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Quantum simulation enables study of many-body systems in non-equilibrium by mapping to a controllable
quantum system, providing a new tool for computational intractable problems. Here, using a programmable
quantum processor with a chain of 10 superconducting qubits interacted through tunable couplers, we simulate
the one-dimensional generalized Aubry-André-Harper model for three different phases, i.e., extended, localized
and critical phases. The properties of phase transitions and many-body dynamics are studied in the presence
of quasi-periodic modulations for both off-diagonal hopping coefficients and on-site potentials of the model
controlled respectively by adjusting strength of couplings and qubit frequencies. We observe the spin transport
for initial single- and multi-excitation states in different phases, and characterize phase transitions by experi-
mentally measuring dynamics of participation entropies. Our experimental results demonstrate that the newly
developed tunable coupling architecture of superconducting processor extends greatly the simulation realms
for a wide variety of Hamiltonians, and may trigger further investigations on various quantum and topological
phenomena.

Introduction.—Using controllable quantum systems, quan-
tum simulation provides a powerful approach to study many-
body physics, which might be challenging for a classical com-
puter [1, 2]. In analogue quantum simulation, specific model
Hamiltonians can be directly realized by engineering the plat-
form Hamiltonians such that dynamics of real quantum sys-
tems can be studied in a controllable manner, such as in
trapped ions [3–5], atoms in optical lattices [6–9], supercon-
ducting qubits [10–12], and nuclear spins [13, 14]. Particu-
larly, superconducting quantum simulation can explore a wide
regime from localization to weak and strong thermalization in
non-equilibrium quantum many-body systems [15–23].

On the other hand, the 1D Aubry-André-Harper (AAH)
model [24, 25], as a workhorse for studying localization
and topological states, has attracted much attention both
theoretically and experimentally [16, 26–33]. The original
AAH model can be derived from a 2D quantum Hall sys-
tem with nearest-neighbor hopping. When considering the
next-nearest-neighbor hopping, one can deduce a generaliza-
tion of the AAH model with both on-site and off-diagonal
quasi-periodic modulations [34, 35]. The generalized AAH
(GAAH) model shows different and interesting localization
and topological properties, for instance, the critical phase fea-
tured by multifractal wave functions and the topological adia-
batic pumping [36–41]. With the development of experimen-
tal technologies, the GAAH model has been realized in pho-
tonic crystals with on-site or off-diagonal modulation [31] and
cold atoms systems in momentum space [42]. With flexible
control and precise measurement of superconducting proces-

sor, the GAAH model may be simulated analogously, given
off-diagonal quasi-periodic modulations can be implemented
precisely.

In our experiment, taking advantage of newly developed
tunable coupling architecture [43, 44], we simulate the GAAH
model for a wide variety of parameters on a superconducting
processor. By adjusting both qubits and couplers, we experi-
mentally observe the dynamics of the extended, localized, and
critical phase in the GAAH model, and investigate the phase
transition from the perspective of non-equilibrium dynamics.
We observe that in the critical phase, the spin can propagate
over a range intermediate between that of the extended phase
and of the localized phase, for both initial single- and multi-
excitation states. In addition, we quantify how fast initial
states spread over the Hilbert space for different phases by
experimentally measuring the time evolution of participation
entropies, and characterize the transition among the extended,
localized, and critical phase by calculating averaged late-time
participation entropies.

Model and set-up.—Our quantum processor consists of a
chain array of L = 10 transmon superconducting qubits, and 9
tunable couplers with each placed between every two nearest-
neighbor qubits, which enable an accurate control of cou-
plings (see Fig. 1(a) and Supplementary Material for details).
The effective Hamiltonian of the qubits system can be de-
scribed by the Bose-Hubbard model,
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FIG. 1. (a) Circuit diagram of the superconducting processor, consisting of ten transmon qubits, Q1–Q10, and nine couplers C1–C9, each
of which is placed between every two nearest-neighbor qubits. (b) Schematic representation of the GAAH model with both the on-site and
off-diagonal quasi-periodic modulations, with α =

√
5−1
2

throughout the work. (c) Phase diagram of the GAAH model, divided into extended,
localized, and critical phases. The heatmap shows the inverse participation ratio (IPR) averaged over all eigenstates and 100 random global
phase offset δ for system size L = 1000. (d) Experimental pulse sequences for observing localization properties of the GAAH model.

where â†
j(âj) is the photon creation (annihilation) operator,

n̂j ≡ â
†
j âj is the number operator, Jj,j+1 is the tunable nearest-

neighbor coupling strength, hj is the tunable local potential,
and Uj denotes the qubit anharmonicity serving as the on-site
interaction. Since Uj >> Ji,j for our processor, an excess
of energy is needed for having more than one photon at each
site, so the system can be described by hard-core bosons, or
equivalently spin-1/2 spins, with the conservation of the total
photons (or spins) due to the U(1) symmetry.

