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Causality is fundamental to science, but it appears in several different forms. One is relativistic
causality, which is tied to a space-time structure and forbids signalling outside the future. A second
is an operational notion of causation that considers the flow of information between physical systems
and interventions on them. In [Vilasini and Colbeck, Phys. Rev. A. 106, 032204 (2022)], we propose
a framework for characterising when a causal model can coexist with relativistic principles such
as no superluminal signalling, while allowing for cyclic and non-classical causal influences and the
possibility of causation without signalling. In a theory without superluminal causation, both super-
luminal signalling and causal loops are not possible in Minkowski space-time. Here we demonstrate
that if we only forbid superluminal signalling, superluminal causation remains possible and show the
mathematical possibility of causal loops that can be embedded in a Minkowski space-time without
leading to superluminal signalling. The existence of such loops in the given space-time could in
principle be operationally verified using interventions. This establishes that the physical principle
of no superluminal signalling is not by itself sufficient to rule out causal loops between Minkowski
space-time events. Interestingly, the conditions required to rule out causal loops in a space-time
depend on the dimension. Whether such loops are possible in three spatial dimensions remains an
important open question.

Introduction.—Understanding cause-effect relations is
central to the scientific method, yet there are several in-
equivalent notions of causality. Often, it is defined with
respect to a background space-time structure, after which
causal structure and space-time structure are treated
synonymously. An alternative is to define causality op-
erationally and independently of space-time. One way
to do this is through causal models, which are based on
intervening on physical systems and analysing the result-
ing correlations [1, 2]. This is the approach we take here.
Causal models have been extensively applied to situa-
tions involving classical variables, being used for instance
for medical testing [3, 4], economic predictions [1, 5], and
machine learning [6–8].

Bell’s theorem [9] demonstrates that classical causal
models cannot explain quantum correlations within the
causal structure that is naturally associated with a Bell
experiment [10]. This has fuelled several approaches for
providing causal explanations to quantum and more gen-
eral non-classical correlations. One approach is to de-
velop causal models [10–25] that go beyond classical ran-
dom variables and allow quantum or even post-quantum
systems [26, 27] to be causes. Other approaches suggest
modifying the causal structure itself without necessar-
ily considering non-classical causes, such as allowing for
additional causal influences that go outside the future
light cone (e.g., non-local hidden variable theories [28]) or
against the direction of time (retro-causality [29]). Such
causal influences must remain hidden in order to prevent
superluminal signalling at the observed level. More rad-
ical approaches lean towards giving up the standard un-
derstanding of causation as being acyclic, and replacing
it with a suitable notion of logical consistency [30–32].
While these alternatives correspond to different descrip-

tions of the underlying causal model, they are all com-
patible with the impossibility of superluminal signalling
in Minkowski space-time [33].

In our associated paper [34], we have developed a
general framework for causation that can describe non-
classical and cyclic causal influences as well as causation
without signalling. We do so by keeping the direction of
causation and the order of events in space-time distinct.
The former is modelled operationally and we characterize
when the two are compatible with each other i.e., when
we can assign space-time locations to the random vari-
ables in the causal model without leading to signalling
outside the space-time’s future (we call this assignment
an embedding). Here we ask: does the ability to compat-
ibly embed a causal model in an acyclic space-time (such
as Minkowski space-time) imply that the operational pre-
dictions of the causal model can be reproduced within an
acyclic causal structure? If so, it would not be necessary
to consider cyclic causation.

Within relativistic physics, causal influences are taken
to flow within the light cone, making both causal loops
and superluminal signalling impossible in Minkowski
space-time. Here we relax this assumption, and require
only that observable signalling is limited by the light
cone structure. In scenarios in which there is causation
without correlation (i.e., a fine-tuned influence), answer-
ing the above question is more challenging since fine-
tuned influences can act outside the lightcone without
leading to signalling. Our framework allows treatment
of both correlations and interventions on physical sys-
tems in general scenarios with cyclic causal influences. It
can model fine-tuned causal influences as well as latent
quantum and post-quantum causes, and be used to char-
acterise conditions under which a causal model can be
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compatibly embedded in a space-time. Here, we apply
this framework to demonstrate the mathematical possi-
bility of causal loops between events in (1+1)-Minkowski
space-time where these loops can be operationally de-
tected without superluminal signalling, providing an ex-
plicit example. We also show that the observable pre-
dictions of this loop cannot be reproduced in any acyclic
causal model, answering the aforementioned question in
the negative. Interestingly, the same example fails to be
embeddable in (3+1)-Minkowski space-time. In the as-
sociated paper [34], we have characterised a large class of
operationally detectable causal loops within our frame-
work. Whether any of these may be embeddable in (3+1)
dimensions remains an interesting open question.

