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Multi-agent blind quantum computation

without universal cluster states

Shuxiang Cao1, ∗

1Department of Physics, Clarendon Laboratory, University of Oxford, OX1 3PU, UK

Blind quantum computation (BQC) protocols enable quantum algorithms to be executed on third-
party quantum agents while keeping the data and algorithm confidential. The previous proposals for
measurement-based BQC require preparing a highly entangled cluster state. In this paper, we show
that such a requirement is not necessary. Our protocol only requires pre-shared bell pairs between
delegated quantum agents, and there is no requirement for any classical or quantum information
exchange between agents during the execution. Our proposal requires fewer quantum resources than
previous proposals by eliminating the need for a universal cluster state.

I. INTRODUCTION

Quantum computers built from current technology are difficult to be miniaturized, and unlikely to become personal
electronics such as a laptop or a cellphone [1–4]. Therefore, cloud-based services are considered the most applicable
approach to offer the general public access to quantum computers. It is natural to ask whether the privacy of the
quantum algorithm can be kept when one does not have complete control of the quantum hardware. Blind quantum
computing (BQC) aims to solve this problem. Quantum algorithms can be executed with BQC protocols on third-
party quantum agents while keeping the algorithm, data, and results confidential [5, 6].

Here we discuss two ways to implement universal quantum computation. One is gate-based quantum computing
(GBQC) [7]. This method starts with a pure quantum state, usually by resetting all qubits to zero. Then it transforms
the quantum state using a sequence of quantum gates. The final output state carries the processed information. The
other method is called measurement-based quantum computing (MBQC) or one-way quantum computation [8–11].
This method prepares a highly entangled state of multiple qubits, often referred to as a cluster state [12], then performs
a sequence of measurements and corrections to implement computation. Eventually it can give the same result as the
GBQC.

The Universal Blind Quantum Computing (UBQC) protocol was proposed in [6] based on the MBQC framework.
UBQC protocol utilizes a universal cluster state and can be implemented by a semi-classical client with a single agent
or an entirely classical client with multiple agents. There are other proposals implementing BQC with a single agent
and an entirely classical client are possible, however, these proposals require some computational assumptions [13–15].

In this paper, we make use of a quantum graphical reasoning method, ZX-Calculus, to derive a BQC protocol that
can be implemented with multiple agents and an entirely classical client. The UBQC protocol utilizes a universal
cluster state, forcing all the information describing the algorithm to be encoded in the measurement axis. It sacrifices
the ability to encode information into the entanglement structure between qubits. Contrarily, our method does have
information encoded in the entanglement structure, and does not require a universal cluster state. This makes our
protocol more resource-efficient.

This paper is arranged as follows: Section II B describes ZX-calculus, a graphical quantum reasoning technique
that we use to derive our result. Section III explains our BQC protocol. Section IV gives proof of the correctness and
secureness of our protocol. Section VI discusses the compatibility with existing verification protocols, and quantifies
the resource cost of our protocol and the UBQC protocol. Section VII summarizes the paper.

II. BACKGROUND

A. Universal Blind quantum computation

The Universal Blind Quantum Computing (UBQC) protocol employs the MBQC method to implement BQC [6].
Under the MBQC framework, the algorithm can be described with only the entanglement structure between qubits
and each qubit’s measurement axis. To make the algorithm blind to the agents, the information each agent possesses,
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the entanglement structure, the measurement axis, and the measurement output of the agents, must not reveal any
information about the algorithm. A valid BQC protocol must make this information independent from the delegated
task.

To make the entanglement structure of the delegated task independent from the quantum algorithm, UBQC utilises
a universal cluster state, which can implement arbitrary quantum algorithms with the same entanglement structure
but a different measurement axis. Such a method concentrates the information describing the quantum algorithm
on the measurement axis. UBQC protocol uses the brickwork cluster state to implement MBQC. Different quantum
gates can be implemented by measuring the cluster state with different angles in sequence. For the brickwork state,
the qubits are measured from left to right. Based on the measurement result, corrections is applied to the following
qubits on each step. The calculated result is then stored in the qubit on the right end of the brickwork cluster state
and can be further processed by piling up more elementary components, or more “bricks”.

Example II.1. Brickwork cluster state and MBQC with brickwork resource state. Each node denotes a qubit
prepared in |+〉 state. Wires connecting two qubits denote an entanglement that is generated by applying a CZ gate
between two qubits. The result is stored inside the very right qubits after measuring each qubit from left to right.
The angle inside each node represents the angle of measurement that would be applied to the corresponding qubit. (a)
The layout of a typical brickwork cluster state. The grey square shows a fundamental element of the brickwork cluster
state. (b) Implement a Hadamard gate. The square on the left side denotes the qubits that hold the computation
output. (c) Implement T (π/8) gate. (d) Implement identity gate. (e) Implement a CNOT gate.

... ...

(a)

π/4π/4π/4

π/8

π/4 −π/4

π/4

H

π/8

(b) (d)

(c) (e)

Usually the measurement axis is defined by doing a single qubit rotation before the physically implementable
measurement, which is usually the Pauli Z axis. To make the measurement axis independent to the quantum algorithm,
a second agent is introduced to implement all or part of the single qubit rotation. When only one remote agent is
available, UBQC protocol requires the client to be semi-classic; that is, the client can manipulate a minimum of a
single qubit. It also requires the remote server to exchange quantum information by physically swapping qubits or
establishing new entanglement. See example II.2(a). In the original proposal, known as the “prepare-and-measure”
method, the semi-classical agent effectively prepares the measurement angle. The agent and the client share the
entanglement of each qubit, and the client measures its qubit at a random angle. This random angle would be
“teleported” to the agent and affect the cluster state. The agent only needs to initialise the qubit into a superposition
state and directly measure the qubit without rotating the qubit [6]. Alternatively, the agent can provide the cluster
state and send the state back to the agent, known as the “measurement-only” method. Only the agent has access to
the measurement angle [16]. The UBQC protocols can also be implemented with multiple remote quantum agents
and a purely classical client when the two agents’ communication is restricted. See example II.2(b). A uniformly
distributed measurement axis for the delegated agent can be implemented on the first agent by simply requesting the
second agent to measure their entangled qubits from a random axis. Then the computation can continue with the
same method for a single agent UBQC.

The measurement outcome for the ”prepare-and-measure” approach is obfuscated by randomly flipping the outcome
distribution during the measurement. Such obfuscation can be done by randomly choosing to measure at its original
or with a π difference. The measurement outcome would flip when the measurement angle is chosen with π difference.
Then the client classically restores the distribution after the measurement. Since the agent does not know if the
distribution has been flipped or not, it can only observe a uniform distribution of 0 and 1 outcomes.

Example II.2. Two protocols of universal blind quantum computation (UBQC). Both methods execute quantum
algorithms with MBQC on the brickwork cluster state prepared on the remote agents. (a) Protocol with a semi-
classical client and a single remote agent. The client can manipulate only one qubit and exchange qubits with the
agent—the client prepares phase or measures the qubit at a random angle. The agent would know the actual rotation
angle obfuscated by this random angle. (b) Protocol with a full classical client and multiple remote agents with shared
entanglement. A second agent is introduced to replace the semi-classical client.



3

Client

Agent A Agent B

Client

Agent

(a) (b)

It is worth mentioning that a circuit-based BQC method proposed in [17] utilises a similar philosophy as the UBQC
protocol. A “universal circuit” that can implement arbitrary operation by modifying the single-qubit gate rotation
angle has been introduced in the proposal. The entanglement structure is then irrelevant to the circuit on the agent,
and the rotation angles are obfuscated with quantum computing on encrypted data (QCED) [18–20], which requires
the agent to exchange quantum information with the client. The circuit-based protocol computes the cluster state in
a circuit-based manner. However, it still requires exchanging the same amount of quantum information between the
client and agent as the UBQC protocol to implement “correction”.

B. ZX-Calculus

In this section, we provide a brief review of the ZX-Calculus [21]. The ZX-Calculus is a diagrammatic method
for reasoning the linear maps of quantum operations. With the gate representation of quantum computation, we
decompose a unitary operation into a sequence of predefined gates; with ZX-Calculus, we decompose the unitary into
a network, the so-called ZX-diagram, consists of red and green spiders. In the following discussion, we ignore the
scalars of the ZX-diagrams.
a. ZX-diagram A ZX-diagram consists of wires and spiders, corresponding to legs and tensors in the tensor

network language [22, 23]. There are two types of spiders: Z spiders and X spiders noted as green and red dots. The
spiders are defined as a tensor parameterized by a single phase variable. The opened wire can be considered an input
or output of the ZX-diagram. The summary of the definition of the basic building blocks of ZX-diagram is shown in
example II.3. A quantum circuit can be easily rewritten to a ZX-diagram with rules provided in example II.3. The
X gate can be replaced with a red spider, and the Z gate can be replaced with a green spider. The rotation angle is
represented as the phase of each spider.

