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In this work we present the general unified description for the unitary time-evolution generated by time-
dependent non-Hermitian Hamiltonians embedding the bosonic representations of su(1, 1) and su(2) Lie alge-
bras. We take into account a time-dependent Hermitian Dyson maps written in terms of the elements of those
algebras with the relation between non-Hermitian and its Hermitian counterpart being independent of the alge-
bra realization. As a direct consequence, we verify that a time-evolved state of uncoupled modes modulated
by a time-dependent complex frequency may exhibits a non-zero entanglement even when the cross-operators,
typical of the interaction between modes, are absent. This is due the non-local nature of the non-trivial dy-
namical Hilbert space metric encoded in the time-dependent parameters of the general Hermitian Dyson map,
which depend on the imaginary part of the complex frequency. We illustrate our approach by setting the PT -
symmetric case where the imaginary part of frequency is linear on time for the two-mode bosonic realization of
Lie algebras.

I. INTRODUCTION

Entanglement as a quantum resource can naturally arise
when more than one quantum system is considered, and
therefore has become an indispensable tool for characteriz-
ing quantum many-body systems [1]. It is essential for many
applications in the field of quantum information, such as quan-
tum key distribution [2], quantum teleportation [3] and quan-
tum computation [4]. The generation of entanglement in op-
tical setups may be achieved, for example, by means of para-
metric amplifiers considered for cavities modes whose cou-
pling dynamics is modeled by a bilinear Hamiltonian Ĥ ∝
â1â2 + H.c [5, 6]. Also, beam splitter acts as an entan-
gler, and is described by the Hamiltonian Ĥ ∝ â1â

†
2 + H.c

[7, 8]. Nevertheless, entanglement may also be produced and
manipulated in different physical scenarios as NMR [9], su-
perconducting qubits [10], optomechanical systems [11] and
others [12, 13]. The entanglement characterization is based
on well-established criteria which provide various conditions
and require different experimental techniques to be evaluated
[14, 15]. As an example, in continuum-variables systems, the
Hillery and Zubairy criteria [16, 17] and the Nha and Zubairy
criterium [18, 19] provide a class of inequalities involving the
two-mode bosonic realizations of su(1, 1) and su(2) Lie alge-
bras whose violation indicates the presence of entanglement.
Some conditions for entanglement in multipartite systems are
derived in Ref. [20]. Genuine multipartite entanglement and
EPR steering for continuum-variables are discussed by Teh
and Reid [21], which may be applied on three-mode spon-
taneous parametric down-conversion to detect tripartite gen-
uine non-gaussian entanglement [22]. In this sense, we extend
the study of entanglement quantum systems considered in the
scope of non-hermiticity.

Non-Hermitian systems can be used to model open and dis-
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sipative dynamics assuming the dynamics described by means
of non-Hermitian Hamiltonian operators as found in Refs.
[23–26]. However, new perspectives have been addressed to
the foundations of quantum theory since the publication of
the seminal work of Bender and Boettcher [27]. They conjec-
tured that a non-Hermitian Hamiltonian have real eigenval-
ues if it exhibits unbroken parity-time (PT ) symmetry [28].
Shortly after, a formalism embracing the special class of non-
Hermitian Hamiltonians, called pseudo-Hermitian, was pre-
sented by Mostafazadeh [29–31]. He showed that pseudo-
hermiticity and the existence of a positive-defined metric of
Hilbert space are the necessary conditions for an operator to
exhibit a real spectrum, and generate a unitary time-evolution
within a consistent quantum mechanical framework. Simula-
tions of quantum PT -symmetric systems are usually done in
optical experimental setups, in the sense that the mathemati-
cal equivalence between the quantum mechanical Schrödinger
equation and the optical wave equation allows the realiza-
tion of complex potentials within the framework of optics
as suggested in Refs. [32–35]. Similar simulations of non-
Hermitian quantum systems are found in the context of silicon
photonics [36]. In addition, it is noteworthy the relevance of
these mathematical developments in many topics of physics
as complex scattering potentials [37–39], tight-binding chain
[40], anisotropic XY model [41], quantum brachistochrone
problem in both theoretical [42, 43] and experimental [44]
scenarios, coupled optomechanical systems [45], geomet-
ric phase [46], pseudochirality [47], and non-Hermitian ver-
sion of Jaynes-Cummings optical model obtained from κ-
deformed Dirac oscillator [48]. Furthermore, in the field
of quantum information, there are many interesting investi-
gations in the context of pseudo-hermiticity considered for
optimal-speed evolution generation [49], pseudo-Hermitian
networks [50], perfect state transfer in non-Hermitian net-
works [51], information retrieval [52], holonomic gates [53],
and an experimental quantum cloning protocol was presented
in Ref. [54]. Recently, an efficient simulation scheme of a fi-
nite PT -symmetric system with LOCC was proposed in Ref.
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[55].
In addition, when a time-dependent non-Hermitian Hamil-

