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Discrete-variable (DV) quantum key distribution (QKD) based on single-photon detectors and sources have
been successfully deployed for long-range secure key distribution. On the other hand, continuous-variable (CV)
quantum key distribution (QKD) based on coherent detectors and sources is currently lagging behind in terms
of loss and noise tolerance. An important discerning factor between DV-QKD and CV-QKD is the effect of
phase noise, which is known to be more relevant in CV-QKD. In this article, we investigate the effect of phase
noise on DV-QKD and CV-QKD protocols, including the six-state protocol and squeezed-state protocol, in a
thermal-loss channel but with the assumed availability of perfect sources and detectors. We find that in the low
phase noise regime but high thermal noise regime, CV-QKD can tolerate more loss compared to DV-QKD. We
also compare the secret key rate as an additional metric for the performance of QKD. Requirements for this
quantity to be high vastly extend the regions at which CV-QKD performs better than DV-QKD. Our analysis
addresses the questions of how phase noise affects DV-QKD and CV-QKD and why the former has historically
performed better in a thermal-loss channel.

INTRODUCTION

Quantum key distribution (QKD) enables the sharing of
keys between two parties, Alice and Bob. Once a quan-
tum secret key is established, it can later be used by both
parties to unlock encrypted communication with total con-
fidentiality. In fact, this form of communication is guaran-
teed to be secure against an eavesdropper, Eve, by the laws
of quantum physics. QKD has become a viable cyber se-
curity technology with increasing interest across government
agencies and commercial corporations [1]. The first proposed
QKD protocol based on discrete-variables (DV) uses two po-
larization bases, which was named after the authors Bennett
& Brassard, is BB84. This protocol and its three polariza-
tion bases variant, the six-state protocol, rely on the use of
single-photon states and remain robust QKD protocols to this
day [2, 3]. Fifteen years afterward, QKD was extended to
continuous-variables (CV), which was initially based on en-
tangled multi-photon two-mode squeezed states (TMSV) and
the use of low-noise coherent detection [4–6]. An equivalent
scheme—the squeezed-state protocol—only requiring prepa-
ration of modulated squeezed states was proposed shortly af-
terward [7]. Subsequently, the GG02 [8–10] with reverse
reconciliation—proposed by Grosshans & Grangier—and the
SRLL02 [11] protocol based on Gaussian modulation of co-
herent states eliminated the need for preparing experimentally
challenging squeezed states. Although coherent-state proto-
cols are experimentally more accessible [12], the squeezed-
state protocol remains relevant due to its ideally better perfor-
mance and compatibility with certain quantum repeater archi-
tectures [13].

A comparison between measurement-device-independent
(MDI) DV-QKD and CV-QKD protocols, taking into account
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experimental imperfections was done by Pirandola et. al [14].
A critical comment argued that this comparison is unfair as it
depends on the source and detector technologies used [15].
DV-QKD and CV-QKD protocols in a noisy channel with
ideal sources and detectors have been investigated in Ref.
[16]. It was shown that CV-QKD protocols are robust against
noise when loss is low whereas DV-QKD protocols are supe-
rior in strong loss regimes. However, in Ref. [16], the key
rates of the QKD protocols were ignored as a metric for the
comparison. High key rates are an important requirement for
a full QKD network to service many users [17, 18].

We hypothesize that one of the factors for the consistent
historical performance of DV-QKD protocols is mainly due
to their robustness to phase noise, which plagues CV-QKD
protocols that rely on encoding information in phase as well as
amplitude [5]. We test this hypothesis by introducing a phase
noise model consistent with both DV-QKD and CV-QKD.

In this article, we compare idealized DV-QKD and CV-
QKD protocols, the BB84 protocol, the six-state (6S) pro-
tocol, and the squeezed-state protocol, by assuming perfect
sources, detectors, and reconciliation efficiency in a thermal-
loss channel. In doing so, we avoid the dependence on prac-
tical implementation and current technological limitations. In
the first half of the article, we delve into key-rate compar-
isons in the thermal-loss channel of QKD protocols. For com-
pleteness, we consider the strategy of “fighting noise with
noise” for improved performances in both the DV-QKD and
the CV-QKD protocols. We also identify gaps, if any, between
the ideal performances of these QKD protocols and known
bounds on the key capacity in the thermal-loss channel.

In the second half of the article, unlike previous works [14–
16], we address phase noise in both DV-QKD and CV-QKD,
which is a discerning factor for the performance of QKD.
We make use of the fact that in the DV-QKD protocol, the
thermal-loss and phase noise channels are equivalent to the
depolarizing and dephasing channels, respectively. Further-
more, we present results in the combined thermal-loss and
phase noise channels. Our work addresses an important ques-
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tion about which QKD protocol performs better by various
metrics for a given thermal-loss and phase noise channel. Fi-
nally, we discuss and conclude our results in the context of
real-world implementations, and possible future directions.

I. THERMAL-LOSS IN QKD

In this section, we present the security models and secret
key rate expressions for the DV-QKD and CV-QKD protocols
in the thermal-loss channel. We then present the results of the
secret key rate of these calculations.

A. Thermal-loss in the BB84 (and six-state) dual-rail protocol

We make use of the dual-rail BB84 protocol which is one
possible implementation of the original BB84 protocol. In the
original BB84 protocol, Alice sends a polarization qubit to
Bob with a channel that can support both polarizations. This
is equivalent to Alice utilising two quantum channels, each
supporting only a single polarization. We present this dual-
rail BB84 protocol in Fig. 1 a) and 1 b). In the BB84 protocol,
Alice prepares a single qubit in either the rectilinear Z-basis
{|0〉 , |1〉} or the diagonal X-basis {|+〉 , |−〉}. In the rectilin-
ear basis shown in Fig. 1 a), a logical 0 is prepared by Alice
sending a single photon state |1〉 in the top a1 mode and a
vacuum state |0〉 in the bottom a2 mode. Similarly, a logi-
cal 1 is prepared by sending the vacuum state |0〉 in the top
a1 mode and a single-photon state |1〉 in the bottom a2 mode.
The qubits pass through a thermal-loss channel represented by
a beamsplitter parameter with transmissivity 0≤ η1,2 ≤ 1 and
thermal state ρTh with NTh thermal photons in the auxiliary
port.

Bob, after deciding randomly (discussed in detail later) to
measure the Z-basis, measures each mode output with single-
photon detectors, only accepting single-photon events at b1 or
b2 corresponding to logical 0 or 1. Any other detector events
are not counted towards the final key. In the diagonal basis
(see Fig. 1 b)), Alice interferes with a single-photon with
the vacuum using a balanced 50 : 50 beamsplitter to gener-
ate the superposition state |+〉 = 1√

2
(|1〉a1

|0〉a2
+ |0〉a1

|1〉a2
)

which corresponds to a logical 1 state. A logical 0 corre-
sponds to Alice placing a π-phase shifter after the beamsplit-
ter and generating the state |−〉= 1√

2
(|1〉a1

|0〉a2
−|0〉a1

|1〉a2
)

to send to Bob. Bob, having randomly decided to measure
in the X-basis by placing a balanced beamsplitter, measures
only single-photon events at b′1 or b′2 corresponding to logical
0 or 1. We assume the modes pass through the thermal-loss
channels with η1 = η2 = η and thermal noise NTh and no cor-
relations between the two thermal environments. In the final
step of the protocol, Bob sends information to Alice about
which basis he used. In this reconciliation phase, Alice dis-
cards the data that does not match the basis she used to encode
her qubits.