Fine-tuned causal explanations are often undesirable
as fundamental explanations of physical phenomena [35],
but can be crucial in practical information processing
tasks. For instance, cryptographic protocols (such as
the one time pad) rely on fine-tuned correlations, and
the security of relativistic cryptographic protocols [36,
37] combines both relativistic notions of causality and
information-theoretic concepts. Hence, understanding
the extent to which compatibility with Minkowski space-
time restricts the possible operational causal models also
has practical implications.

Causal models: correlations, interventions and fine-
tuning—We begin by reviewing the essentials of the
causal modelling framework (see [34] for details). A
causal structure is modelled as a directed graph G whose
nodes correspond to observed or unobserved systems and
directed edges denote causation between these sys-
tems [38]. The set of observed nodes (denoted Sobs) com-
prises classical random variables (RVs) such as measure-
ment settings or outcomes, while unobserved nodes may
be classical, quantum or post-quantum systems (such as
those from a generalised probabilistic theory).

Implicitly the nodes are associated with causal mecha-
nisms that specify how information from their incoming
edges is processed. For instance, in the classical case this
processing corresponds to a function fNi from the parents
of the node and possibly an additional, parentless [39] RV
ENi (to allow for situations where Ni is not determinis-
tically dependent on its parents) to the node variable Ni

itself. “A is a direct cause of B” then corresponds to the
function fB having A as a (non-trivial) argument. [In the
non-classical case, these functions would be replaced by
valid maps between systems in the theory (e.g., CPTP
maps in quantum theory)].

Often these causal mechanisms are not explicitly
known and hence our treatment has to work at the level of
observed probability distributions rather than the causal
mechanisms. The causal structure imposes constraints
on the possible distributions that may arise over the ob-
served nodes. One set of such constraints can be ex-
pressed using the notion of d-separation. For two dis-
joint subsets X and Y of observed nodes Sobs of a causal
structure G, X and Y are said to be d-separated, denoted

(X ⊥d Y )G , if there are no directed paths between vari-
ables in X and Y and if no variables in X and Y have
common ancestors in G. More generally, d-separation
(X ⊥d Y ∣Z)G is defined for three disjoint subsets X, Y
and Z of the observed nodes (see Section A of the Sup-
plemental Material for details).

We say that a distribution PG(Sobs) satisfies the d-
separation property with respect to a causal structure
G if whenever we have d-separation between observed
nodes in G, then we have a corresponding conditional
independence in the observed distribution PG(Sobs) i.e.,
(X ⊥d Y ∣Z)G implies PG(XY ∣Z) = PG(X ∣Z)PG(Y ∣Z).
If the converse holds for all disjoint subsets of observed
nodes, then the distribution is said to be faithful or,
equivalently, not fine-tuned. In the present work, we
adopt a minimal definition of a causal model which cor-
responds to a directed graph G and an observed distri-
bution PG(Sobs) that satisfies the d-separation property
with respect to G [40]. In this work we allow fine-tuned
causal models in which conditional independences can oc-
cur in PG(Sobs) without the corresponding d-separation
in G (i.e., we allow causation without correlation).

In cases where we know the causal mechanisms, a
causal model can be specified by a causal structure GC ,
causal mechanisms {fNi , PGC (ENi)}i and an associated
observed distribution PGC (Sobs) for Sobs ⊆ {Ni}i. Here
the observed distribution must be consistent with rela-
tionships specified by the causal mechanisms. Methods
for modelling operational causal structures beyond the
classical case are proposed in our associated paper [34].
In the present work, we restrict to the classical case which
suffices to illustrate our main claims.