In our superconducting processor with tunable couplers, the
coupling Jj,j+1 contains two part: (i) direct coupling between
nearest-neighbor qubits J0

j,j+1 and (ii) superexchange interac-
tion via the coupler in between JSE

j,j+1 ∝ 1/∆j,j+1 with ∆j,j+1

denoting frequency detuning between the j-th coupler and the
two nearest-neighbor qubits (see Supplementary Material for
details). Therefore, by applying fast voltages to the Z control
lines of the couplers, Jj,j+1 can be tuned individually from
−30 to +4.8 MHz in our processor. In addition, by applying
the fast Z pulse on each qubit, the local potential can also be
arbitrarily tuned relative to resonant frequency ∼ 4.36 GHz.
In this way, we can finally realize a hard-core bosonic version
of the GAAH model,
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Here, as depicted in Fig. 1(b), we take a quasi-periodic
modulation Jj,j+1 = λ (1 + µ cos [2π (j + 1/2)α + δ]) and
hj = λV cos(2πjα + δ), where µ and V indicate the off-
diagonal and on-site modulations amplitudes, respectively,
and we choose λ/(2π) = 4 MHz throughout the work. Be-
sides, α = (

√
5 − 1)/2 is the irrational frequency which takes

the same value for on-site and off-diagonal modulations, and
δ ∈ [−π,π) is an arbitrary global phase offset.

For different parameters µ and V , localization property of
the eigenstates of Hamiltonian Eq.(2) can be characterized by
the inverse participation ratio (IPR) [45]. In Fig. 1(c), we
plot the localization phase diagram of Hamiltonian Eq.(2).
The heatmap shows the eigenstate’s IPR = ∑i ∣ψn,i∣

4, where
ψn,i = ⟨ψn∣i⟩ is the wave function coefficient of the eigenstate
∣ψn⟩ expressed in the computational basis {∣i⟩}. Here, we ac-
tually displays the negative logarithm of the IPR, in order to
distinguish the three phases more clearly, and to associate with
the participation entropy in the next section. Since mobility
edges are absent in our model [39], (i) for V < 2, µ < 1, all
bulk eigenstates are extended, denoted as the extended phase,
where the IPR vanishes and its negative logarithm is close to
logL ∼ 6.9; (ii) for V > 2 max(1, µ), all bulk eigenstates are
localized with the IPR close to one and its negative logarithm
close to zero, denoted as the localized phase; (iii) in the rest,
the eigenstates are critical with intermediate IPRs, denoted as
the critical phase.

Observation of spin transport in the GAAH model.—First,
we show that the GAAH model can be simulated with our su-
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FIG. 2. The time evolutions of qubit-resolved photon occupancy probabilities Pj(t) for the system initialized in (a–c) ∣ψ(0)⟩ = ∣1000000000⟩
, and (d–f) ∣ψ(0)⟩ = ∣1010101010⟩, in (a, d) the extended phases with µ = 0.5 and V = 0.5; (b, e) the critical phases with µ = 2.0 and
V = 0.5; (c, f) the localized phases with µ = 0.5 and V = 4.0. The left panel of each figure shows experimental data, and the right panel shows
numerical simulation. Experimental data are averaged over 5 realizations of random chosen phases δ, while numerical simulation are averaged
over 50 realizations of random chosen phases δ with decoherence taken into account.

perconducting qubits in a tunable coupling architecture. The
experimental scheme is that three phases of the GAAH model
manifest distinguishing localization properties by measuring
the photon occupancy probabilities for specific initial states.
We initially excite the leftmost qubit Q1, i.e., the system is
initialized as ∣ψ(0)⟩ = ∣1000000000⟩, where ∣0⟩ (∣1⟩) denotes
the ground (excited) state of a qubit. Then we apply the fast
Z pulse on each qubit and coupler, and the system will evolve
under the Hamiltonian Eq.(2), satisfying Schrödinger equa-
tion ∣ψ(t)⟩ = e−iĤt ∣ψ(0)⟩. We monitor its dynamics from
t = 0 to 500 ns, by measuring the photon occupancy probabil-
ities of each qubit Pj(t) = ⟨ψ(t) ∣â†

j âj ∣ψ(t)⟩. For each time
point, we perform 5000 repeated single-shot measurements.