Example II.3. Basic building blocks of ZX-diagram. ZX-diagram is a notation representing tensor networks. Any
quantum circuit can be converted into a quantum tensor network and further represented by ZX-diagram [24, 25].
ZX-diagram consists of spiders, which is a tensor with constraints above. Standard quantum circuits can be converted
into ZX-diagram with the following rules:

α

..
.

..
. := |0...0〉 〈0...0| + eiα |1...1〉 〈1...1| =





1
...

eiα





α

..
.

..
. := |+...+〉 〈+...+| + eiα |−...−〉 〈−...−| = H⊗n





1
...

eiα



H⊗n

=

=Z(α) α =X(α) α H = or

=

Z(α)

α

2

α

2

π
α

2

Instead of directly contracting the tensor network, ZX-Calculus provided a set of rules to manipulate a ZX-diagram
while keeping them equivalent. ZX-calculus is complete on Clifford+T language with a set of rules are specified[24, 26].
Some of these rules are shown in example II.4.

Example II.4. The power of ZX-Calculus is it derives a set of rules to transfer a ZX-diagram to another one while
keeping them equivalent. Here we show several rules that we will use later. The (f) rule indicates that any two spiders
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with the same colour can be merged. The (h) indicates that spider colour can be changed by adding a Hadamard
spider on every wire of the spider. (π) indicates that a Pi operation with a different colour can be copied and moved to
other wires while changing the sign of the spider’s phase. Also, (i1) and (i2) can help generate or remove redundant
spiders and Hadamard nodes. (b) the bialgebra rule. The Hopf law or Antipode law (a) shows two parallel Hadamard
wire results cancelling each other.

β ..
.

α..
. =

..
. ..
.

..
.

α+β

(f)

−α=

π

π α ..
.

..
.

π
(π)

..
. = ..
.

(h) (i1)

=

=
(i2)

..
.α α ..
.

=

(a)(b)

=

Instead of representing the gates with both input wires and output wires, spiders can have just a single wire. With
a single output wire, the spider represents a bra notation. Such bra notation denotes to a post-selection operation
when extracting the diagram into a quantum circuit. While with a single input wire, the spider represents a ket

notation. Such ket notation denotes preparation of the initial state of the quantum circuit.

Example II.5. Post-selection in ZX-diagram. The post-selection is represented by attaching a spider with no output
to the output wires of the ZX-diagram. Apply a red dot denoting post select the |0〉 state, and a green dot means |+〉
state.

...

U

...

State U |0n〉 with post-selection

...

A ZX-diagram can also represent a density matrix. For a pure state |ψ〉, the density matrix is ρ = |ψ〉 〈ψ|, which is
the tensor product of |ψ〉 and 〈ψ|. In a ZX-diagram, a tensor product can be represented by putting two disconnected
diagrams together. By writing |ψ〉 and 〈ψ| into the same diagram, we have the ZX-diagram of the density matrix ρ
shown in example II.6 (b).

Example II.6. The representation of a pure state density matrix. Putting two isolated ZX-diagram together gives
the tensor product between to ZX-diagram. Suppose density matrix is ρ = |ψ〉⊗ 〈ψ|, it can be represented by placing
two ZX-diagram of |ψ〉 and 〈ψ| together.

...

U

... ...

U †

...

Density matrix of state U |0n〉

......

A mixed state can be generated by partially tracing away part of a pure system. The reduced density matrix of
which some qubits are traced away can be represented by directly connecting the wire of the traced-away qubits
between the |ψ〉 diagram and the 〈ψ| diagram. This is shown in example II.7.

Example II.7. The ZX-diagram representation of a reduced density matrix by tracing away one of the qubits. The
reduced density matrix can be represented by directly connecting the open wires of the qubit. In this example, the
two open wires of the last qubit are connected, marked with a rectangle.
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...

U

... ...

U †

...

Reduced density matrix by tracing away a qubit

......

Although converting an arbitrary quantum circuit into a ZX-diagram is easy, it is not always trivial to convert a
ZX-diagram back into a quantum circuit. A ZX-diagram can always represent an arbitrary gate in quantum circuits;
however, a ZX-diagram can also represent a non-unitary tensor. For example, the number of input and output
wires can be different. The process of converting a ZX-diagram into a quantum circuit is often referred to as circuit

extraction [27].

b. Garph-like ZX-diagram There is a special form of ZX-diagram that is particularly useful, called graph-like

ZX-diagram. [28].

Definition II.8. A diagram is called graph-like if

1. All spiders are Z-spiders.

2. Spiders are only connected via Hadamard wires.

3. There are no parallel Hadamard wires or self-loops.

4. Every input or output is connected to a Z-spider.

5. Every Z-spider is connected to at most one input or output.

An example is shown in example II.9.

From the Gottesman–Knill theorem, Quantum circuits containing gates only from the Clifford group can be simu-
lated efficiently on a classical computer [29]. After a quantum circuit is written into a ZX-diagram, it is possible to
simplify the diagram and remove Clifford operations before further modifications. This technique has been developed
for circuit simplification [28].

Example II.9. A graph-like ZX-diagram. A graph-like ZX-diagram must have only Z-spiders (green), and the
internal connections are only Hadamard wires (dashed-blue line). There are no self-loops or parallel wires, and each
spider is connected to at most one input or output. (a) demonstrates a schematic of an original circuit written into
ZX-diagram. It can be created by substituting each quantum gate in the circuit with its corresponding ZX-diagram
component. This diagram contains both X and Z spiders, with each row representing a qubit and each column
denoting a layer of the circuit. (b) demonstrate schematics of a graph-like ZX-Diagram, comprised solely of Z spiders
and Hadamard edges. A graph-like ZX-Diagram that is equivalent to a diagram like (a) can always be found [28]. In
a graph-like ZX-diagram, the columns and rows no longer correspond directly to a gate layer or a qubit. The open
Hadamard edges with the ellipsis denote some arbitrary configuration that is abbreviated.
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... ......... ...

...

(a)Original circuit in ZX-diagram

... ...... ...

(b)Circuit represented in graph-like ZX-diagram

......

C. Flow and determinism in MBQC

Suppose a circuit is converted into a ZX-diagram and then transformed into a graph-like ZX-diagram. Then we
modify the ZX-diagram and give every spider an extra regular wire. See example II.10(a). The new diagram equals
the original diagram when all these wires terminate with a zero-phase Z spider.

Now let us consider each spider corresponds to a qubit, and measure the qubit closes the added open wire with
either a zero-phase spider or a π-phase spider. When we get an unwanted π-phase spider, see example II.10(b), we
restore the state by applying extra single-qubit operations on the related qubit which we have not been measured.
This is equivalent to the correction operation for MBQC. See example II.10(c). In this way, we can always obtain the
same distribution as the original quantum circuit.

Example II.10. Measurement sequence of implementing correction. (a)The spiders have been grouped based on
their distance from the output spiders. Shown in grey squares. (b)The measurement has been performed on the
group with the largest distance; some unexpected outcome has been measured. (c) Apply the (π) and (h) to recover
the state. The phase can always get propagated into groups with a lower distance to the output spiders.

... ......... .........
(π), (h)measure

(a) (b) (c)

... ......... .........

π

...

-

π
......... ...

π

......

Pushing the π phase into unmeasured spiders is a simple correction strategy; however, it does not work for arbitrary
graphs. For example, if a non-output qubit is being measured with an unexpected result, and all its neighbouring
qubit has already been measured, then there is no qubit the π phase can be pushed to. For a diagram that can utilize
this single qubit correction strategy, the diagram must admit a causal flow [30].

Definition II.11 (Causal flow [30, 31]). A Causal flow is a pair (f,≺) with ≺ a partial order and f a function
f : Oc → Ic on open graph state (G, I,O) which associates with every non-output vertices a set of non-input vertices
such that

• u ∈ N(f(u)).

• u ≺ f(u)

• u ≺ v for all v 6= u, v ∈ N(f(u)).
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where N(K) denote the neighbor vertices of K.
Consider we are looking for a strategy to execute the graph with the MBQC method, which consists of measuring

the qubits and modifying one qubit f(u) after each measurement. The partial order of the causal flow describes a
possible order to execute the measurement. f(u) qubits must be measured after u, which gives the second rule. Also,
applying the correction would affect not only u, but all the neighbours of f(u). Therefore these neighbors must be
measured after u.