The key rate (per channel use) for the BB84 protocol with
perfect reconciliation efficiency in the asymptotic limit is [19–

21]

KBB84 =
PS

2
(1−h(QZ)−h(QX )), (1)

where h(x) = −x log2 (x)− (1− x) log2 (1− x) is the binary
entropy function, PS is the success probability of single-
photon events, QZ and QX are the quantum bit error rates
(QBERs) of the measurement bases Z and X respectively. Un-
like the usual normalization preserving DV channels, the suc-
cess probability PS is necessary because the thermal environ-
ment adds Gaussian noise, and only single-photon events are
counted towards the secret key rate. Here, we assume perfect
number-resolving detectors as opposed to click detectors that
count all non-vacuum n > 0 events.

To calculate QZ , we consider the probability of a bit-flip
if Alice sends a logical 0 (i.e. |1〉a1

|0〉a2
) and Bob detects

a logical 1 (i.e. simultaneously detects |0〉b1
and |1〉b2

) with
probability given by (see Appendix A for full calculations):

PZ,0→1 = PZ,|0〉a1
→|1〉b1

PZ,|1〉a2
→|0〉b2

=
NTh(1+NTh)(1−η)2

γ4 ,
(2)

where γ = 1+NTh−NThη .
Bob only accepts the correct bits and the flipped bits using

photon-number resolving detectors. Therefore, we normalize
by considering the total probability Bob only detects the log-
ical bits in the Z-basis. Since we assume the channels are
symmetric, PZ,1→0 = PZ,0→1, the QBER is

QZ =
PZ,0→1

PZ,0→1 +PZ,0→0
=

PZ,1→0

PZ,1→0 +PZ,1→1
, (3)

where PZ,0→0 = PZ,|1〉a1
→|1〉b1

PZ,|0〉a2
→|0〉b2

and PZ,1→1 =

PZ,|0〉a1
→|0〉b1

PZ,|1〉a2
→|1〉b2

are the probabilities of Bob detect-
ing the same bits that Alice sent after passing through the
channel. The probability of an event (or success) is given by:

PS = PZ,0→1 +PZ,0→0

=
η +2NTh(1+NTh)(1−η)2

γ4 .
(4)

To calculate QX , we consider the bit-flips in the X basis. In
this case, the modes a1 and a2 are entangled because of the
balanced beamsplitter (see Fig. 1 b)). Similar to above, we
obtain the QBER, for the X bases as

QX =
PX ,0→1

PX ,0→1 +PX ,0→0
. (5)

We find due to symmetry that the probabilities for the diagonal
basis are the same as for the rectilinear basis and it follows that
QX = QZ , simplifying the key rate equation. We make use of
Eqs. (1), (5), and (4) to calculate the key rate in the asymptotic
limit.

Conditioned on the outcome with probability PS, it can be
shown that the density matrix after the thermal-loss channel
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Figure 1: Dual-rail BB84 protocol in the thermal-loss channel. a) and b) show the rectilinear and diagonal polarization bases as
the dual-rail equivalent of the BB84 discrete-variable QKD protocol, respectively. Both bases undergo a phase shift θ with

phase noise σ2
θ . In a), based on which mode (top or bottom) Alice chooses to send a single photon determines the logical bit 0

or 1. In b), based on the phase 0 or π of the rotation R (black square), Alice prepares a logical bit 0 or 1, respectively.

is, in fact, a depolarized state (see Appendix B):

ρ̃B :=
ρB

PS
=

η
η +2NTh(1+NTh)(1−η)2 ρA

+
NTh(1+NTh)(1−η)2

η +2NTh(1+NTh)(1−η)2 I,
(6)

where ρA is Alice’s initial density matrix. This represents a
depolarizing channel [22]

ρ → (1−λ )ρ +
λ
2
I (7)

with depolarizing parameter

λ =
2NTh(1+NTh)(1−η)2

η +2NTh(1+NTh)(1−η)2 , (8)

which tends to 1 as η → 0 or NTh→ ∞, as expected.
A property of the depolarizing channel is that the error rate

is the same in all bases:

QX ,Y,Z =
λ
2
=

NTh(1+NTh)(1−η)2

η +2NTh(1+NTh)(1−η)2 , (9)

which can be seen from Eq. (7). In establishing this equiva-
lence between the thermal-loss and depolarizing channel, we
extend our analysis to the six-state protocol which makes use
of an additional basis Y with QBER QY . The key rate for the
6S protocol is given by [21]:

K6S =
PS

2
(1−H(Λ00)−H(Λ01)−H(Λ10)−H(Λ11)), (10)

where H(x) =−x log2 x, and

Λ00 = 1− QX +QY +QZ

2
,

Λ01 =
QX +QY −QZ

2
,

Λ10 =
−QX +QY +QZ

2
,

Λ11 =
QX −QY +QZ

2
,

(11)

where the factor of 1/2 is to normalize the key-rate to per
channel use. In the thermal-loss channel, the QBER QX =
QY = QZ is symmetric. However, as we will see when phase
noise is introduced, the QBER of the three bases can be asym-
metric.

Lower bounds of BB84 and 6S protocols in the thermal-loss
channel

Introducing random bit flips at Alice before the error pro-
cessing increases the performance of BB84 in a noisy channel
and sets a tighter lower bound on the key rate [23]. In this
extension of the BB84 protocol which we denote as NBB84,
the key rate equation depends on Alice’s added bit-flip prob-
ability q (or trusted bit-flips). Following Ref. [23], we make
use of the QBER for the thermal-loss channel in Eq. (54) and
maximize the key rate with respect to q. We note that the
six-state protocol (with and without trusted bit-flips) can tol-
erate higher QBER than the BB84 protocol [23]. Similarly,
the lower bound on the secret key rate of the 6S protocol is
likewise calculated by introducing bit-flips at Alice which in-
creases the QBER tolerance of the channel [23].

B. Thermal-loss in the squeezed state protocol

In the squeezed-state protocol in a prepare-and-measure
(PM) scheme presented in Fig. 2 a), Alice introduces a modu-
lation signal in either the X = â+ â† or P=−i(â− â†) quadra-
ture (randomly chosen) a squeezed state with Vsq with Gaus-
sian distribution centered at 0 with variance Vsig. In the equiv-
alent entanglement-based (EB) scheme presented in Fig. 2 b),
Alice performs a homodyne measurement on one mode of a
shared two-mode squeezed vacuum state (TMSV) where the
other mode passes through the channel E , and Bob performs a
homodyne measurement [24]. The parameter transformation
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ρTh
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Figure 2: Squeezed-state protocol with homodyne detection in the thermal-loss channel. The phase shifter θ represents the
phase noise σ2

θ . Shown in a) is the equivalent prepare and measure squeezed-state protocol and in b) is the entanglement-based
version of the squeezed-state protocol.

between the PM and EB schemes is:

Vsq = 1/µ,

Vsig =
µ2−1

µ
,

(12)

where µ is the quadrature variance of X and P of the TMSV
source in EB scheme. The following key rate calculations are
in the EB scheme. In the asymptotic regime of infinite keys,
Eve’s most powerful attack is a collective attack. Security
proofs in this regime for this protocol are based on reduction
of coherent attacks to collective attacks for infinite dimensions
and on the optimality of Gaussian attacks [25–27]. The secret
key rate against collective attacks in the asymptotic regime
with reverse reconciliation is given by [28]

KRR = β IAB−χEB, (13)

where β is the reconciliation efficiency, IAB is the mutual in-
formation between Alice and Bob, and χEB is the Holevo in-
formation between Bob and Eve. In a Gaussian thermal-loss
channel, the quadrature covariance matrix between Alice and
Bob is [24]:

γAB =

(
aI cσz
cσz bI

)
=

(
γA σAB

σAB γB

)
= (VA +1)I

√
η(V 2

A +2VA)σz√
η(V 2

A +2VA)σz VBI

 ,

(14)

where VA = µ − 1 and VB = η(VA + 1) + (1− η)(2NTh +
1) are the TMSV variances measured by Alice and Bob
(respectively), I = diag(1,1) is the unity matrix and
σz = diag(1,−1) is the Pauli-Z matrix. We choose homo-
dyne detection (also known as “switching") at Bob, in which
Bob switches between X or P quadrature measurements.

