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We study the change of multiparticle entanglement if one particle becomes classical, in the sense
that this particle is destructed by a measurement, but the gained information is encoded into a new
register. We present an estimation of this change for different entanglement measures and ways
of encoding. We first simplify the numerical calculation to analyze the change of entanglement
under classicalization in special cases. Second, we provide general upper and lower bounds on the
entanglement change. Third, we show that the entanglement change caused by classicalization of
one qubit only can still be arbitrarily large. Finally, we discuss cases where no entanglement is
left under classicalization for any possible measurement. Our results shed light on the storage of
quantum resources and help to develop a novel direction in the field of quantum resource theories.

I. INTRODUCTION

Different types of quantum resources [1] are essential
for quantum information tasks, like quantum compu-
tation [2], quantum key distribution [3], and quantum
metrology [4], where they can provide a decisive advan-
tage over the classical regime. One main problem for
many quantum resources is their sensitivity to the dis-
turbance from the environment. Their protection with
tools like quantum error correction [5] is usually expen-
sive, especially if larger systems are considered. In prac-
tice, some fraction of the particles of a larger quantum
system can inevitably become classical, e.g., caused by a
measurement or decoherence process. In fact, the parti-
cles may even be completely lost.

It is a natural question to ask how multiparticle en-
tanglement [6, 7] is affected by such processes. Many
works have considered the influence of decoherence on
multiparticle entanglement [8–13]. Other works consid-
ered the robustness of multiparticle entanglement under
particle loss [14–17]. Moreover, the sharp change of bi-
partite entanglement caused by the complete loss of one
particle in one party has been studied as the concept
of lockable entanglement [18–21]. There can, however,
still be information left in the environment after loss of
particles. For example, in the case of the Stern-Gerlach
experiment, the left information is given by the location
of the spots on the screen. As another example one can
consider the decay of particles due to decoherence, where
it may be reasonable to gather some information from the
particles before their complete decay. The usefulness of
this classical information has been extensively explored
in the form of the entanglement of assistance [22], where a
third party (Charly) optimizes the measurement and the
resulting information to assist the two original parties
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Figure 1. The change of multiparticle entanglement if the
particle C becomes classical. In this process of classicaliza-
tion the particle C is first destroyed by the measurement and
then the measurement information is encoded in a new regis-
ter. This paper asks for which classicalization procedure the
change of entanglement is minimal.

(Alice and Bob) to reveal as much quantum entangle-
ment as possible. Most research on the entanglement of
assistance has focused on the case where the global state
is pure [23–25]. As it turns out [22], the entanglement
of assistance depends only on the reduced state for Alice
and Bob, and the exact three-partite initial state is not
important.

In this paper we consider a different scenario: One
or more particles in a multiparticle system is destructed
by a measurement. The gained classical information is
then encoded in a quantum state. Our question is how
much the multiparticle entanglement is affected in this
process of classicalization, see also Fig. 1. This scenario
is practically relevant, as one may not have the perfect
‘assistance’ when the size and performance of the register
system are limited. Consequently, our approach can pro-
vide guidance for the storage of quantum entanglement
robust to particle loss and for finding the optimal strategy
of entanglement recovery with the gained classical infor-
mation and a small register system. In comparison with
the concept of quantum assistance, we consider mixed
quantum states where the entanglement is stored and it
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is not the aim of the measured party to increase the bi-
partite entanglement between the remaining ones. Most
importantly, the initial quantum state plays a major role
in the change of the entanglement due to classicalization.
We stress that there are further related concepts. The so-
called hidden entanglement [26] has been introduced as
the difference between the entanglement without the de-
composition information of a mixed state and the one
with the decomposition information. Besides, the role of
one particle in the change of entanglement has also been
considered in distributed entanglement [27, 28], where
the particle is transferred from one party to another one
rather than it is destroyed.

II. NOTATIONS AND DEFINITIONS

We focus on tripartite systems in this paper, other mul-
tipartite systems can be analyzed similarly. We denote
the initial state as ρABC . First, suppose that one party
of this state is measured in a process that completely de-
stroys the measured party, such as the detection of the
photon polarization.

Without loss of generality, we here assume that the de-
structive measurement M = {mi} acts on the party C.
After the measurement, the particles belonging to party
C vanish, but the post-measurement information from
the associated outcome is available. That is, each classi-
cal outcome i can be encoded into a new register system
E as associated post-measurement states τi. We say that
this encoding is perfect, if τi = |i〉〈i| for an orthogonal
basis {|i〉}. In practice, of course, the encoding may not
be perfect due to the interaction with the environment.

We can write the above process as the operation

ΦC(ρABC) =
∑
i

piσi ⊗ τi, (1)

where pi = tr(ρABCmi), σi = trC(ρABCmi)/pi and τi is
the register state related to the outcome i. We say that
this encoding is perfect, if τi = |i〉〈i| for an orthogonal
basis {|i〉}. In practice, of course, the encoding may not
be perfect due to the interaction with the environment
or the limited memory of the register.

We denote by NC the set of all possible operations in
the form in Eq. (1) on the party C. We stress that the
set NC is equivalent to the set of entanglement break-
ing channels [29] acting on the party C. So far, we have
not imposed any assumption on the destructive measure-
ments and the encoding, but in practice, there can be
extra limitations on them.

Our central question is how much the global entan-
glement in ρABC is changed by the operation ΦC . The
maximal change happens usually when there is no classi-
cal information left or it has not been employed, that is,
the τi are the same for all outcomes i’s, a similar question
has been explored already under the concept of lockable
entanglement [18], see more details in Sec. V. Here we

are particularly interested in the minimal amount of en-
tanglement change with remaining classical information,
which corresponds to the optimal operation ΦC to keep
as much entanglement as possible.

For this purpose, we define the quantity ∆E(ρABC) as

∆E(ρABC) = min
ΦC∈NC

{E [ρABC ]− E [ΦC(ρABC)]} , (2)

where E is a tripartite entanglement measure. The prac-
tical choice of E may depend on the quantum information
task under consideration. For the choice of entanglement
measures, it is necessary to require that E does not in-
crease under local operations and classical communica-
tion (LOCC) [30], called monotonicity under LOCC. In
this case, ∆E(ρABC) is always non-negative.

Two further remarks are in order. First, if E is
a measure of genuine multipartite entanglement, then
∆E(ρABC) = E [ρABC ], since ΦC(ρABC) is always sep-
arable with respect to the bipatition AB|C for any ΦC
and ρABC . Second, if we restrict the set NC with limi-
tations on measurements and register states, the amount
of ∆E(ρABC) can be affected. One example is to consider
the operations which keep the dimension of the system.

III. SIMPLIFICATION

In general it is difficult to calculate ∆E(ρABC), due
to the complexity of characterizing the set NC . Here we
provide a method to simplify the calculation. By default,
we assume the entanglement measure E is monotonic un-
der LOCC. Then we have:

Observation 1. If the entanglement measure E is con-
vex, we only need to consider M = {mi} as an extremal
point in the considered measurement set M. More pre-
cisely:

∆E(ρABC)= min
M∈∂M

{
E [ρABC ]−

∑
i

piE [σi⊗|0〉〈0|]

}
, (3)

where ∂M is the set of extremal points in M, pi =
tr(ρABCmi) and σi = trC(ρABCmi)/pi.