However, admitting a causal flow is unnecessary for a graph to be executed with MBQC [30–33]. Recall that
modifying one qubit can correct the unexpected measurement outcome from a graph with the causal flow. There are
at least two improvements to the flow mechanism that can be applied.

First, instead of correcting the state by modifying one qubit, the idea of graph stabilizers can be used to obtain a
set of qubits and corresponding operations to correct the state. A stabilizer of a graph is a set of operations that can
be applied to the state while keeping it identical. To correct the state, we could consider the unexpected gate as part
of a stabilizer, which would keep the state unchanged if we complete it. Such stabilizers can be found intuitively with
ZX-calculus by pushing the unexpected π phase around the phase-free graph [24, 34]. We then could relax f(u) to
be multiple qubits called the correction set.

Second, for the qubits measured on the Pauli basis, some correction does not need to be applied to the qubit
physically [31, 35]. For example, pushing a π spider through another π phase spider with a different colour does not
need to apply physical corrections because −π and π phase are equivalent.

The above two modifications lead to the definition of Pauli flow.

Definition II.12 (Pauli flow [35]). An open graph state (G, I,O) has Pauli flow if there exists a map f : Oc → F (Ic)
and a partial order ≺ over V such that for all u ∈ Oc

1. if v ∈ f(u), and λ(v) /∈ X,Y then u ≺ v,

2. if v 6= u, and λ(v) /∈ Y, Z then v /∈ Odd(f(u)),

3. if v � u, v ∈ f(u) and λ(v) = Y then v ∈ Odd(f(u)),

4. if λ(u) = XY then u /∈ f(u) and u ∈ Odd(f(u)),

5. if λ(u) = XZ then u ∈ f(u) and u ∈ Odd(f(u)),

6. if λ(u) = Y Z then u ∈ f(u) and u /∈ Odd(f(u)),

7. if λ(u) = X then u ∈ Odd(f(u)),

8. if λ(u) = Z then u ∈ f(u),

9. if λ(u) = Y then either: u /∈ f(u) and u ∈ Odd(f(u)) or u ∈ f(u) and u /∈ Odd(f(u)).

Where Odd(K) = {u, |N(u) ∩ K| = 1 mod 2} is the odd neighbour of K, i.e. the set of vertices which have an
odd number of neighbours in K. N(K) denote the neighbor vertices of K. |K| denote the number of vertices in
K. λ(u) denote the measurement plane of u, for green spiders with 0 or π phase, the measurement plane is X . The
measurement plane is XY for other arbitrary phases.

In the following sections, we show that all the rewrite rules used to implement the protocol would at least preserve
the Pauli flow of the graph. This guarantees the transformed ZX-diagrams can be executed on MBQC hardware.

III. BQC FROM ZX-CALCULUS

The previous section shows that a graph-like ZX-Diagram can fully describe the information needed to execute a
quantum algorithm. This information includes each spider’s phase, the connectivity configuration, and the number
of spiders used in the graph. The outcome of each measurement may also contain information about the result of the
algorithm.

The UBQC protocol splits the initial phase into two parts to obfuscate this information. Each is independent of
the initial phase; however, the execution would yield the same result when combined. The measurement results are
obfuscated by randomly flipping the qubits before measurement and classically restoring them by the client after
measurement. For obfuscation of the connectivity, the UBQC protocol utilises a universal cluster state; therefore, any
algorithm would have an identical entanglement structure. Using the universal cluster state forces all the information
of the algorithm to be stored in the phases. Limiting the ability to represent information with the layout of the
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cluster state requires extra resources. Our proposal obfuscates the connectivity by making those connectivities carry
information about the algorithm entanglement structure and become connectivities between two different agents.
Because each agent only possesses the fragment of the diagram that executes on itself, it loses track of the entangle-
ment structure of the algorithm. Because our protocol does not require the universal cluster state, and encoding a
considerable portion of the algorithm into the connectivity between the spiders, it requires fewer resources than the
UBQC protocol.

Original algorithm

Connectivity

Phase

Measurement outcome

Fragmented connectivity

Splitted phases

Obfuscated outcome

Obfuscated algorithm

Move informative connectivities

Split the spider and

before measurement

inter-agent

the phase into two

Add random single qubit gate

In this section, we show how to implement our protocol with ZX-Calculus. The phases and measurement results
are obfuscated with similar approaches to the UBQC protocol. With proper manipulation of the ZX-diagram, the
connectivity information can all be hidden by ensuring that each agent only possesses one end of the entanglement
that holds the information about the entanglement structure.

A. Defining blocks

Here we introduce the concept of Blocks. Blocks Bi are a set of spiders that are hosted by the same agent.
B(V ) = Bk denote the block spider V belongs to block Bk. For simplicity, we define Bi − 1 = Bi−1.

Definition III.1 (Spider depth). For a given quantum algorithm represented in ZX-Diagram G(EN , EH , V ), let
dG(V1, V2) denote the distance of V1 and V2 in graph G, Vo denotes all output spiders. Define depth of the spider Vi
in the graph G as

D(Vi) = min(d(Vi, Vj)), ∀Vj ∈ VO (1)

Definition III.2 (Blocks initialization). Define the block as a set of spiders, and spider Vi belongs to block B(Vi),
given by

B(Vi) = Bk (2)

where

k = D(Vi) (3)

To illustrate this partition, consider a quantum circuit directly transformed into a ZX-diagram. This partition
simply categorises each layer of the quantum circuit into an individual block.

B. Phase obfuscation

Before we move into the method, let’s start with a few definitions.

Definition III.3 (Semi-graph-like diagram). A diagram is called semi-graph-like if
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1. All spiders are Z-spiders.

2. There are no parallel Hadamard wires or self-loops.

3. Every input or output is connected to a Z-spider.

4. Every Z-spider is connected to at most one input or output.

The difference between a semi-graph-like diagram and a graph-like diagram is that it allows regular edges to be
present in the graph.

Definition III.4 (Reduced graph-like diagram). A graph-like diagram Gg is the reduced graph-like diagram of a
semi-graph-like diagram Gsg if Gsg can be transformed into Gg with only rule (f).

Now we consider the obfuscation process of the phase of a spider. The goal of this obfuscation step is to rewrite the
graph so that the individual phase value in the new graph is independent of the phase values in the original graph.
Such rewrite can be implemented by applying the (f) to make a single spider become multiple spiders connected with
regular edges, see example III.5. Suppose the original spider has phase α. The new phases for new spiders are αi.
Rule (f) shows that the rewrite graph is equivalent to the original graph if phase αi is chosen to satisfy

α =
∑

i

αi (4)

When the operation to implement phase α is split into multiple operations across different agents, each single agent
would not be able to find the original phase α.

Example III.5. Phase obfuscation with rule (f). (a) is the original spider with multiple inputs and outputs. (b) is
equivalent to (a), while the phase has been split into two spiders connected with a regular wire. α1 and α2 can be
chosen randomly with the restriction α = α1 + α2. Adding one extra spider gives minimum protection to hide the
rotation phase from the agent. (c) depict a more general form where the spider can be split into n spiders.

=

..
.

..
.α

(f)

α1 α2
=
(f)

α1

α3

α2

αn

α4

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

(a) (b) (c)

..
.

..
.

We have shown the obfuscated diagram is equivalent to the original diagram, and next, we show the obfuscated
diagram can also be executed on the physical hardware in an MBQC manner.

Theorem III.6 (Spider split flow preservation). Given a graph state (G, I,O), where G is a graph-like diagram

G(EN , EH , V ). Split splider Vi ∈ V into N spiders, Ṽi = {Ṽ
(0)
i ...Ṽ

(N)
i }, that is construct a new graph G̃(ẼN , ẼH), Ṽi,

where Ṽ = V except Vi is replaced with a set of spiders V k
i . V k

i are connected through regular edges. If (G, I,O)

admit a Pauli flow (f,≺), the new graph G̃ also admit a Pauli flow.

Proof. By measuring all the splited spider Ṽ
(n)
i , we could obtain all φφ̃i . Using (f) to merge the split spider back to

one spider, we can obtain the effective measurement outcome for Vi as φVi
=

∑

N φṼ i . Therefore the split spiders Ṽi

has the same predecessors and successors as Vi in partial order ≺. The partial order ≺̃ for G̃ can also be constructed
as follows.