In the squeezed state protocol with homodyne detection, the
mutual information is given by:

Ihom
AB =

1
2

log2

( VB

VB|A

)
, (15)

where VB|A = b− c2

a . The Holevo information between Bob
and Eve for the collective attack is given by

χEB = S(E)−S(E|B), (16)

where S(E) is Eve’s information and S(E|B) is Eve’s informa-
tion conditioned on Bob’s measurement. In Eve’s collective
attack, Eve holds a purification of the state between Alice and
Bob with entropy given by

S(E) = S(AB) = G[(λ1−1)/2]+G[(λ2−1)/2], (17)

where G(x) = (x + 1) log2 (x+1)− x log2 x and λ1,2 are the
symplectic eigenvalues of the covariance matrix γAB given by
λ 2

1,2 = 1
2 [∆±

√
∆2−4D2], where ∆ = Det(γA) + Det(γB) +

2Det(σAB), and D = Det(γAB). The conditional covariance
matrix of Alice’s mode after the homodyne detection by Bob
is

ΓA|b =

(
µ− η(µ2−1)

ηµ+(1−η)(2NTh+1) 0
0 µ

)
. (18)

Therefore, Eve’s entropy conditioned on Bob’s measurement
S(E|B) = S(A|b) is given by G[(λ3− 1)/2] where λ3 is the
symplectic eigenvalue of ΓA|b.

Introducing trusted noise before Bob’s homodyne measure-
ment can help extend a high-noise thermal-loss channel. In
this extension of the squeezed-state protocol which we denote
NSqz-Hom, trusted Gaussian noise ξB is added before post-
processing on Bob’s homodyne measurement data [24]. The
effect is that Eve’s information decreases more than the mu-
tual information between Alice and Bob (see Appendix C for
calculations), thus increasing the secret key rate of the proto-
col. Similarly, heterodyne detection at Bob has the same ef-
fect of introducing additional noise, thereby extending secure
communication distance in a thermal-loss channel [29].

II. PHASE NOISE IN QKD

We consider a standard model of bosonic phase noise,
known also as dephasing, phase-diffusion, or phase-damping;
for an excellent review, see [30]. This channel represented by
θ on the right of Fig. 1 applies rotation by a random angle θ
to the bosonic state according to a classical distribution f (θ),
giving the transformation

ρ 7−→
∫ π

−π
dθ f (θ)eiâ†âθ ρe−iâ†âθ . (19)

Since â†â is the number operator, a given rotation θ applies
a phase einθ to each Fock state |n〉, equivalently described by
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the transformation

â† 7−→ eiθ â†. (20)

The canonical phase distribution is the wrapped normal dis-
tribution, which models the random diffusion of an angle
and accurately represents the physical process of phase dif-
fusion [30]. Birefringence may produce this behaviour in
polarisation-based implementations of the six-state and BB84
protocols or in time-bin implementations, phase drift in be-
tween the interferometers at either end [31].

The phase shift θ (assumed here to have mean zero) is nor-
mally distributed over the whole real line:

f̃WN(θ) =
1

σ̃
√

2π
e−θ 2/2σ̃2

: θ ∈ R,

which we can ‘wrap’ into a single 2π interval by summing the
contributions from equivalent angles:

fWN(θ) =
1

σ̃
√

2π

∞

∑
k=−∞

e−(θ+2πk)2/2σ̃2
: θ ∈ [−π,π].

The variance σ̃2 of θ over the whole real line is in general
not its variance when wrapped; however, the two distributions
approach each other in the limit of small variance.

The corresponding qubit transformation of the phase noise
ignoring the thermal-loss (η = 1) is ρ jk 7→ eiθ j e−iθk ρ jk, which
may be expressed as ρ → ÛθρÛ†

θ where Ûθ = diag(eiθi ,eiθ j).
If θ is drawn from a distribution f (θ), the qubit channel be-
comes

ρ → 〈ÛθρÛ†
θ〉=

∫
θ

f (θ)ÛθρÛ†
θ dθ

where 〈·〉 denotes expected value. If {θ j} are independent, the
corresponding transformation of off-diagonal terms (i 6= j) is

ρ jk 7−→ 〈eiθ j e−iθk〉ρ jk = 〈eiθ j〉〈e−iθk〉ρ jk = r jr∗k ρ jk

where r j := 〈eiθ j〉 is the so-called ‘circular mean’ of θ j, given
for the wrapped normal distribution:

r j = e−σ̃2/2. (21)

Diagonal entries remain unchanged:

ρ j j 7−→ 〈eiθ j e−iθ j〉ρ j j = ρ j j.

If {θ j} are identically distributed then all have the same (real)
circular mean r and we obtain a (generalised) dephasing chan-
nel [22]

ρ 7−→ ρdephased =

[
ρ00 r2ρ01

r2ρ10 ρ11

]
(22)

which always sends single-photon inputs to single-photon out-
puts, unlike the thermal-loss channel. By leaving diagonal en-
tries unchanged, Eq. (22) introduces no error in the Z basis.
Common DV-QKD protocols such as the (generalised) BB84

and six-state protocols make use of additional bases (X and Y )
which are unbiased with respect to the Z basis.

The extension to the combined thermal-loss phase-noise
rail presented in Fig. 1 can be obtained by composing the
separate depolarization and dephasing channels described in
Eqs. (7) and (22), giving

ρ −→ (1−λ )
[

ρ00 r2ρ01
r2ρ10 ρ11

]
+

λ
2
I.

The corresponding error rates are thus (1−λ )ρdephased +
λ
2 I,

i.e.

QZ =

(
λ
2

)
,

QX ,Y =

(
1
2

)[
(1−λ )(1− r2)+λ

]
,

(23)

with r2 and λ given by Eqs. (21) and (8) respectively. The
probability of success PS remains the same as for the thermal-
loss channel in Eq. (4), as the subsequent dephasing does not
affect which states are discarded. The key rate for the BB84
and 6S protocols are straightforward to calculate from these
QBERs and using Eqs. (1) and (10), respectively.

For CV-QKD, we make use of the phase noise model shown
in Ref. [28, 32–34]. Residual phase noise manifests as an
added excess noise that Bob measures given by:

εθ = 2VA(1− e−Vθ /2), (24)

where Vθ is the phase noise between the local oscillator and
signal. Since the squeezed-state protocol is modulated with
equal probability in the X or P quadratures, the excess noise
due to phase noise is symmetric [24]. In Appendix D, we
show that the phase noise associated with the squeezing an-
gle of φ and the phase noise associated with the coherent state
phase of θ can be incorporated into the same phase noise pa-
rameter. Application of the rotation operators on squeezed
coherent states leads to the same excess noise in Eq. (24). Fi-
nally, we assume that the Gaussian phase noise in CV-QKD
Vθ is equal to the wrapped normal distribution variance σ2

θ in
DV-QKD. We note that in the regime where σ2

θ is large, the
phase diffusion channel becomes non-Gaussian [30]. Since
we are considering the squeezed-state protocol with coherent
detection, we make use of Eq. (16) to calculate a lower bound
on the key rate. It is left for future work to determine optimal
protocols in the phase diffusion channel.

