

The surface defined by the last vector and parametrized by the
unit sphere ∥x∥ = 1 is an amazing structure of tetrahedronal
symmetry that is known as Roman surface, while the matrix
in front is orthogonal and just describes a mirroring at a plane
with normal vector (1, 1, 1,−1). The situation is displayed in
Figure 1. The full density region D is then the convex hull of
DR and in this case is equal to the segment set, so we have
D = DC = segDR = chDR. Since P maps R6 → R4 and
κ = dimkerP = 2, an embedding of R4 into R6 orthogonal
to kerP allows to see P as a projection with projection center
kerP [27, 1.2.7]. Using the following general lemma, that the
projection center does not intersect the Veronese variety, helps
to reduce the number of possible classes of Steiner surfaces
appearing as density regions next to the Roman surface.

Figure 1: The three-fold degeneracy region DR of the
tetrahedron graph inside the octahedronal density domain.
The corners of the octahedron correspond to the extreme

density (1, 1, 0, 0) and its permutations, generalized
barycentric coordinates are used to display densities.

Lemma 5. Vg ∩ kerP = ∅.

Proof. This follows directly from the fact that for all x ∈ Rg

with ∥x∥ = 1, as the parameters of the Veronese variety,
ρ(x) = P ◦ ν(x) is a normalized density, so it cannot be
zero.

A subclassification of Steiner surfaces with (g, κ) = (3, 2)
conducted by Degen [24] considers various positions of the
projection center and basically looks at the shadows cast by the
ellipses that compose the Veronese variety. By Theorem 4.1
from the reference and our Lemma 5 their class (B) is ruled
out. If an ellipse is projected such that only a line remains, this
appears as a singular point in projective space, and counting
those points gives the five possible subclasses (Aa)-(Ae). In
the case (Aa), three ellipses from the Veronese surface are pro-
jected exactly such that they appear as lines, the three lines of
self-intersection of the Roman surface. The shapes of class (C)
are quadrics, such as ellipsoids, that did not show up in the ex-
amples studied here. If Lemma 5 could be strengthened to state
that the complex extension of the Veronese variety has empty
intersection with the projection center then also class (C) can
be excluded. Since the possible surfaces that one can construct
like this correspond to triangular Bézier-surface patches, this
classification also has a relevance in computer graphics and fi-
nite element methods [28]. A similar type of classification di-
rectly on the basis of the matrix P that is less geometrical was
given by Coffman et al. [29] and Apéry [26, Ch. 1.3], while
the historically first classification was seemingly put forward
in the book of Michel [30, Ch. XV] based on pencils of con-
ics. For some classical literature that presents more interest-
ing properties in particular of the Roman surface, see Clebsch
[31], Cayley [32], Lacour [33] and Hilbert and Cohn-Vossen
[34, §46]. Very recently, the possibility of physically realizing
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the Roman surface by a spin-induced polarization vector in a
particular cubic crystal was reported in Liu et al. [35]. The ex-
ample of the Roman surface as the degeneracy region for v = 0
in a tetrahedron graph clearly shows that while an individual
ground-state density does not need to reflect the symmetry of
the system, the whole degeneracy region does.

After this discovery, we expect even more intricate geomet-
ric objects for g = 3, κ < 2 or g > 3. However, it is clear from
the fact that a higher-dimensional U is composed of lower-
dimensional subspaces that all DR are parametrized families
of other DR of lower degree, just like the Roman surface can
be constructed from a family of ellipses (see Figure 2). Note
that in the case κ = 0 the full Veronese variety is retained as a
density region since all factors in (8) are linearly independent.
This actually happens in the cuboctrahedron-graph example
presented in in Sec. VI.E of Penz and van Leeuwen [15] that
is also discussed in Section IV here. For general (g, κ) a fur-
ther subclassification, like it was conducted by Degen [24] for
(g, κ) = (3, 2) and which was briefly discussed above, seems
entirely possible.

Figure 2: Three different parametrizations for the Ro-
man surface that all show how it can be constructed from
ellipses. The first corresponds to introducing polar co-
ordinates for x ∈ R3 in (8), the second to doing the

same in (21), while the third is from Apéry [26, Sec. 2.4].

IV. NON-PURE-STATE v-REPRESENTABLE DENSITIES

As already exemplified for the cases g = 2 and g = 3
in the previous section, the g-dimensional U can be thought
of as the g-fold degenerate eigenspace for a given Hamilto-
nian with potential v. Since the Hamiltonian is assumed real
symmetric, Lemma 1 shows that such an eigenspace can al-
ways be spanned by real eigenvectors. Then we write D(v)
for the corresponding density region and it is called a degener-
acy region, the set of all possible densities coming from (en-

semble) ground states to the potential v. As demonstrated in
Section II, the degeneracy regions can be classified by (g, κ).
We define the subdifferential of a convex functional at a cer-
tain point as the set of all tangent lines in that point that lie
fully below the functional [36, Def. 2.30]. Likewise the su-
perdifferential of a concave functional collects all tangent lines
above. Then, interestingly, it holds thatD(v) = ∂E(v), the de-
generacy region is the superdifferential of the concave energy
functional E(v) = infΨ{⟨Ψ, HvΨ⟩} that itself is the convex
conjugate of the universal functional F (ρ). On the other hand,
v ∈ −∂F (ρ), the potential lies in the subdifferential of the uni-
versal functional if ρ is the ground-state density for potential
v. [37; 38]

From the definition of DC(v) it follows that this set includes
all densities coming from pure ground states (pure-state v-
representable). It is then known from arguments in Levy [39]
and Lieb [16] that if g ≥ 3 there can occur densities that
are not pure-state v-representable, i.e., they are in D(v) but
not in DC(v), but the provided proofs remained vague (in [15,
Sec. VI.D] we even find a counterexample to a statement in the
proof of Lieb [16, Th. 3.4(i)]). The following theorem helps
to establish a precise condition when and for which density
non-pure-state v-representability will occur. More precisely,
the condition κ = 0 exactly prevents “certain linear depen-
dencies” that are mentioned in Levy [39] as a situation where
pure-state v-representability is still possible.

