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Analog quantum simulations with Rydberg atoms in optical tweezers routinely address strongly
correlated many-body problems due to the hardware-efficient implementation of the Hamiltonian.
Yet, their generality is limited, and flexible Hamiltonian-design techniques are needed to widen
the scope of these simulators. Here we report on the realization of spatially tunable interactions
for XYZ models implemented by two-color near-resonant coupling to Rydberg pair states. Our
results demonstrate the unique opportunities of Rydberg dressing for Hamiltonian design in analog
quantum simulators.

Quantum simulators based on arrays of neutral atoms
have proven to be among the most promising platforms to
address non-trivial problems of strongly correlated many-
body phenomena. This success is based on the optimally
hardware-efficient analog implementation of the Hamil-
tonian under study [1–4], which is one of the reasons
to employ these machines for useful tasks in the so-called
NISQ (noisy intermediate-scale quantum) era of quantum
processors. While such an emulation approach eliminates
any overhead in control necessities or qubit numbers, it
strongly restricts the use cases of a specific quantum sim-
ulator to problems rooted in the device-dependent Hamil-
tonian. Here, neutral atoms trapped in optical tweezer
arrays with engineered geometries in two dimensions,
laser coupled to Rydberg states to induce interactions [5],
are among the most promising platforms [6–12]. Large
system sizes have been demonstrated with long coherence
times [12, 13], enabling the simulation of quantum mag-
nets both in equilibrium [14, 15] and dynamically [16].

Rydberg atom-based simulators naturally implement
Ising or XY-type Hamiltonians with power-law interac-
tions [17–20]. Recently, Floquet-engineered XXZ spin
coupling in bulk systems and optical tweezer arrays has
been demonstrated [21, 22]. Control over the spatial
interaction profile of Ising systems has also been real-
ized by admixing Rydberg character to the ground state,
so-called Rydberg dressing [23–30]. Lately, a sharply
peaked interaction profile has been demonstrated by cou-
pling to molecular Rydberg macrodimer potentials [31].
One of the biggest remaining challenges is to increase the
systems’ flexibility via universally programmable analog
qubit couplings.

We report on progress into this direction by the real-
ization of freely tunable short-range XYZ-type spin in-
teractions between atoms trapped in optical tweezer ar-
rays. The effective spin-1/2 system is encoded in two
electronic ground states and we introduce interactions by
two-color Rydberg dressing. This allows to engineer the

∗ lea.steinert@uni-tuebingen.de

spin-spin couplings in each spin direction by the choice of
the laser parameters. Our approach uses the spatially de-
pendent van-der-Waals (vdW) interactions between dif-
ferent mj-sublevels in the Rydberg pair state manifold to
design distance and angular-dependent couplings of the
XYZ Hamiltonian [33]

ĤXYZ = ~
∑
i<j

(Jzij σ̂
z
i σ̂

z
j + J++

ij σ̂+
i σ̂

+
j + J+−

ij σ̂+
i σ̂
−
j ) + h.c.

(1)
The Pauli matrices σ̂zj , σ̂xj = (σ̂+

j + σ̂−j ) and

σ̂yj = i(σ̂−j − σ̂+
j ) describe a spin-1/2 particle at posi-

tion j. This Hamiltonian distinguishes between three
types of spin couplings Jγij : The diagonal interaction
between dressed ground states Jzij , the off-diagonal

“flop-flop” J++
ij , and “flip-flop” J+−

ij interactions. While

dressing-induced Ising (Jz) interactions have already
been studied in various experiments [26, 27, 30, 31, 34–
36] and programmable long-range interactions have
been demonstrated in optical cavities [37], we focus on
programmable J++

ij and J+−
ij interactions (see fig. 1).

With control over the laser parameters and the geometric
arrangement of single atoms, we can engineer the relative
coupling strength of the spin-spin interactions J++

ij /Jzij
and J+−

ij /Jzij as visualized exemplarily in fig. 2. We are
also able to switch off specific couplings globally by the
choice of the laser detunings as discussed below. In a 2D
configuration, the situation is even more complex: The
angular dependence of the interaction provides a unique
opportunity to control the nearest-neighbor- versus
longer-ranged interaction and to realize models featuring
various magnetic phenomena, including frustration and
topology [7, 10, 33, 38–40]. Our approach also opens
new pathways to quantum simulations with practical
relevance for the inference of Hamiltonians underlying
spectra obtained in nuclear magnetic resonance experi-
ments in chemistry and biology [41].