So far, we have only discussed the possible correlations
that fit with a causal structure. Inferring causation re-
quires more, and the concept of an intervention has been
introduced to deal with this [1]. If intervening on X
changes the distribution on Y , then we can deduce that
X is a cause of Y .

In the case where X is parentless in a causal structure
G, correlation between X and another variable Y i.e.,
PG(Y ∣X) ≠ PG(Y ) suffices to conclude that X is a cause
of Y . More generally, an intervention on X corresponds
to forcing X to take a certain value, x, irrespective of its
parents. This results in a post-intervention causal struc-
ture Gdo(X) obtained from G by removing all the incoming
edges to X, while maintaining the causal mechanisms for
Gdo(X) from G, except the mechanism for the intervened
node X, which is replaced by X = x. We say that X
affects Y if there exist values x and y such that

PGdo(X)(Y = y∣X = x) ≠ PG(Y = y). (1)

In general PGdo(X)(Y ∣X) is not the same as PG(Y ∣X) (but

they are equal when X is parentless in G).

Acyclic and cyclic causal models embedded in Minkowski
space-time—The affects relation defined in (1) naturally
extends to joint interventions on sets of observed nodes.
In the presence of fine-tuning, a set of RVs can jointly
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affect another set without any affects relations between
individual pairs of elements in the sets. We will illus-
trate three such examples here and use these to establish
our main claim. All three causal models have observed
nodes Sobs ∶= {A,B,C} which we will take to be classi-
cal and binary. The same observed correlations will be
used in all three cases. The distinguishing feature at the
observed level will be the affects relations which model
what happens under intervention. The causal structures
and compatible space-time embeddings for the three ex-
amples are given in Figure 1.

Example 1 (The one-time pad). Consider the causal
structure of Figure 1a, GOTP with the causal mechanisms
A = EA, C = EC , B = A⊕C, with EA and EC being inde-
pendent and uniformly distributed. Then, B is uniformly
distributed and we have PGOTP(B∣AC) ≠ PGOTP(B),
PGOTP(B∣A) = PGOTP(B) and PGOTP(B∣C) = PGOTP(B).
Since A and C are parentless, these statements are equiv-
alent to {A,C} affects B, A does not affect B, and C does
not affect B [41]. A Minkowski space-time embedding of
the RVs that does not enable any signalling outside the
future is one in which B is assigned a space-time location
in the joint future of the space-time locations of A and
C, as illustrated in Figure 1a.

Example 2 (A simplified jamming scenario (cf. [42])).
Consider the causal structure of Figure 1b, Gjam with
the observed nodes {A,B,C} and a classical unobserved
node Λ. Suppose we have the causal mechanisms Λ = EΛ,
A = Λ, B = EB , C = B ⊕ Λ with EΛ and EB uniformly
distributed. This gives the same observed correlations
as the previous example, with B = A ⊕ C and with all
observed variables uniformly distributed. Additionally,
PGjam(AC ∣B) ≠ PGjam(AC), PGjam(A∣B) = PGjam(A) and
PGjam(C ∣B) = PGjam(C). Since B is parentless, this is
equivalent to B affects {A,C}, B does not affect A and
B does not affect C. A compatible Minkowski space-time
embedding in this case requires that the joint future of
the space-time locations of A and C is contained entirely
within the space-time future of B, as shown in Figure 1b.
This is becauseB affects {A,C} can only be verified when
A and C are brought together, which is possible only
in their joint future. Since we have no pairwise affects
relations, there is no pairwise signalling between the RVs
and no RV is required to be in the future of any other.
Note that the causal influence B C is superluminal,
even though there is no superluminal signalling.