The experimental results for the three phases are plotted in
the left panel of Fig. 2(a-c), with a comparison of numeri-
cal simulations in the right panel of Fig. 2(a-c). As shown
in Fig. 2(a), in the extended region, the spin transport is not
blocked, and a lightcone-like propagation and reflection at the
boundary are still visible when weak off-diagonal and on-site
quasi-periodic disorder exists. As the opposite, for sufficiently
large on-site disorder V , the spin is fully localized, and only
the initially occupied site has a occupancy probability close to

one at any time (Fig. 2(c)). In the critical region, the spin tends
to oscillate around adjacent sites of the initially occupied site,
and the propagation range is intermediate between the above
two (Fig. 2(b)).

With the capability of precise simultaneous control and
readout, we can also prepare initial product states to probe
the largest Hilbert space (i.e., the half-filled sector), by ex-
citing selected M = N/2 = 5 qubits and keeping the rest in
their ground state. The experimental sequences are shown in
Fig. 1(d). Here, we focus on an initial Néel state ∣ψ(0)⟩ =

∣1010101010⟩, and measure the photon occupancy probabil-
ities from t = 0 to 500 ns. The experimental and numerical
results are plotted in Fig. 2(d-f). As shown in Fig. 2(d), in the
extended region, the mean photon occupancy probabilities os-
cillates around 0.5 at long times for all ten qubits with a small
fluctuation, showing a pattern of oscillation between odd and
even sites back and forth. In Fig. 2(e), the photon occupancy
probabilities for all qubits are also close to 0.5 in the criti-
cal region. However, different from the extended region, the
photon occupancy probabilities in the critical region exhibit a
certain degree of dependence on the initial configuration, that
is, the photon occupancy probabilities at the initially occupied
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FIG. 3. (a) The dynamics of participation entropy for the system quenched into the three phases. The yellow, red, and purple points are
experimental data for the extended (µ = 0.5, V = 1.0), critical (µ = 2.0, V = 1.0), and localized (µ = 0.5, V = 4.0) phases, respectively.
Lines with the same color are numerical simulation under the same parameters with decoherence taken into account. (b) The dynamics of
participation entropy along the path I in Fig. 4(a) (extended to localized transition) with fixed µ = 0.5 and varying V = 1 to 4. (c) The
dynamics of participation entropy along the path II (extended to critical transition) with fixed V = 1 and varying µ = 0.5 to 2. Averages
are taken among 10 initial states, including ∣ψ1–5(0)⟩ = ∣1010101010⟩ , ∣1010101001⟩ , ∣1010100101⟩ , ∣1010010101⟩ , ∣1001010101⟩, and

∣ψ6–10(0)⟩ = Ĝ ∣ψ1–5(0)⟩ with a global spin-flip operator Ĝ =
L

∏
j=1

σ̂x
j .

sites tend to stay above 0.5, while those at initially unoccu-
pied sites tend to stay below 0.5. Figure 2(f) shows the spin
transport is completely blocked in the localized region, and
the occupancy probabilities stay close to one for the initially
occupied sites (the odd sites), and close to zero for initially
unoccupied sites (the even sites) at any time.

Dynamical signature of localization via participation en-
tropies.—As stated above, localization properties can be
quantified by the IPR and the associated participation entropy,
which are used to describe single particle localization [46–48]
and is recently used in many-body physics [49, 50]. Here, we
define the q-th order dynamical participation entropy as

SPE
q (t) =

1

1 − q
log

N

∑
i

pi(t)
q, (3)

where N is the dimension of Hilbert space, and pi(t) =

∣⟨ψt∣i⟩∣
2. Considering the U(1) symmetry, the dimension

of the half-filled sector is N = (
10
5
) = 252. Here, we fo-

cus on the second-order participation entropy, i.e., SPE
2 (t) =

− log
N

∑
i
pi(t)

2, which is related to IPR by taking the negative

logarithm. In the Supplementary Material, we also display the
results of first-order participation entropy.