The physical system we use is an optical tweezer
array of single 39K atoms. The spins are encoded in the
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Figure 1. Experimental setup and level schemes. a. Illustration of the experimental setting. The Rydberg excitation beams
(k↑ and k↓, light blue) are aligned along the magnetic field B, driving σ− transitions. They illuminate all tweezer groups, each
with three linearly arranged tweezers (red), which are statistically loaded with atoms (black spheres). At the bottom of the
illustration, a single shot fluorescence image is shown. b. Example of fluorescence images of fully loaded tweezer groups for
various angles θ at a distance of 5.2µm. c. On the single-atom level, we couple the electronic ground states |↑〉 and |↓〉 to the
Rydberg states |r↑〉 and |r↓〉 with Rabi frequencies (Ω↑,Ω↓) and detunings (∆↑,∆↓). d. Schematic for the flop-flop interaction
J++
ij between two atoms i and j. Via adiabatic elimination of the singly excited pair states, we reduce the four-photon process

to an effective Λ-scheme. The pairs of ground state atoms are coupled with the effective Rabi couplings Ω↑↑α and Ω↓↓α to Rydberg

pair states |Ψ(2)
α 〉. ∆

(2)
α is the two-photon detuning to each |Ψ(2)

α 〉, which includes interaction induced shifts. e. Calculated

eigenenergies of ĤRyd depending on the atom pair distance d at an angle of θ = 90 ◦ (upper) and atom pair angle θ at a
distance d = 6µm (lower). The color scale corresponds to the overlap c↑↑α c

↓↓
α . The solid lines at ±2 MHz mark the energy of

the asymptotic Rydberg pair state |r↓r↓〉 and |r↑r↑〉. The theoretical results are obtained by exact diagonalization of HRyd

using the “pairinteraction” software package [32].

hyperfine states |↑〉 = |4S1/2 F = 2,mF = −2〉 and |↓〉 =
|4S1/2F = 1,mF = −1〉. Both states are coupled individ-
ually to the Rydberg states |r↑〉 = |62P3/2, mj = −3/2〉
and |r↓〉 = |62P3/2, mj = −1/2〉 by off-resonant single
photon excitation at 286 nm with the Rabi frequencies
Ω↑ and Ω↓, and detunings ∆↑ and ∆↓ (see Fig. 1).
The choice of beam polarizations suppresses single-atom
Raman couplings. In this doubly laser-coupled system,
rich spin-spin interactions emerge, which are rooted in
the strong van der Waals (vdW) interactions between
the addressed Rydberg pair states. For the derivation
of the spin couplings J++

ij and J+−
ij , we start with diag-

onalizing ĤRyd = Ĥlas + Ĥint in the Rydberg pair state

basis [33]. Here, Ĥlas is the single atom Hamiltonian in

the rotating frame. The vdW Hamiltonian Ĥint leads
to interactions between the different mj levels in the
62P3/2 manifold. We admix different components of
the vdW pair eigenstates to the ground states by laser
coupling to obtain the effective interactions between the
ground states.

The interactions in Eq. 1 can be understood as four-
photon processes by adiabatic elimination of all excited
states (Supplementary Information and ref. [33]). For
example, for the flop-flop interactions, the coupling of
the |↑↑〉 pair ground state to a Rydberg pair eigen-

state |Ψ(2)
α 〉 follows by adiabatic elimination of the singly

excited state as Ω↑↑α = (Ω↑)2 · c↑↑α /2∆↑, where c↑↑α =

〈Ψ(2)
α |r↑r↑〉 is the wavefunction overlap of one eigenstate

|Ψ(2)
α 〉 in the Rydberg manifold with the asymptotic Ry-

dberg pair state |r↑r↑〉. The coupling of |↓↓〉 follows
analogously. For sufficiently large detuning of the lasers
to any coupled state in the Rydberg manifold, we can fur-
thermore eliminate the Rydberg pair eigenstates to arrive
at an effective coupling between ground state atom pairs
i and j:

J++
ij = 2

∑
α

Ω↑↑α Ω↓↓α

∆
(2)
α

=

(
Ω↑Ω↓

)2
4∆↑∆↓

· c
↑↑
α c
↓↓
α

∆
(2)
α

(2)

The Rydberg pair state detuning ∆
(2)
α includes vdW

interaction-induced shifts UvdW,α. Spin flips from |↑↑〉 to
|↓↓〉 and vice versa require a non-zero probability overlap
c↑↑α c

↓↓
α provided by the mixing of the mj-sublevels.

The derivation of J+−
ij starts with two atoms in op-

posite spin states |↑↓〉 or |↓↑〉. Different from the flop-
flop interaction case, there are two excitation paths to
the Rydberg manifold. Via adiabatic elimination of the
intermediate singly excited state we obtain an effective
two-photon coupling Ω↑↓α = Ω↑Ω↓ ·c↑↓α ·

(
1/4∆↑ + 1/4∆↓

)
.