tonian is considered, Mostafazadeh demonstrated that by ap-
plying a time-dependent metric operator we cannot ensure the
unitarity of the dynamics simultaneously with the observabil-
ity of the Hamiltonian as happens in the time-independent
scenario [56, 57]. To settle this issue, Fring and Moussa
[58] have proposed to treat the Hamiltonian as a mere gen-
erator of time-evolution preserving the unitary dynamics and
assuming a time-dependent metric which leads to a distinction
between the observable energy operator and the Hamiltonian
[59]. Recently, it has been shown that these time-dependent
non-Hermitian Hamiltonians can generate squeezed states of
the radiation field with an infinite degree of squeezing in a fi-
nite time interval [60, 61], what is also can be achieved by
considering a single-mode oscillator modulated by a time-
dependent pure imaginary frequency in applying a quadratic
non-Hermitian Dyson map [62]. These previous results also
lead to an enhancement in the photon production by the Dy-
namical Casimir Effect (DCE) described by a DCE-like non-
Hermitian Hamiltonian [63].

In time-dependent pseudo-Hermitian context, the no-go
theorems are discussed in Ref. [64] in a modified formula-
tion of pseudo-Hermitian quantum mechanics based on the
geometry of Hilbert spaces [65]. Moreover, Fring and Frith
[66] investigated the von Neumann entropy behavior of an in-
teracting PT -symmetric bosonic system, and they verify that
the entropy decays asymptotically to a finite constant value
when the symmetry is spontaneously broken. Frith [67] also
considers a non-Hermitian version of the Jaynes-Cummings
model in which an exotic behavior of the entanglement ap-
pears in the PT -symmetric broken regime.

In this work, we consider a more general Hermitian coun-
terpart embedding both su(1, 1) and su(2) Lie algebras as
done in [68, 69]. We observe that a pseudo-Hermitian Hamil-
tonian describing uncoupled modes, modulated by a time-
dependent complex function, can exhibit entanglement even
when the cross-operators, typical of the interaction between
modes, are absent. We evaluate the entanglement between two
modes by means of the linear entropy [14]. The non-trivial
entanglement between uncoupled modes comes from the gen-
eral time-dependent Hermitian Dyson map, which generates a
dynamical inseparable Hilbert space through which one of the
quantum correlations are encoded. In this context, it is signifi-
cant to understand the relevance of the physics following from
pseudo-Hermitian Hamiltonians and its possible applications
to quantum information.