The dynamical participation entropy is a characterization
quantifying how fast ∣ψ(t)⟩ spreads over the Hilbert space.
Here we select 2×M = 10 initial states which is far from equi-
librium, taking the form ∣ψi(0)⟩ = ∣10⟩

⊗(M+1−i)
⊗ ∣01⟩

⊗(i−1),
and ∣ψM+i(0)⟩ = Ĝ ∣ψi(0)⟩ with a global spin-flip operator

Ĝ =
L

∏
j=1

σ̂x
j , for i = 1, . . . ,M . The experimental data shown

in Fig 3 are averaged over these 10 initial states, and the mea-
sured multi-qubit probabilities pi are post-selected within the
half-filled sector due to the U(1) symmetry before calculating
the participation entropy.

Figure 3(a) displays the time evolution of participation en-
tropy for the system quenched into the three phases. After
a fast initial relaxation, the participation entropy oscillates
around some certain value, which varies in different phases.
For both small µ and V , the system lies in the extended phase,
where the late-time participation entropy keeps at a high value
with a small oscillation (see the yellow points in Fig. 3(a)).
For small µ and sufficiently large V , the participation entropy
oscillates around a much smaller value (see the purple points),
as we would expect in the localized phase. For relatively
large µ, the late-time participation entropy stands between the
extended and localized cases (see the purple points), which
behaves similarly to that with a small µ and intermediate V
around the extended to localized transition point (see the data
of V = 2 in Fig. 3(b) for comparison).

Figure 3(b) and (c) show the time evolution of participa-
tion entropy with increasing V for fixed µ = 0.5, and increas-
ing µ for fixed V = 1, respectively. As shown in Fig. 3(b),
with the increase of V , the growth of participation entropy is
suppressed significantly, reflecting a transition from the ex-
tended region to the localized region. In contrast, as µ in-
creases to approach the theoretical transition point µc = 1.0,
the growth of participation entropy slows down compared to
the extended phase. However, as µ continues to increase, the
curve of time evolution of participation entropy rises slightly
again. The late-time participation entropy in the critical phase
reflect a multifractal behavior, and the multifractal analysis
can be found in the Supplementary Material.

In addition, the averaged participation entropy at long times
can be used as an experimentally accessible characterization
of phase transition. Here, we experimentally measure the av-
eraged late-time participation entropies SPE

2 along three paths
I, II and III in the µ−V plane (see Fig. 4(a)), corresponding to
extended to localized transition, extended to critical transition,
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FIG. 4. (a) Averaged late-time participation entropy SPE
2 as a func-

tion of µ and V . The stripes I, II and III show the experimentally
measured averaged late-time participation entropy, and the underly-
ing phase diagram shows the numerically calculated averaged late-
time participation entropy using the Hamiltonian (2). The averaged
late-time participation entropy SPE

2 is averaged over a time window
t = 350 to 450 ns (see the grey area in Fig. 3(a)). The white dashed
line shows theoretical phase boundaries as a guide to eye. (b–d)
Comparisons between experimental data and numerical simulation
along the path (b) I with fixed µ = 0.5, (c) II with fixed V = 1, and (d)
III with fixed V = 3. Points with statistical error bars are experimen-
tal data, and solid lines are numerical simulation using the Hamilto-
nian (2). Dashed lines exhibit the numerically calculated averaged
late-time participation entropy for larger system sizes L = 14,18 and

22, rescaled as S̃PE
2 (L) =

logN10
logNL

⋅ SPE
2 (L) with NL = ( L

L/2) for a
direct comparison to the experimental results for L = 10.

and localized to critical transition, respectively. Averages are
taken over a time window from 350 to 450 ns (see the grey
area in Fig. 3(a)), and among the 10 initial states as defined
before. In Fig. 4(a), we also display the numerical results of
the averaged late-time participation entropy calculated using
Hamiltonian (2) in the same way as the experimental process-
ing, for the whole µ − V plane (0 ≤ V ≤ 4,0 ≤ µ ≤ 2) as
a reference, which exhibits a similar phase diagram to IPR
averaged over eigenstates in Fig. 1(c). Because the time win-
dow 350–450 ns is far less than the averaged T1 ∼ 22.3 µs (see
Supplementary Material), and T2 has little effect on the aver-
aged late-time participation entropies, we ignore the effect of
decoherence in the simulation here. The numerical simulation
and experimental results are consistent well with each other.