Lemma 6. If g ≥ 3 and κ = 0 then the central density ρ =
(ρ1 + . . .+ ρg)/g is not in DC.

Proof. Because of Lemma 3 in order for ρ to be in DC it must
hold that there is a λ ∈ [0, 1] and x, y ∈ Rg with ∥x∥ = ∥y∥ =
1 such that

(ρ1 + . . .+ ρg)/g = λρ(x) + (1− λ)ρ(y), (22)

with ρ(x), ρ(y) ∈ DR given by (8). Since κ = 0 it holds
kerP = {0} and we can applyP−1 and formulate the equation
above on the codomain of the Veronese embedding as

1

g
= λx2

k + (1− λ)y2k (23)

0 = λxkxl + (1− λ)ykyl (k ̸= l) (24)

with k, l ∈ {1, . . . , g}. Suppose that some xk = 0 then λ ̸= 1
and yk ̸= 0 follows from (23) and for all l ̸= k it holds yl = 0
from (24). Then (23) again says that all xl, l ̸= k, have the
same non-zero value and that λ ̸= 0. Now since g ≥ 3 we
can choose l ̸= m both different from k and then (24) yields a
contradiction. The same holds if some yk = 0. Therefore, it
will be assumed from here on that all coefficients xk, yk ̸= 0.
This implies λ /∈ {0, 1} because else (24) cannot be fulfilled.
We can thus write

xkxl = −1− λ

λ
ykyl = −µ ykyl (k ̸= l), (25)

where µ = (1− λ)/λ > 0. This gives for k, l,m all different,

(xkxl)(xkxm) = µ2(ykyl)(ykym)

⇒ x2
k(xlxm) = µ2y2k(ylym)

⇒ − µx2
k(ylym) = µ2y2k(ylym)

⇒ x2
k = −µ y2k.

(26)
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However, this is a contradiction since µ > 0 and xk, yk were
assumed to be non-zero and it follows that ρ /∈ DC.

Corollary 7. If there exists a potential v that gives a degener-
acy region D(v) with g ≥ 3 and κ = 0 then the central density
ρ plus a neighbourhood is non-pure-state v-representable.

Proof. This is a direct consequence of Theorem 2. If ρ ∈ D(v)
would be the density of a pure ground state Ψ of any v′ then
this Ψ must also be the (pure) ground state for v which is in
contradiction to the statement of Lemma 6 that ρ /∈ DC(v).
Since DC(v) was noted to be closed, we can find an open set
including ρ that has an empty intersection with DC(v).

An explicit example for non-pure-state v-representability
was given by the authors in Sec. VI.E of Penz and van
Leeuwen [15] with two non-interacting spinless particles on
a cuboctahedron-graph system that exhibits three-fold degen-
eracy in the ground state. We will briefly show that this ex-
ample fits to the results from above, i.e., it yields a P with
kernel zero. In order to determine the 12 × 6 matrix P (12
because of the number of vertices in the cuboctahedron and
6 from the dimension of the codomain of the Veronese em-
bedding for g = 3) we have to calculate the factors ρk, ρkl
from the one-particle orbitals ϕk where the orbital energies
are ϵ0 < ϵ1 = ϵ2 = ϵ3, all written out in the reference.
Like before in the tetrahedron-graph example, these orbitals
yield the two-particle Slater determinants Φk = ϕ0 ∧ ϕk,
k ∈ {1, 2, 3}, that span the three-dimensional ground-state
subspace. Equation (16) then again determines the vectors that
form the columns of P which can be checked to give a matrix
with kerP = {0}. Similar investigations show that the icosa-
hedron and dodecahedron graphs for two particles described
by graph Laplacians have (g, κ) = (3, 0) at v = 0 too.

V. DEGENERACY-PRESERVING POTENTIAL MANI-
FOLDS

When degeneracy occurs for a fixed H0 and a certain poten-
tial v, variation of this potential can still preserve the symmetry
and thus the degree of degeneracy. For finite-lattice systems,
the work of Ullrich and Kohn [10] gives an upper limit to the
dimensional size of the manifold in which such potentials with
g-fold degeneracy are contained. The vertices of the lattice
will be indexed by i ∈ {1, . . . ,M} and thus a density as well
as a scalar potential are given as vectors ρ, v ∈ RM . Since the
density ρi at each vertex i must be in [0, 1] for fermionic parti-
cles and since the whole density is normalized to the number of
particles,

∑
i ρi = N , the density domain has the shape of an

(M,N)-hypersimplexPM,N . The dual pairing (inner product)
between the potential and the density that yields the potential
energy is ⟨v, ρ⟩ =

∑
i viρi. The whole expectation value of

the Hamiltonian for a normalized state Ψ ∈ H with density ρ
is thus ⟨Ψ, (H0+V )Ψ⟩ = ⟨Ψ, H0Ψ⟩+ ⟨v, ρ⟩. We will extend
the main result of Ullrich and Kohn [10] with a proof resting
solely on the classification for degeneracy regions introduced
in Section II and an extremely useful result of Rellich [40 41]
(see also Kato [42] for a more modern treatment) on the ana-
lyticity of eigenvalues and eigenvectors under perturbations.