The proof of Observation 1 is given in Sec. A in the
Supplemental Material [31]. The Observation shows that
the actual calculation of ∆E(ρABC) can be reduced to
the set of extremal points in M, which has been well
characterized in Ref. [32]. In the following, we will ad-
dress this problem for two special cases. The first case
is that the party C is a qubit and the measurement in-
formation from the outcomes is also registered in a qubit
system E [33]. For convenience, we denote by N1 the
set of those operations, which is equivalent to the set
of all entanglement breaking channels mapping qubit to
qubit. The second case is that the measurement M is
a dichotomic POVM [32], where C is not necessarily a
qubit. We denote this set as N2.

Now we can present the following observation:
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Observation 2. For a convex entanglement measure E,
if we replace NC by N1 or N2 in the definition of ∆E ,
then the value of ∆E(ρABC) can be achieved with projec-
tive measurements.

The proof of Observation 2 is given in Sec. B in the
Supplemental Material [31]. Observation 1 and Observa-
tion 2 make the numerical calculation possible with only
few parameters as in the following examples.

A. Example: three-qubit systems

Here we look at three-qubit systems and analyze
∆E(ρABC) with N1 and N2. Important examples of
multipartite entanglement measures that satisfy convex-
ity and monotonicity under LOCC are the multipar-
tite negativity [34] and multipartite squashed entangle-
ment [21, 35]:

NABC(ρABC) = NAB|C +NBC|A +NAC|B , (4)

Esq(ρABC) = min
γABCX

1

2
I(A : B : C|X). (5)

Here, NX|Y =
∣∣∑

λi<0 λi
∣∣ is the negativity for a bi-

patition X|Y with eigenvalues λi of the partial trans-
posed state ρTY with respect to the subsystem Y , where
Y = A,B,C. Also, I(A : B : C|X) = S(AX)+S(BX)+
S(CX)−S(ABCX)−2S(X) is the quantum conditional
mutual information, where γABCX is any extension of
ρABC , i.e., ρABC = trX [γABCX ], and S(M) is the von
Neumann entropy of system M . For a pure state ρABC ,
the quantum conditional mutual information can be sim-
plified as I(A : B : C|X) = S(A) + S(B) + S(C), which
is independent of system X.

As the first example, we consider the superposition of
Greenberger-Horne-Zeilinger (GHZ) states and W states:

|ψ(p)〉 =
√
p |GHZ〉+

√
1− p |W〉 , (6)

where 0 ≤ p ≤ 1, |GHZ〉 = (|000〉 + |111〉)/
√

2, and
|W〉 = (|001〉 + |010〉 + |100〉)/

√
3. The numerical re-

lation between ∆E and p is presented in Fig. 2 for
E = NABC , Esq, details about the optimization method
are given in in Sec. C in the Supplemental Material [31].
Interestingly, we find that the maximal value of ∆E(|ψ〉)
is given by the W state, while the minimal value is not
achieved by the GHZ state but the state at p = 0.4. We
remark that both of NABC(|ψ(p)〉) and Esq(|ψ(p)〉) are
minimized when p = 0.4. However, it is an open problem
to understand why this state should also have minimal
entanglement change.

Moreover, let us consider a three-qutrit case and com-
pute the tuple of ∆E for E = (NABC , Esq). The
GHZ state

∑2
i=0 |iii〉 /

√
3 has (1.667, 0.792489), while

the state (|012〉+ |120〉+ |201〉+ |021〉+ |210〉+ |102〉)/
√

6
has (1.86747, 0.971332). More deitals are in Sec. C in the
Supplemental Material [31].

NABC

Esq
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Figure 2. ∆E with NABC and Esq for |ψ(p)〉 =
√
p |GHZ〉 +√

1− p |W〉.

IV. GENERAL BOUNDS

In general, it may be hard to obtain the exact value of
∆E(ρABC) for some entanglement measure E . To address
this situation, we now derive upper and lower bounds
that can be useful for the estimation. First, we present
a general lower bound.

Observation 3. For a convex entanglement measure E,
and for the set NC , we have

∆E(ρABC) ≥ min
|x〉

{
E [ρABC ]− E [σ|x〉 ⊗ |0〉〈0|]

}
, (7)

where |x〉 is a measurement direction on the party C and
σ|x〉 = 〈x|ρABC |x〉/ tr[〈x|ρABC |x〉] is a normalized state.

The proof of Observation 3 is given in Sec. D in the
Supplemental Material [31]. This lower bound can be
used to characterize the complete entanglement loss, as
we will see later in Sec. VI.

Furthermore, suppose that we remove all the classical
information of the measurement outcomes, that is, we
encode all the measurement outcomes into the same state
|0〉. Then we find an upper bound:

∆E(ρABC) ≤ ∆̃E(ρABC), (8)

for any convex entanglement measure E , where

∆̃E(ρABC) = E [ρABC ]− E [ρAB ⊗ |0〉〈0|], (9)

with ρAB = trC(ρABC). We remark that ∆̃E(ρABC) is
the maximal entanglement change, since we can always
map any encoding into the state |0〉〈0| with a local oper-
ation on the system C.

Let us compare ∆E with its lower and upper bounds
using the tripartite negativity NABC . Figs. 3 and 4 il-
lustrate the cases of the pure three-qubit state |ψ(p)〉
in Eq. (6) and the mixed three-qubit state ρ(q) =
qρGHZ + (1 − q)ρW, where ρGHZ = |GHZ〉〈GHZ| and
ρW = |W〉〈W|. We find that the lower bound is rela-
tively close to ∆E , especially if the state approximates
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Figure 3. Comparison between ∆E with NABC and its
lower and upper bounds for the state |ψ(p)〉 =

√
p |GHZ〉 +√

1− p |W〉.
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Figure 4. Comparison between ∆E with NABC and its lower
and upper bounds presented for the state ρ(q) = qρGHZ +(1−
q)ρW.

the GHZ state. The gap between ∆E and ∆̃E shows that
the post-measurement information is more relevant for
the GHZ state than for the W state.

Next, let us connect entanglement change to quantum
discord. For that, we consider the multipartite relative
entropy of entanglement, which is the sum of the relative
entropies of entanglement [36] for all bipartitions, i.e.,

RABC(ρABC) = RAB|C +RBC|A +RAC|B , (10)

where RX|Y = minσ∈SEP S(ρXY ||σ) is the relative en-
tropy of entanglement for a bipatition X|Y , S(ρ||σ) =
tr[ρ (log ρ − log σ)] is the von Neumann relative entropy
and SEP is the set of bipartite separable states.