≺̃ =
⋃

{(Vm, Vn)} ∪
⋃

{(V ′
i , Vk)} ∪

⋃

{(Vj , V
′
i )},

∀(Vm, Vn) ∈≺, Vm 6= Vi, Vn 6= Vi,

∀(Vj , Vi) ∈≺ and ∀(Vi, Vk) ∈≺

(5)

Since Vi satisfies all the requirements from definition of Pauli flow II.12, each node {Ṽ
(0)
i ...Ṽ

(N)
i } also satisfies all

the requirements. Therefore new graph G̃ also admits a Pauli flow.
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Example III.7. Execution strategy on a ZX-diagram with regular edges. For a single spider in the original ZX-
daigram (a), it is split into multiple spiders (b) by rule (f) . All split spiders were measured when executing a
measurement step in the original diagram (d). Inversely apply rule (f) gives an equivalent effect of measuring the
single spider in the original diagram (c).

α

α̃1 α̃2

α α̃1 α̃2

φ1 φ2

φ3 φ4φ1 + φ2 + φ3 + φ4

(a) (b)

(c) (d)

From the theorem III.6, we define the Pauli flow for a semi-graph-like diagram.

Definition III.8 (Pauli flow on semi-graph-like diagram). A semi-graph-like diagram admits a Pauli flow if its
reduced graph-like diagram admits a Pauli flow.

Lemma III.9 (Spider rule flow preservation). Rewrite rule (f) preserves Pauli flow on semi-graph-like diagrams.

Proof. Because applying (f) to a semi-graph-like diagram will not change its reduced graph-like diagram. From
definition III.8, (f) will not affect the flow property of the diagram.

Theorem III.10 (Phase obfuscation). Given a quantum algorithm represented in graph-like ZX diagram G =
(∅, EH , V ) with n spiders, where ∅ denote the null set and EH denote the Hadamard edges. Each spider Vi has phase

αi. A graph G̃ = (ẼN , ẼH , Ṽ ) equivalent to G can always be found, preserves the Pauli flow of G, and each individual
phase α̃i is independent to G.

Proof. Construct G̃ = (ẼN , ẼH , Ṽ ), with 2n spiders. The Hadamard edge ẼH and regular edge ẼN is given by

ẼH =
⋃

{(Ṽ2i+1, Ṽ2j)}, ∀(Vi, Vj) ∈ E (6)

ẼN =
⋃

{Ṽ2i, Ṽ2i+1}, ∀Vi ∈ V (7)

And the new phase α̃i is given by:

α̃2i = αi − βi (8)

α̃2i+1 = βi (9)

where βi is a random phase value. G̃ can be rewrite to G by applying the (f) to merge spider Ṽ2i and Ṽ2i+1.

Therefore G̃ and G are equivalent. Since α̃2i = αi − βi + b2iπ, α̃2i+1 = βi + b2i+1π, when βi is chosen uniformly
random, α̃2i or α̃2i+1 is independent from αi. Since α̃2i and α̃2i+1 only dependent to αi and βi, each single of them
is independent to G. This rewrite only uses (f),from lemma III.9, it preserves the Pauli flow.

Example III.11. To illustrate the phase obfuscation strategy, consider (a) the original graph-like ZX diagram
describing the original algorithm. Each spider Vi with phase αi is split into two spiders connected with a regular wire.
A random phase value βi is generated, and the phase for two new spiders α̃2i = αi − βi, α̃2i+1 = βi, results in (b).
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α2

α3

...

α4

α5

α9

α10

αm

......... ...

(b)Original diagram G

α6

α7

α8

......

α1

β2

β3

...

α4 − β4

α5 − β5

α9 − β9

α10 − β10

αm − βm

......... ...

β6

β7

β8

......

β1

α2 − β2

α3 − β3

...

β4

β5

β9

β10

βm

......

α6 − β6

α7 − β7

α8 − β8

......

α1 − β1

(b)After phase obfuscation

After this construction, we could show that D(Ṽ2i+1) < D(Ṽ2i)

C. Connectivity obfuscation

Recall that in the phase obfuscation step, we have turned each spider into a pair of spiders connected with a regular
wire, and two spiders in the pair now belong to different blocks. The wires within each block can be rewritten into a
wire between the adjacent block. Such wire can be rewritten by disconnecting it from one spider and connecting it to
the spider in an adjacent block which has a regular wire connected to the just disconnected from.

Theorem III.12 (Internal connectivity to external connectivity). Given graph G = (EN , EH , V ) where EHi,j =

{Ṽ2i, Ṽ2j} is an wire connect two spiders Ṽ2i and Ṽ2j in the same block. EHi,j can be replaced with {Ṽ2i+1, Ṽ2j} ,

where Ṽ2i and Ṽ2i+1 are connected with an regular wire. The rewrite rule preserves the Pauli flow of G.

Proof. The graph can be constructed with the following rewrite. The rewrite uses only (f), from lemma III.9 it
preserves Pauli flow.

............ ............
(f)

............
(f)

Theorem III.13. [36, 37] Let G = (V,E) be a graph with vertices V and edges E. Suppose the labelled open graph
(G, I,O), and λ(u) ∈ {XY,X} for all u ∈ Oc , has Pauli flow. Pick an edge v, w ∈ E and subdivide it twice, i.e. let
G′ := (V ′, E′) where V ′ := V ∪ v′, w′ contains two new vertices v′, w′, and

E′ = (E/{{v, w}}) ∪ {{v, w′}, {v′, w′}, {v′, w}}. (10)

Then (G′, I, O, λ′) has Pauli flow, where

λ′(u) :=

{

λ(u), if u ∈ V/O

X, if u ∈ {v′, w′}
(11)

· · · · · · · · · · · ·

v w′ v′ wv w

Theorem III.14 (Obfuscate the connectivity between blocks). Given a semi-graph ZX diagram G(EN , EH , V )

generated from phase obfuscation, an equivalent, Pauli flow preserving semi-graph ZX-daigram G̃(ẼN , ẼH , Ṽ ) and a

block partition B can be found, such that for edges Ẽ = (Ṽi, Ṽj) within the same partition Ṽi ∈ Bk,Ṽj ∈ Bk, all edges
depends only on deg(Vi), Vi ∈ V .

Proof. To find G̃, we first apply the rewrite rule from theorem III.12 and remove wires within the blocks. Then for all
Ei,j = {Vi, Vj} ∈ EH , we apply rewrite rules from III.13. Denote the newly added spider for each edge Ei,j as Wi,j

and W ′
i,j . Assign Wi,j to block B(Vi) and W ′

i,j to B(Vj).
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After this rewrite, all the edges within the blocks connect to an extra spider Wi,j and W ′
i,j . For any two spiders WA

and WB connect to Vi, they can be only distinguished by the external connection. Therefore all the edges (Vi,Wi,j)
and (Vj ,W

′
i,j) within the same block doesn’t depends on EH . However since multiple W spiders may still connect to

a single V spider, the internal wires depend on the degree of spider Vi and Vj .
Because the rewrite rule used in obfuscation is from theorem III.12 and III.13 and they both preserve Pauli flow,

the rewrite for obfuscation also preserves Pauli flow.

Example III.15. The process of connectivity obfuscation between blocks can be illustrated as follows. Suppose a
fragment of the quantum algorithm looks like (a). Here all the phases in the spiders are not included in the diagram.
First extra spiders are created with rule (f) to ensure no two inter-block wires are connected to the same spider,
see (b). Then extra dummy spiders are created to obfuscate the spiders’ degree (wire connected to the same spider).
Each dummy spider has only two wires and would connect another dummy spider or a hub spider. See (c). Now for
each inter-block wire, a random id si,k is generated for its identification, see (d). The spiders’ order can be randomly
shuffled in each block, as long as the connectivity remains the same. See (e). Two adjacent blocks are assigned to a
different quantum agent. Each agent only needs the wire identity si,k to establish the correct entanglement.

si,1

si,2

si,3

si,4

si+1,1

si+1,2

si+1,3

si+1,4

si+1,5

(a) (b) (c)

(d)

si,1

si,2

si,3

si,4

si+1,1

si+1,2

si+1,3

si+1,4

si+1,5

(e)

si,1

si,2

si,3

si,4

si+1,1

si+1,2

si+1,3

si+1,4

si+1,5

The connectivity obfuscation restricts each agent to have only the label of edges si,j instead of the actual qubit
connected in the adjacent agents. Such obfuscation prevents the connectivity configuration of the ZXdiagram from
being reconstructed. After the obfuscation, the leg connects to hub spiders are all in an equivalent position; therefore
agent cannot distinguish the direction of information flow during the execution. In practice, the si,j can be used
to identify the pre-shared bell pairs between the agents. Each agent would not be able to know the entanglement
structure of other agents.

The connectivity obfuscation step hides the agent’s other end of the entanglement. However, the actual required
entanglement can be estimated by the agent by counting the number of entanglements within its block, connected to
some hub spiders. To further obfuscate the resource requirement of the quantum algorithm, we need to modify the
number of connectivity of these hub spiders. We could add dummy qubit resources to obfuscate the exact resource
requirement of the quantum algorithm. This can be done by attaching two phase-free spiders to the existing graph
and connecting them with Hadamard edges.