This manuscript is organized as follows: Section II brings
a brief review of the formalism of time-dependent pseudo-
Hermitian Hamiltonian with time-dependent metric, showing
how to build the time-dependent Dyson map to obtain the
general Hermitian counterpart Hamiltonian carrying in a uni-
fied form both su(1, 1) and su(2) Lie algebras. Then, we ex-
actly solve the time-dependent Schrödinger equation to have
a unitary time-evolution operator. In Section III, we consider
the simplest pure algebraic case, which can be analyzed ex-
actly. We present the usual two-mode bosonic realizations of
su(1, 1) and su(2) in Section IV, we discuss the cases where

we achieve the maximum entanglement between the modes
by means of the linear entropy. We also present a qualitative
discussion toward a multimode bosonic realization for our ap-
proach. Finally, in Section V, we point out our main conclu-
sions.

II. TIME-DEPENDENT NON-HERMITIAN SYSTEM

A. Non-Hermitian approach

It has been shown that a time-dependent non-Hermitian
Hamiltonian operator can generate a unitary time-evolution
provided that there are the following two Schrödinger equa-
tions (~ = 1) [58]

i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, Ĥ(t) 6= Ĥ†(t), (1a)

i∂t|ψ(t)〉 = ĥ(t)|ψ(t)〉, ĥ(t) = ĥ†(t), (1b)

with both states related by means of the time-dependent
Dyson map η̂(t) defined as

|ψ(t)〉 = η̂(t)|Ψ(t)〉. (2)

Substituting Eq. (2) into the Eq. (1), the Hamiltonian operator
ĥ(t) can be written in terms of Ĥ(t) and η̂(t) in the form

ĥ(t) = η̂(t)Ĥ(t)η̂−1(t) + i∂tη̂(t)η̂−1(t), (3)

which is assumed to be Hermitian in order to generate a uni-
tary time-evolution. Therefore, from the hermiticity condition
on Eq. (3), ĥ†(t) = ĥ(t), we obtain the time-dependent quasi-
hermiticity relation

Ĥ†(t)Θ̂(t)− Θ̂(t)Ĥ(t) = i∂tΘ̂(t), (4)

with Θ̂(t) = η̂†(t)η̂(t) being the time-dependent metric oper-
ator [58]. It ensures the time-dependent probability densities
in the Hermitian and non-Hermitian systems to be related ac-
cording to the equation

〈Ψ(t)|Ψ̃(t)〉Θ̂(t) = 〈Ψ(t)|Θ̂(t)|Ψ̃(t)〉 = 〈ψ(t)|ψ̃(t)〉. (5)

Moreover, the Hermitian and non-Hermitian observables,
respectively represented by ô(t) and Ô(t), can be related
through the similarity transformation

ô(t) = η̂(t)Ô(t)η̂−1(t), (6)

in which the Dyson operator η̂(t) appears as the central ele-
ment relating both operators. It also implies on the equality

〈Ψ(t)|Ô(t)|Ψ̃(t)〉Θ̂(t) = 〈ψ(t)|ô(t)|ψ̃(t)〉, (7)

which shows that the equality of the expectation values in
both non-Hermitian and Hermitian approaches. Unlike when
the metric is time-dependent, in the case of time-independent
metric operator, the Eqs. (3) and (4) reduce to the forms

ĥ(t) = η̂Ĥ(t)η̂−1, (8a)

Ĥ†(t) = Θ̂Ĥ(t)Θ̂−1, (8b)



3

which means that the Eq. (6) holds, and therefore the Hamilto-
nian operator represents an observable in the quantum system.

In Ref. [59], the authors discuss a remarkable issue aris-
ing from the case of time-dependent metric operator in the
Hilbert space. The non-Hermitian Hamiltonian operator can
not be associated with the observable correspondent to the en-
ergy operator, understood here only as the generator of time-
evolution. This means that its eigenvalues are not necessarily
real any time. Nevertheless, a non-Hermitian observable re-
lated to the energy operator, H̃(t), is defined from Eq. (6)
as

H̃(t) ≡ η̂−1(t)ĥ(t)η̂(t) = Ĥ(t) + iη̂−1(t)∂tη̂(t), (9)

where H̃(t) cannot be called "Hamiltonian", since it does not
satisfy the Eq. (1).