Similarly, the amount of quantum discord [37] can be
also measured by the relative entropy: DXY (ρXY ) =
minρ′∈Λ S(ρXY ||ρ′), where Λ is the set of quantum-
classical states ρ′ =

∑
i piσi ⊗ |i〉〈i| with orthonormal

basis {|i〉}. Now we can formulate the following two Ob-
servations:

Observation 4. For the entanglement measure E being
the tripartite relative entropy of entanglement RABC , we

have

RAB|C(ρABC) ≤ ∆E(ρABC) ≤ 3DAB|C(ρABC). (11)

Observation 5. More generally, if DAB|C(ρABC) = 0,
then we have ∆E(ρABC) = 0 for any entanglement mea-
sure E.

The proofs of Observation 4 and Observation 5
are given in Sec. E and Sec. F in the Supplemen-
tal Material [31]. From Observation 5, the condi-
tion DAB|C(ρABC) = 0 is a sufficient condition for
∆E(ρABC) = 0 for any measure E . On the other hand,
this is not a necessary condition. For instance, if the ini-
tial state ρABC is fully separable, clearly ∆E(ρABC) = 0,
but this does not mean DAB|C(ρABC) = 0. From the
conceptional perspective, quantum discord is the differ-
ence of quantum correlation before and after a projective
measurement, whereas ∆E(ρABC) quantifies the differ-
ence of entanglement, which is only one sort of quantum
correlations.

V. LOCKABILITY

Previous works [18–20] have studied a similar issue un-
der the name of lockability of entanglement measures.
There, one asks for the quantitative change of entan-
glement by the loss of one particle, (e.g., one qubit)
within one party. For example, in the bipartite scenario,
one considers the situation where Alice and Bob have
both five qubits and then one asks how the entanglement
changes if Alice looses one of her qubits. If the entangle-
ment change can be arbitrarily large, the entanglement
measure is called lockable. For instance, all convex en-
tanglement measures are known to be lockable, while the
relative entropy of entanglement is not [18].

The lockable entanglement is related to our consider-
ation in the following sense. For a given triparite state
ρABC , if we choose the convex entanglement measure E
to only measure the entanglement between the biparti-
tion A|BC (or AC|B), then ∆̃E defined in Eq. (9) is the
quantity considered in lockable entanglement. More pre-
cisely, for any convex entanglement measure E for the
bipartition A|BC, we have

∆̃E(ρABC) = E [ρABC ]− E [ρAB ], (12)

where we used that E [ρAB ⊗ |0〉〈0|] = E [ρAB ], see Theo-
rem 2 in Ref. [38].

In order to understand the difference between the be-
haviour of entanglement under classicalization and the
lockability problem, one has to analyze the role of the
information coming from the measurement results. We
know already from Fig. 3 and 4 that this information
makes some difference for the entanglement change. In
the following, we will show that this difference can be
arbitrarily large.
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A. Example: Flower state

First, let us consider the so-called flower state on d ⊗
d⊗ 2-dimensional systems [19]:

ωABC =
2

d(d+ 1)
P

(+)
AB ⊗

d+ 1

2d
|0〉〈0|C

+
2

d(d− 1)
P

(−)
AB ⊗

d− 1

2d
|1〉〈1|C , (13)

where P (±)
AB are the projections onto the symmetric and

anti-symmetric subspaces, that is P (±)
AB = (1AB±VAB)/2

with the SWAP operator VAB , acting as VAB |vA〉 ⊗
|vB〉 = |vB〉 ⊗ |vA〉.

Notice that, the quantum discord of ωABC for the bi-
partition AB|C is 0, i.e., DAB|C(ωABC) = 0. From Ob-
servation 5, we conclude that ∆E(ωABC) = 0 for any en-
tanglement measure E . However, we have ∆̃E(ωABC) =
E(ωABC) > 0 , because trC(ωABC)⊗ |0〉〈0| is fully sepa-
rable. In fact, if the entanglement measure E is taken as
the squashed entanglement, then E(ωABC) can be arbi-
trarily large [19]. This directly implies that the difference
∆̃E −∆E can be arbitrarily large by choosing d properly.
Hence, although the information from the measurement
at the flower state is only one bit, a large amount of en-
tanglement can be saved by collecting it.

B. Example: n-pairs of Bell states

On the other hand, we will see that the entangle-
ment change ∆E can also be arbitrarily large even if
only one qubit has become classical. As example, let
us consider a pure state made of n pairs of Bell state
|Ψ+〉 = (|00〉+ |11〉)/

√
2. We label the i-th pair of parti-

cles with ai, bi. Suppose that the party A owns the par-
ticles {ai}ni=1, the party B owns the particles {bi}n−1

i=1 ,
and the party C owns the particle bn. We denote this
state as βABC = |Ψ+〉〈Ψ+|⊗n. Now we can present the
following observation which is proven in Sec. G in the
Supplemental Material [31].

Observation 6. For the entanglement measure E to be
the tripartite negativity NABC , we have

∆E(βABC) = 2n−2 + 1/2. (14)

Thus, ∆E(βABC) can be arbitrary large by choosing n
properly.

Inspired by those two examples, an interesting question
arises whether there exist entanglement measures E and
states ρABC such that both ∆E(ρABC) and ∆̃E(ρABC)−
∆E(ρABC) can be arbitrarily large in the sense that they
are not limited by the size of C, even if C is only a qubit.
We leave this question for further research.

VI. COMPLETE ENTANGLEMENT LOSS
UNDER CLASSICALIZATION

By definition, ∆E(ρABC) ≤ E [ρABC ] always holds. We
are now concerned about the case where this inequality
is saturated, i.e., ∆E(ρABC) = E [ρABC ], or equivalently,
maxΦC∈NC

E [ΦC(ρABC)] = 0.
First of all, Observation 3 implies a sufficient condi-

tion for complete entanglement loss under classicaliza-
tion, which can be formulated as follows.

Condition 7. If, after a projective measurement in any
direction |x〉 on C, the post-measurement state σ|x〉 ∝
〈x|ρABC |x〉 is always separable, then the entanglement is
completely lost under classicalization.

Clearly, Condition 7 is stronger than the condition that
the reduced state ρAB is separable. For instance, let us
consider the GHZ state. Its reduced state trC [ρGHZ] is
separable, but its post-measurement state σ|x〉 can be
entangled if measurement bases are {|+〉 , |−〉}.

The existence of genuine multipartite entangled states
which satisfy Condition 7, however, has already been re-
ported in Ref. [39]. We will propose observations using
Condition 7 and provide more examples in in Sec. H and
Sec. I in the Supplemental Material [31].

VII. CONCLUSION AND DISCUSSION

Multiparticle quantum entanglement is an important
quantum resource and the preservation of entanglement
is a practical issue. We have studied the change of mul-
tiparticle entanglement under classicalization of one par-
ticle. Clearly, the results usually depend on the choice
of the entanglement quantifier, and the change of entan-
glement is difficult to compute. We provided simplifi-
cations for important special scenarios and upper and
lower bounds for the general case. One crucial question
is whether one small part like one qubit can change a lot
quantum resources like quantum entanglement or not.
Our results show that the entanglement change can be
still arbitrarily large even with complete measurement
information left. Besides, the measurement information
can also make an arbitrary large difference. Finally, we
provide conditions under which quantum entanglement
is always completely lost under classicalization.