Theorem 8. Let H0 be a real symmetric matrix and v ∈ RM

a potential such that Hv = H0 + V has a degeneracy region
of class (g, κ). Then v (modulo constants) is contained in a
potential manifold of at most dimension M − (g + 1)g/2 + κ
in which the degree of degeneracy g is preserved.

Proof. Let Hv have a g-fold degenerate ground state. Then in
the ground-state eigenspace we can choose the real orthonor-
mal eigenstates Φ1, . . . ,Φg by Lemma 1. Let U be a perturba-
tion of the potential with one-body potential u such that for the
perturbed Hamiltonian Hv(λ) = Hv + λU the g-fold ground-
state degeneracy is preserved. As usual, adding a constant
potential to U does not change this situation. According to
Rellich’s theorem we can choose g orthonormal ground states
Ψ1(λ), . . . ,Ψg(λ) with common eigenvalue E(λ) which are
analytic in λ for small enough |λ|. These states are gener-
ally not analytically connected to our chosen basis {Φk}gk=1
at λ = 0. However, the states

Φ̃k(λ) =

g∑
j=1

Ψj(λ)⟨Ψj(λ),Φk⟩ (27)

are analytic in λ as well and do have the property that Φ̃k(0) =
Φk, which follows by noting that the states Ψj(0) form a com-
plete basis set in the ground-state eigenspace of the unper-
turbed system. Using the eigenstate property Hv(λ)Φ̃k(λ) =

E(λ)Φ̃k(λ) we differentiate with respect to λ and then set
λ = 0 to get

HvΦ̃
′
k(0) + UΦk = E(0)Φ̃′

k(0) + E′(0)Φk. (28)

We project this onto the subspace spanned by Φl and use
HvΦl = E(0)Φl to get

⟨Φl, UΦk⟩ = E′(0)δkl. (29)

Since we have the possibility to add any constant potential to
U , we can use this gauge freedom to set E′(0) = 0 and thus
arrive at the conditions ⟨Φ1, UΦ1⟩ = . . . = ⟨Φg, UΦg⟩ = 0
in the diagonal and ⟨Φl, UΦk⟩ = 0 off-diagonal, a total of
g + g(g − 1)/2 = (g + 1)g/2 constraints. However, by re-
membering the definition of ρk, ρkl from Section II, we see
that those constraints are actually equivalent to ⟨u, ρk⟩ = 0
and ⟨u, ρkl⟩ = 0 for k, l ∈ {1, . . . , g}, k < l, which is nothing
but the matrix equation PTu = 0. Thus, if u is in the kernel of
the transpose of the (M×(g+1)g/2)-matrixP , the constraints
are fulfilled and this assures that the added potential does not
change the degree of degeneracy to first order in λ (since it still
can change the degree to second order, we only get an upper
bound for the dimension of the invariant manifold). To get the
dimension of the kernel, we simply use the rank-nullity theo-
rem for P and PT and the fact that the rank of a matrix is equal
to the rank of its transpose.

dimkerP = κ =
1

2
(g + 1)g − rankP (30)

dimkerPT = M − rankP = M − 1

2
(g + 1)g + κ (31)

These considerations restrict the dimension of the potential
manifold (modulo constants) that preserves the g-fold degen-
eracy to at most M − (g + 1)g/2 + κ.
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The previous result of Ullrich and Kohn [10] did not con-
tain a reference to the nullity and implicitly assumed κ = 0,
so their dimension is M − (g + 1)g/2, which is less then the
possible maximal dimension of Theorem 8 if κ > 0. Tak-
ing the maximal nullity, κ = (g + 1)g/2 − 1, the maximal
dimension for the potential manifold that preserves degener-
acy evaluates as M − 1, which is just the full dimensionality
of the potential space (modulo constants) and thus invalidates
the argument of Ullrich and Kohn [10] that degeneracy is rare
in potential space. Nevertheless, the potentials that lead to de-
generacy are still expected to be of measure zero in the absence
of internal degrees of freedom, since they either have to obey
certain symmetries or trigger accidental degeneracy, so Theo-
rem 8 is simply not useful for the case of maximal nullity. The
result also does not fit to the maximal dimension derived in
Penz and van Leeuwen [15, Sec. IV.B] from the original result
of Ullrich and Kohn [10] as M − 3, which lead to the prema-
ture conclusion that the set of non-uv potentials has measure
zero.

The relevance of Theorem 8 in the present context is that
whenever v leads to a degeneracy region D(v) of class (g, κ),
it can actually be the member of a whole family of degeneracy
regions of the same degree with an (M − (g + 1)g/2 + κ)-
dimensional parametrization. Each degeneracy region within
this family can be reached by moving the potential inside the
manifold that preserves the degree of degeneracy. Such a fam-
ily will be called a degeneracy bundle. Note that the separate
degeneracy regions in such a bundle can lie arbitrarily close
together but never touch, a notion that will become important
in Section VI. Since the dimension of a degeneracy region is
given by (9), the largest possible dimension of a whole degen-
eracy bundle is

M − 1

2
(g + 1)g + κ+

1

2
(g + 1)g − κ− 1 = M − 1, (32)

which is precisely the full dimensionality of the density domain
when normalization is taken into account. This led Ullrich and
Kohn [10] to the statement that degeneracy can be considered
common in the density domain. Precise numbers for the ratio
of degeneracy in the density domain are calculated for a few
examples in the concluding Section VII.