Comparisons of the specific experimental data with numer-
ical simulation of the three paths I, II and III are plotted in
Fig. 4(b), (c) and (d), respectively. Different from the path
I, where SPE

2 decreases monotonically as µ increases, for the
path II, SPE

2 first decreases to the minimum around the theoret-
ical transition point µc = 1.0, and then increases slightly but

keeps almost unchanged for increasing µ in the critical phase.
Note that both the experimentally measured and numerically
calculated minimum SPE

2 are reached at µ = 1.25 instead of
µc = 1.0 for L = 10, which we attribute to finite size effects.
To see this, we also calculate the averaged late participation
entropies for larger system sizes L = 14, 18, 22, which we

rescale by a factor logN10

logNL
with NL = (

L
L/2

), i.e.,
̃
SPE
2 (L) =

logN10

logNL
⋅ SPE

2 (L), for a direct comparison to the experimental
system size L = 10. In the systems with L = 14, 18, 22,
the minimum SPE

2 are reached at µc = 1.0. For the path III,
i.e., the localized to critical transition, SPE

2 decreases slightly
for increasing µ ≤ 1, and then increases and finally reaches a
intermediate value featuring a multifractal behavior, as µ in-
creases across the transition point µ′c = 1.5 for fixed V = 3.
It is worth pointing out that the slope at the transition point
µ′c = 1.5 increases with system size, and will diverge in the
thermodynamic limit, as a signature of the localized to critical
transition.

Conclusions.—We implement a simulation of the GAAH
model for a wide range of parameters. The capability of in-
dividual control and multi-qubit simultaneous readout of our
superconducting processor allows for observation of multi-
qubit spin transport and measurement of participation en-
tropies in the experiments revealing clearly phase transitions
of the model. Our experiment paves the way to quantum simu-
lation of rich many-body phases and may trigger further stud-
ies about dynamics of many-body systems.
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A. Vepsäläinen, R. Winik, J. L. Yoder, T. P. Orlando, S. Gus-
tavsson, C. Tahan, and W. D. Oliver, Probing quantum infor-
mation propagation with out-of-time-ordered correlators, Nat.
Phys. 18, 172 (2022).

[24] P. G. Harper, Single band motion of conduction electrons in a
uniform magnetic field, Proc. Phys. Soc. Sect. A 68, 874 (1955).
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Supplementary Materials:
Observation of critical phase transition in a generalized Aubry-André-Harper model on a

superconducting quantum processor

QUBIT INFORMATION

Our experiment is performed on the superconducting quan-
tum processor with tunable couplers, which is identical to the
one in reference [44]. This device consists of 10 transmon
qubits (Q1 ∼ Q10) and 9 transmon-type couplers (C1 ∼ C9).
In this experiment all qubits are initilized at their idle frequen-
cies ωj

idle/2π (j = 1,2,⋯,10) that spread in the range from
4.280 GHz to 4.900 GHz. The idle frequencies are carefully
arranged to reduce unwanted interaction and crosstalk errors
among qubits (or between qubits and couplers) during single-
qubit operations. All relevant information about qubit char-
acteristics are listed in Table S1. The anharmonicity of all
qubits are around 200 MHz. The readout pulse for all qubits
are 1.0µs in length, and the readout frequency and readout
power are optimized for a high visibility. The readout fidelity,
which is denoted by F0 and F1, are listed in Table S1.

Z PULSE CROSSTALK CORRECTION

The Z control line crosstalks are estimated by measuring
the linear response with respect to the bias voltages. To
achieve this, we excite the target and measure how much
Z pulse amplitude (zpa) of the target needs to compensate
for the crosstalk from the source. It is routine to measure
crosstalk between qubits, but specific means are required to
measure crosstalk between qubits and couplers. Following
Ref. [44], we measure the coupler-to-qubit Z crosstalk and
further add the measurement of qubit- and coupler-to-coupler
Z crosstalks. Pulse sequence used for such measurement of
crosstalk to couplers is plotted in Fig. S1(a). Due to the AC
Stark effect, the response of target zpa to source zpa is non-
linear. In order to obtain the classical Z crosstalk that removes
the AC Stark effect, we fit the data in the linear region where
the source qubit (coupler) is far from the target coupler, see
Fig. S1(b). We then obtain the total crosstalk matrix, as shown
in Fig. S2. In our device, all crosstalks between qubits are re-
duced due to its coupler architecture.