Theorem III.16. [36, 37] Let G = (V,E) be a graph with vertices V and edges E. Suppose the labelled open graph
(G, I,O), and λ(u) ∈ {XY,X} for all u ∈ Oc , has Pauli flow. Pick a node u ∈ E and append two new vertices
connected by a Hadamad edge, i.e. let G′ := (V ′, E′) where V ′ := V ∪ v, w contains two new vertices v′, w′, and

E′ = E ∪ {{v, w}, {w,w′}}. (12)
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Then (G′, I, O, λ′) has Pauli flow, where

λ′(u) :=

{

λ(u), if u ∈ V/O

X, if u ∈ {w,w′}
(13)

· · ·

v

· · ·

v

w

w′

Theorem III.17 (Dummy resources). Given a ZX-diagram G(EN , EH , V ) and partition B generated from connec-

tivity obfuscation. An equivalent, Pauli flow preserved graph G̃(ẼN , ẼH , Ṽ ) and a partition B̃ can be found, such
that the hub spider has a larger degree.

Proof. Suppose we want to increase the degree of spider Vi ∈ Bj . Apply the rewrite rule from theorem III.16 to the
spider Vi, and we have two added spider w and w′. Assign w to Bj−1 and w′ to Bj−2. The rewrite graph is equivalent
to the original graph, preserves the Pauli flow, and increases the degree of Vi.

D. Measurement result obfuscation

So far, we have made input information to each agent independent of the algorithm. However, each agent may obtain
information from their measurement outcome. Here we show some information may leak out from the measurement
distribution of intermediate blocks, if the measurement outcome is not further obfuscated. To illustrate it, first
consider a circuit is folded into two piece and each part of the ZX-Diagram is executed on a different agent. See
Example III.18.

Example III.18. Fold a quantum circuit. On (a) we rewrite our quantum circuit into a ZX-diagram and then
divide them into two quantum circuits noted as U1 and U2. Then we fold the ZX-diagram in (b) and rewrite the
folded connection between U1 and U2 in (c). Eventually, we add the initial state of the quantum circuit in (d). The
ZX-diagram in (d) is ready to be extracted into a quantum circuit with shallower depth but used twice as the original
quantum circuit.

...

U1

...

U2

...... ...

...

UT

1

...

U2

...

...

...

...

UT

1

...

U2

...

...

...

...

UT

1

...

U2

... ...

...

...

(i2) (i1)

(a) (b) (c) (d)

Now we would like to understand the measurement result distribution of the agent executing the upper half of the
diagram.

Example III.19. The reduced density matrix of a folded circuit. The reduced density matrix can be expressed by
adding a dual of the existing quantum circuit and connecting the qubits that need to be traced away. Here we can
show that after tracing away the qubits containing the computation result, the ZX-diagram of the reduced density
matrix is an identity. This identity indicates that the measurement distribution of these qubits is uniform.
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...

UT

1

...

U2

... ...

...

...

...

U−1T
1

...

U−1
2

......

...

...

...

U1

...

U2

...... ... ...

U−1
1

...

U−1
2

... ......

... ...

The graph-like ZX-diagram can be considered folding the circuit until it has only one operation before it gets
measured. We can apply the same analysis to our protocol.

Example III.20. Information leakage from correction. Here we show that there could be information leakage from
the agent’s observation when correction is applied. To understand each agent’s measurement distribution, we first
arrange the spiders into the same column. Then we generate its conjugate diagram next to the existing diagram.
The observed distribution described by the reduced density matrix can be obtained by tracing away the unmeasured
qubits. However, we always apply the correction to restore the quantum state for measured qubits. Therefore it is
equivalent to measuring the zero-phase spider on these qubits. The reduced density matrix is shown in (a). Now
we try to simplify the quantum circuit; most of the unmeasured qubits can be traced away. However, it still leaves
a graph that is not necessarily identity—shown in (b). The non-identity graph indicates the agent can observe a
non-uniformed distribution, which may carry useful information.

...

...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

... ...

Measured

Observable

Unmeasured

(a) (b)

...

The observed distribution of each agent is characterized by the reduced density matrix. A non-uniform distribution
indicates a potential information leakage. Now we introduce the measurement result obfuscation approach to resolve
the information leakage from the non-uniform measurement outcome distribution.

Theorem III.21 (Measurement result obfuscation). Given ZX-Diagram G(EN , EH , V ) executes with MBQC meth-
ods. For each spider Vi ∈ V with phase αi, generate a random bit bi and define α̃i = αi+biπ, the measured distribution
is independent of the diagram and the distribution for the calculation result can be reconstructed classically by the
client.

Proof. Suppose for each shot a new diagram G̃(ẼN , ẼH , Ṽ ) is constructed at the execution time. Consider the

measurement outcome for measuring spider Ṽi is r̃i. The result of executing G̃ is equivalent to G when we consider
ri = r̃i ⊕ bi. Since bi is chosen randomly, the distribution of r̃i is random and independent to the diagram G.

Example III.22. To illustrate the obfuscation of the readout distribution for each qubit, we introduce a bit string
bi. Suppose a fragment of the ZX diagram is shown as (a). For each Vi, we add two connected spiders with phase biπ.
This is equivalent to adding 2πbi to each Vi as (b). Then one of the spiders is removed and converted into a classical
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flip operation. Merge the other spiders, and we have a new diagram as (c). For each Ṽi, we add a π phase if bi is 1,
otherwise, keep it the same.

α̃1

α̃2

... ...

(a)

...

α̃1

α̃2

... ...

(b)

...

b1π b1π

b2π b2π

α̃1 + b1π

α̃2 + b2π

... ...

(c)

...

To understand this more easily, consider a quantum circuit that generates a binary distribution. Such distribution
can be hidden by randomly applying a π rotation to the qubit, swapping the probability of |0〉 and |1〉 just before the
measurement. Then the original distribution can be restored by classically swapping them back.

Suppose the distribution without measurement obfuscation is r̃j , and the distribution after measurement obfuscation
is rj . The extra π phase swaps the distribution of measuring the qubit with π phase or zero phases. Therefore
rj = r̃j ⊕ bj , where ⊕ denote the bit-wise exclusive or operation. If bi is chosen uniformly random, the measured
result would be uniform. The correction process would be intuitive: r̃j = rj ⊕ bj . If we have measured a π phase and
have already added a π phase to the spider, it cancels out if we have measured a zero phase and have added a π phase
to the spider, it is equivalent to measuring a π phase without modifying the phase of the spider.

Theorem III.23 (Measurement result independence). The distribution of measurement results ri is independent of
the executed quantum algorithm.

Proof. The measurement result without measurement obfuscation r̃j can be non-uniform. The measurement result
observed by each agent is rj = r̃j ⊕ bj . With the bj chosen uniformly random, the measurement distribution of rj
would be uniform.

E. Circuit extraction

So far, we have generated a ZX-diagram, which needs to be extracted into physical quantum operations. Note that
the graph-like ZX-diagram contains only Hadamard wires. The regular wires between blocks come from the phase
obfuscation step when each spider is split into two and connected with regular wires. So each spider is connected to
a maximum of one regular wire to spiders at other agents.

The extraction can be implemented with the following method:

Theorem III.24. With a given obfuscated graph G̃(ẼN , ẼH , Ṽ ) where size(ẼN) = 1 , i.e. each node would connect

to multiple Hadamard edges and maximum 1 regular edge. G̃ can be extracted into physical quantum operations
and implemented on a quantum device. The extracted physical operation to implement an edge is independent of the
edge type.

Proof. Each edge in graph G̃ can be extracted into quantum operations with the following method. Hadamard wires
can be extracted into a CZ operation, or applying CZ operation first, then applying Hadamard gate on both qubits.
It is shown in (a). Regular wires can be extracted into a CZ operation and then apply a Hadamard gate on only one
side. By randomly choosing the method to extract the circuit, whether the Hadamard gate exists is independent of
the type of wire being extracted.
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=
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H

H

F. Summarize the protocol

The information describing the quantum algorithm consists of the phases of each spider and the connectivity between
spiders under the perspective of ZX-diagram. Also, the measurement outcome would cause information leakage when
the correction process is applied. Our protocol provides a complete solution to obfuscate information from these three
aspects. First, our protocol utilizes the same strategy as the UBQC protocol to obfuscate the phase information and
the measurement outcome. The phase rotation operation is split into two and performed by different agents. Then the
measurement outcome is obfuscated by randomly flipping the quantum distribution with a phase difference of π. The
rotation phase evaluation happens during the execution process to update the correction into the phase in real time.
Finally, for the connectivity, our proposal moves all the connectivity information that reveals the algorithm as a wire
between two different agents to hide the connectivity of the diagram. Since each agent cannot access the information
from its neighbouring agent, it loses track of the information on the other side of the wire. Here we present the formal
description of our protocol. It contains two major components: The client’s preparation step, which obfuscates and
generates proper ZX-diagram blocks for each agent. Then, in the execution step, the client interacts with each agent
to implement calculations and retrieve results.