III. COMPARISON OF QKD PROTOCOLS

A. Without phase noise σ2
θ = 0

In CV-QKD, information is encoded in the X and/or P
quadratures in one polarization with access to an infinite
Hilbert space. Conversely, in DV-QKD, information is en-
coded in one or more polarization basis in a 2-dimensional



6

10-6
10-5
10-4
0.001
0.010
0.100

1
K
(b
its
)

Pure-Loss a) NTh=10-4 b) NTh=10-2 c) NTh=10-1 d)

0 10 20 30 40 50
10-6
10-5
10-4
0.001
0.010
0.100

1

Loss (dB)

K
(b
its
)

Pure-Loss e)

0 10 20 30 40
Loss (dB)

NTh=10-4 f)

0 5 10 15 20
Loss (dB)

NTh=10-2 g)

0 2 4 6 8 10 12
Loss (dB)

NTh=10-1 h)

UB
LB
BB84
SSP
Sqz-Hom
GG02-Het

UB
LB
NBB84
NSSP
NSqz-Hom
GG02-Het

N6SP

6SP

Figure 3: Secret key rate per polarization channel in a thermal-loss channel for increasing noise NTh. Figures a)-d) and e)-h)
show the QKD versions of the protocols without and with trusted noise, respectively. For comparison, we also include the

GG02 in all figures. For the pure-loss channel, the Sqz-Hom and NSqz-Hom essentially overlap with the PLOB bound for the
chosen squeezing of 15 dB. Next in b) and f) with some noise in the thermal-loss channel means that the BB84, NBB84, 6S and
N6S protocols outperform the CV-QKD protocols. As shown in c), d), g) and h) as more thermal noise is present, the Sqz-Hom

and NSqz-Hom outperform BB84, NBB84, 6S, and N6S. In particular, Sqz-Hom saturates the lower bound (LB). Lastly,
NSqz-Hom is by far the best protocol in a high noise regime as shown in h) but far from the upper bound (UB).

0.0

0.2

0.4

0.6

0.8

1.0

K
/K

U
pp
er

Pure-Loss a) NTh=10-4 b) NTh=10-2 c) NTh=10-1 d)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Loss (dB)

K
/K

U
pp
er

Pure-Loss e)

0 10 20 30 40

Loss (dB)

NTh=10-4 f)

0 5 10 15 20

Loss (dB)

NTh=10-2 g)

0 2 4 6 8 10 12

Loss (dB)

NTh=10-1 h)

UB
LB
BB84
Six-State
SSP-Hom
GG02-Het

UB
LB
NBB84
NSix-State
NSSP-Hom
GG02-Het

Figure 4: Same as Fig. 3 but to benchmark the performance of the different protocols, we normalise the key rates by the upper
bound KUpper.

Hilbert space. To make a fair comparison, we assume that Al-
ice uses one polarization basis asymptotically close to 100%
of the time (the "computational" basis). The other basis is only
measured to characterize channel parameters and the QBER.
We make a similar assumption for the squeezed state pro-
tocols in the sense that Bob rarely switches the quadrature
he measures to characterize the anti-squeezing and determine
whether Eve tampered with the shared EPR state, thus remov-
ing the usual sifting factor of 1/2 that comes with switching.

We also make the following ideal assumptions about the
CV-QKD and DV-QKD protocols in the thermal-loss chan-
nel: (i) single-photon and laser sources are perfect (ii) detec-
tors that are used are ideal with detector efficiencies ηd = 1
and detector noise ξdet = 0 (except for intentionally adding

trusted noise in the “fighting noise with noise" protocol) (iii)
all channel parameters have been estimated with no statistical
error (iv) all channel noise is attributed to Eve (v) reverse rec-
onciliation efficiency is perfect with β = 1 and error correc-
tion efficiency is perfect for both CV-QKD and DV-QKD (vi)
all security analysis is in the asymptotic limit. Our simplified
analysis here is valid in the ideal situation where squeezed and
coherent states are only affected by loss, thermal noise and (in
the next section) phase noise.

Pirandola et. al determined lower bounds (LB) and upper
bounds (UB) on the secret key capacity C(η ,NTh) of the ther-
mal loss channel where NTh is the thermal noise and η is
the transmissivity of the thermal-loss channel [35, 36]. The
lower bound is given by the reverse coherent information of
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Figure 5: Comparison of K̃CV:DV for protocols for a set of thermal-loss channel parameters. Blue regions indicate where the 6S
protocol has a higher key rate than Sqz-Hom and conversely, red regions are where the Sqz-Hom has higher key rates than the
6S protocol. Given a minimum key rate requirement, we compare the protocols which operate the best for single-channel use
QKD. The 6S protocol covers a small region of intermediate noise and loss as seen in the first two subfigures. The green line
indicates where the QKD protocols can operate up to the minimum key rate. The rest of the parameter space is covered by the
squeezed state protocol. For high key rates in the rightmost subfigure, the 6S protocol always performs worse than Sqz-Hom.

The purple line is the upper bound (UB) of the key capacity in the thermal-loss channel. The red region in the middle and right
subfigures are regions where only the Sqz-Hom can achieve the minimum key rate.

the thermal-loss channel and the upper bound by the Gaus-
sian relative entropy of entanglement (of the Choi state in the
thermal-loss channel):

C(η ,NTh)≥− log2 [1−η ]−G(NTh) = KLower,

C(η ,NTh)≤− log2 [(1−η)ηNTh ]−G(NTh)

= KUpper,

(25)

given for non-entanglement breaking channels NTh < η/(1−
η) and where G(x) = (x+1) log2 (x+1)− x log2 x.

We present our results in Fig. 3 a)-d) for the secret key rate
per polarization channel based on calculations of the BB84
protocol, the 6S protocol, the GG02 protocol (see Appendix
E calculations), and the squeezed state with homodyne (Sqz-
Hom) protocols in the thermal-loss channel for various ther-
mal noise parameters. We note that since we make use of the
dual-rail BB84 protocol which is one possible implementation
of the BB84 protocol, the key rate equation for the DV-QKD
protocols has been divided by 2 into units of symbols per po-
larization channel. For the Sqz-Hom protocol, we choose a
practically achievable squeezing Vsq of 15 dB [37]. We note
that adding more squeezing only adds a very small improve-
ment to the key rates (see Appendix F for more details). In
the limit of infinite squeezing, the secret key rate of the Sqz-
Hom would approach the lower bound (LB) of the secret key
capacity in the thermal-loss channel as shown most clearly in
Fig. 3 b) and in a pure-loss channel as shown in Fig. 3 a). The
BB84 and 6S protocols surpass the lower bound in an inter-
mediate thermal-noise regime as shown in Fig. 3 b). In Fig.
3 e)-h), we present the “fighting noise with noise" versions of
the protocols. For the squeezed state protocol with homodyne
detection (NSqz-Hom) with 15 dB squeezing we optimized
with respect to the trusted noise ξB. As shown in Fig. 3 g)

and h) surpasses the LB for high thermal noise. In addition,
the secret key rate of the “fighting noise with noise" versions
of the DV-QKD protocols, the NBB84 and N6S protocols are
optimized with respect to the added bit-flips by Alice q and a
slight advantage is obtained as shown in Fig. 3 c). In Fig. 4,
to benchmark the performance of the different protocols, we
normalized the key rate to the upper bound of the secret key
capacity.

We compare the protocols by plotting the parameter:

K̃CV:DV =
KSqz-Hom−K6S

Max[KSqz-Hom,K6S]
, (26)

for channel parameters of standard optical fibre of loss
0.2 dB/km with distance D = 10−

η
50 km and NTh in Fig. 5.