Then, in fourth order perturbation theory, we obtain the
flip-flop interaction:

J+−
ij = 2

∑
α

Ω↑↓α Ω↓↑α

∆
(2)
α

=
∑
α

(
Ω↑Ω↓

)2
16 (∆↑∆↓)

2 ·
(
∆↑ + ∆↓

)2 · c↓↑α c↑↓α
∆

(2)
α

(3)

For finite flip-flop interaction, we require a non-zero
overlap of c↑↓α c

↓↑
α . In the case of symmetric detunings
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Figure 2. Tunable XYZ interactions in 1D chains. In both
panels we show the calculation of the same data points, high-
lighting the distance (a.) and angle (b.) dependence of the
ratios J++

ij /Jzij and J+−
ij /Jzij for one exemplary set of detun-

ings (∆↑,∆↓) = 2π · (1.4,−0.6) MHz. The interactions are
calculated for distances spaced by 100 nm and angles in steps
of 1 ◦. Quadrant II and IV show a smooth tunability, while
the ratios in quadrant I and III are realized close to Rydberg
pair state resonances. The latter requires higher stability of
the control parameters, but may ultimately be beneficial for
the achievable coherence [38].

∆↑ = −∆↓, the flip-flop interaction is generally canceled
by destructive interference of the excitation paths. This
provides us with sensitive control of J+−

ij by choosing
the excitation laser detuning accordingly. In contrast,
energy conservation restricts the flop-flop processes and
requires the laser detunings to be set to ∆↑ −∆↓ = Ez,
with Ez the Zeeman splitting between |r↑〉 and |r↓〉 (see
Fig. 3c).

To study the dependence of the interaction strengths
on the geometric arrangement experimentally, we select
the simplest possible setting of three in-line traps with
various nearest-neighbor (nn) distances d and angles θ
(see Fig. 1a,b). Here, θ is the angle between the inter-
atomic separation vector d and the magnetic field B,
which is set to 1 G and defines the quantization axis. We
use 14 replications of this pattern for increased statistics,
where the inter-group spacing is 20µm, larger than any
interaction range in the system. With a first fluorescence
image of the atom array, we check for the presence of
an atom in the trap. We then prepare all atoms in the
|↑〉 state and perform Raman sideband cooling. This
allows us to minimize the trap induced inhomogeneities
by working at the lowest possible tweezer depth of
h · 80 kHz [42] (Supplementary Information). We then
apply two-color Rydberg dressing for 50µs. Next, we
remove all |↑〉 atoms by a blowout pulse and detect
only the remaining atoms in the |↓〉 state with a second
fluorescence image. Comparing both fluorescence images
allows us to infer the spin interactions by observing
flipped spins and their correlations.

First, we aim to reveal the induced flop-flop interac-
tions by choosing our detuning symmetric ∆↑ = −∆↓,
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Figure 3. Flop-flop interactions. a. Calculation of J++ as
a function of θ and d for ∆↑ = −∆↓ = 2π · 1 MHz. We
identify a resonance in the spin-spin couplings appearing as
a singularity around θ = 30 ◦ at a distance of 5 − 6µm. b.
Observed flop-flop probability Pflop for different atom pair
distances at θ = 90 ◦. A small false positive probability sets
the detection limit (grey area) taking into account single spin
flips and inefficient state preparation and push out. Error
bars indicate 1 s.e.m. The solid line corresponds to the the-
oretical prediction, where the amplitude has been scaled to
match the experimental values due to broadening effects. The
blue shading indicates the effect of the finite radial size of the
atomic wavepacket σrad (Supplementary Information). Each
shading represents the interaction difference for σrad/2 steps
in pair distance in the range of ±3σrad. c. Flop-flop pro-
cesses versus two-atom Raman detuning ∆E = Ez−∆↑+∆↓.
The fit shows the characteristic sinc2 envelope of a Fourier
limited rectangular pulse with a full width half maximum
FWHM = (18.2 ± 0.2) kHz. d. Angular dependence of the
flop-flop interaction at a distance of 5.6µm.

to cancel the flip-flop terms. We map the spatial
dependence of the interactions by preparing the atoms
at different distances and angles. We do not observe
significant single spin flips, confirming the suppression
of single-atom Raman processes. The J++ interaction
leads to pairwise spin-flips, which we observe in our
setting between nearest neighbors. The distance de-
pendence of the pairwise spin flips is shown in Fig. 3,
where we scan the atoms’ distances at θ = 90 ◦ and
Rabi couplings of (Ω↑,Ω↓) = 2π · (0.52, 0.36) MHz.
The experimental data and the amplitude-scaled the-
oretical expectation are overall in good agreement.
Differences in theory and experiment emerge from
several line-broadening effects, such as the finite size
of the atoms’ thermal wavepacket in radial and axial
direction in the traps (Supplementary Information),
which results in an averaging over a range of atom
pair separations and angles within the radial ground
state wavepacket size of σ0

rad = 0.15µm and the axial
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thermal wavepacket size
√

2σ0
ax

√
kBT/~ωax ≈ 0.86µm

for the axial trapping frequency ωax = 2π · 1.7 kHz.
A second, equally important, effect is caused by the
line shifts due to tweezer-to-tweezer inhomogeneities
which result in an average trap depth difference of
|∆U | = h · (10.6 ± 1.6) kHz. In addition, laser phase
noise currently limits the dressing time due to a 20-fold
increased scattering rate appearing as atom loss [43].
We additionally map out the angular dependence of the
flop-flop interaction for a fixed distance of 5.6µm and
Rabi couplings of (Ω↑,Ω↓) = 2π · (0.55, 0.30) MHz. In
this measurement, we cross a singularity in the spin-spin
coupling at θ ≈ 30 ◦ caused by a Rydberg pair state
resonance. We reproduce a peaked interaction around
this resonance, shown in Fig. 4d, while the broadening
effects explain the weak atom loss by direct Rydberg
excitation on resonance (Supplementary Information).