Our protocol does not assume the input state is fully classical. For the case that the input state contains quantum
data, it can be prepared by teleporting the quantum data to the agents, then make the teleport data into a segment
of the ZX-Diagram for computations. The client can remain fully classical to handle the quantum data by relying on
a trusted third party to supply the quantum data.
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Protocol 1 MBQC BQC without universal cluster state.
Inputs.

1. G(E, V ) : A graph-like ZX-diagram describes the quantum algorithm Λ. E,V denote the connections and spiders
in the graph. For classical data described input state, the preparation circuit is included in G.

2. ρ0: The input state of the quantum algorithm.
3. A = {A1...Am},m ≥ 2 : The available quantum agents. The number of agents m can be chosen arbitrarily,

provided it is greater than or equal to 2.
Definitions.

1. G̃(Ẽ, Ṽ ). The processed ZX-diagram for execution.
2. Vi: the i-th spider in G.
3. αi: the phase of i-th spider in G.
4. Ṽj : the j-th spider in G̃.

5. α̃j : the phase of j-th spider in G̃.
6. βj : the random value generated for phase obfuscation for Vi.
7. bi: A random bit for measurement obfuscation of i-th qubits.
8. Bk = {Ṽj}: The k-th block of G̃.

9. dj = d(Ṽj): The distance of Vj to its nearest output spider in G̃.

10. n = max(dj): the number of fragmented blocks in G̃.

11. rj : The measurement result of Ṽj .

12. r̃j : The corresponding measurement result of Ṽj without measurement obfuscation.
Goal. Retrieve the measurement distribution of Λ(ρ0).
a. Preparation.

1. The client split each Vi ∈ V spider into two spiders Ṽ2i and Ṽ2i+1 with rule (f), each spider has phase α̃2i and
α̃2i+1. Note that α̃2i and α̃2i+1 are symbols for placeholder, the actual value of will be evaluated in the later
steps.

2. The client rearrange the ZX-diagram and group spiders into n blocks Bk = Ṽj where the distance to output
spider dj = k.

3. For each connectivity within the same block, the client uses rule (f) as example III.12 to move it to the adjacent
block.

4. The client split each Hadamard edge between blocks into two empty spiders and three edges, as shown in
example III.14. The two spiders are assigned to the block that their neighbour spider belongs to.

5. The client analyze G̃ and find a flow.

b. Execution.

1. The client assign block Bj to agent Ai when j mod m = i. Fragment block Bj are found by the rules from
section III A.

2. For each sample

2.1. The client generate random phase values {βi} and random bit {bj}.

2.2. The client assign α̃2i = αi − βi + b2iπ and α̃2i+1 = βi + b2i+1π.

2.3. The client randomly assigns spiders to qubits and allocates resources from each agent.

2.4. Agents reset all qubits in all the blocks into |+〉 state. For quantum data, teleport the input state into the
input qubits and set all the other qubits into |+〉 state.

2.5. The client extracts the ZX-diagram into quantum operations with example III.15. Then request agents to
establish shared entanglement between agents based on {si, j}.

2.6. Follows the flow of G to execute the diagram. Handle Vi in ascending order of the partial order of the flow.
For all spiders Ṽj that splits from Vi

i. The client sends α̃j to the corresponding agent, requesting the agent to measure qubits in XY plane
with angle of −α̃j .

ii. The client get results rj , calculate the r̃j = bj ⊕ rj .

iii. The client calculates the effectively measured phase r =
∑

rj on Vi,

iv. The client make changes to αj for correction based on r and the ZX-diagram with example II.10.

3. The client returns the sampled distribution of r̃o where Ṽo is a output spider.
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IV. PROOF OF CORRECTNESS AND BLINDNESS

In this section, we go through the techniques used to protect the information and give proof of the correctness and
blindness of our protocol. First, we provide the definition of blindness.

Definition IV.1 (Blindness). Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most L(X) if, on
client’s input X , for any fixed Y = L(X), the following two hold when given Y

1. The distribution of the classical information obtained by an agent in P is independent of X .

2. Given the distribution of classical information described in 1, the state of the quantum system obtained by an
agent in P is fixed and independent of X .

Definition IV.1 is proposed in [6] as a formal description to characterize blindness. Here X denotes information
that the agent can obtain, and L(X) is any information that can be inferred from given X . Now that Y = L(X)
is given, the agent cannot infer any algorithm information if the protocol is blind. The agent has two sources of
information: the instructions it receives and the measurement outcome it gets. The first source suggests that the
classical instructions obtained by the agent must be independent of the algorithm, and the second source suggests
that the quantum information or measurement outcome must be independent of the algorithm.

We show the blindness of our protocol by proving the independence between the quantum algorithm being executed
and the information each agent has access to.

Theorem IV.2 (Inter-block connectivity independence). Distribution of si,k is independent of the executed quantum
algorithm.

Proof. si,k is only used to identify the preshared entanglement pairs; its choice is independent of the quantum algo-
rithm.

Theorem IV.3 (Inner-block connectivity leakage). Distribution of ˜E(Vi, Vi′), Vi, Vi′ ∈ Bm can leak at most
max(deg(Vi)).

Proof. For E(Ṽi, Ṽi′), the agent Am can recover the deg(Ṽi) by reversely apply rule (f). With the extra dummy
connectivity introduced, the degree recovered here is not necessarily the exact degree from the original algorithm,
however, it is always greater or equal to deg(Ṽi).

Theorem IV.4 (Safety of the correction process). The correction process does not leak information.

Proof. The correction process requires the client to modify αi based on the measurement result of previous spiders.
The information may leak out from the connectivity of the ZX-diagram, the phase information of each spider, and
the measurement outcome distribution. We now discuss each aspect separately.

1. Correction doesn’t change the connectivity between spiders; therefore it doesn’t invalidate theorem IV.2 or IV.3.

2. Note that the value of αi updates with the measurement outcome from previous steps for correction, and from
theorem III.10, α̃2i and α̃2i+1 is independent after the correction process updates αi. Therefore, the correction
process will not invalidate the independence between the phase and the actual algorithm.

3. The correction process would change the distribution of the measurement outcome. However, from theorem
III.23, each agent could not obtain any information from its measurement result.

Therefore, the correction process does not leak information.

Theorem IV.5 (Extraction universality). ZX-diagram generated from the proposed protocol can always be extracted
into practical quantum operations for real-world devices.

Proof. The original graph-like ZX diagram was converted by a quantum circuit. Therefore, it must admit a focused
Pauli flow [28] and can be executed with measurement-based quantum computation [10]. All the rewrite rules used in
our protocol preserve the Pauli flow; therefore the obfuscated diagram must also admit a Pauli flow. Hadamard wires
can be implemented into a CZ gate to extract the ZX-diagram into quantum operations. The regular wire only comes
from splitting the spiders. So, each spider can have at most one regular wire. Such diagrams can be extracted with
method form example III.24. These rules included all possible diagrams that can be generated from our protocol.
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Theorem IV.6 (Universality and correctness). The modified ZX-diagram G̃ is universal for quantum computation,
can always be implemented on a quantum device, and yields the same distribution as G.

Proof. Any arbitrary ZX-diagram G with flow can be converted to G̃ following the protocol and G is universal for
quantum computation. Therefore G̃ is universal and yields the same result as G. Then from theorem IV.5, any G̃
generated from G with our protocol preserves its flow and can be extracted into quantum operations can be executed
on a quantum device.

Definition IV.7 (ǫ-private [20]). A delegated quantum computation protocol requires the implementation of a linear
map Φi on agent Ai ∈ A given classical information qi. A simulator Si has the same input and output space as
A − Ai, which can simulate the interaction between Ai and A − Ai. The agent Ai interacts with Si, producing a
linear map Ψi. The protocol is ǫ-private if for every agent Ai there exists such simulator Si that ||Φi − Ψi||⋄ < ǫ,
where ||Φi − Ψi||⋄ denote the diamond distance between Φi and Ψi.

Theorem IV.8 (Private). Our protocol is 0-private.