MEASUREMENT OF EFFECTIVE COUPLING
STRENGTHS

The system can be fully described by the generalized
Aubry-André-Harper (GAAH) model with the Hamiltonian:

Ĥ
h̵
=

9

∑
j=1

(Jj,j+1â
†
j âj+1 +H.c.) +

10

∑
j=1

hj â
†
j âj . (S1)

𝑸𝒋/𝑪𝒋

𝑸𝒊+𝟏

(a)

𝑪𝒊

𝑸𝒊

(b)

FIG. S1. Measurement of qubit- and coupler-to-coupler Z
crosstalks. (a) Pulse sequence used for measurement. Here Qi and
Qj are used to excite and measure the target coupler Ci, respec-
tively. (b) Typical data of qubit-to-coupler (left) and coupler-to-
coupler (right) Z crosstalk. The blue dash lines are the results of
linear fitting to obtain the Z crosstalk matrix elements.

Here Jj,j+1 = λ (1 + µ cos [2π (j + 1
2
)α + δ]) and hj =

λV cos(2πjα + δ) represent the effective coupling of qubits
and the frequency detuning relative to resonant frequency
(≃ 4.36 GHz). In this paper, we set λ/2π = 4 MHz and
α = (

√
5 − 1) /2. µ and V represent modulations amplitudes

of off-diagonal hopping and on-site incommensurate poten-
tial, respectively. We manipulate µ and V by applying the fast
voltages to the corresponding Z control lines of the coupler
and qubit respectively.

In our processor of coupler architecture, the effective cou-
pling of qubits can be adjusted by tuning couplers frequen-
cies. Mathematically, the effective coupling strength can be
described by [43, 44]:

Jj,j+1 = J
0
j,j+1 +

J0
j J

0
j+1

∆j,j+1
, (S2)

where J0
j,j+1 is the direct coupling between Qj and Qj+1, J0

j

is the direct coupling between Qj and Cj , and 1/∆j,j+1 =



9

TABLE S1. Qubit charateristics. ωidle is the idle frequency of qubit where decoherence parameters (including energy relaxation time T1 and
Ramsey Gaussian dephasing time T ∗2 ) are measured. ωmax/2π and ωr/2π denote to qubits’ sweetpoint frequency and resonant frequency,
respectively. F0 (F1) is the measurement probability of ∣0⟩ (∣1⟩) when the qubit is prepared in ∣0⟩ (∣1⟩), which is used to mitigate the readout
errors.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

ωidle/2π (GHz) 4.900 4.365 4.930 4.310 4.878 4.455 4.800 4.280 4.770 4.388
ωr/2π (GHz) 6.857 6.687 6.667 6.733 6.708 6.772 6.749 6.815 6.792 6.839
ωmax/2π (GHz) 5.491 5.201 5.347 5.36 5.226 5.313 5.318 5.3 5.108 5.248

T1 (µs) 14.3 14.8 33.0 17.9 30.7 28.1 26.3 21.5 24.4 32.9
T ∗2 (µs) 0.9 1.1 1.1 1.2 1.2 1.1 1.2 1.6 1.2 1.3
F0 0.969 0.947 0.966 0.956 0.956 0.948 0.968 0.951 0.957 0.954
F1 0.926 0.901 0.926 0.907 0.918 0.909 0.915 0.895 0.919 0.913

[1/ (ωQj − ωCj
) + 1/ (ωQj+1 − ωCj

)] /2 is related to fre-
quency detuning between the j-th coupler and its two near-
est neighbor qubits. As shown in Fig. S3(a), effective cou-
pling strengths can be measured precisely through the joint
probability as a function of qubit-qubit swapping time t and
coupler zpa [44]. Fig. S3(b) is the normalized Fourier trans-
formation corresponding to Fig. S3(a). Fig. S3(b) shows the
advantages of adjusting the effective coupling strength using
the coupler architecture. Varying coupler zpa not only makes
decoupling point possible, bu also greatly improve the upper
limit of coupling strength. In the experiment, we first calcu-
late the coupling strength distribution satisfying Eq. (2) ac-
cording to Eq. (S2) and estimate the zpa of each coupler, and
then fine-tune the zpa by performing two-qubit swapping ex-
periment until the coupling strength is within the tolerance
(≤ 0.1MHz).