In the second set of measurements, we switch on
both flop-flop and flip-flop interactions by setting the
detunings to (∆↑,∆↓) = 2π · (1.4,−0.6) MHz and Rabi
frequencies to (Ω↑,Ω↑) = 2π · (0.5, 0.36) MHz. For the
analysis of the spin interactions, we take into account
different initial states prepared in the statistical loading
of the traps (see Fig. 4). These configurations of interest
are chosen in postselection and correspond to either a
fully loaded group ( |↑↑↑〉) or groups where only two
out of three tweezers at the nearest neighbor distance
are filled ( |↑↑ ◦〉, |◦ ↑↑〉, where ◦ indicates an empty
site). In the latter configuration, only flop-flop processes
occur, while in the case of three atoms also flip-flop
processes appear. Comparing the two fluorescence
images before and after the dressing phase allows us
to identify which interaction processes occurred. More
precisely, assuming a |↑↑↑〉 occupation at the beginning,
a flop-flop interaction can produce a |↑↓↓〉 ( |↓↓↑〉)
arrangement, and flip-flop processes introduce the |↓↑↓〉
state, after push out detected as |↓ ◦ ↓〉. The pure
flop-flop process results in the presence of two atoms at
the nearest neighbor distance on the second image. We
predict a different spatial dependence of J++ and J+−

(see Fig. 4b,c). Note that the detection method used
here always requires flop-flop to be present in order to
initiate the dynamics out of the fully polarized initial
state.
Our data reveals the angular- and distance-dependent
J++
ij interactions for an asymmetric detuning in Fig. 4d,f.

In addition, we measure a peaked occurrence of the
|↓ ◦ ↓〉 pattern, which we identify as the flip-flop in-
teraction shown in Fig. 4e. This feature reflects the
tunability of our system by introducing J+−

ij interactions
for a given laser detuning, atom pair distance, and
angle. In addition, we probe our system such that the
flip-flop interaction strength vanishes and only flop-flop
interactions occur (see Fig. 4f,g). Here, we scanned
the angular dependence of the interactions at a fixed
distance of 5.3µm without crossing a Rydberg pair
resonance. The minimum in the signal, around 65 ◦, is

Angle

Distance (μm)

ed
10−2

b

f

10−2

P fl
op

P fl
op

P fl
ip

Angle

10−210−2
g

J
++/2π (kH

z)

−5

50°
30°

60°

90°
Distance (μm)

3 5 7

0°
30°

60°

90°
Distance (μm)

3 5 7 −15

15

Distance (μm)

J
+−/2π (kH

z)

c

P fl
ip

a

 Preparation Push Rydberg dressing time

J++ J+-

Angle (deg) Angle (deg)
0 30 60 90

0

1

0 30 60 90
0

1

5 6 7 8
0

1

5 6 7 8
0

1

Figure 4. Flip-Flop interactions. a. Experimental sequence.
We start with optically pumping all atoms in the |↑〉 state.
This is followed by a period of Rydberg dressing and a push
out pulse, leaving only atoms in the |↓〉 state. We post select
two initial configurations: The atom in the center plus one
additional atom or all three atoms are loaded. Depending on
this configuration, flop-flop (blue arrow) and/or flip-flop pro-
cesses (orange arrow) occur. b, c. Calculation of the distance-
and angular-dependent flop-flop and flip-flop interactions. d,
e. Distance dependence of the J++ and J+− interactions at
an angle of θ = 50 ◦ (straight grey line in b, c). f, g. Angular
dependence of the J++ and J+− interactions at a distance
of 5.3µm (curved grey line in b, c). Shadings indicate the
detection limit and the effects of the spatial extension of the
atomic wavepacket analogous to figure 2; error bars denote 1
s.e.m.

caused by interference on the two-atom level. Multiple

Rydberg pair states |Ψ(2)
α 〉 with admixtures c↑↑α c

↓↓
α of

opposite sign contribute such that J++ vanishes.