Example 3 (A fine-tuned causal loop). Consider the
causal structure of Figure 1c, Gloop, with the same ob-
served and unobserved nodes as the previous example,
but with the causal mechanisms Λ = EΛ, A = Λ, C =

B ⊕ Λ, B = A ⊕ C with EΛ uniformly distributed. Note
that these causal mechanisms do not admit a unique so-
lution. Nevertheless, in Section B of the Supplemental
Material we apply a method proposed in [34] to uniquely
determine the observed distribution based on these mech-
anisms, and show that the same distribution as the previ-
ous two examples is obtained. The effect of interventions

in this case cannot be directly inferred from the observed
correlations since none of the observed nodes are parent-

less. The post-intervention causal structure Gloop
do(AC)

is

identical to GOTP and the post-intervention causal struc-

ture Gloop
do(B)

is identical to Gjam. Applying (1), we find

{A,C} affects B and B affects {A,C} and no pairwise af-
fects relations between A, B and C. The space-time em-
bedding must satisfy the compatibility conditions of both
the previous examples, and Figure 1c illustrates an em-
bedding with these properties i.e., this causal loop can be
compatibly embedded in (1+1)-Minkowski space-time.

All three examples above lead to the same correlations
B = A ⊕ C where B is correlated jointly with A and C
but not individually, hence there is fine-tuning. Correla-
tion between B and {A,C} implies (by the d-separation
property) that B and {A,C} must be d-connected i.e., B
is d-connected with A and/or C. However, the RVs A, B
and C are pairwise uncorrelated so there must be a pair
of variables that are d-connected and yet independent,
which constitutes fine-tuning (these independences dis-
appear for small changes in the distribution of one of the
variables, e.g., if Λ is non-uniform in Examples 2 and 3).

The causal loop of Example 3 exhibits many curious
features. It is an operationally detectable causal loop
i.e., any causal model that gives rise to the affects rela-
tions of this example must necessarily be associated with
a cyclic causal structure. This is proven in Section C of
the Supplemental Material, but the intuition is relatively
simple: Consider three parties in possession of the 3 ob-
served RVs A, B and C and two types of experiment:
E1) Alice and Charlie perform all possible interventions
on A and C and Bob observes B without intervening;
E2) Bob performs all possible interventions on B while
Alice and Charlie observe A and C without intervening.
After both experiments the parties can get together to
verify whether B = A⊕C holds. Here, “all possible inter-
ventions” on a variable corresponds to running through
all possible values of that variable, setting these indepen-
dently of their parents – see (1), and collecting statistics
for each choice. These statistics differ between the three
causal models, as they have different sets of affects rela-
tions. These interventions do not enable the parties to
signal outside the space-time future as the affects rela-
tions of all these causal models are compatible with the
given space-time embedding. They nevertheless allow the
parties to operationally verify the existence of a causal
loop as we show in the Supplemental Material.

In Example 3, experiment E1 shows that A and C are
causes of B while E2 shows that B is a cause of at least
one of A and C. Given the space-time embedding from
Figure 1c, these interventions would enable the agents to
operationally detect retro-causation. By contrast, for the
first model, E2 would correspond to a post-intervention
scenario with no edges and therefore lead to no correla-
tions between the RVs, while in the second model, E1
would also lead to no correlations. In other words, these
two experiments enable the parties to operationally dis-
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FIG. 1: Three examples of causal models and their compatible embeddings in (1+1)-Minkowski
space-time. In each case, the operational causal structure associated with the model is given in black, circled
variables are observed nodes, while uncircled ones are not and the black arrows denote causation. Space-time
information is given in blue with time along the vertical and space along the horizontal axis. The solid lines
represent light-like surfaces and the shaded region corresponds to the joint future of A and C in all cases.

tinguish between the causal models of Examples 1-3 in
spite of them having the same observed correlations.

The mathematical possibility of an operationally de-
tectable causal loop being embedded in Minkowski space-
time without signalling necessarily involves fine-tuning
(see [34]) since in the absence of fine-tuning, signalling
and causation are equivalent. Note that in Example 3
the locations of the random variables in Minkowski space-
time have to be carefully chosen to allow compatibility:
B and C must be light-like separated, and arbitrarily
small adjustments to the location of either B or C will
remove compatibility. This requires B to be embedded
exactly at the earliest location in the joint future of A
and C. In a sense this is another kind of fine-tuning, but
at the level of the space-time embedding. Furthermore,
such an embedding is not possible in (3+1)-Minkowski
space-time because the intersection of two lightcones is
not itself a cone and consequently there does not exist a
frame-independent earliest location in the joint future of
two given points, unlike in (1+1)-D [43].