After all the coupling strengths are calibrated, we need to
correct the zpas that bias qubits frequencies. To eliminate the
zpa deviation caused by the AC Stark effect, we perform two
specific Rabi oscillation experiments on the target qubit whose
zpa needs to be determined. In details, we consider two stag-

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10C1 C2 C3 C4 C5 C6 C7 C8 C9
Target Qubits

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
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Q10
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C8
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S
ou

rc
e 
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ub
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0.0
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FIG. S2. Z line crosstalk matrix. All the element values between
qubit pairs or coupler pairs is at a low level (< 2%) compared with
high crosstalk between qubits and couplers.

gered distributions of non-target qubits frequencies as shown
in Fig. S4. Assuming that the zpa of target qubit measured by
the first Rabi experiment with one of staggered frequency dis-
tribution is zpa1, and the second Rabi experiment correspond-
ing to the reverse-staggered frequency distribution measures
another zpa2, we can estimate the zpa of target qubit that bias
it to working point as (zpa1+zpa2)/2. Thus, the zpa deviation
caused by the AC Stark effect that depends on the frequency
detuning can be cancelled approximately. We calibrate all the
qubits zpas one by one in this way, and finally bias the fre-
quencies of all the qubits to the specified distribution.

EFFECTS OF DECOHERENCE

In order to increase the adjustment range of coupling
strength and reduce the distortion caused by high zpa, we
choose a low resonant frequency (≃ 4.36 GHz, deviates about
800 MHz from the sweet point) and decrease the idle frequen-
cies ωidle accordingly. However, as a consequence, the de-
coherence of qubits is exacerbated by low frequency noise,
leading to the decrease of dephasing time T ∗2 . Besides, the
existence of energy relaxation time T1 may also contribute to
the dissipation. Such dissipation dynamics can be described
by the Lindblad master equation

dρ̂(t)

dt
= −

i

h̵
[Ĥ, ˆρ(t)]+

L

∑
n=1

(K̂nρ̂(t)K̂
†
n −

1

2
{K̂†

nK̂n, ρ̂(t)}) ,

(S3)
with ˆρ(t) being the time-dependent density matrix of L qubits
and K̂†

n (K̂†
n) as Lindblad operators. The first term of Eq. (S3)

represents the unitary evolutions of the system and the other
terms imply the dissipation of the system due to interac-
tion with the environment. Here we consider the dephasing
and energy relaxation effects, and the corresponding Lind-
blad operators are written as K̂n = (1 − 2â†

nân)/
√

2T2 and
K̂†

n = ân/
√
T1, respectively.

The numerical results of the dynamics of participation en-
tropies with decoherence effects, shown in Fig. 2–3 in the
main text, and Fig. S5 in Supplementary Material, are ob-
tained by solving Eq. (S3) with the averaged T1 ∼ 22.3 µs
and T2 ∼ 4.0 µs. Here, the time-dependent participation en-
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FIG. S3. Experiment data of effective coupling strength. (a) Joint
probability P01 (t) of qubits with varied coupler zpa. (b) The corre-
sponding normalized Fourier transformation amplitude versus cou-
pler frequency ωci/2π. The effective coupling strength is calculated
as half the Fourier frequency of probability P01 (t). The distribution
of Ji,i+1, marked red dashed line, is calculated by fitting the peak
value, while the white dashed line denotes one decoupling point ωde

(i.e., Ji,i+1 = 0). When ωci > ωde, Ji,i+1 decreases from a positive
value with ωci until the decoupling point. Ji,i+1 becomes negative in
the region ωci < ωde and its absolute value increases rapidly which
makes large coupling strength possible.

tropies can be calculated by the output density matrix ρ̂(t),
corresponding to pi(t) = ⟨i∣ ρ̂(t) ∣i⟩, with ∣i⟩ being the com-
putational basis in N -dimension Hilbert space. Furthermore,
post-selection is also employed to mitigate the effect of en-
ergy relaxation in the experimental data processing. Taking
the above factors into account, the numerical results match
with the experimental data quite well, showing the character-
istics of phase transition despite the inevitable decoherence.