In conclusion, we have demonstrated two-color
Rydberg-dressing as a new technique to achieve tun-
able, XYZ-type short-range spin interactions in optical



5

tweezer arrays. Technical limitations currently prevent
us from probing coherent interactions (see Supplemen-
tary Information). The two leading limitations stem
from tweezer-to-tweezer line shifts due to array inho-
mogeneities and from laser phase noise. None of these
are fundamental, in fact, other groups have reported
tweezer arrays with less than 1.1 % inhomogeneity [44],
a factor of 10 improvement over our arrays. Laser phase
noise can be filtered by optical cavities, as demonstrated
for Rydberg excitation in ref. [45]. Furthermore, it is
has been shown that the observed Rydberg pair state
resonances can be utilized to enhance the coherence of
Rydberg dressing [38]. By implementing these measures,
we estimate that a maximum figure of merit, measured
as the product of the peak interaction strength and the
coherence time, of up to one hundred is reachable with
current laser technology. This will allow one to realize
a flexibly programmable analog quantum simulation
platform for many-body quantum spin problems. Not
only the ratio of the spin-interactions in the different
channels can be controlled, but also the ratio of nearest-
to next-nearest-neighbor interactions. This is rooted in

the non-monotonic spatial dependence of the interaction
strength, which can also be used to design interactions
in two-dimensions for the realization of a variety of
frustrated geometries [33], static [39] or dynamic gauge
fields [40].

Data and materials availability: The experimental
and theoretical data and evaluation scripts that support
the findings of this study are available on Zenodo [46].
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SUPPLEMENTARY INFORMATION

This supplementary information document provides
information about the experimental sequence and laser
setup, a detailed derivation of the interactions, and a
discussion of our experimental limitations.

I. EXPERIMENTAL SEQUENCE

The optical tweezers are generated using a commercial
1064 nm laser aligned onto a liquid crystal spatial light
modulator, which imprints a phase pattern onto the
beam. An in-vacuum mounted objective (NA = 0.6)
focuses the linearly-polarized beam, obtaining a tweezer
array with controlled geometry, of which each trap
has a waist of 0.9µm. We load 39K atoms into the
traps by alternating trapping and cooling light with a
frequency of 1.4 MHz [47], one order of magnitude faster
than the radial trapping frequency of ωr = 2π · 158 kHz
(ωz = 2π · 25 kHz). On average, 50 % of the traps are
filled with a single atom [42, 43], and the experimental
cycle rate is 1 Hz.

After a first fluorescence image probing the tweezer
filling, we optically pump and prepare the atoms in the
|↑〉 = |4S1/2 F = 2,mF = −2〉 state with σ−-polarized
pumping and repumping light on the D1-line. To

quantify the state preparation efficiency, we start by
preparing all the atoms in the |↑〉 state. We then
switch on the optical pumping light without the re-
pump light and compare the results for two different
polarizations. If the light can only drive σ− transitions,
the atoms remain in the |↑〉 state, which is dark under
this illumination on the D1 line. Scanning the pulse
duration of the pumping light, we fit a 1/e optical
depumping time τDP = 35.93 ± 2.54 ms. In contrast, if
the polarization is changed such that the light drives
σ+ or π transitions, the atoms are depumped to F = 1.
In the latter case, we measure a 1/e optical depumping
time τOP = 0.20 ± 0.02 ms. From this we extract
the state preparation efficiency in the |↑〉 state to be
P (F = 2,mF = −2) = 1− τOP/τDP = 99.44± 0.08 %.

We then apply Raman sideband cooling (RSC) [42],
which enables us to lower the trap depth to a minimum
of h · 80 kHz before gravity opens the trap. At these low
intensities, the light shift induced inhomogeneities of the
Rydberg excitation lines are reduced to a few kHz (see
section IV B). We continue with a 50µs long pulse of
both Rydberg dressing lasers (details see section II). The
magnetic field strength of B = 1 G leads to a Zeeman
splitting of the Rydberg states Ez = h · 1.98 MHz.

The Rydberg excitation beams couple the following
ground states

|↑〉 = |4S1/2〉 |F = 2,mF = −2〉 = |4S1/2〉 |mj = −1/2〉 |mI = −3/2〉

|↓〉 = |4S1/2〉 |F = 1,mF = −1〉 = |4S1/2〉 ( |mj = −1/2〉 |mI = −1/2〉 −
√

3 |mj = 1/2〉 |mI = −3/2〉)/2
(S.1)

to the Rydberg states |r↑〉 = |62P3/2, mj = −3/2〉 and
|r↓〉 = |62P3/2, mj = −1/2〉 respectively.

After the Rydberg laser pulse, we remove all remaining
atoms in the F = 2 manifold with a resonant laser pulse
on the |F = 2,mF = −2〉 to |F ′ = 3,m′F = −3〉 cycling
transition of the D2-line. We detect the remaining atoms
in the |↓〉 state with a second fluorescence image. Com-
paring both fluorescence images allows us to deduce the
spin interactions based on spin flips and their correla-
tions.