Proof. The graph of each agent constructed gives the Choi–Jamio lkowski state J(Φi) of the linear map Φi [38]. The
information obtained by an agent is qi = {Gi, {si}}, where Gi(EN , EH , V ) is the graph fragment assigned to agent Ai.
From theorem III.10, IV.2, III.23, qi is randomly distributed and independent to the quantum algorithm for execution.
Therefore J(Φi) is a mixed state with some layout restrictions from constructing connectivity obfuscation in theorem
IV.2 and III.23. Consider a simulator Si that keeps the pre-shared entanglement pairs but does nothing on them. See
the figure below. The layout of the graph representing the corresponding Choi–Jamio lkowski state J(Ψi) (the graph
in the right solid square) is in fact, identical to J(Φi) (in the left solid square), therefore ||J(Ψi) − J(Φi)|| = 0.

... ... ... ... ... ...

Ai−1 Ai+1

Ai

Si

Ai

From relation 1
n
||Φi −Ψi||⋄ < ||J(Ψi)− J(Φi)|| [39], where n is the size of the system, we conclude for our protocol

is 0-private.

Theorem IV.9 (Blindness). Our protocol is 0-private, and the information leakage would be at most (max(deg(Ṽi)),N(Bk),n)

where deg(Ṽi) is the degree (number of wires connected to a spider) of Ṽi, max(deg(Ṽi)) is the maximum possible

degree that Vi could have. N(Bk) is the qubit number of block Bk, n is the of fragmented blocks in G̃.

Proof. Client’s input for each agent Am consists of N(Bk),n, α̃i, si,j for all Vi ∈ Bm and Vj ∈ Bl, where Bl is all

adjacent blocks of Bm, E(Ṽi, Ṽi′) for Vi, Vi′ ∈ Bm.

1. From theorem III.10, α̃i is independent from the algorithm.

2. From theorem IV.2, si,j is independent from the algorithm.

3. From theorem IV.3,at most max(deg(Ṽi)) can be inferred by agent from the distribution of E(Ṽi, Ṽi′ ).

4. From theorem III.23, the measurement distribution of each qubit is independent of the algorithm.

5. From theorem IV.4, the correction process does not leak information.

6. Each agent may know the total number of agents m, and infer the total block number n.
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7. From example III.24, each node can be extracted into quantum operation with or without a Hadamard gate.
The existence of the Hadamard gate is independent of the algorithm.

8. from theorem IV.8, our protocol is 0-private.

Therefore, Am can get only (max(deg(Ṽi)), N(Bk), n) from the classical information it gets.

The same as the UBQC protocol would inevitably disclose the size of the brickwork cluster state, our protocol
also discloses some information about the resources required of the algorithm. UBQC uses a universal cluster state,
which provides some surpluses of entanglement; therefore, UBQC protocol does not need to worry about the leakage
of max(deg(Ṽi)). Our proposal optimized the resource requirement, which discloses more information about required
resources. However, such information can be hidden by allocating more resources and doing random operations on
extra resources as long as it will not affect the computation result.

The secureness of our protocol requires that communication between different agents is limited. Except for the
shared entanglement generated in advance, agents should not exchange any information during the execution. Such
an assumption is difficult to be fulfilled indefinitely since two agents need to share entanglement. When there
are collusive agents, blindness may be compromised. Here, we show that the blindness of our protocol would be
compromised only when adjacent blocks are executed on two collusive agents.

Theorem IV.10 (Blindness compromise from collusive agents). Information may leak out only when two adjacent
blocks are executed on collusive agents.

Proof. When the attacker obtains information on two adjacent blocks, the attacker can apply the (f) rule to reverse the
spider splitting and find the rotation angle or find a portion of connectivity in the original ZX-diagram. When attackers
obtain information from non-adjacent blocks, it is equivalently to assign those non-adjacent blocks to the same agent.
The attacker obtained the information from that single agent. Therefore from theorem IV.9 the information can be
recovered is still (max(deg(Ṽi)), N(Bk), n).

Although the proposed protocol only requires pre-shared bell pairs between agents, no information needs to be
exchanged between agents at the run time.

Instead of physically limiting communication, the assumption can still be fulfilled with a decentralization strategy.
For example, two quantum agents can be allocated from two different quantum service providers, and therefore it would
be less likely to have two providers collude and compromise the blindness. More agents can also be introduced to have
less chance of two adjacent blocks executed on collusive agents. Such relaxation is relatively weak since other strategies
might be available if agents are honest and only exchange information the client allows. This relaxation allows the
information exchange between agents even while executing the algorithm. Our protocol requires no information
exchange between agents after the initial cluster state has been prepared. Our protocol would still be functioning if
there were physical methods that could limit the communication between agents discovered in the future.

V. A MINIMAL EXAMPLE OF OUR PROTOCOL

In this section, we walk through a minimal example to implement a two qubits swap-test algorithm with the Hong-
Ou-Mandel model [40]. This algorithm does a CNOT gate and a Hadamard gate. The state overlap can be calculated
based on the joint distribution of O1 and O2. We ignore the measurement obfuscation step for simplicity.

H

|Q1〉

|Q2〉

O1

O2

The circuit is written into the ZX-diagram as follows.
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Q1

Q2

And then converted into a graph-like ZX-diagram. Note that α1 = α2 = 0.

Q1

Q2 α2

α1

Now, split each spider into two to make phase obfuscation. The value of α̃1 and α̃3 can be random, as long as
α̃2 = −α̃1, α̃4 = −α̃3.

α̃4

α̃2

α̃3

α̃1Q1

Q2

Move the connectivity within the same block to another spider, making it an inter-block connectivity.

α̃4

α̃2

α̃3

α̃1Q1

Q2

Grows extra spider and finish the connectivity obfuscation.

α̃4

α̃2Q1

Q2 α̃3

α̃1

To construct the diagram above, each agent only requires a shared bell state at the beginning.
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α̃4

α̃2Q1

Q2 α̃3

α̃1

Then apply the Hadamard gate as an example III.24 to convert Hadamard edges to normal edges.

α̃4

α̃2Q1

Q2 α̃3

α̃1

Then apply entanglement operation within each agent.

α̃4

α̃2Q1

Q2 α̃3

α̃1

To execute the algorithm, here we follow the standard MBQC protocol. First, the regular edges are merged, and
the new spider represents the sum of the phase from two old spiders as example III.6. These spiders are labelled with
the red star symbol.

α̃4

α̃2Q1

Q2 α̃3

α̃1

* *

*

v1 v2 v3 v4 v5

v6 v7

v8 v9 v10 v11
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Here we present a Pauli flow and the corresponding correction set. Define partial order

≺:= {(v1, v2, v6, v7, v8, v8, v4, v10) < (Q1, Q2)}
⋃

{(Q1, Q2) < (v3, v9)}
⋃

{(v3, v9) < (v5, v11)} (14)

where we define A < B :=
⋃

{(a, b)}, ∀a ∈ A and ∀b ∈ B.

Vertex u Measurement Plane λ(u) Correction set f(u) Odd(f(u))
Q1, XY {v1, v3, v5, v7} {Q1,v11}
Q2, XY {v8} {Q2,v9}
v1 X {v2} {Q1,v3}
v2 X {v3, v5, v7} {v2,v11}
v3 XY {v4} {v3,v5}
v4 X {v5} {v4}
v5 XY N/A N/A
v6 X {v7} {v6,v11}
v7 X {v6} {v3,v7}
v8 X {v9, v11} {v8}
v9 XY {v10} {v9,v11}
v10 X {v11, v6} {v10,v3}
v11 XY N/A N/A

Based on the Pauli flow configuration, the algorithm can be executed with 4 steps. First all the qubits corresponds
to vertices{v1, v2, v6, v7, v8, v8, v4, v10} and then measure {Q1, Q2},then {v3, v9}, and finally {v5, v11}. As an example
here we demonstrate the correction when v2 is measured with unexpected results. First, we highlight all the vertices
from the correction set of v2.

α̃4

α̃2Q1

Q2 α̃3

α̃1

*

*

*

v1 v2 v3 v4 v5

v6 v7

v8 v9 v10 v11

π

Now we apply (π) and (i1) and (f) to emit red spiders with pi phase on all the vertices in the correction set.

α... ... α... ...
(i1)

α... ...
(f)

π
π

−α... ...
(π) π

π

π

π

α̃4

−α̃2Q1

Q2 α̃3

−α̃1

v1 v2 v3 v4 v5

v6 v7

v8 v9 v10 v11

π

π

π
π

π

π

π

π



24

Now push these red spiders through the Hadamard edge, and they become green spiders.