To give an example, we will resort again to the tetrahedron
graph with two particles from Section III. There we studied the
degeneracy set D(0) of class (g, κ) = (3, 2), the convex hull
of the Roman surface DR(0), that appears for v = 0, the po-
tential with maximal symmetry. Here Theorem 8 for M = 4,
g = 3, κ = 2 leaves no possible dimension for the manifold
of invariant degeneracy. Indeed, by changing the potential, we
will necessarily diminish the system of symmetry and thus re-
duce the degree of degeneracy. However, for a potential of type
v = (s, 0, 0, 0) (and all permutations), s > 0, still a degener-
acy of class (g, κ) = (2, 0) remains, since the vertices apart
from the first one still retain a triangular symmetry. (For s < 0
the two-fold degeneracy is in the first excited state.) The ap-
plication of Theorem 8 for M = 4, g = 2, κ = 0 now gives
a one-dimensional manifold, parametrized by s > 0, in which
the degree of degeneracy is preserved. In the limit s → ∞ the
first vertex is effectively removed from the system and the case
of the triangle graph, with the incircle of the triangular density
domain P3,2 as degeneracy region, remains. In summary, four
degeneracy bundles in the shape of cylinders parametrized by

s > 0 will extend from the flat sides of the convexified Ro-
man surface until they reach the faces of the octahedron P4,2.
The whole situation is displayed in Figure 3. The collection
of all degeneracy regions and bundles will be called the de-
generacy structure. In the next section we investigate how this
geometrically relates to non-uv densities and the correspond-
ing potentials.

Figure 3: The union of all degeneracy regions (degeneracy
structure) of the tetrahedron graph inside the octahedral
set of densities P4,2. The four degeneracy bundles in the
shape of cylinders reaching out from the flat sides of the
convexified Roman surface have to be imagined as filled.

VI. GEOMETRIZATION OF THE POTENTIAL-DENSITY
MAPPING

Contrary to the continuum case of standard DFT, where
the Hohenberg–Kohn theorem implies that every ground-state
density comes from a unique potential, at least if those are
limited to a certain class [20], the lattice case introduced in
Section V allows for non-uniquely v-representable (“non-uv”)
densities. We proved their existence together with some ex-
amples and basic properties in our previous work [15], where
we also put forward the idea of a full geometrization of the
mapping from potentials to densities with degeneracy regions
and non-uv densities and their corresponding potentials as the
prime elements. We wrongly conjectured that degeneracy re-
gions have a spherical shape, while actually their shape is much
more intriguing, as was demonstrated in Section III. With these
first results in hand, we will here finalize and prove the geom-
etry conjecture.

Theorem 9 (Density-Potential Geometry). The occurrence of
non-uv densities in the given setting is limited to two situations:

(a) If two different degeneracy regions D(vI), D(vII) inter-
sect (in a single density or forming a degeneracy region
of strictly lower degree) then ρ ∈ D(vI) ∩ D(vII) is
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non-uv. All potentials on the line segment that connects
vI and vII yield the same ground-state density ρ.

(b) If a degeneracy region D(vA) touches the boundary of
the density domain PM,N then this boundary density ρ
is non-uv. All potentials from a ray with apex vA yield
the same ground-state density ρ. Furthermore, such
densities are the only v-representable densities on the
boundary of PM,N , other boundary points are not v-
representable.

Proof. We begin with a general observation concerning non-
uv densities. If a density ρ arises from two different potentials
v, v′ then by Theorem 2 both Hamiltonians Hv, Hv′ share a
ground-state density matrix Γ 7→ ρ. It is then clear that this
Γ is also an eigenstate of Hvλ with vλ = λv + (1 − λ)v′ for
any λ ∈ R. But since ρ is the ground-state density for both
potentials v, v′, it must also minimize both convex functionals
F (ρ)+⟨v, ρ⟩, F (ρ)+⟨v′, ρ⟩ by the definition of a ground state.
It is then also a minimizer for λ(F (ρ)+⟨v, ρ⟩), (1−λ)(F (ρ)+
⟨v′, ρ⟩) (λ ∈ [0, 1]) and their sum F (ρ)+ ⟨λv+(1−λ)v′, ρ⟩.
This shows that ρ is the ground-state density for all potentials
on the line segment between v and v′. Since the eigenvalues of
Hvλ

are all continuous in λ by Rellich’s theorem, there are two
possibilities if λ is varied into both directions outside the inter-
val [0, 1]: Either level crossings occur and another ground state
takes over in both directions (Fig. 4a), or Γ remains the ground
state while |λ| → ∞ into one direction and a level crossing
occurs in the other direction (Fig. 4b). We will link those two
possible situations to the statements (a) and (b) of the theorem
in the following. The case that it remains the ground state in

λ

E

λ1 λ2

(a)

λ

E

vA

(b)

Figure 4: The two situations of level
crossings in the proof of Theorem 9.