II. RYDBERG LASER SETUP

The Rydberg dressing laser setup consists of a home-
built ECDL laser at 1143.5 nm, which is amplified
to 8 W via a commercial Raman fiber amplifier and
then frequency-quadrupled in two consecutive, homebuilt
cavity-enhanced doubling stages. This results in an out-
put power of 1 W at 286 nm. This UV beam is then split
into two paths with acousto-optical modulators (AOM)
with frequencies of ±230 MHz, which we use for inten-

sity stabilization and bridging the hyperfine ground state
splitting. The beams are then overlapped and focused
onto the atoms, with a horizontal waist of 40µm and a
vertical waist of 10µm. The Rydberg excitation beams
propagate parallel to the magnetic field and drive σ−

transitions.
The lifetime of the dressed ground states is propor-
tional to the Rydberg state probability. For our pa-
rameters and assuming a phase-noise-free laser, we ex-
pect a dressed (black-body radiation limited) lifetime of
τdr = 1.7 ms. In contrast, the experimentally observed
lifetime is reduced to 70µs (for ∆↓ = −2π · 0.6 MHz and
Ω↓ = 2π · 0.4 MHz) due to laser noise [43]. Atom loss
due to excitation to Rydberg pair resonances is weak, as
shown in Fig. S1. Here, the data has been postselected
to only nearest neighbor tweezer pairs initially loaded.
In the measurement, we did not apply a push out pulse,
to realize spin-insensitive imaging. All Rabi frequencies
have been measured before the respective set of measure-
ment runs by driving Rabi oscillations without trapping
light. The typical uncertainty of the Rabi frequency fits
is 0.01 MHz.
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Figure S1. Atom loss on Rydberg pair resonance. Mea-
surement settings are the same as in Fig. 2d in the main text.
The gray vertical line marks the predicted position of the
pair state resonance. The data shown has been analyzed on a
postselected dataset which includes only tweezers with at two
nearest neighbor atoms loaded |↑↑ ◦〉 ( |◦ ↑↑〉). No push out
pulse was applied at the end of the sequence to realize a spin
spin-insensitive measurement. The atom loss on resonance is
observable but weak for our settings.

III. DERIVATION OF THE EFFECTIVE
INTERACTIONS

The effective spin-spin interactions between dressed
ground states arise adiabatically by the elimination of
the Rydberg levels in the two-atom Hamiltonian Ĥ =
Ĥlas + Ĥint. The ground states are laser coupled to the
Rydberg states by the laser coupling Hamiltonian

Ĥlas/~ =

2∑
i=1

[Ω↑( |↑〉〈r↑|i + |r↑〉〈↑|i)/2 + Ω↓( |↓〉〈r↓|i

− |r↓〉〈↓|i)/2 + ∆↑ |r↑〉〈r↑|i −∆↓ |r↓〉〈r↓|i]
(S.2)

The Rabi frequency Ωσ determines the coupling strength
between a ground state |σ〉i and a Rydberg state |rσ〉i of
one atom i, with σ ∈ {↑, ↓}. For the chosen laser polar-
izations and states, the dipole matrix elements between
|↑〉i and

∣∣r↓〉
i

and vice versa vanish, such that single-
atom Raman transitions are absent. The magnetic field
dependent single atom detunings are described by ∆σ.

The pair interaction Hamiltonian Ĥint arises from the
dipolar interactions among the Rydberg states. We
use the “pairinteraction” software package to diagonal-
ize the interaction Hamiltonian [32] and to obtain the
pair-separation d and -angle θ dependent eigenstates

|Ψ(2)
α 〉 with eigenenergies Eα(d, θ). The eigenstates

can be developed in asymptotic pair states |rmrn〉 as

|Ψ(2)
α 〉 =

∑
nm c

mn
α (d, θ) |rmrn〉 with the distance- and

angle dependend admixture cmnα (d, θ) = 〈Ψ(2)
α |rmrn〉.

To improve the readability, we suppress the explicit d, θ-
dependency in the rest of the text.

The dipolar interactions between any pair of Ryd-
berg states |rmrn〉 can be written in the pair basis
{ |rmrm〉 , |rmrn〉 , |rnrm〉 , |rnrn〉} in the form

Ĥint =

V
mm,mm 0 0 V mm,nn

0 V mn,mn V mn,nm 0
0 V nm,mn V nm,nm 0

V nn,mm 0 0 V nn,nn

 .

(S.3)
When adiabatically eliminating the Rydberg

states (equivalent to 4-th order perturbation the-
ory, c. f. ref. [33]), this form of the interactions is
transferred to the dressed ground states and the effective
Hamiltonian Ĥeff reads in the { |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}
basis:

Ĥeff =


W ↑↑,↑↑ 0 0 W ↑↑,↓↓

0 W ↑↓,↑↓ W ↑↓,↓↑ 0
0 W ↓↑,↑↓ W ↓↑,↓↑ 0

W ↓↓,↑↑ 0 0 W ↓↓,↓↓

 . (S.4)

In the following, we develop an intuitive picture for
deriving the different entries of this effective interac-
tion matrix. The general idea is a step-wise elimina-
tion of the Rydberg levels, starting with singly excited
states to obtain a Λ-system. In the second step, we
also eliminate the doubly excited states to arrive at
an effective Hamiltonian for the dressed ground states.
This procedure is illustrated in Fig. S2. Here, we
assume that there are only four relevant (i. e. near-
resonantly) laser coupled asymptotic pair states, the
states { |r↑r↑〉 , |r↑r↓〉 , |r↓r↑〉 , |r↓r↓〉}.