α̃4

−α̃2Q1

Q2 α̃3

−α̃1

v1 v2 v3 v4 v5

v6 v7

v8 v9 v10 v11

π

π

π
π

π

π

π

π

Merge green spiders to cancel the unexpected measurement result.

α̃4

-α̃2Q1

Q2 α̃3

−α̃1

v1 v2 v3 v4 v5

v6 v7

v8 v9 v10 v11

π

VI. DISCUSSION

A. Resource cost comparison between UBQC and our protocol

In this section, we quantify the resource requirements for implementing the UBQC and our proposed protocols and
demonstrate the significant advantage of resource cost reduction compared to the UBQC protocol. Our proposed
protocol distinguishes itself from the UBQC protocol primarily in how it implements connectivity obfuscation of the
quantum algorithm. In the context of GBQC, connectivity refers to the layout of the quantum circuit, while in
MBQC, connectivity is represented by the edges of the cluster state. In the ZX diagram, connectivity is depicted
using a similar representation as wires between spiders. The resources we consider include the total number of qubits
utilized by the protocol, the quantity of pre-shared Bell pairs necessary to establish entanglement between agents,
and the overall number of two-qubit entanglement gates required within each agent.

The UBQC protocol achieves connectivity obfuscation by creating identical graphs for all algorithms, requiring the
preparation of a universal cluster state that is algorithm-independent and information-free. Such universal cluster
states restrict information to be stored in the measurement angles, thereby introducing redundancy to the graph. In
contrast, our proposed protocol obfuscates connectivity by separating the two endpoints of the wires into two agents,
enabling the layout of the ZX-diagram to carry information. Each agent is aware of a pre-shared Bell pair between
itself and a neighbouring agent, however, it is uncertain which qubit the Bell pair is entangled with, resulting in a
loss of information carried by the entanglement of the Bell pair. An example of resource reduction is shown in the
following:

Example VI.1. An example of comparing the required resources to implement an arbitrary gate on two qubits. Here
we denote the blue line as the entanglement generated from local entanglement gates within an agent, and the red lines
are entanglement established by pre-shared Bell pairs or teleportation between agents. Note that this gate doesn’t
have to be a two-qubit entanglement gate; it can be two single qubit gate acts on two qubits separately. (a) The
brickwork cluster state is used in the UBQC protocol for implementing a quantum gate. (b-d) The implementation
of the protocol proposed in this study. The entanglement gate can be implemented by both (b) and (c), and the two
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single qubit gates can be implemented by (d). The number of qubits and entanglement gates and pre-shared Bell
pairs from our protocol (b-d) are less than UBQC protocol (a). The required measurement steps are one fewer than
those in the brickwork state. As each column can be measured together, each block showing in (b,c,d) requires a
maximum of 4 steps to execute. On the other hand, the brickwork state (a) incorporates an additional step: measuring
all remotely entangled qubits (attached by red-coloured edges) to implement the teleportation. As for the number
of measurements executing each block, the brickwork typically requires measuring 16 qubits, whereas our protocol
requires a maximum of 10.

(a)

(d)

(c)

(b)

Now we move on to more general cases. For simplicity, we suppose the algorithm is decomposed into a gate set
containing only local single-qubit gates and a CZ gate on nearest neighbours. These gates can be implemented directly
with one “brick”, the fundamental component in the brickwork cluster state. Denote d as the circuit depth, w as
the circuit width or the number of qubits and t as the number of two-qubit gates. For the worst that all gates are
two-qubit gates, there are 1

2dw two-qubit gates. Therefore t ≤ 1
2dw. Here the entanglements between different agents

are established by pre-shared Bell pairs, and entanglements within the same agent are implemented by entanglement
gates performed by the agent. The transmission of quantum data between agents and clients is also considered using
a Bell pair.

For the brickwork state, each “brick” includes eight qubits and eight internal entanglement operations. Each “brick”
hosts two qubits from the original algorithm. For both single-agent and multi-agent versions, each qubit needs to
share a Bell pair with another agent or the client. In total, the qubits required to implement brickwork state is
1
2w× 8×d+w = (4d+ 1)w. For the semi-classical client UBQC, the brickwork state can be constructed and executed
in sequence to recycle qubits. This strategy reduces the requirement qubit number to 2w + 1. The amount of Bell
pairs is (4d+ 1)w. The amount of local entanglement gates is 1

2w× 8× d. For the single-agent version, an extra qubit
is required; for the multi-agent version (4d+ 1)w qubits are required.

For our proposal, without any simplification, each qubit is split into three, and the qubits in the input and output
blocks are split into two. Each two-qubit gate requires two more qubits, two more internal entanglements, and one
extra external entanglement. For each dummy connection, two extra qubits, one Bell pair, and two local entanglements
gates are required. Therefore our proposal requires 3(d− 2)w+ 2t qubits, (d− 1)w+ t Bell pairs, 2(d− 2)w+ 2t local
entanglement gates.

See the table below to summarize the comparison.

Number of Single-agent UBQC Multi-agent UBQC Our proposal
Agents 1 ≥ 2 ≥ 2
Qubits 2w + 1 2(4d+ 1)w 3(d− 2)w + 2t
Bell pairs (4d+ 1)w (4d+ 1)w (d− 1)w + t
Local entanglement gates 8dw 8dw 2(d− 2)w + 2t

There are extra advantages to our protocol compared to UBQC. First, our protocol can implement non-nearest-
neighbor entanglement directly. With the UBQC protocol, two qubits must be swapped to an adjacent position to
perform the two-qubit gate, which adds extra cost to the implementation. Secondly, although the brickwork cluster
state is universal, it is not intuitive to directly implement gates such as controlled single-qubit arbitrary rotation. Such
gates can be decomposed into a ZX-diagram and directly implemented. Also, the quantum circuits can be simplified
first with existing techniques from ZX-Calculus [28] before applying our protocol. The graph-like ZX-diagram can
be optimized until it only contains nodes representing non-Clifford operations. Such optimization can be considered
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the classically simulatable part of the quantum algorithm simplified from the diagram. Suppose the non-Clifford
operation count is c, then the optimal qubit number would be 2c, and the entanglement number would depend on the
algorithm. Such a method can significantly reduce the resource requirement of our protocol.

B. Compatibility with existing verification protocols

The universality of ZX-Diagram provides compatibility with most of the existing verification protocols. However,
since some verification protocols require a universal cluster state, combining these verification protocols would in-
validate our resource requirement advantage compared to the UBQC protocol. Here we discuss the “first-order”
compatibility of verification protocols [41]. The rigorous compatibility and full analysis of security with detailed
proof, however, is beyond the topic of this paper.

Verification can be implemented by embedding a quantum circuit into the original algorithm that gives a deter-
ministic result when the algorithm has been faithfully computed. The authentication-based verification method [42]
extends the Quantum Authentication Schemes (QAS) as the embedded circuit. The trap-based verification method
[5, 43] utilize tapped wires or stabilizer codes for the embedded circuit. These embedded circuits can be converted
into ZX-diagram and processed with our protocol. It is worth mentioning that work from [34] makes it even more
convenient to embed the stabilizer codes based on ZX-diagram.

Verification can also be implemented with the run and test scheme. The agent is asked to do calculations multiple
times. The client randomly selects some of these calculations as test runs that run an algorithm in which the
measurement distribution is known. The proposal from [18] suggests running the circuit in different initial states
indistinguishable from the agent and using some of them as the tests. This method is compatible with our protocol
since the initial state can be prepared arbitrarily and indistinguishable from the agent. The proposal from [44]
implement the test run with the same cluster state as the computation but modifies the measurement angle. Since
our protocol no longer uses a universal cluster state, this proposal is invalid. However, we can still use the ZX Calculus
to find phases for the same diagram layout but it gives a known probability distribution. If each spider’s phase is
chosen carefully, the ZX-diagram can be efficiently simulated [28].

Verification can be implemented with entanglement-based protocols. Proposals from [45, 46] make use of CHSH
games and proposals from [47] utilize a self-testing graph states for verification. These methods all use self-testing
results and pass the verification when the winning rate agrees with the prediction of quantum mechanics. These
proposals are all compatible with ours; however, the self-testing graph protocol requires implementing a complicated
graph state, which would invalidate our advantage compared to the UBQC protocol.

VII. CONCLUSION

We propose a multi-agent blind quantum computation protocol based on ZX-Calculus in this work. The quantum
algorithm is first written into a ZX-diagram and then modified to be extracted into an MBQC-style algorithm. Then
the algorithm is executed across multiple agents. We show that the information leakage to every agent is minimal,
and our protocol’s security can be guaranteed under the assumption that communication between agents is limited.
Our proposal does not require a universal cluster state compared to the UBQC protocol. This advantage makes our
protocol more flexible and efficient.
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