both directions is impossible, as the following will show.
To show statement (a), we take ρ ∈ D(vλ), where in this spe-
cial case D(vλ) can also denote a set containing the single
ground-state density for a potential vλ if no degeneracy arises.
If level crossings occur in both directions, say at λ1 and λ2 with
λ1 < λ2, this implies additional degeneracy at vI = vλ1

and
vII = vλ2

. Any non-uv density ρ ∈ D(vλ), λ1 < λ < λ2, then
belongs to two degeneracy regions D(vI), D(vII) of strictly
higher degree than D(vλ) because the crossings add at least
one to the degree. This means D(vλ) = D(vI) ∩D(vII), so ρ
really lies in the intersection of two degeneracy regions.
For statement (b) consider the case where |λ| → ∞ is possi-
ble in one direction without a level crossing. This means at
least one component vλ,i of vλ diverges. If vλ,i → +∞ then
it must hold that ρi = 0 for this density to still belong to the
ground state. But then performing vλ,i → −∞ means that at
one point another eigenstate (and there must always be at least
one vertex i with ρi > 0) will take over the role of the ground

state. But this must happen at a level crossing, say at vA, where
the energies match (because by Rellich’s theorem the variation
of v leads to a continuously changing energy) and such we ar-
rive at a degeneracy region D(vA) ∋ ρ. If vλ,i → −∞ then
since any ground-state density minimizes F (ρ) + ⟨vλ, ρ⟩ and
F is bounded on PM,N (as a finite convex function on a com-
pact domain), only a density with ρi = 1 qualifies. Going into
the opposite direction vλ,i → +∞, the energy must increase
and thus at one point another eigenstate will again take over.
Consequently, if |λ| → ∞ is possible in one direction without
a level crossing for a non-uv density, this density simultane-
ously belongs to the boundary of PM,N (because it has either
ρi = 0 or ρi = 1) and to a degeneracy region D(vA).
Conversely, assume a v-representable ρ is on the boundary of
PM,N , which means it has at least one component ρi = 0 or
ρi = 1. In the case ρi = 1, vi can always decrease from
its previous value and will only make the energy smaller, also
compared to the energy of other eigenstates that have ρi ≤ 1,
thus not influencing the ground state. This gives a ray of poten-
tials that all lead to the same density ρ, thus making it non-uv.
Yet, by continuously increasing vi one will find the end point,
call it vA as before, of such a ray when the potential is large
enough such that another eigenstate takes over and assumes
the role of ground state, exactly at a point of degeneracy. In
the case ρi = 0, the ray just extends into the other direction,
since changing vi arbitrarily will not influence the energy of
the original ground state, but continuously decreasing vi will
eventually allow another eigenstate to take over the role of the
ground state, again at a point of degeneracy. This proves that
a density on the boundary of PM,N is v-representable if and
only if it also belongs to a degeneracy region D(vA).

It must be noted that the last part of the proof shows that
if for a v-representable boundary density multiple components
ρi are either 0 or 1, which is possible at least in principle, the
rays combine into a convex set of non-uv potentials. But such
a situation was never observed in any of the examples studied
in the course of this work, just as the possibility of degeneracy
regions touching each other or the boundary in more than a
single point has not been verified. While singleton degeneracy
regions are not principally ruled out in the theorem, degeneracy
regions that just arise from internal degrees of freedom do not
play any role in the context of the theorem, because the external
potential does not couple to the internal coordinates.

The following corollary, put forward as a conjecture in Penz
and van Leeuwen [15], is imminent from the fact that degen-
eracy regions are always closed and that non-uv densities only
arise as their intersection or when they touch the boundary. We
also include our previous results that the non-uv densities have
measure zero in the density domain [15, Sec. III.D], which is
visible from the density-potential geometry theorem as well.

Corollary 10. The set of non-uv densities is closed and has
measure zero in the (M − 1)-dimensional density domain
PM,N .

Conversely, this shows that almost all densities are uniquely
v-representable, which means the failure of the Hohenberg–
Kohn theorem for lattice systems can be considered less dras-
tic. If a density is non-uv after all then by Theorem 9 it must
lie at the touching point of two degeneracy regions or where a
degeneracy region touches the border of the density domain, a
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quite peculiar property. If, on the other hand, we can guaran-
tee the validity of the Hohenberg–Kohn theorem in some set-
ting, then this in turn means that degeneracy regions can never
touch each other or the boundary. Another previous result [15,
Cor. 20] is also a direct consequence of the theorem on density-
potential geometry: The set of potentials leading to a non-uv
density that is not on the boundary of the density domain is
always bounded.

We would like to give examples for the geometrical situa-
tions present in Theorem 9, two where a degeneracy region
touches the boundary of the density domain PM,N and another
where degeneracy regions touch each other. The first situation
was already present in the triangle graph example discussed
in Sec. VI.C of Penz and van Leeuwen [15] where the degen-
eracy region for v = 0 touches the boundary of P3,2 at the
three points where the incircle touches an equilateral triangle
and correspondingly three rays of non-uv potentials shoot off
from v = 0 to infinity in the potential space. Another ex-
ample can be found in the tetrahedron graph that features the
Roman surface as a degeneracy region for v = 0 and that has
already been discussed twice here. The Roman surface touches
the boundary of the octahedron P4,2 exactly at the four points
(1, 1