A. The diagonal coupling terms

For the derivation of Wσσ,σσ, we start with
adiabatic elimination of the single excited state
|+σ〉 = ( |σrσ〉+ |rσσ〉)/

√
2. For large atom distances,

we obtain the effective two-photon Rabi couplings Ωσσ =
(Ωσ)2/2∆σ. At short distances, the pair potentials in the
mj-subspace of the 62P3/2 manifold interact with each
other via dipole-quadrupole interaction, which leads to
avoided crossings and mixing of Rydberg states [48]. The

corresponding admixture cσσα = 〈Ψ(2)
α |rσrσ〉 of |rσrσ〉 in

close-by interacting pairstates |Ψ(2)
α 〉 reduces the effective

Rabi frequencies to Ωσσα = Ωσσeff · cσσα . We then adiabati-
cally eliminate the Rydberg pairstates and subtract the
asymptotic value of Wσσ,σσ for d = ∞ to eliminate a
constant offset.

Wσσ,σσ =
(Ωσ)4

4(∆σ)2

∑
α

(
(cσσα )2

∆
(2)
α

− 1

2∆σ

)
, (S.5)

with the Rydberg pair state detuning ∆
(2)
α = 2∆σ − Eα.

The derivation of the Wσσ̄,σσ̄ (with σ 6= σ̄) is
similar: As there are two excitation paths from

|σσ̄〉 to |Ψ(2)
α 〉, the reduced two-photon coupling is
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Figure S2. Stepwise adiabatic elimination. a. Elimination of singly excited Rydberg states. We show the level schemes
corresponding to the coupling of different ground state spin-pairs to the Rydberg manifold. The singly excited states are

adiabatically eliminated to obtain an effective pair state coupling Ωσσ
′

α to the eigenstates of the dipolar interaction Hamiltonian

|Ψ(2)
α 〉. b. Elimination of doubly excited states. The result of the first elimination step is an effective Λ-system, in which we

eliminate the doubly excited states |Ψ(2)
α 〉 to obtain effective ground state coupling (for unequal initial and final states), or a

light shift (for equal initial and final states).

Ωσσ̄α = (ΩσΩσ̄/4∆σ + ΩσΩσ̄/4∆σ̄) · cσσ̄α . Again we adi-

abatically eliminate |Ψ(2)
α 〉 and remove a constant offset

by subtracting the d =∞ asymptotic value to obtain:

Wσσ̄,σσ̄ =

(
1

(∆σ)2
+

1

(∆σ̄)2
+

1

∆σ∆σ̄

)
(Ωσ)2(Ωσ̄)2

16

·
∑
α

(
(cσσ̄α )2

∆
(2)
α

− 1

2∆σ
− 1

2∆σ̄

)
(S.6)

B. The flop-flop off-diagonal terms

The flop-flop coupling terms Wσσ,σ̄σ̄ are derived anal-
ogously. The effective Rabi frequencies for the flop-flop
interactions are Ωσσα = Ωσσeff · cσσα . Via adiabatic elim-
ination of the Rydberg pair states, we obtain the flop-
flop coupling term. For the off-diagonal terms, offsets at
d = ∞ are absent since there are two different asymp-
totic pair state overlaps involved, and one of them must
vanish asymptotically. We obtain:

Wσσ,σ̄σ̄ =
∑
α

Ωσσα Ωσ̄σ̄α

∆
(2)
α

=
∑
α

(ΩσΩσ̄)2

4∆σ∆σ̄
· c
σσ
α cσ̄σ̄α

∆
(2)
α

(S.7)

C. The flip-flop off-diagonal terms

For the flip-flop term Wσσ̄,σ̄σ we adiabatically
eliminate the single excited states |rσσ̄〉 and
obtain the reduced two-photon Rabi couplings
Ωσσ̄α = (ΩσΩσ̄/4∆σ + ΩσΩσ̄/4∆σ̄) · cσσ̄α . Here, the
destructive interference of the two excitation paths for
equal magnitude but opposite sign detunings becomes
apparent. Via adiabatic elimination of the Rydberg
manifold, we obtain the flip-flop coupling term:

Wσσ̄,σ̄σ =
∑
α

Ωσσ̄α Ωσ̄σα

∆
(2)
α

=
∑
α

(
ΩσΩσ̄

4∆σ
+

Ωσ̄Ωσ

4∆σ̄

)2
cσσ̄α cσ̄σα

∆
(2)
α

(S.8)
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Figure S3. Tweezer inhomogeneities. Distribution of the
trap depth difference |∆U | for two tweezers at the near-
est neighbor distance and for the minimum trap depth of
h · 80 kHz. The Gaussian fit (solid line) reveals an average

trap depth difference of |∆U | = h · (10.6 ± 1.6) kHz. For
our tweezers generated with 1064 nm light, the magnitude of
the ponderomotive potential for the Rydberg states approx-
imately equals the trap depth for the ground states but is
of the opposite sign. Hence, the difference in the line shifts
of the ground state-Rydberg transition for nearest-neighbor
pairs is about 2|∆U |.