While we focused on the difference of original quantum
resource and the remaining resource if one party becomes
classical, the behaviour of quantum resources during the
quantum to classical transition is also interesting, and it
may have a richer theoretical structure. We believe that
our work paves a way to the design of concepts for quan-
tum resource storage and may help to develop a novel
direction in the field of quantum resource theories.
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A. PROOF OF OBSERVATION 1

Observation 1. If the entanglement measure E is convex, we only need to consider M = {mi} as an extremal point
in the considered measurement setM. More precisely:

∆E(ρABC)= min
M∈∂M

{
E [ρABC ]−

∑
i

piE [σi⊗|0〉〈0|]

}
, (15)

where ∂M is the set of extremal points inM, pi = tr(ρABCmi) and σi = trC(ρABCmi)/pi.

Proof. For any entanglement-breaking channel ΦC , we have the decomposition:

ΦC(ρABC) =
∑
i

piσi ⊗ τi, (16)

whereM = {mi} is a measurement acting on C, pi = tr(ρABCmi), σi = trC(ρABCmi)/pi, and τi is the state encoding
the measurement outcome i.

Since the setM of all POVMs acting on C is convex, any POVM M = {mi} can be decomposed into the convex
combinations of extreme points ofM. That is, we have

mi =
∑
k

ckm
(k)
i ,∀i, (17)

where M (k) = {m(k)
i } is an extreme point in the setM and 0 < ck ≤ 1 with

∑
k ck = 1. Consequently, the operation

ΦC can be rewritten as

ΦC(ρABC) =
∑
k

ckΦ
(k)
C (ρABC), (18)

where

Φ
(k)
C (ρABC) =

∑
i

trC

(
ρABCm

(k)
i

)
⊗ τi. (19)

In the case that the entanglement measure E is convex, we have

E [ΦC(ρABC)] ≤
∑
k

ckE
[
Φ

(k)
C (ρABC)

]
≤ max

k
E
[
Φ

(k)
C (ρABC)

]
. (20)

This implies that the maximal value of E [ΦC(ρABC)], or equivalently, the value of ∆E(ρABC), can always be achieved
by extreme POVMs. That is,

max
ΦC∈NC

E [ΦC(ρABC)] = max
M∈∂M,{τi}

E

(∑
i

piσi ⊗ τi

)
, (21)

where ∂M is the set of all extreme POVMs.
Note that, any imperfect encoding can be generated from the perfect one by local operations. Since the entanglement

measure E is LOCC monotonic, we have E (
∑
i piσi ⊗ τi) ≤ E (

∑
i piσi ⊗ |i〉〈i|C). This implies that,

max
M∈∂M,{τi}

E

(∑
i

piσi ⊗ τi

)
≤ max
M∈∂M

E

(∑
i

piσi ⊗ |i〉〈i|C

)
. (22)
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Since {τi = |i〉〈i|} is just a special encoding, we have

max
M∈∂M,{τi}

E

(∑
i

piσi ⊗ τi

)
≥ max
M∈∂M

E

(∑
i

piσi ⊗ |i〉〈i|C

)
. (23)

In total, we know that

max
M∈∂M,{τi}

E

(∑
i

piσi ⊗ τi

)
= max
M∈∂M

E

(∑
i

piσi ⊗ |i〉〈i|C

)
. (24)

Besides, we have

E

(∑
i

piσi ⊗ |i〉〈i|C

)
= E

(∑
i

piσi ⊗ (|0〉〈0| ⊗ |i〉〈i|)C

)
=
∑
i

piE [σi ⊗ |0〉〈0|C ], (25)

where the equalities in the first line holds since {|i〉〈i|} and {|0〉〈0| ⊗ |i〉〈i|} can be converted to each other by LOCC,
the equality in the second line is from the flag condition satisfied by any entanglement measure which is monotonic
under LOCC, see Theorem 2 in Ref. [38].

By putting Eq. (21), Eq. (24) and Eq. (25) together, we complete the proof.

We recommend the reader to refer to Ref. [32] for more characterization of extreme POVMs, like necessary conditions
and sufficient conditions.

B. PROOF OF OBSERVATION 2

Observation 2. For a convex entanglement measure E, if we replace NC by N1 or N2 in the definition of ∆E , then
the value of ∆E(ρABC) can be achieved with projective measurements.

Proof. From Observation 1, we know that for a convex entanglement measure E that satisfies the monotonicity
condition, the optimal value of ∆E(ρABC) can always be obtained by the extreme points of destructive measurements
in the sets N1 and N2. Then it is sufficient to show that these extreme points are given by projective measurements.

First, we consider the case of N1. As proven in Ref. [33], any entanglement breaking channel from qubit to qubit,
i.e., any channel in N1, can be decomposed as a convex combination of classical-quantum channels. Here recall that
a channel ΦC is called a classical-quantum channel if

ΦC(ρ) =
∑
i

〈xi|ρ|xi〉 ⊗ τi, (26)

where {|xi〉} is an orthonormal basis. By definition, the classical-quantum channel is written in the composition of
projective measurements and local state preparation. That is, the extreme point in N1 is obtained by projective
measurements.

Next, we consider the case of N2. It is known that a POVM {m1, . . . ,mk} is extreme if mi,mj have disjoint
supports for any i 6= j [32]. In the dichotomic case, m1 = 1−m2, thus, m1,m2 can be diagonalized simultaneously.
Then, there is no overlap between the supports of m1,m2 if and only if they are orthogonal projectors. Hence, the
extremal points in N2 are also obtained by projective measurements.

C. DETAILS OF COMPUTATION IN FIGURES

Since we consider the set of entanglement breaking channels from qubit to qubit in the examples, we only need
to focus on dichomatic projective measurements M = {m0,m1} and perfect encoding of the outcomes according to
Observation 1 and Observation 2. In this case we have,

∆E(ρABC) = E [ρABC ]− max
M∈P

∑
i=0,1

piE [σi⊗|0〉〈0|], (27)
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where P is the set of all dichotomatic projective measurements on qubit C, pi = tr(ρABCmi), and σi =
trC(ρABCmi)/pi. Here, the entanglement measure E is taken to be either the multipartite negativity NABC or
the multipartite squashed entanglement Esq.

First, let us consider the case of the multipartite negativity NABC . Then we have

NABC(σi⊗|0〉〈0|) = NAB|C(σi⊗|0〉〈0|) +NBC|A(σi⊗|0〉〈0|) +NAC|B(σi⊗|0〉〈0|)
= NB|A(σi) +NA|B(σi)

= 2NA|B(σi), (28)

where the second equality is from the fact that σTA
i ⊗ |0〉〈0| has same non-zero eigenvalues as σTA

i as well as for the
case B.