The key rate (KSqz-Hom,K6S) > K0 where K0 is the minimum
required key rate. When the squeezed-state protocol is signif-
icantly higher in key rates K̃ = 1, and conversely, when the 6S
protocol is best, K̃ =−1.

In Fig. 5, from left to right, the protocols are operated at
increasingly higher key rates. Given a minimum key rate re-
quirement, we compare the protocols which operate the best
in bits per channel use. The main observation here is that
the channel parameter space where the 6S protocol dominates
shrinks for increasingly higher key rates and CV-QKD is at
an advantage. It can also be seen that for higher minimum
key-rate requirements, only the Sqz-Hom protocol can oper-
ate (see red regions in the middle and right subfigures). How-
ever, the 6S protocol can be operated in an intermediate-noise
regime at low-key rates where CV-QKD cannot (left and cen-
tre subfigure).

Our results indicate that common QKD protocols are far
from the upper bound secret key capacity in a thermal-loss
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(a) Contour plot of ÑCV:DV
Th as a function of the phase noise and distance (or loss) for the Sqz-Hom and 6S protocol. The green line indicates

the point at which both protocols tolerate the same amount of thermal noise. In the white regions to the right-hand side, neither one of the
protocols tolerate any thermal noise. In the red region, only the Sqz-Hom protocol tolerates thermal noise. We also show current

state-of-the-art CV-QKD (red asterisks) and DV-QKD (blue circles) protocols.

K  =10K  =10K  =100 0 0
-9 -6 -3

(b) Contour plot of L̃CV:DV or D̃CV:DV as a function of the phase noise and thermal noise for the Sqz-Hom and 6S protocol. The green line
indicates the point at which both protocols tolerate the same amount of loss. In the white regions to the right-hand side, neither one of the

protocols tolerate any loss.

Figure 6

channel. We also find that the NSqz-Hom protocol has the
best excess noise tolerance in very noisy channels in agree-
ment with Ref. [38] but we find that the BB84 and 6S proto-
cols perform better in an intermediate noise regime.

B. With phase noise σ2
θ > 0

In the following section, we quantify the performance of
the 6S and Sqz-Hom (with optimized modulation variance
VA) protocols in the combined thermal-loss and phase noise
channel. First, consider the maximum tolerable thermal noise
given by:

N(Max)
Th

= argNTh

{
0, if K(0,σ2

θ ,D)< K0.

K(NTh,σ2
θ ,D) = K0, otherwise.

(27)

In other words, the maximum tolerable noise if the key rate is
less than K0 at NTh = 0 is 0. Otherwise, the maximum tolera-
ble noise is NTh when the key rate falls to K0.
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In Fig. 6 a), we plot the following quantity:

ÑCV:DV
Th (σ2

θ ,D)

=
N(Max)

Th,Sqz-Hom−N(Max)
Th,6S

Max[N(Max)
Th,Sqz-Hom,N

(Max)
Th,6S ]

,
(28)

which is the difference between the maximum tolerable ther-
mal noise of the Sqz-Hom and the 6S protocols for a given
phase noise σ2

θ and distance D to achieve a key rate K0. High-
lighted in the figure is the green contour where both protocols
tolerate the same amount of thermal noise, i.e. ÑCV:DV

Th = 0.
For low key rates, it can be seen that the squeezed-state proto-
col tolerates more thermal noise than the 6S protocol in short
channels and when σ2

θ < 10−3. The Sqz-Hom protocol also
tolerates more thermal noise than the 6S protocol at longer
distances. In this red region, the 6S protocol tolerates zero
thermal noise, whereas the Sqz-Hom protocol tolerates some
thermal noise. For higher key-rate requirements, although the
region of noise tolerance shrinks for both protocols, the Sqz-
Hom tolerates proportionally more thermal noise across the
phase noise versus distance parameter space.

Next, we consider the maximum distance or maximum tol-
erable loss given by:

D(Max)

= argD

{
0, if K(NTh,σ2

θ ,0)< K0.

K(NTh,σ2
θ ,D) = K0, otherwise.

(29)

In other words, the maximum distance if the key rate is less
than K0 at D = 0 is 0. Otherwise, the maximum distance is
D when the key rate falls to K0. In Fig. 6 b), we plot the
following quantity:

L̃CV:DV(σ2
θ ,NTh) = D̃CV:DV(σ2

θ ,NTh)

=
D(Max)

Sqz-Hom−D(Max)
6S

Max[D(Max)
Sqz-Hom,D

(Max)
6S ]

,
(30)

which is the difference between the maximum distance of the
Sqz-Hom and the 6S protocols for a given phase noise σ2

θ and
thermal noise NTh to achieve a key rate K0. The Sqz-Hom
protocol can tolerate more loss than the 6S protocol at thermal
noise between 10−2 and 0.9, and phase noise σ2

θ < 10−3. As
found in [16], at a small region of high thermal noise, the
6S protocol tolerates more loss than the Sqz-Hom protocol.
At higher key-rate requirements, the Sqz-Hom protocol can
tolerate more loss compared to the 6S protocol. In fact, it
can tolerate as much as σ2

θ = 0.05 for a K > 10−3 key-rate
requirement and NTh < 10−3 to perform at a longer distance
than the 6S protocol.

From these results, we can conclude that for low key-rate
requirements, the 6S protocol clearly dominates a larger re-
gion of parameters. However, for high key-rate requirements,
the Sqz-Hom protocol dominates most of the parameter space
for phase noise less than a phase noise of σ2

θ < 10−3.

CV-QKD
Reference σ2

θ
B. Qi et al. [32] 4×10−2

T. Wang et al. [39] 1.2×10−3

H. Wang et al. [40] ≤ 7.0×10−3

H.-M. Chin et al. [41] &
A. A. Hajomer et al. [42] ≤ 1.0×10−3

Y. Zhang et al. [43] 7.4×10−5

DV-QKD
Reference σ2

θ
A. Boaron et al. [44] 7.2×10−2

W. Li et al. [45] 2.2×10−2

Table I: Residual phase noise of locally generated local
oscillator Gaussian modulated CV-QKD schemes in the first

table and DV-QKD schemes in the second table. With the
exception of Ref. [32], [39] & [43], the phase noise is upper

bounded from the total excess noise.

As a comparison, experimental values for the phase noise
in CV-QKD protocols are shown in Table. I. These are also
shown in Fig. 6 a) along with current state-of-the-art DV-
QKD protocols [44] & [45] (converted to distance in standard
fibre). For DV-QKD implementations, we convert the time
jitter full width at half maximum ∆tFWHM) to the phase noise
using the following equation:

σ2
θ =

(2π∆tFWHM)2

(2
√

2ln2∆t)2
, (31)

where ∆t is the timing between pulses. This equation converts
FWHM to a Gaussian width [46] and then to a phase noise (in
radians squared). The timing between pulses in both experi-
ments is inversely proportional to the repetition rate ∆t = 1/ f .