Beyond these examples, a causal model may give rise
to a complicated set of affects relations between vari-
ous subsets of the observed nodes, making characteris-
ing compatibility with a space-time a more complicated
task. For instance, if A affects B and {A,C} affects B
but C does not affect B, does B have to be embedded
in the joint future of A and C, or only in the future of
A? The novel causal modelling concept required to an-
swer such questions in fine-tuned models is the notion of
a higher-order affects relation, which we introduce in our
framework [34]. Here we have illustrated one example,
but there is a general class of physical theories involv-
ing cyclic causal structures that are compatible with no
superluminal signalling in Minkowski space-time as dis-
cussed in our associated paper [34].

Discussion and outlook.—In relativistic physics, a causal
influence from one space-time location to another implies

that the latter is in the future light cone of the former.
This means that within relativistic physics, it is not pos-
sible to have causal loops or closed timelike curves in
space-times whose light cone structures form a partial
order. On the other hand, the approach adopted here,
where causal structure and space-time structure are dis-
tinct notions, only requires observable signalling (and not
causal influences) to stay within the space-time future for
compatibility. Maintaining a clear separation between
causation and space-time structure and characterising
their interdependence is useful for considering formula-
tions of physics without a fixed background space-time
structure (e.g., in quantum gravity [44, 45]), as well as
practical information processing tasks in space-time.

We note that a previous work [46] proposes a set of
necessary and sufficient conditions for ruling out causal
loops in Bell-type scenarios. Our framework [34] identi-
fies implicit assumptions in this claim. In particular, one
of the claims in [46] assumes that no superluminal sig-
nalling in Minkowski space-time rules out causal loops,
which we have shown does not hold in general.

We have established that the principle of no super-
luminal signalling in Minkowski space-time alone is in-
sufficient to rule out causal loops, through an explicit
construction in (1+1) dimensions. We also found that
the conditions for ruling out causal loops can depend on
the space-time dimension. Previous works have estab-
lished that logical consistency [47, 48] or familiar quan-
tum properties such as linearity, no-cloning [49] etc. are
not sufficient. Finding underlying principles that can
do so remains an interesting open problem, a pertinent
question being whether the principle of no superluminal
signalling rules out causal loops in the case of (3+1)-
Minkowski space-time.
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SUPPLEMENTAL MATERIAL

I. FURTHER DETAILS OF THE CAUSAL
MODELLING FRAMEWORK

The d-separation property [1, 2] was motivated in the
main text and can be used as a convenient tool to read off
conditional independences in the observed distribution
PG(Sobs) associated with a causal structure G, from the
topology of G. We provide the formal definition below.

Definition I.1 (Blocked paths). Let G be a directed
graph in which X and Y ≠ X are nodes and let Z be a
set of nodes not containing X or Y . A path from X to Y
(not necessarily directed) is said to be blocked by Z if it
contains either A W B with W ∈ Z, A W B
with W ∈ Z or A W B such that neither W nor
any descendant of W belongs to Z, where A and B are
arbitrary nodes in the said path between X and Y .

Definition I.2 (d-separation). Let G be a directed graph
in which X, Y and Z are disjoint sets of nodes. X and
Y are d-separated by Z in G, denoted as (X ⊥d Y ∣Z)G
if every path from a variable in X to a variable in Y is
blocked by Z, otherwise, X is said to be d-connected with
Y given Z.