Second, let us consider the case of the multipartite squashed entanglement Esq. Note that, for any 4-partite state
ηABCX such that trX(ηABCX) = σi⊗|0〉〈0|, it can only be in the form γABX⊗|0〉〈0|, where trX(γABX) = σi. Thus,

Esq(σi⊗|0〉〈0|) = min
γABX⊗|0〉〈0|

1

2
I(A : B : C|X)

= min
γABX⊗|0〉〈0|

1

2
[S(AX) + S(BX) + S(CX)− S(ABCX)− 2S(X)]

= min
γABX⊗|0〉〈0|

1

2
[S(AX) + S(BX) + S(X)− S(ABX)− 2S(X)]

= min
γABX

1

2
[S(AX) + S(BX)− S(ABX)− S(X)]

= E(2)
sq (σi), (29)

where in the third line we employ the additivity of the von Neumann entropy, and we denote E(2)
sq the bipartite

squashed entanglement [35]. In the case that ρABC is a pure state, each σi is also a pure state. From the result of
Ref. [35], we have

E(2)
sq (σi) = S(A) + S(B). (30)

Therefore, once we have parameterized the 2-dimensional projective measurement M , the numerical calcula-
tion of ∆E(ρABC) can be easily performed by brute force optimization in each example. To be more explic-
itly, each 2-dimensional rank-1 projective measurement M corresponds to a vector which can be parameterized
as 〈v| = (cosx, eit sinx) such that M = {|v〉〈v|,1 − |v〉〈v|}. In the calculation, we have taken x in the discrete set
{πk/300}300

k=0 and t in the set {πj/50}50
j=0. For each measurement direction defined by the pair (x, t), the poset-selected

bipartite states and their entanglement can be computed directly by the definition of the entanglement measure. By
choosing the maximal entanglement of the post-measurement state over all pairs (x, t), we obtain the numerical
approximation of ∆E(ρABC) for E either to be NABC or Esq.

We remark that the three-dimensional non-trivial projective measurements can also be parameterized by M =
{|v〉〈v|,1 − |v〉〈v|}, where |v〉 is a three-dimensional complex vector (cosx1, e

it1 sinx1 cosx2, e
it2 sinx1 sinx2). Note

that for the sake of simplicity we considered the case of only real parameters to obtain the result of three-qutrit states
in the main text.

D. PROOF OF OBSERVATION 3

Observation 3. For a convex entanglement measure E, and for the set NC , we have

∆E(ρABC) ≥ min
|x〉

{
E [ρABC ]− E [σ|x〉 ⊗ |0〉〈0|]

}
, (31)

where |x〉 is a measurement direction on the party C and σ|x〉 = 〈x|ρABC |x〉/ tr[〈x|ρABC |x〉] is a normalized state.

Proof. For a given entanglement breaking channel ΦC , it can be equivalently characterized [29] by a POVM with
M = {qi|xi〉〈xi|} and a preparation {|ψi〉〈ψi|}. That is,

ΦC(ρABC) =
∑
i

qi〈xi|ρABC |xi〉 ⊗ |ψi〉〈ψi|

=
∑
i

qipiσ|xi〉 ⊗ |ψi〉〈ψi|, (32)
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where pi = tr(〈xi|ρABC |xi〉), σ|xi〉 is the normalized state of 〈xi|ρABC |xi〉, and
∑
i qipi = 1.

For any convex entanglement measure E , we then have

E [ΦC(ρABC)] ≤
∑
i

qipiE [σ|xi〉 ⊗ |ψi〉〈ψi|]

≤ max
i
E [σ|xi〉 ⊗ |ψi〉〈ψi|]

≤ max
|x〉
E [σ|x〉 ⊗ |0〉〈0|], (33)

where in the last line we apply local untary operations on the party C to rotate the states to |0〉 and maximize over
a more general range of measurement directions.

In principle, the optimization can be done similarly as in Appendix C. As for the application of Observation 3 in
Condition 7, we only need to show that σ|x〉 is separable for each |x〉, which can be checked by the PPT condition in
the case that A and B are two-dimensional subsystems with symbolic calculations. For this purpose, we do not need
to specify the values of parameters in |x〉.

E. PROOF OF OBSERVATION 4

Observation 4. For the entanglement measure E being the tripartite relative entropy of entanglement RABC , we
have

RAB|C(ρABC) ≤ ∆E(ρABC) ≤ 3DAB|C(ρABC). (34)

Proof. We begin by noting that Lemma 1 in Ref. [27]: for a given tripartite state ρABC , it holds that

RBC|A(ρABC)≤DAB|C(ρABC)+RBC|A[ΦC(ρABC)], (35)

where ΦC(ρABC) =
∑
i piσ

AB
i ⊗ |i〉〈i|C where τi = |i〉〈i|C . Exchanging A and B, we similarly have

RAC|B(ρABC)≤DAB|C(ρABC)+RAC|B [ΦC(ρABC)]. (36)

Summarizing both inequalities leads to

RBC|A(ρABC) +RAC|B(ρABC) ≤ 2DAB|C(ρABC) +RABC [ΦC(ρABC)], (37)

where we use the fact that RAB|C [ΦC(ρABC)] = 0 since ΦC(ρABC) is separable with respect to AB|C. Rewriting this
left hand side as RABC(ρABC)−RAB|C(ρABC), we have

RABC(ρABC)−RABC [ΦC(ρABC)] ≤ 2DAB|C(ρABC) +RAB|C(ρABC). (38)

By definition, ∆E(ρABC) is always no more than this left hand side, since ΦC is just a special entanglement-breaking
channel. Then we obtain

∆E(ρABC) ≤ 2DAB|C(ρABC) +RAB|C(ρABC). (39)

Finally, since RAB|C(ρABC) ≤ DAB|C(ρABC), we find the upper bound.
Concerning the lower bound, we have

∆E(ρABC) = min
ΦC∈NC

{RABC(ρABC)−RABC [ΦC(ρABC)]}

≥ RAB|C(ρABC) + min
ΦC∈NC

{
RBC|A(ρABC)−RBC|A[ΦC(ρABC)]

}
+ min

ΦC∈NC

{
RAC|B(ρABC)−RAC|B [ΦC(ρABC)]

}
, (40)

where we again use that RAB|C [ΦC(ρABC)] = 0. Since the relative entropy of entanglement satisfies the monotonicity
condition, we have that RBC|A(ρABC) − RBC|A[ΦC(ρABC)] ≥ 0 and RAC|B(ρABC) − RAC|B [ΦC(ρABC)] ≥ 0. Then
we arrive at the lower bound.
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F. PROOF OF OBSERVATION 5

Observation 5. More generally, if DAB|C(ρABC) = 0, then we have ∆E(ρABC) = 0 for any entanglement measure
E.

Proof. We note that DAB|C(ρABC) = 0 if and only if there exists an entanglement-breaking channel ΦC such that
ΦC(ρABC) = ρABC (see Proposition 21 in Ref. [40] for more details). By definition,

∆E(ρABC) = min
Φ′C∈NC

{E [ρABC ]− E [Φ′C(ρABC)]} ,

≤ E [ρABC ]− E [ΦC(ρABC)]

= E [ρABC ]− E [ρABC ]

= 0. (41)

Since ∆E(ρABC) is nonnegative for any entanglement measure E which is monotonic under LOCC, this eventually
implies that ∆E(ρABC) = 0 for any entanglement measure E which is assumed to be monotonic under LOCC.