DISCUSSION

We discuss our results with less-than-ideal experimen-
tal setups of QKD protocols. In optical fibre, the cur-
rent distance record for DV-QKD is 421 km in ultralow-
loss (ULL) fibre (0.17 dB/km) corresponding to 71.9 dB loss
[44]. A secret key rate of 0.25 bps or equivalently K =
10−10 bits per channel use was obtained using superconduct-
ing single-photon detectors at a repetition rate of 2.5 GHz.
Most recently, a high key rate of K = 4.4×10−2 was demon-
strated in 10 km of standard optical fiber for DV-QKD [45].
We plot these experimental points normalized to standard op-
tical fiber loss (0.2 dB/km) in Fig. 6 a). Based on these re-
sults, for this similar key-rate requirement K0 = 10−3, CV-
QKD would, in theory, be able to achieve the same high key
rate and tolerate more noise if the same levels of phase noise
are maintained as in [39] & [40]. Additionally, CV-QKD can
extend up to 150 km as opposed to DV-QKD which cannot
tolerate noise beyond 125 km. In the rightmost subfigure in
Fig. 6 b), it can be seen that CV-QKD can tolerate more loss
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than DV-QKD for a large parameter region given a higher key
rate requirement.

Nonetheless, in terms of distance, DV-QKD is currently
leading the benchmark for QKD with the world record for
CV-QKD being more than half the distance in ULL fibre at
202.81 km (or 32.4 dB) using the GG02 protocol where a key
rate of K ≈ 10−6 was achieved [43]. On the other hand, the
apparent advantage of CV-QKD is in the efficient encoding
of keys per symbol and the faster generation and detection of
coherent (or squeezed) states with a much larger block size.
Post-processing codes at low signal-to-noise ratio were a bot-
tleneck in CV-QKD until it was recently shown that Raptor-
like LPDC codes can maintain a high key extraction rate and
high reconciliation efficiency, paving the way for practical and
deployable CV-QKD [47].

We have also focused mainly on the squeezed-state pro-
tocol. Despite renewed interest in the squeezed-state proto-
col due to its robustness to noise [48–50], the difficulty of
modulating and generating stable squeezed coherent states
remains. However, entanglement-based versions have been
demonstrated [51], and sources of highly entangled TMSV
states are a promising pathway toward realizing the squeezed-
state protocol [52].

Furthermore, one of the limitations of CV-QKD is cur-
rently the maintaining of phase reference using a local oscil-
lator (LO), which needs to be practically solved without com-
promising unconditional security, in a real-world setting out-
side of the laboratory [43]. It can be seen from our results,
that although CV-QKD performs well in a high-thermal noise
regime, the introduction of phase noise destroys this advan-
tage. For CV-QKD to maintain this advantage, the amount
of phase noise must be less than σ2

θ < 10−3. However, we
also find that CV-QKD performs best for high minimum key-
rate requirements where it can tolerate more thermal noise at
longer distances than DV-QKD. The physical reason behind
this is that in CV-QKD, more symbols can be sent that will re-
sult in a shared key. Conversely, DV-QKD is limited to single
photons.

Based on these results, we speculate that the consistent his-

torical performance of DV-QKD protocols is mainly due to
robustness to phase noise, which plagues CV-QKD protocols
that rely on encoding information in phase as well as ampli-
tude. However, with increasingly more robust carrier phase
compensation schemes based on machine learning as in Ref.
[41, 42], phase noise may no longer be a limiting factor in
CV-QKD.

We note the limitations of our phase noise model for the
squeezed-state protocol. We had assumed that the phase noise
is Gaussian, whereas the phase diffusion channel is a non-
Gaussian channel [30]. It is left for future work to determine
the optimal QKD protocol in the phase diffusion channel.

Although current upper bounds on the secret key capac-
ity can serve as a benchmark for QKD protocols, no QKD
protocol is currently known to saturate these bounds in the
thermal-loss channel. We note that energy-constrained upper
bounds in the thermal-loss channel have been recently deter-
mined, that would be comparable in energy to common DV-
QKD protocols [53].

IV. CONCLUSION

In this work, we compared DV-QKD and CV-QKD pro-
tocols on equal grounds in a thermal-loss channel and we
assumed ideal sources and detector performances. We de-
veloped analytical formulas for the QBER of the BB84 and
six-state protocols in a thermal-loss channel. We introduced
the minimum key rate as a metric for QKD performance. We
found the squeezed-state protocol dominates most of the chan-
nel parameter regimes when there is no phase noise, except for
an intermediate-noise regime where the six-state protocol can
tolerate more loss and surpasses the lower bound to the se-
cret key capacity. With the addition of phase noise, we find
that the overall landscape of the DV-QKD and CV-QKD com-
parison becomes more complex. Finally, we find DV-QKD
is largely unaffected by phase noise, whilst CV-QKD is sen-
sitive but performs better below a threshold phase noise only
recently reached in experiments.
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APPENDICES

A. Quantum Bit Error Rate (QBER)

To calculate QZ , we consider the probability of a bit-flip
if Alice sends a logical 0 (i.e. |1〉a1

|0〉a2
) and Bob detects a

logical 1 (i.e. simultaneously detects |0〉b1
and |1〉b2

) given by,

PZ,0→1 = PZ,|1〉a1
→|0〉b1

PZ,|0〉a2
→|1〉b2

= Tr(UBS(η)(|1〉a1
〈1|a1

⊗ρTh)U
†
BS(η) |0〉b1

〈0|b1
)

×Tr(UBS(η)(|0〉a2
〈0|a2

⊗ρTh)U
†
BS(η) |1〉b2

〈1|b2
),

(32)

where ρTh = ∑
∞
n=0[N

n
Th/(NTh +1)n+1] |n〉〈n| is the thermal

state with average thermal photon number NTh and UBS(η)
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is the unitary beamsplitter transformation mixing the thermal
environment and the state sent by Alice. If Alice prepares a
logical 1 and Bob measures 0, the probability is

PZ,1→0 = PZ,|0〉a1
→|1〉b1

PZ,|1〉a2
→|0〉b2

= Tr(UBS(η)(|0〉a1
〈0|a1

⊗ρTh)U
†
BS(η) |1〉b1

〈1|b1
)

×Tr(UBS(η)(|1〉a2
〈1|a2

⊗ρTh)U
†
BS(η) |0〉b2

〈0|b2
),

(33)

and since we assume the channels are symmetric, PZ,1→0 =
PZ,0→1. The total un-normalized probability of a bit-flip is
2PZ,0→1.

Bob only accepts the correct bits and the flipped bits.
Therefore, we normalize by considering the total probability
Bob only detects the logical bits in the Z-basis. Hence

QZ =
PZ,0→1

PZ,0→1 +PZ,0→0
=

PZ,1→0

PZ,1→0 +PZ,1→1
, (34)

where PZ,0→0 = PZ,|1〉a1
→|1〉b1

PZ,|0〉a2
→|0〉b2

and PZ,1→1 =

PZ,|0〉a1
→|0〉b1

PZ,|1〉a2
→|1〉b2

are the probabilities of Bob detect-
ing the same bits that Alice sent after passing through the
channel. These probabilities are given by

PZ,0→0 = PZ,1→1

= Tr(UBS(η)(|1〉a1
〈1|a1

⊗ρTh)U
†
BS(η) |1〉b1

〈1|b1
)

×Tr(UBS(η)(|0〉a2
〈0|a2

⊗ρTh)U
†
BS(η) |0〉b2

〈0|b2
).