FIRST-ORDER PARTICIPATION ENTROPY

In the limit q → 1, we can obtain the dynamical first-order
participation entropy:

SPE
1 (t) = lim

q→1

1

1 − q
log

N

∑
i

pi(t)
q
= −

N

∑
i

pi(t) log pi(t).

(S4)
The dynamical behavior of first-order participation entropy
is very similar to the second-order participation entropy we
discussed above, but with a different q-dependent fractal di-
mension Dq=1 in terms of scaling behavior. Here, we also
present the dynamics of the first-order participation entropy

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Qubits

4.2
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Fr
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 Point j

work/2
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FIG. S4. Schematic diagram of tune zpa of qubit precisely with
Q6 as the target qubit. The red cross represents working frequency
ωwork/2π. The squares and diamond represent two frequency distri-
butions. We tune the zpa of Q6 with other qubits shifted by ∆ω/2π
(Here we set ∆ω/2π = 80MHz in this paper) away from the target
qubit (or close to target qubit) based on their own working points.

in Fig. S5, and the averaged late-time first-order participation
entropy for different parameters µ and V in Fig. S6. Com-
paring with Fig. S5 and Fig. 3 in the main text, we can find
that the growth trend over time of first-order participation en-
tropy is the same as that of the second-order, but with slightly
higher values than those of the second-order. Thus, the av-
eraged late-time first-order participation entropy can also be
used to characterize phase transitions as the second-order, as
shown in Fig. S6.

SCALING BEHAVIOR OF PARTICIPATION ENTROPY

For many-body states, the participation entropy SPE
q can

characterize the localization in the Hilbert space. In the ther-
modynamic limit N →∞, SPE

q is (i) logN for a perfectly de-
localized state, (ii) a const for a localized state, (iii) Dq logN
(where Dq < 1) for a state with a fractal dimension Dq ,
which occurs at localization transition or in the critical phase
[36, 49].

To see this, we display the scaling behavior of the aver-
aged late-time participation entropy SPE

2 in Fig. S7. Since the
numerical simulation match with the experimental data quite
well, here we use numerical results of larger system sizes to
fit with the form SPE

2 = a2 log(N ) + b2. We choose three
pairs of parameters (µ = 0.5, V = 1.0), (µ = 2.0, V = 1.0)
and (µ = 1.0, V = 3.0) for the extended, critical, and local-
ized phases, respectively. In the extended phase, a2 ≈ 0.928,
which is very close to one for a perfectly delocalized state. In
the critical phase, multifractal behavior of many-body states
is revealed by the fractal dimension a2 ≈ 0.502. Besides, in
the localized phase, a2 ≈ 0.243 is much smaller than those in
the extended and critical phases.
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FIG. S5. (a) The dynamics of first-order participation entropy for the system quenched into the three phases. The yellow, red, and purple points
are experimental data for the extended (µ = 0.5, V = 1.0), critical (µ = 2.0, V = 1.0), and localized (µ = 0.5, V = 4.0) phases, respectively.
Lines with the same color are numerical simulation under the same parameters with decoherence taken into account. (b) The dynamics of
first-order participation entropy with fixed µ = 0.5 and V = 1,2 and 4 (extended to localized transition). (c) The dynamics of first-order
participation entropy with fixed V = 1 and varying µ = 0.5,1 and 2 (extended to critical transition).

0.5 1 1.5 2

1

3

5

7

Exp.
Sim.

0.5 1 1.5 2

1

3

5

7

Exp.
Sim.

0 1 2 3 4

1

3

5

7

Exp.
Sim.

(a) (b) (c)

FIG. S6. Comparisons between experimental data and numerical simulation (a) with fixed µ = 0.5 and varying V from extended to localized
transition, (b) with fixed V = 1 and varying µ from extended to critical transition, and (c) with fixed V = 3 and varying µ from localized to
critical transition. Points with statistical error bars are experimental data, and solid lines are numerical simulation using the Hamiltonian 2 in
the main text.
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FIG. S7. The averaged late-time participation entropy as a function
of logN . We choose µ = 0.5, V = 1.0 for the extended phase,
µ = 2.0, V = 1.0 for the critical phase, and µ = 1.0, V = 3.0 for the
localized phase. The results of the fit are drawn with dashed lines.
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