G. PROOF OF OBSERVATION 6

Observation 6. For the entanglement measure E to be the tripartite negativity NABC , we have

∆E(βABC) = 2n−2 + 1/2. (42)

Thus, ∆E(βABC) can be arbitrary large.

Proof. To prove this, we first show that for a d×d-dimensional bipartite state, its negativity is no more than (d−1)/2.
Since the negativity is a convex function, we only need to prove it for pure states. Let us write a pure state |ψ〉 as

|ψ〉 =

d∑
i=1

λi |aibi〉 ,
∑
i

λ2
i = 1, λi ≥ 0. (43)

Then direct calculation yields that

N(|ψ〉) =
∑

1≤i<j≤n

λiλj ≤
d− 1

2

d∑
i=1

λ2
i =

d− 1

2
. (44)

Here the maximal value (d− 1)/2 can be saturated by the maximally entangled state |Ψ+
d 〉 = 1√

d

∑d−1
i=0 |ii〉.

Next, let us recall the n-copy of Bell state βABC = |Ψ+〉〈Ψ+|⊗n. We remark that this n-copy state can be
represented by the maximally entangled state in (2n × 2n)-dimensional systems |Ψ+

2n〉. This leads to

NBC|A(βABC) = (2n − 1)/2. (45)

Suppose that an entanglement breaking channel ΦC acts on the n-th particle of the last party bn, equivalently, on
the party C. Since all entanglement breaking channels can be decomposed into measure and prepare operations, we
again write the measure process for ΦC as the form of the POVM with M = {qi|xi〉〈xi|} and the preparation process
as {|ψi〉〈ψi|}, i.e.,

ΦC(βABC) =
∑
i

qipiσ|xi〉 ⊗ |ψi〉〈ψi|, (46)
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where pi = tr(〈xi|βABC |xi〉), σ|xi〉 is the normalized pure state of 〈xi|βABC |xi〉, and
∑
i qipi = 1. Then we have

NBC|A[ΦC(βABC)] = NBC|A

(∑
i

qipiσ|xi〉 ⊗ |ψi〉〈ψi|

)
≤
∑
i

qipiNBC|A
(
σ|xi〉 ⊗ |ψi〉〈ψi|

)
=
∑
i

qipiNBC|A
(
σ|xi〉 ⊗ |0〉〈0|

)
=
∑
i

qipiNAB(σ|xi〉)

≤
∑
i

qipi(2
n−1 − 1)/2

= (2n−1 − 1)/2, (47)

where in the second line we employ the convexity of negativity. In the third line we apply local untary operations on
the party C to rotate the states |ψi〉’s to |0〉. In the fourth line, we use fact that negativity is invariant under local
unitaries and adding local ancillas, see [38]. In the fifth line, we apply the upper bound given in Eq. (44).

On the other hand, we obtain

NBC|A[ΦC(βABC)] ≥ NBC|A[trC(ΦC(βABC))⊗ |0〉〈0|C ]

= NB|A[trC(βABC)]

= NB|A[(|Ψ+〉〈Ψ+|AB)⊗(n−1) ⊗ trC(|Ψ+〉〈Ψ+|AC)]

= NB|A[(|Ψ+〉〈Ψ+|AB)⊗(n−1)]

= (2n−1 − 1)/2. (48)

In the first line we use the LOCC monotonicity, and in the second line we make use of the fact that trC ◦ΦC = trC .
In the fourth line, we use fact that negativity is invariant under adding local ancillas, see [38].

Thus, independently of the entanglement breaking channel ΦC , we show

NBC|A[ΦC(βABC)] = (2n−1 − 1)/2. (49)

This result directly leads to

NBC|A(βABC)−NBC|A [ΦC(βABC)] = 2n−2. (50)

Also, since negativity is invariant under adding local ancillas, we have

NB|CA(βABC) = NB|CA [ΦC(βABC)] = NB|A

[
(|Ψ+〉〈Ψ+|AB)⊗(n−1)

]
= (2n−1 − 1)/2, (51)

which implies

NB|CA(βABC)−NB|CA [ΦC(βABC)] = 0. (52)

Similarly, we have

NAB|C(βABC) = NA|C
[
|Ψ+〉〈Ψ+|AC

]
= 1/2. (53)

The fact that ΦC is an entanglement-breaking channel implies that

NAB|C [ΦC(βABC)] = 0. (54)

Consequently, we have

NAB|C(βABC)−NAB|C [ΦC(βABC)] = 1/2. (55)

By definition of ∆E(βABC) with NABC using Eqs. (50, 52, 55), we complete the proof:

∆E(βABC) = 2n−2 + 1/2. (56)

We have one remark. From Eq. (45), Eq. (51) and Eq. (53), we know that the original tripartite negativity is

NABC(βABC) = 2n−1 + 2n−2 − 1/2, (57)

which is strictly larger than ∆E(βABC) whenever n ≥ 2. Furthermore, NABC(βABC)/∆E(βABC) goes to 2 as n goes
to infinity.
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H. OBSERVATIONS ON COMPLETE ENTANGLEMENT LOSS UNDER CLASSICALIZATION

In this Appendix, we propose two observations for the entangled states satisfying Condition 7. A similar observation
has been made for pure states in Ref. [16].

Observation 8. Suppose that a tripartite state ρABC satisfies Condition 7. If ρABC is entangled for the bipartitions
A|BC and B|AC, then the reduced state ρAB = trC(ρABC) should have rank more than 2.

We remark that the generalization of Observation 8 to the n-partite case is given in Appendix J for n > 3.

Proof. First we denote that px = tr[〈x|ρABC |x〉] and σ|x〉 = 〈x|ρABC |x〉/px. Let us begin by recalling that any
tripartite quantum state can be written as

ρABC =
∑
i,j

Mij ⊗ |i〉〈j| , (58)

where Mij = trC [ρABC(1AB ⊗ |j〉〈i|)]. For i = j, we have that Mii = piσ|i〉. For i 6= j, Mij can be written as
linear combinations of pxσ|x〉 for some |x〉, since any |j〉〈i| can be decomposed using some projectors |x〉〈x|. The more
explicit form will be given below.

In the following, we will show the contraposition of the observation, that is, if ρABC satisfies Condition 7 and ρAB
has rank no more than 2, then ρABC is either separable for the bipartition A|BC or separable for the bipartition
B|AC. Since ρAB =

∑
i piσ|i〉 where {|i〉} is the computational orthonormal basis, and σ|i〉 is separable for any |i〉

according to Condition 7, then ρAB is also separable. If ρAB has rank 1, it is easy to see that ρABC is a pure product
state. Further, let us consider the case that the separable state ρAB has exactly rank 2. Up to local unitary, we can
assume the following decomposition:

ρAB = α(λ |00〉〈00|+ (1− λ) |ab〉〈ab|) + (1− α)
∑
i

λi|aibi〉〈aibi|, (59)

where |ab〉 6= |00〉, α, λ, λi ∈ [0, 1].
Denote |ψ1〉, |ψ2〉 the eigenstates of ρAB with non-zero eigenvalues. Then |00〉 , |ab〉 , |aibi〉 should be superpositions

of |ψ1〉, |ψ2〉. Since |ab〉 6= |00〉, |ψ1〉, |ψ2〉 can also be written as superpositions of |00〉 , |ab〉. Consequently, any |aibi〉
can be written as superpositions of |00〉 , |ab〉.