(35)

These probabilities are:

PZ,0→1 = PZ,1→0 =
(1−η)2(NTh +N2

Th)

(1+(1−η)NTh)4 (36)

PZ,0→0 = PZ,1→1 =
η +(1−η)2(NTh +N2

Th)

(1+(1−η)NTh)4 . (37)

To calculate QX , we consider the bit-flips in the X basis. In
this case, the modes a1 and a2 are entangled because of the
balanced beamsplitter (see Fig. 1 b)). Therefore, we consider
the joint probability given by

PX ,0→1

= Tr[U50/50,b1b2UBS,a1(η)UBS,a2(η)(|−〉a1,a2
〈−|a1,a2

⊗ρa1,Th⊗ρa2,Th)U
†
BS,a1

(η)U†
BS,a2

(η)U†
50/50,b1b2

M1],

PX ,1→0

= Tr[U50/50,b1b2UBS,a1(η)UBS,a2(η)(|+〉a1,a2
〈+|a1,a2

⊗ρa1,Th⊗ρa2,Th)U
†
BS,a1

(η)U†
BS,a2

(η)U†
50/50,b1b2

M0],

(38)

where U50/50,b1b2 is the second balanced beamsplitter unitary,
|−〉a1,a2

〈−|a1,a2
= Rπ,a1 |+〉a1,a2

〈+|a1,a2
R†

π,a1 is obtained by
applying a π-phase shifter to the state |+〉, M1 = |0〉b′1 〈0|b′1 ⊗
|1〉b′2 〈1|b′2 is the logical 1 measurement outcome and M0 =

|1〉b′1 〈1|b′1⊗|0〉b′2 〈0|b′2 . Similar to above, we also renormalize
to obtain the QBER,

QX =
PX ,0→1

PX ,0→1 +PX ,0→0
. (39)

We find due to symmetry that the probabilities for the diagonal
basis are the same as for the rectilinear basis and it follows that
QX = QZ , simplifying the key rate equation.

B. Thermal-loss to depolarized state

Using the model of thermal noise from the previous sec-
tion we identify Alice’s input mode A, Bob’s output mode B,
and the environmental input and output modes E and F (see
Fig. 7), with corresponding creation and annihilation opera-
tors (lowercase). A photon-number (Fock) state of a bosonic

mode may be expressed as |n〉 = (â†)n
√

n!
|0〉; in this represen-

tation, the action of the beamsplitter is given entirely by the
transformation

â 7→ √η b̂+
√

1−η f̂

ê 7→
√

1−η b̂−√η f̂ .
(40)

If the beamsplitter receives no photon from Alice and exactly
n photons from the environment, then under action (40) the
combined input state |0,n〉AE transforms as

Figure 7: A thermal noise rail with modes labeled for Alice,
Bob, and the environment.
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|0,n〉AE =
(ê†)n
√

n!
|0,0〉AE 7−→

(
√

1−η b̂†−√η f̂ †)n
√

n!
|0,0〉BF

=
1√
n!

(
n

∑
k=0

(
n
k

)
(
√

1−η b̂†)n−k(−√η f̂ †)k

)
|0,0〉

=
1√
n!

n

∑
k=0

n!
k!(n− k)!

(
√

1−η)n−k(−√η)k
√
(n− k)!

√
k! |n− k,k〉

=
n

∑
k=0

√(
n
k

)
(
√

1−η)n−k(−√η)k |n− k,k〉

:= |ψn〉

which is a coherent superposition of Fock states, with n to- tal photons split across rails B and F according to a binomial
distribution. If Alice instead sends a single photon we obtain

|1,n〉AE = â† |0,n〉AE 7−→ (
√

η b̂† +
√

1−η f̂ †) |ψn〉

=
√

η
n

∑
k=0

√(
n
k

)
(−√η)k(

√
1−η)n−k

√
n− k+1 |n− k+1,k〉

+
√

1−η
n

∑
k=0

√(
n
k

)
(−√η)k(

√
1−η)n−k

√
k+1 |n− k,k+1〉

:= |φn〉

where the first term corresponds with Alice’s photon reaching
Bob, and the second with it escaping to the environment.

It follows that Alice’s input can be considered a 2×2 den-
sity matrix ρA with terms of form ρA

i j |i〉〈j|. The collective
input AE to the beamsplitter system is therefore

ρ in = ρA⊗ρE = ∑
i, j,n

ρA
i j pn |i,n〉〈j,n| .

Since quantum channels are linear, the collective output BF
is determined by the action of the channel on each |i,n〉〈j,n|
term (despite |i〉〈j| individually representing a nonphysical
state whenever i 6= j). Since |i,n〉 represents an independent

input to each beamsplitter, the output is a direct tensor product
of the independent single-rail outputs derived above, i.e.

|i,n〉AE 7−→|ψn0〉B0F0
|ψn1〉B1F1

· · ·
|φn0〉B0F0

· · · |ψn1〉Bn1 Fn1
:= |ωi,n〉BF

where only rail i has output |φn〉, the symbol ω was cho-
sen for no particular reason. The Hermitian conjugate of Eq.
(40) transforms the corresponding bra in the same way, giving
〈j,n| 7−→ 〈ωj,n| and hence |i,n〉〈j,n| 7→

∣∣ωi,n
〉〈

ωj,n
∣∣. Bob’s

final state is

ρB = TrF(ρout) = TrF

(
∑
i, j,n

ρA
i j pn

∣∣ωi,n
〉〈

ωj,n
∣∣)= ∑

i, j
ρA

i j ∑
n

pn TrF
∣∣ωi,n

〉〈
ωj,n

∣∣ (41)

obtained by tracing over the environmental modes in the col-
lective output ρout.

We assume that Bob may perform a perfect photon-number-
resolving (PNR) measurement in any desired basis, and that

like Alice he is interested only in single-photon states |β〉 =
∑i βi |i〉 and will discard all others. With perfect measurement,
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Bob’s outcome probabilities are given by projection:

P(|β〉) = 〈β|ρB|β〉= Tr
(
|β〉〈β|ρB) (42)

where only terms of form |i〉〈j| in Bob’s state ρB contribute to

this expression if |β〉 is a single-photon state. Like ρA, Bob’s
state ρB may therefore be effectively considered a 2×2 matrix
ρB

i j, which we now compute. Discarding terms which contain
multiple photons in any single one of Bob’s rails leaves

|ψn〉 −→ |ψ ′n〉= (−√η)n−1
(
−√η |0,n〉+

√
n(1−η) |1,n−1〉

)
|φn〉 −→ |φ ′n〉= (−√η)n−1

(
[n−ηn−η ] |1,n〉−

√
η(1−η)(n+1) |0,n+1〉

)
.

(43)

Next, to compute

TrF
∣∣ωi,n

〉〈
ωj,n

∣∣= ∑
n
〈n〉ωi,n 〈ωj,n〉n

we need only consider components of
∣∣ωi,n

〉〈
ωj,n

∣∣with diago-

nal environmental mode |n〉〈n|, as all others vanish. Discard-
ing these nondiagonal terms in each of our single-rail outer
products gives

∣∣ψ ′n〉〈ψ ′n∣∣−→ ηn−1(η |0,n〉〈0,n|+n(1−η) |1,n−1〉〈1,n−1|
)

(44)∣∣φ ′n〉〈φ ′n∣∣−→ ηn−1([n−ηn−η ]2 |1,n〉〈1,n|+η(1−η)(n+1) |0,n+1〉〈0,n+1|
)

(45)∣∣φ ′n〉〈ψ ′n∣∣−→−ηn−1√η [n−ηn−η ] |1,n〉〈0,n| (46)∣∣ψ ′n〉〈φ ′n∣∣−→−ηn−1√η [n−ηn−η ] |0,n〉〈1,n| . (47)

We can decompose
∣∣ωi,n

〉〈
ωj,n

∣∣ in the collective Fock basis as
a sum of terms corresponding with each different combination
of photon numbers from Eqs. (44) and/or (45). However, we
keep only those terms with a photon in exactly one of Bob’s

modes; if i 6= j, terms (46) and (47) provide these photons
(albeit in a different rail on each side of the outer product)
and hence all other rails must be empty. After simultaneously
tracing out the environment, this gives

TrF
∣∣ωi,n

〉〈
ωj,n

∣∣= 1
η
(ηni [ni−ηni−η ]) (ηn j [n j−ηn j−η ])

(
∏

k 6=i, j
ηnk

)
|i〉〈j| .