D. Formulation of an effective spin Hamiltonian

The XYZ-Hamiltonian written in terms of Pauli ma-
trices σx, σy, σz reads

ĤXYZ = ~
∑
ij

[Jxijσ
x
i σ

x
j + Jyijσ

y
i σ

y
j + Jzijσ

z
i σ

z
j ], (S.9)

or alternatively in raising/lowering form

ĤXYZ = ~
∑
ij

[J+−
ij (σ+

i σ
−
j + σ−i σ

+
j )

+J++
ij (σ+

i σ
+
j + σ−i σ

−
j ) + Jzijσ

z
i σ

z
j ],

(S.10)

with σxi = (σ−i + σ+
i ), σyi = i(σ−i − σ

+
i ), the flop-flop

coupling J++
ij = (Jxij − Jyij) and the flip-flop coupling

J+−
ij = (Jxij + Jyij).
By expanding Eq. S.10 in the ground state pair basis

and comparing to Eq. S.4 one identifies

Jzij = W ↑↑,↑↑(dij , θij) +W ↓↓,↓↓(dij , θij)

− 2W ↑↓,↑↓(dij , θij)

J+−
ij = 2W ↑↓,↓↑(dij , θij)

J++
ij = 2W ↑↑,↓↓(dij , θij)

(S.11)

where we used W ↑↓,↑↓ = W ↓↑,↓↑, W ↓↑,↑↓ = W ↑↓,↓↑,
and W ↑↑,↓↓ = W ↓↓,↑↑. For clarity, we also restored the
pair-separation and -angle dependence here.

IV. EXPERIMENTAL LIMITATIONS

In our setup, laser noise and inhomogeneous line shifts
due to the trapping laser are the main limitations pre-
venting us from probing coherent interactions. In the

10−2
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Figure S4. Influence of the out-of-plane position fluctua-
tions. Data points are the same as in Fig. 3f in the main text.
The shading represents the effect of the axial motion of the
atoms in traps.

following, we discuss these limitations and their conse-
quences.

A. Laser noise

Phase noise of our Rydberg excitation laser results
in an incoherently enhanced population of the Ryd-
berg states. The Rydberg population is determined by
β2 = Ω2/4∆2 for negligible noise, resulting in an exci-
tation rate of β2γr. Here, γ−1

r is the Rydberg-state life-
time. In our experiment, we measure an about 20-fold
increased scattering rate by observing the trap loss [43].

B. Inhomogeneity of trap depths

To determine the depth of the tweezers, we measure
the AC Stark shift on the D1-line by spectroscopy. We
first prepare the atoms in the |F = 2,mF = 2〉 state and
set the magnetic field perpendicular to the optical beams
such that we probe different polarizations. On resonance,
the atoms are pumped to the F = 1 hyperfine manifold.
We then adiabatically rotate the magnetic field parallel
to the direction of the laser beam and remove all atoms in
the F = 2 hyperfine manifold with light resonant to the
|F = 2,mF = 2〉 to |F ′ = 3,mF ′ = 3〉 cycling transition
of the D2-line. We measure the light shift at an average
trap depth of 200µK and scale the results to the minimal
depth used for experiments described in the main text. In
Fig. S3 we show the nearest-neighbor tweezer trap depth
difference |∆U | of a 3x14 tweezer array.

C. In-trap wavepacket size

Tweezer inhomogeneities force us to work at a min-
imal trap depth of h · 80 kHz. This results in a radial
(axial) trapping frequency of ωrad = 2π · 11 kHz (ωax =
2π · 1.7 kHz) with corresponding radial (axial) ground

state wavepacket sizes of σ0
rad =

√
~/(mωrad) = 0.15µm

(σ0
ax = 0.39µm).
The temperature of our Raman cooled atoms corre-

sponds to kBT = h·4.2 kHz as measured in ref. [42]. Since
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the temperature is below the trapping frequency in radial
direction we use the ground state wavepacket size to esti-
mate the radial pair-distance fluctuations σrad ≈

√
2σ0

rad.

The factor
√

2 takes the independent motion of the two
atoms into account.

The impact of the axial (out-of-plane) wave packet
sizes is much weaker and we neglect its effect in the main
text. Nevertheless, it explains the comparably strong

flop-flop interactions for small angles for the measure-
ment shown in Fig. 3f of the main text. In Fig. S4
we show the effect of a thermal wavepacket of size√

2σ0
ax

√
kBT/~ωax ≈ 0.86µm on the flop-flop interac-

tions. We use the large temperature limit for the estima-
tion of the position fluctuations here since kBT > ~ωax.
The out-of-plane fluctuations result in an averaging over
a range of angles, removing the zero in the interactions
at a mean angle of θ = 0◦.
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