In the case that |a〉 = |0〉, we have |ai〉 = |0〉, which implies that ρA = trBC(ρABC) = trB(ρAB) = |0〉〈0|. Hence,
ρABC = |0〉〈0| ⊗ ρBC , which contradicts the assumption that ρABC is entangled for the bipartition A|BC. Thus,
|a〉 6= |0〉 should hold. Similarly, we have |b〉 6= |0〉.

Since |a〉 6= |0〉, |b〉 6= |0〉, then any non-trivial superposition of them is entangled. This leads to that |aibi〉 should
either be |00〉 or |ab〉 up to a phase.

Since the range of σ|x〉 belongs to the range of ρAB and σ|x〉 is separable, we have

σ|x〉 = λx |00〉〈00|+ (1− λx) |ab〉〈ab| , (60)

where
∑
x pxλx = λ. Since Mij is a combination of σ|x〉, Mij can be written as

Mij = Xij |00〉〈00|+ Yij |ab〉〈ab| , (61)

where the coefficients Xij and Yij are given by combinations of pxλx for some x. Accordingly, we can write

ρABC = |00〉〈00| ⊗ τx + |ab〉〈ab| ⊗ τy, (62)

where τx =
∑
i,j Xij |i〉〈j| and τy =

∑
i,j Yij |i〉〈j|.

To show that ρABC is fully separable, it is sufficient to prove that the matrices τx and τy are positive semidefinite.
For that, we note that since |ab〉 6= |00〉, there exists a bipartite pure state |αβ〉 such that 〈ab|αβ〉 = 0 and 〈00|αβ〉 6= 0.
Then it holds that

〈αβγ|ρABC |αβγ〉 = | 〈αβ|00〉 |2 〈γ|τx|γ〉 ≥ 0, (63)

for any |γ〉. This implies that 〈γ|τx|γ〉 ≥ 0, that is, τx is positive semidefinite. Similarly, we can show that τy is
positive semidefinite. Hence, we conclude that ρABC is fully separable, which contradicts the assumption.

In the case that the party C is not entangled with A and B, we have a similar requirement of the global state as
in the following observation.
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Observation 9. Suppose that a tripartite state ρABC satisfies Condition 7. If ρABC is entangled for the bipartitions
A|BC and B|AC separable for AB|C, then it should have rank more than 2.

Proof. Here we prove the statement by contradiction. Let us assume ρABC satisfies Condition 7 and has rank no more
than 2. Since ρABC is separable for the bipartition AB|C, we have the decomposition

ρABC =
∑
i

pi |ψiφi〉 〈ψiφi| , (64)

where |ψi〉 , |φi〉 are states for parties A,B and party C, respectively.
By assumption, the dimension of the space spanned by {|ψiφi〉} is no more than 2, this leads to that the dimension

of the space spanned by {|ψi〉} is no more than 2. Thus, ρAB = trC(ρABC) =
∑
i pi |ψi〉〈ψi| has rank no more than

2. By applying Observation 8, we finish the proof.

We have two remarks. First, one can indeed find tripartite entangled states satisfying Condition 7 and separable for
the bipartition AB|C. Especially, there exist tripartite entangled states which are separable for any bipartition [41, 42],
which satisfy Condition 7 automatically. We collect more such examples in Appendix I. Second, Observations 8, 9
may provide insight into a type of quantum marginal problem: whether a global state can be separable or entangled
if its marginal systems are subjected to separability conditions and rank constraints.

I. EXAMPLES FOR THREE-QUBIT STATES

Here, we discuss three-qubit entangled states that satisfy Condition 7 for the complete entanglement change. In
this Appendix, we will first propose a nontrivial three-qubit state that is entangled A|BC and AC|B but separable
for AB|C. Next, we will connect the complete entanglement change with bound entanglement.

I.1: Complete entanglement change with separability for AB|C

To find a nontrivial three-qubit entangled state that satisfy Condition 7, we employ the method of entanglement
witnesses: For an Hermitian operator W , it is called an entanglement witness if tr(Wρs) ≥ 0 for all separable states
ρs, and tr(Wρe) < 0 for some entangled states ρe. The latter allows us to detect entanglement. In particular, we
adopt the entanglement witness that can have the negative eigenvalues of its partial transpose (NPT) state. This
witness is described as follows: Suppose that a state ρe is NPT. Then one can find a negative eigenvalue λ < 0 of ρTA

e

and the corresponding eigenvector |φC〉. Hence the operator |φC〉〈φC |TA can be an witness to detect the entangled
state ρe.

In practice, entanglement witnesses can be implemented by semi-definite programming (SDP). For our purpose, we
use the following conditions that are compatible with the SDP method. First, to impose the separability condition
for the bipartition AB|C, we apply the fact that if a 2 ⊗ N state ρXY obeys ρXY = ρTX

XY , then it is separable,
see Theorem 2 in Ref. [43]. That is, we require that ρABC = ρTC

ABC . Second, for the separability condition of the
two-qubit post-measurement state σ|x〉, we employ the positive partial transpose (PPT) criterion, which is necessary
and sufficient for two-qubit separability. Third, for the sake of simplicity, we suppose that the state ρABC is invariant
under exchange between A and B using SWAP operator SWAP |a〉 |b〉 = |b〉 |a〉.

Since the set of NPT states is not convex, we use the see-saw method with entanglement witnesses. This is a
numerical iteration technique for non-convex optimization, which allows us to find states with the (local) minimal
value as a solution. From the numerical solution, we can find an analytical form of the state and verify that it satisfies
Condition 1 for any measurement direction. Our finding is the following entangled state:

ρ̃ =
1

8



0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0


. (65)

This state has the following properties. First, the matrix rank of ρ̃ is 4. Second, one can show that the state σ|x〉
with |x〉 = (cos t, eia sin t) is PPT and therefore separable for any t, a. Third, the minimum eigenvalue of ρ̃TA is equal
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to −1/8. Fourth, the party C is not entangled with the other two parties. Nevertheless, the discord DAB|C(ρ̃) > 0,
which is necessary for complete entanglement change according to Observation 5.