3 ,
1
3 ,

1
3 ) (and permutations) corresponding to the vertices

of its tetrahedral symmetry. Those are opposite to the flat face
where the cylinder-shaped degeneracy bundles are attached, as
can be seen from Figure 3. Since those degeneracy bundles
correspond to the potential v = (s, 0, 0, 0) (and all permu-
tations), s > 0, one can intuitively state that the non-uv po-
tential rays corresponding to the touching points are given by
v = (s, 0, 0, 0) (and all permutations), s < 0. On the other
hand, the tetrahedron graph example, although it contains a
large amount of degeneracy, does not feature any degeneracy
regions touching each other. For this we switch over to two
non-interacting spinless particles on a simple square graph, a
setting studied before in Sec. III.C and IV.B of Penz and van
Leeuwen [15]. There it was already noted that non-uv den-
sities occur at the diagonals of the middle plane of the octa-
hedron P4,2 that correspond to line-segments between poten-
tials leading to degeneracy, but no picture of the full degen-
eracy structure was provided. We show this in Figure 5 that
exhibits a pillow-like structure composed from families of el-
lipses (degeneracy bundles) that is symmetric around the mid-
dle plane of the octahedron P4,2. Those ellipses get flatter as
the potential strength increases and they approach the edge of
the density domain. For v = 0, on the other hand, we have
ρ1 = ρ2 = 1

2 (1, 1, 1, 1) and ρ12 = 1
2 (1,−1, 1,−1) as the

columns of P which means (g, κ) = (2, 1) and thus, as it was
described in Section III, the degeneracy region collapses into
a vertical line segment in the center of P4,2.

It is interesting to note that the geometrical features dis-
cussed here also appear in the universal functionalF (ρ). Since
all densities ρ ∈ D(v) = ∂E(v) in a degeneracy region arise
from a single potential and v ∈ −∂F (ρ) as discussed in Sec-
tion IV, this means that F (ρ) is always flat on D(v). Con-
versely, F (ρ) is locally strictly convex outside of degeneracy
regions. When two degeneracy regions touch at a non-uv ρ
then F (ρ) displays a kink between the flat regions at that point
which is responsible for non-differentiability of F (ρ) and a
subdifferential −∂F (ρ) containing more than a single poten-
tial. Such a situation is displayed in Figure 6, where the ex-
ample of the square graph is repeated limited to densities on

the middle plane of the octahedral density domain P4,2 with
touching degeneracy regions along the diagonals.

VII. SUMMARY AND OPEN QUESTIONS

In summary, we analyzed the geometrical structures arising
from degeneracy in the density domain and in potential space.
While a state eigenspace is mapped to intricate shapes given
by the convex hulls of algebraic varieties (Sections II and III)
and their geometric properties tell when a density is not pure-
state v-representable (Section IV, those shapes can even form
bundles of a certain dimensionality when the potential is var-
ied (Section V). Finally, by just observing where those objects,
the degeneracy regions, touch each other or the boundary of
the density domain, one finds densities that are represented
by multiple potentials (non-uv densities), a situation where
the Hohenberg–Kohn theorem from density-functional theory
fails. Overall, a beautiful geometrical picture of the relation
between potentials and their ground-state densities emerges.

Looking at the different examples that have been discussed
here reveals that a substantial part of the whole density domain
is filled by the degeneracy structures. We might thus wonder
about the precise degeneracy ratio, i.e., the volume of the com-
plete degeneracy structure divided by the volume of the hyper-
simplexPM,N . For the triangle graph and the square graph this
can be calculated by elementary methods and we get 0.605 and
0.589, respectively. To calculate the volume of the convexified
Roman surface is much harder, but we can give a lower and
an upper estimate by considering a tetrahedron inside the Ro-
man surface and one enclosing it. The inner tetrahedron shares
the four points where the Roman surface touches the bound-
ary of P3,2 as vertices. The outer tetrahedron is taken such
that it shares the flat sides of the convexified Roman surface
as faces, which means that the cylindrical degeneracy bundles
lead exactly to the incircles of the tetrahedron faces. This gives
a degeneracy ratio for the tetrahedron-graph system between
0.528 and 0.703. Hence, in all those examples that are highly
symmetric and thus can give rise to degeneracy more easily,
the degeneracy ratio is about 60%, still an unexpectedly large
number. Such a large amount of degeneracy was also observed
in the discretization of continuum systems [25], so it is not ex-
clusively an effect in small lattice systems.

We finally list a number of open challenges and ideas for fur-
ther investigations linked to the theory developed in this work:

• One obvious open task would be to completely classify
all possible shapes of degeneracy regions for general
(g, κ) following the analysis of Degen [24] and Coffman
et al. [29] that settle the case (g, κ) = (3, 2). Some
could already be ruled out by Lemma 5, but possibly
other classes also never appear as degeneracy regions,
which could be demonstrated by further investigations
related to the nature of kerP . After all, in our exam-
ples of all Steiner surfaces only the Roman surface ap-
peared. The case of a singleton degeneracy region with
κ = (g + 1)g/2 − 1 was also never observed in an ex-
ample and it is open if it can even occur without internal
degrees of freedom. If it can be proven that they do not
exist then this would save the original argument of Ull-
rich and Kohn [10] that degeneracy in potential space is
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(a) (b)

Figure 5: Left, the union of all degeneracy regions of the square graph inside the octahedral set of densities P4,2.
Right, four elliptical degeneracy regions from it are displayed that mutually touch at the diagonals drawn in red.

Figure 6: The universal functional −F (ρ) displayed on
the middle plane of the density octahedron from Fig-

ure 5. Where degeneracy regions touch, the functional
becomes non-differentiable, while it is constant along

the lines that are inside an elliptical degeneracy region.
Note that it is differentiable again on the center point.

rare.