For acyclic causal structures (both classical [1] and
non-classical [16, 23]), it is known that any distribu-
tion arising from the causal mechanisms satisfies the d-
separation property. This is also known to hold in several
classical cyclic causal models [50] and our accompanying
paper [34] provides an example of a quantum cyclic causal
model where this holds as well. However, in contrast
to the acyclic case, in some classical cyclic causal struc-
tures these mechanisms do not imply the d-separation
property fails [51]. Such examples are ruled out in the
definition of causal model we use which imposes the d-
separation property. In the classical case, [50] introduces
a more general graph separation criterion (σ-separation)
that applies to a larger class of cyclic causal models and
reduces to d-separation in the acyclic case, and one can
in principle generalise our definition of a causal model in
terms of σ-separation to account for this larger class of
models. There nevertheless remain classical cyclic causal
models for which no graph separation property is known,
highlighting the counter-intuitive nature of cyclic causal
structures. Characterising the set of classical or quan-
tum cyclic models, defined from causal mechanisms, for
which d- or σ-separation holds is an interesting question
for future work, and Appendix C of our accompanying
paper [34] outlines a possible method for doing so.

Another useful framework for modelling cyclic quan-
tum causal structures was proposed in [52]. This follows a
different, split-node approach to causal modelling where
all nodes are modelled quantum mechanically. This is a
bottom-up approach that describes the observed proba-
bilities in terms of the underlying quantum causal mech-
anisms. Unfaithful causal models, post-quantum causes

and space-time embeddings of the causal model were
not considered here. In contrast, our framework takes
these into account but instead adopts a top down ap-
proach where the causal model imposes minimal condi-
tions given by the d-separation property that relates the
causal graph with a set of observed distributions. This
already suffices to solve the problem regarding space-time
embeddings of unfaithful, cyclic and non-classical causal
models and reproduces a number of results from the
classical causal modelling literature such as Pearl’s rules
of do-calculus. Even though the causal models in our
framework are defined through the d-separation property,
the techniques and space-time compatibility condition we
propose relies only on the set of affects relations gener-
ated by a causal model and can hence also be applied to
cyclic causal models that do not satisfy the d-separation
condition.

II. A METHOD TO DERIVE THE
DISTRIBUTION OF EXAMPLE 3

In acyclic (classical and non-classical) causal models,
the observed distribution is uniquely determined once all
the causal mechanisms are specified [1, 16, 23]. However
this is not the case in cyclic models. The simplest ex-
ample illustrating this is the 2-node cycle with X Y
and Y X where the causal mechanisms are simply
X = fX(Y ) = Y and Y = fY (X) = X. In this case
any distribution P (XY ) = P (X) = P (Y ) agrees with
the causal mechanisms, and using the standard meth-
ods available in the previous literature on cyclic causal
models [50, 53], this distribution is not uniquely deter-
mined by the mechanisms. In the associated paper [34]
(Appendix C), we have proposed a possible method for
uniquely determining the observed distribution in a class
of classical and non-classical cyclic models. The method
can be applied to models where each directed cycle in-
cludes at least one observed node, and involves splitting
this observed node in each cycle into two nodes, which
results in a directed acyclic graph. We can then use the
known methods for acyclic models (which always yield
a unique distribution), post-select on the values of the
split nodes being equal, and finally renormalise the over-
all distribution to ensure that the final distribution for
the cyclic model is a valid normalised distribution.

We now apply this method to the cyclic causal model
of Example 3 from the main text, for which standard
methods leave the observed distribution undetermined.
The directed cycle in this case is between the nodes B
and C and we can choose to split either one of these.
Splitting B into two nodes B and B′ such that B has all
the same incoming arrows as B (and no outgoing arrows)
while B′ has all the same outgoing arrows as B (and no
incoming arrows), we obtain the following acyclic causal
model: P (Λ) is uniformly distributed, A = Λ, C = B′⊕Λ,
B = A ⊕ C. The corresponding causal structure Gacyc is
given in Figure 2a. Notice that the above causal mech-
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Λ A B B′ C PGacyc(ABC ∣B′) PGloop(ABC)
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1
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1
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(b)

FIG. 2: Calculating the observed distribution of
Example 3 (a) Acyclic causal structure Gacyc obtained

by splitting the node B of the cyclic causal structure
G

loop of Figure 1(b). (b) Table showing the conditional
probability distribution PGacyc(ABC ∣B′) of the induced
causal model over (a). We then post-select on B = B′ to

recover the original cyclic model and then ignore B′.
But this yields an unnormalised distribution, and we
must therefore renormalise the distribution to obtain
the required observed distribution P