I.2: Complete entanglement change and bound entanglement

We have found the existence of state ρ̃ that is entangled states for A|BC and AC|B but separable for AB|C that
can achieve the complete entanglement change. Now we are also interested in the case where the separability for
AB|C is replaced by bound entanglement. Such a state is already known as the 4 ⊗ 2 bound entangled state [44],
denoted by

ρHDK =
1

h



2t 0 0 0 0 0 2t 0
0 2t 0 0 0 0 0 2t
0 0 t+ 1 0 0 0 0 t′

0 0 0 2t 2t 0 0 0
0 0 0 2t 2t 0 0 0
0 0 0 0 0 2t 0 0
2t 0 0 0 0 0 2t 0
0 2t t′ 0 0 0 0 t+ 1


, (66)

where t′ =
√

1− t2, h = 2(1 + 7t) and 0 < t < 1. Here the parties AB are in 4-dimensional systems and the party
C is 2-dimensional systems. We remark that this state satisfies Condition 1. Since this state is NPT entangled for
A|BC and AC|B but PPT entangled for AB|C, we cannot apply Observation 9. On the other hand, its reduced state
ρAB has rank 4, and therefore, it complies with Observation 8.

To proceed further, we now present the following:

Observation 10. If a tripartite state ρABC is separable either for the bipartition A|BC or the bipartition B|AC,
then ρABC satisfies Condition 1.

Proof. If ρABC is separable either for A|BC or B|AC, then the normalized state of 〈x| ρABC |x〉 is separable for any
measurement direction |x〉 on C. Thus, Observation 3 implies that the entanglement change must be complete.

In the following, we collect entangled states for complete entanglement change which are even separable for any
bipartition:

ρUPB =
1

32



7 1 1 1̄ 1 1̄ 1̄ 1
1 3 1̄ 1 1̄ 3̄ 1 1̄
1 1̄ 3 3̄ 1̄ 1 1 1̄
1̄ 1 3̄ 3 1 1̄ 1̄ 1
1 1̄ 1̄ 1 3 1 3̄ 1̄
1̄ 3̄ 1 1̄ 1 3 1̄ 1
1̄ 1 1 1̄ 3̄ 1̄ 3 1
1 1̄ 1̄ 1 1̄ 1 1 7


, ρADMA =

1

n



1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 1

c 0 0 0
0 0 0 0 0 1

b 0 0
0 0 0 0 0 0 1

a 0
1 0 0 0 0 0 0 1


, (67)

ρAK =
1

8(1 + y)



x 0 0 0 0 0 0 2
0 y 0 0 0 0 2 0
0 0 y 0 0 2̄ 0 0
0 0 0 y 2 0 0 0
0 0 0 2 y 0 0 0
0 0 2̄ 0 0 y 0 0
0 2 0 0 0 0 y 0
2 0 0 0 0 0 0 x


, ρPH =

1

m



2z 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1

z 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 1

z 0 0
0 0 0 0 0 0 1

z 0
0 0 0 0 0 0 0 0


, (68)

where 1̄ = −1, 2̄ = −2, 3̄ = −3, a, b, c, x, y, z > 0, abc 6= 1, x = y + 4, n = 2 + 1/a + a + 1/b + b + 1/c + c, and
m = 3 + 3/z + 2z. These states have been already known: ρUPB in Ref. [41], ρADMA in Ref. [42], ρAK in Ref. [45],
and the Hyllus state ρPH in Eq. (2.105) in Ref. [46]. Note that ρAK is entangled for 2 ≤ y ≤ 2.828 but separable for
y ≥ 2

√
2. Also ρUPB is permutationally symmetric.

Let us summarize the property of these states. The first common property of them is that they are separable for
any bipartition, but not fully separable. In that sense, they are not multipartite distillable and then bound entan-
gled [47]. Here we remark that GHZ diagonal states that are PPT for any bipartition are separable for any bipartition
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[48]. Second, their matrix ranks are, respectively, given by Rank(ρUPB) = 4, Rank(ρADMA) = 7, Rank(ρAK) =
8, Rank(ρPH) = 5. This follows the results of Observation 9. Finally, these bound entangled states can be detected
with the help of the previously presented entanglement criteria in Refs. [47, 49, 50].

The last example is the three-qubit thermal state with Heisenberg chain model:

ρH = exp (−HH/T )/Z, (69)

HH =
∑

i=1,2,3

σiXσ
i+1
X + σiY σ

i+1
Y + σiZσ

i+1
Z , (70)

with temperature T and Z = tr[exp (−HH/T )]. This thermal state has been shown to be bound entangled in the
temperature range T ∈ [4.33, 5.46], in the sense that they are separable for any bipartition but not fully separable
in Refs. [51, 52] and Table II in [53], where the bound entanglement can be detected by the optimal spin squeezing
inequality.

J. GENERALIZATION OF OBSERVATION 8

Observation 11. Let ρA1...An−1An
be a n-partite quantum state and let P |x〉n = |x〉 〈x| be a projector on the sub-

system An with
∑
x P
|x〉
n = I. Suppose that the normalized state σ|x〉 = trn(P

|x〉
n ρA1...An−1An)/pn with pn =

tr(P
|x〉
n ρA1...An−1An

) is fully separable for any |x〉, and the reduced state ρA1...An−1
= trn(ρA1...An−1An

) can be written
as

ρA1...An−1 =

k∑
i=1

pi|ψi〉〈ψi|, (71)

where {|ψi〉}ki=1 are linearly independent fully product states, i.e., |ψi〉 =
⊗n

j=1 |ψij〉, and any superposition of {|ψi〉}ki=1

given by
∑
i ci |ψi〉 is not a fully product state. In this case, ρA1...An−1An

should be fully separable.

Proof. We begin by recalling that any n-particle state can be written as

ρA1...An−1An
=
∑
i,j

Mij ⊗ |i〉〈j| , (72)

where Mij is a matrix on the A1 . . . An−1 system and |i〉〈j| is on the An system. Then, from the assumption, we
notice

ρA1...An−1
=
∑
i

Mii =

k∑
i=1

pi|ψi〉〈ψi|. (73)

Note that Mii = σ|i〉, which implies that the range of σ|x〉 is in the subspace spanned by {|ψi〉}. From the assumption
that σ|x〉 is separable and any superposition of {|ψi〉} is entangled, we have

σ|x〉 =
∑
j

qxj |ψj〉〈ψj | . (74)

Also Mij can be written in the linear combination of σ|x〉. Accordingly, we have

ρA1...An−1An
=
∑
i,j,k

cijk |ψk〉〈ψk| ⊗ |i〉〈j| =
∑
k

|ψk〉〈ψk| ⊗ τk, (75)

where τk =
∑
ij cijk |i〉〈j|, and cijk is the coefficient of |ψk〉〈ψk| when we expand Mij . Below we show that τk is

positive semidefinite.
From the assumption that {|ψi〉}ki=1 are linearly independent, we know that there are states {|φi〉}ki=1 such that

〈ψi|φj〉 = 0, if i 6= j, 〈ψi|φi〉 > 0. (76)

Then, for any |v〉,

〈φiv| ρA1...An−1An |φiv〉 = 〈φi|ψi〉2 〈v| τi |v〉 ≥ 0, (77)

that is, 〈v| τi |v〉 ≥ 0. This implies that τi is positive semidefinite. Hence, ρA1...An−1An is a fully separable state.
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