• In order to find more classes of degeneracy regions or
whole degeneracy structures, one can naturally study
other interesting finite-lattice system. For the prepara-
tion of this work graph systems apart from the triangle,
square, tetrahedron and cuboctahedron with two parti-
cles have been studied: the diamond graph shows only
accidental degeneracy for a certain symmetrical poten-
tial with (g, κ) = (2, 1), the claw graph just one cylin-
drical degeneracy bundle, the octahedron graph has a de-
generacy region with (g, κ) = (3, 3) that has the shape
of a triangle, and the cube graph leads to bundles of
(g, κ) = (3, 0) regions (this yields another example for
non-pure-state v-representability by Corollary 7), fur-

ther cylindrical bundles and a Roman surface in the cen-
ter. But this list is far from exhaustive.

• It was already noted in Section VI that cases of whole de-
generacy regions as the intersection between two larger
degeneracy regions or at the boundary have not yet been
observed. The question remains if they are even pos-
sible. It also remains open if touching the boundary
of PM,N only occurs at the highest-dimensional faces
of the hypersimplex, where all ρi > 0, or also at
lower-dimensional edges. In case of the former and
since by Theorem 9 densities on the border are only v-
representable if they are contained in a degeneracy re-
gion, this means that densities with ρi = 0 can never
occur for any potential v in a finite-lattice system or, in
other words, all ground-state densities are strictly posi-
tive. Some corresponding results for non-interacting or
weakly-interacting lattice systems can be found in Penz
and van Leeuwen [15, Sec. V.A].

• Non-uv densities and especially densities from degen-
eracy regions, since they are more frequent, can pose a
problem to the convergence of the Kohn–Sham iteration
by introducing ambiguities [25]. Imagine the target den-
sity of an interacting system that lies within a degeneracy
region of the non-interacting reference system (this can
indeed happen, since for example a Hamiltonian with
a central potential commutes with the Laplace–Runge–
Lenz vector, leading to additional symmetries, while the
Coulomb interaction breaks this symmetry), then even
if we find an almost correct effective potential we would
lie outside of the degeneracy region and thus potentially
stay far away from the target density.

• In the end of Section VI we noted that F (ρ) is flat on
degeneracy regions, a feature that will not be respected
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by the usual approximations to the universal functional.
More insight into its shape, arising from the discussed
geometrical structure, can thus improve such approxi-
mations.

• Moreau–Yosida regularization is applied to the universal
functional F (ρ) in order to remedy non-differentiability
of the functional [37; 38] and to help proving conver-
gence of the Kohn–Sham iteration in the finite lattice
case [43; 44]. In the geometrical picture, this leads to de-
generacy regions that shrink slightly, thus moving apart
from each other, and a boundary of the density domain
that is entirely removed. This then avoids any non-uv
densities by Theorem 9.

• Further dual settings apart from “density-potential” with
even more complicated geometries can be considered as
well. For example current DFT maps the tuple (ρ, j) in-
cluding the current density to (v,A), where the potential
is complemented by a vector potential [45]. Since The-
orem 2 also holds for this case, a corresponding geomet-
rical analysis can be conducted. It is known that non-uv
densities do also occur in current DFT in the continuum
case, where they were shown to arise in situations where
one also has ground-state degeneracy [46].

• Theorem 9 exhibits an interesting dual structure be-
tween the geometric elements in the density and po-
tential spaces introduced here. That the spaces them-
selves are topological duals of each other was already
noted, but we also see that each degeneracy region (as
an extended object) is connected to a single density
point, while the straight lines connecting those points
correspond to the density where the degeneracy regions
touch. This structure is very similar to the nerve complex
of a set family.
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Appendix A: Extension to complex hermitian Hamiltoni-
ans

The general assumption throughout the work above was a
real symmetric Hamiltonian Hv so that one can choose real
basis vectors {Φk}gk=1 for any eigenspace. This in turn was
important for being able to define real matrix elements ρkl =
2⟨Φk, ρ̂Φl⟩ that enter the projection map P that maps the
Veronese variety Vg onto Dens (see Section II). We will here

extend this investigation to general complex hermitian Hamil-
tonians. The definitions for the density regions of a given sub-
space U (degeneracy regions if it is an eigenspace of Hv),

DC = ρ(U), (A1a)
D = ρ({Γ ∈ D | ΓH ⊆ U}), (A1b)

stay entirely the same. Only the DR = ρ(UR) makes no sense
any more for a subspace with complex basis vectors, since it
would be basis dependent. But we still have the relation D =
chDC which follows directly from Eq. (2).

Let z = (z1, . . . , zg) ∈ Cg , ∥z∥ = 1, be the coordinates
for a normalized state Ψ ∈ U with respect to the (complex)
orthonormal subspace basis {Φk}gk=1 of U . Then the density
is evaluated as

ρ(Ψ) =

g∑
k=1

|zk|2ρ(Φk) +

g∑
k,l=1
k<l

2Re(z∗kzl⟨Φk, ρ̂Φl⟩). (A2)

Note that the difference to Eq. (1) is just that the real-part func-
tion is applied also to the inner-product expression. In analogy
to before we define

ρk = ρ(Φk), (A3a)
ρRe
kl

= 2Re(⟨Φk, ρ̂Φl⟩), (A3b)

ρIm
kl

= 2 Im(⟨Φk, ρ̂Φl⟩). (A3c)

With this we rewrite Eq. (A2) as

ρ(Ψ) =

g∑
k=1

|zk|2ρk +

g∑
k,l=1
k<l

(
Re(z∗kzl)ρ

Re
kl

− Im(z∗kzl)ρ
Im
kl

)
.