G
loop(ABC) as

given in the last column.

anisms for this acyclic graph which are induced by the
original cyclic model of Example 3 are not a complete
set of mechanisms for the acyclic case, since we are miss-
ing a specification of the distribution over the new ex-
ogenous node B′. Therefore, we can only calculate the
conditional distribution PGacyc(ABC ∣B′) associated with
the observed nodes of the acyclic model. We can then
post-select on B = B′ and renormalise the distribution to
obtain the observed distribution P

G
loop(ABC) of the orig-

inal cyclic model. This is explicitly shown in Figure 2b,
and one can see that this procedure yields exactly the
same distribution stated in the main text, and in par-
ticular this is also the observed distribution obtained in
Examples 1 and 2 of the main text. It is easy to ver-
ify that splitting the node C instead and applying this
procedure also yields the same distribution. Generalis-
ing this method to arbitrary non-classical cyclic causal
structures is a subject of future work.

III. OPERATIONALLY CERTIFYING THE
CYCLICITY OF THE CAUSAL MODEL

We have seen that the cyclic causal model of Example 3
leads to the affects relations B affects {A,C}, and {A,C}
affects B, with no pairwise affects relations between A, B
and C. We now show that it is impossible for any acyclic
causal model to give rise to the same affects relations i.e.,
these affects relations operationally certify the cyclicity
of the causal model and hence the causal loop giving rise
to these relations is operationally detectable.

We show this by contradiction, suppose that there ex-
ists an acyclic causal model with an associated causal
structure G, which is a directed acyclic graph (DAG) that
produces these affects relations. First consider the affects
relation B affects {A,C}. We will show that this implies
the existence of a directed path from B to A or from
B to C in G. Since every acyclic causal model satisfies
the d-separation property [1, 16], we can apply it to G.
If there were no directed paths from B to {A,C} in G,
then B would be d-separated from {A,C} in Gdo(B) i.e.,

(B ⊥d AC)Gdo(B) . It is shown in [34] that for any G satis-

fying the d-separation property, (X ⊥d Y )Gdo(X) for any
two disjoint sets X and Y of observed nodes implies that
X does not affect Y . Applying this result here gives B
does not affect {A,C} which contradicts the given af-
fects relations, so we must have a directed path from B
to {A,C} in G.

Next consider a causal model obeying the affects re-
lation {A,C} affects B along with A does not affect B
and C does not affect B. We will now show that this
implies the existence of a directed path from A to B and
from C to B in G. For this we will use the concept of a
higher-order affects relation introduced in [34]. For three
disjoint subsets X, Y and Z of the observed nodes, we
say that X affects Y given do(Z) if there exist values x
of X, y of Y and z of Z such that

PGdo(XZ)(Y = y∣X = x,Z = z) ≠ PGdo(Z)(Y = y∣Z = z) (2)

Note that {A,C} affects B, and C does not affect B
imply the higher-order affects relation A affects B given
do(C). Explicitly, the first two conditions are

PGdo(AC)(B∣AC) ≠ PG(B)

PGdo(C)(B∣C) = PG(B).
(3)

When combined, this yields PGdo(AC)(B∣AC) ≠

PGdo(C)(B∣C) which precisely expresses the higher-

order affects relation A affects B given do(C). Similarly
{A,C} affects B along with A does not affect B imply
the higher-order affects relation C affects B given
do(A). It was shown in [34] that X affects Y given
do(Z) implies that there is a directed path from X
to Y in any underlying causal structure G producing
the higher-order affects relations (and satisfying the
d-separation property). Applying this to the two
higher-order affects relations obtained above establishes
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the existence of directed paths from A to B and from C
to B in G (which we have assumed to be a DAG, and
this assumption implies that the associated model must
satisfy the d-separation property).

To summarise, we have established above that there

exists a directed path from A to B and a directed path
from C to B in G as well as a directed path from B to
at least one of A and C. This implies the existence of a
directed cycle in G, contradicting the assumption that it
is a directed acyclic graph, and certifying the cyclicity of
the model.
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