If i = j, the photon is received either in the original rail i or an
erroneous rail j 6= i, giving

TrF
∣∣ωi,n

〉〈
ωi,n
∣∣= ηni−1(ni−ηni−η)

(
∏
k 6=i

ηnk

)
|i〉〈i|

+∑
j 6=i

(1−η)2 ηni(ni +1)n jηn j−1

(
∏

k 6=i, j
ηnk

)
|j〉〈j| .

Returning to Eq. (41), we now sum over all n. This is done an-
alytically, and can also be done with the aid of Mathematica.

The resulting action of the channel is defined by

|i〉〈j|A 7−→
η
γ4 |i〉〈j|B : i 6= j,

|i〉〈i|A 7−→
η
γ4 |i〉〈i|+

NTh(1+NTh)(1−η)2

γ4 I

where γ = 1+NTh−NThη and I is the identity, i.e. I/2 is
the maximally-mixed state. Noting that TrρA = ∑i ρA

ii = 1,
we can thus express this as the qubit transformation ρA→ ρB
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(see Eq. (41)):

ρA 7−→ η
γ2 ρA +

NTh(1+NTh)(1−η)2

γ2

(
∑

i
ρA

ii

)
I (48)

=
η
γ4 ρA +

NTh(1+NTh)(1−η)2

γ4 I. (49)

The trace of this un-normalised output now represents the
probability Ps of successfully receiving a valid qubit:

PS = TrρB =
η +2NTh(1+NTh)(1−η)2

γ4 . (50)

Conditional on success, we obtain the normalised state

ρ̃B :=
ρB

PS
=

η
η +2NTh(1+NTh)(1−η)2 ρA

+
NTh(1+NTh)(1−η)2

η +2NTh(1+NTh)(1−η)2 I.
(51)

This represents a depolarizing channel [22]

ρ → (1−λ )ρ +
λ
2
I (52)

with depolarizing parameter

λ =
2NTh(1+NTh)(1−η)2

η +2NTh(1+NTh)(1−η)2 , (53)

which tends to 1 as η → 0 or NTh→ ∞, as expected.
A property of the depolarizing channel is that the error rate

is the same in all bases:

Q =
λ
2
=

NTh(1+NTh)(1−η)2

η +2NTh(1+NTh)(1−η)2 , (54)

which can be seen from Eq. (52). In this article, we only
focus on the dual-rail case of d = 2. It is left for future work
to consider the high-dimensional QKD protocols in-depth.

C. Fighting noise with noise squeezed state protocol

Introducing trusted Gaussian noise ξB before Bob’s detec-
tion modifies the mutual information:

Inoise
AB =

1
2

log2

( VB +ξB

VB|A +ξB

)
, (55)

The conditional entropy is:

S(E|xB)= S(BC|xB)=G((λ3−1)/2)+G((λ4−1)/2), (56)

where the symplectic eigenvalues are given by:

λ 2
3,4 =

1
2
[A±

√
A2−4B], (57)

where

A =
1

VB +ξB
(VB +VAD+ξB∆),

B =
D

VB +ξB
(VA +ξBD),

(58)

where for ξB = 0 and ξB = 1, we obtain the squeezed protocol
with homodyne and heterodyne detection, respectively.

D. Squeezed-state protocol phase noise

In this section, we analyze the squeezed-state protocol more
closely. To find the excess noise due to phase noise, we note
that a squeezed coherent state has two relevant angles in phase
space. These are θ , the angle of the coherent state relative to
the X quadrature, and φ , the angle of the squeezing axis. As
in [33], we consider the residual phase noise after estimating
the angle, but with consideration of this additional φ . The
quadratures after homodyne or heterodyne measurements are:

(
xm
pm

)
=

√
G
2

(
cosφ sinφ
−sinφ cosφ

)
×
(

cosθ sinθ
−sinθ cosθ

)(
xA + x0
pA + p0

)
,

(59)

where Alice sends a squeezed coherent state with xA ∼
N (0,Vx) and pA ∼N (0,Vp) centered at x0 = 0 and p0 = 0
measured with a coherent detector with gain G. However, we
make use of trigonometric identities in Eq. (59) to obtain:(

xm
pm

)
=

√
G
2

(
cos(θ +φ) sin(θ +φ)
sin(θ +φ) cos(θ +φ)

)(
xA + x0
pA + p0

)
.

(60)
Bob then estimates the phase with the estimators θ̂ ∼

N (θ ,Vθ ) and φ̂ ∼N (φ ,Vφ ). Bob then sends his phase esti-
mates to Alice who makes corrections and estimates Bob’s
measurements. The excess noise due to the phase noises
would then be:

ξx = var(xm− x̃m)

ξp = var(pm− p̃m).
(61)

where var is the variance, and x̃m and p̃m are the estimated
quadratures as a function of the estimators θ̂ and φ̂ . The ex-
cess noise depends on the remaining phase noise Θ = θ +
φ − θ̂ − φ̂ which we assume is a normally distributed variable
Θ∼N (0,σ2

Θ
). Then it is straightforward to calculate the ex-

cess noise:

ξx = 2VA(1− e−σ̃2
Θ
/2)

ξp = 2VA(1− e−σ̃2
Θ
/2),

(62)

where σ̃2
Θ
=Vφ +Vθ .

E. GG02 protocol with heterodyne detection

For heterodyne detection by Bob, the mutual information
IAB in a thermal-loss channel is[24]

IAB = log2

(
VB +1

VB|AM +1

)

= log2

(
ηVA +(1−η)(2NTh +1)

η +(1−η)(2NTh +1)

)
,

(63)
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where VB is Bob’s variance and VB|AM = b− c2/(a + 1) is
Bob’s variance conditioned on Alice’s heterodyne measure-
ment. S(E|B) = S(A|xB, pD) is the information obtained by
Eve conditioned on Bob’s heterodyne measurement result xB
and the auxiliary mode pD [24]. The covariance matrix of
Alice after a projective measurement by Bob’s heterodyne de-
tection is

γout
A = γA−σAB(γB + I)−1σT

AB, (64)

where σAB = cσZ . The conditional Von Neumann entropy is

S(A|xB, pD) = G[(λ3−1)/2], (65)

where the symplectic eigenvalue λ3 is

λ3 = a− c2/(b+1). (66)

F. Squeezing required for the Sqz-Hom protocol

In Fig. 8, we compare the performance of the Sqz-Hom
protocol for the amount of squeezing used to the BB84 pro-
tocol and GG02 with heterodyne (GG02) protocol. In a pure-
loss channel (see Fig. 8 a)), Sqz-Hom protocols with more
than 10 dB of squeezing are sufficient to be equal to or better
than the GG02 protocol for all loss parameters (where the key
rate is greater than K = 10−10). However, for an intermediate-
noise region (i.e. Fig. 8 b)), the BB84 protocol is robust at
higher channel losses. We find that for very noisy thermal-
loss channels shown in Fig. 8 c) and d), more than 9 dB of
squeezing is required to surpass BB84.
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Figure 8: Regions where QKD protocols give the highest secret key rate greater than K = 10−10 based on the amount of
squeezing Vsq prepared by Alice for the squeezed-state protocol with homodyne detection. In the unshaded regions, K is less

than 10−10 for all protocols. Comparison of the squeezed-state protocol with homodyne detection in a pure-loss channel based
on the amount of squeezing prepared by Alice. Above 9 dB of squeezing, the Sqz-Hom protocol performs better than GG02

and BB84 protocols.
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