(A4)
This form suggests a generalized Veronese embedding

νC : Cg −→ Rg2

(z1, . . . , zg) 7−→ (|z1|2, . . . , |zg|2,
Re(z∗1z2), . . . ,Re(z

∗
g−1zg),

Im(z∗1z2), . . . , Im(z∗g−1zg)).

(A5)

Finally, the map from coordinates z ∈ Cg to densities is com-
posed of this νC and a linear map P : Rg2 → Dens with
columns ρk, ρRe

kl
, and ρIm

kl
, just like Eq. (8),

ρ = P ◦ νC : Cg 7→ Dens. (A6)

Whenever such a column is zero or linearly dependent on the
rest, the dimension of the kernel κ = dimkerP increases and
the dimension of the formed density region decreases. So the
new dimensional formula for a density region is then

dimD = g2 − κ− 1. (A7)

Theorem 8 still holds unchanged, with (g+1)g/2 replaced by
g2, as well as the whole Section VI.

Using a complex Hamiltonian allows for an even simpler re-
alization of the Roman surface as a degeneracy region. For
this we take M = 4 and N = 1, so just one particle and a
4-dimensional Hilbert space, with the Hamiltonian

h0 =

 0 i i i
−i 0 1 1
−i 1 0 1
−i 1 1 0

 . (A8)
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Unlike the Hamiltonian considered in Section III, the Perron–
Frobenius theorem does not apply complex Hamiltonians and
we find that the ground state indeed is 3-fold degenerate with
an eigenspace spanned by

Φ1 =
1√
2
(i, 0, 0,−1), (A9)

Φ2 =
1√
6
(i, 0,−2, 1), (A10)

Φ3 =
1

2
√
3
(i,−3, 1, 1). (A11)

The degeneracy region from this eigenspace is now again the
convex hull of a Roman surface that lies in the density domain
P4,1 which has the shape of a tetrahedron. It is displayed in
Fig. 7. We note three things on how the degeneracy region

Figure 7: The convex, three-fold degeneracy region
D inside the tetrahedronal density domain. The cor-

ners of the octahedron correspond to the extreme
density (1, 0, 0, 0) and its permutations, generalized
barycentric coordinates are used to display densities.

relates to the density domain: (i) it almost fills out the whole
domain, so the degeneracy ratio is high, (ii) the flat faces of
the convex hull of the Roman surface touch the faces of the
tetrahedron, and (iii) the degeneracy region also touches every
edge of the tetrahedron in exactly one point. The last item gives
a counterexample to a question raised in Section VII earlier: if
touching the boundary of the density domain only occurs at the
highest-dimensional faces. This implies that by Theorem 9 this
examples features exactly six v-representable densities (one in
the middle of every edge) that have even two components of
ρ equal to zero (the Φ1 above gives one such example, i.e.,
ρ1 = 1

2 (1, 0, 0, 1)). Additionally, since also the flat faces touch
the density domain, all those densities are v-representable as
well with one component of ρ equal to zero (for this, the Φ2

above gives an example, i.e., ρ2 = 1
6 (1, 0, 4, 1)). These are

thus all examples of non-uv densities. We conclude that as
far as complex Hamiltonians are concerned, the ground-state
density must not be strictly positive.

Appendix B: Extension to sets of arbitrary observables

Another form of extension is almost obvious. For an arbi-
trary quantum system, not limited to finite lattices, take a set of
observables {ô1, . . . , ôM}, all represented by self-adjoint op-
erators. For any normalized state Ψ ∈ H we define

o(Ψ,Φ) = (⟨Ψ, ô1Φ⟩, . . . , ⟨Ψ, ôMΦ⟩). (B1)

Then, replacing ρ(Ψ) by o(Ψ,Ψ) and extending this definition
to mixed states like in Eq. (2), we can have equivalent defi-
nitions for density (or degeneracy) regions. The linear map
P : Rg2 → RM now consists of o(Φk,Φk), 2Re(o(Φk,Φl)),
and 2 Im(o(Φk,Φl)), and the whole dimensional and morpho-
logical analyses of Sections II-IV still hold. Just note that all
the dimensional formulas, starting with Eq. (9), change be-
cause of the missing normalization constraint. Also, the re-
sult D(v) = ∂E(v) in Section IV depends on the dual relation
to potentials discussed below. The only possible issue occurs
with unbounded operators for observables that could lead to
infinities. Conversely, the results of Sections V-VI do not read-
ily apply, since they depend intimately on the dual relation be-
tween densities and potentials originating from the linear cou-
pling

∑
i viρ̂i. But if the Hamiltonian includes a coupling of

the form
∑

i viôi with a generalized potential v, this would
again yield the same structure and then everything, including
D(v) = ∂E(v), can be derived in the same fashion.

The same construction and most notably the image of the
map Ψ 7→ o(Ψ,Ψ), called the ‘moduli space of expectation
values’, was recently studied by Song [47]. In case the map-
ping is limited to a subspace this moduli space amounts exactly
to our definition of density region. The reference discusses in-
teresting applications to estimates on expectation valued, like
Heisenberg’s uncertainty principle and Bell’s inequality, and
even a direct application to DFT.

A typical example for such a Hamiltonian would be a lattice
Hamiltonian including spin coupled to a magnetic field B⃗i,

HB = H0 +
∑
i

B⃗i · ˆ⃗σi. (B2)

Another interesting example is one-particle reduced density
matrix functional theory (1RDMFT) [48], where instead of the
density one considers the 1RDM and the coupling is to a non-
local potential,

Hv = H0 +
∑
i,j

vij γ̂ij . (B3)
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