B. Non-Hermitian Hamiltonian and Dyson map

For our main purpose we consider the non-Hermitian
Hamiltonian operator in the following form

Ĥs(t) = 2ω(t)K̂0 + 2α(t)K̂− + 2β(t)K̂+, (10)

where the operator K̂i is used to represent the i-th generators
of su(1, 1) or su(2) Lie algebras, which can be written in the
unified form:

[K̂0, K̂±] = ±K̂± , [K̂+, K̂−] = 2sK̂0 . (11)

Here the choice of the parameter s = ±1 determines the cor-
respondent su(2) and su(1, 1), respectively. In the context
of these Lie algebras, we now introduce the Hermitian time-
dependent Dyson map defined in terms of the generators K̂i,
and which has the form

η̂s(t) = exp
[
2εsK̂0 + 2µsK̂− + 2µ∗sK̂+

]
, (12a)

= exp
[
λsK̂+

]
exp

[
ln ΛsK̂0

]
exp

[
λ∗sK̂−

]
. (12b)

Notice the parameters in both Eqs. (12a)-(12b) are time de-
pendent, and we suppres it in the notation for simplicity. The
Eq. (12b) comes from the Gauss decomposition [70] applied
on Eq. (12a), with λs and Λs conveniently written in the form

λs = Φse
−iϕs , (13a)

Λs =
1− tanh2 Ξs

(1− εs tanh Ξs/Ξs)
2 , (13b)

with Λs > 0, and

Φs =
εs tanh Ξs/Ξs

1− εs tanh Ξs/Ξs
|zs|. (14)

In the Eq. (14) the parameter zs = 2µs/εs = |zs|eiϕs

is known to be the free parameter of the map, where we
are assuming the parameter εs as a positive real function
and µs = |µs|eiϕs . Also, we have the parameter Ξs =

√
ε2s + 4s|µs|2 = εs

√
1 + s|zs|2 such that Ξs ∈ R by as-

sumption. Unlike the su(2) case which does not imply any
constraint to |zs|, the assumption Ξs ∈ R implies that we
need to consider the additional condition |zs| ≤ 1 for the case
of su(1, 1) Lie algebra.

The Eq. (14) allows to express the parameter εs in terms of
zs and Φs in the form

εs =
1

2
√

1 + s|zs|2
ln

(
1 +

√
1 + s|zs|2

)
Φs + |zs|(

1−
√

1 + s|zs|2
)
Φs + |zs|

. (15)

Conveniently, we also introduce the real function

χs = −sΦ2
s − Λs = −2Φs

|zs|
− 1, (16)

which simplifies the notation. Also, it allows to obtain the
modulus of the free-parameter |zs| in terms of the time-
dependent parameters Φs and Λs,

|zs| =
2Φs

Λs + sΦ2
s − 1

. (17)

We only have defined the Dyson map so far, and now we are
able to build the Hermitian counterpart (3).

C. Hermitian counterpart

Since we are considering the structure of the non-Hermitian
Hamiltonian operator in terms of the generators of the su(2)
and su(1, 1) Lie algebras, the operator correspondent to the
Hermitian counterpart ĥ(t), obtained from the Eq. (3), have
to be written in terms of same Lie algebra generators:

ĥs(t) = 2Ws(t)K̂0 + 2Us(t)K̂− + 2Vs(t)K̂+. (18)

To determine the explicty form of the coefficients in (18), we
apply the following transformations

η̂sK̂0η̂
−1
s =

sΦ2
s − χs

Λs
K̂0 +

λ∗s
Λs
K̂− +

λsχs

Λs
K̂+, (19a)

η̂sK̂−η̂
−1
s =

2sλs
Λs

K̂0 +
1

Λs
K̂− −

sλ2
s

Λs
K̂+, (19b)

η̂sK̂+η̂
−1
s =

2sλ∗sχs

Λs
K̂0 −

sλ∗2s
Λs

K̂− +
χ2
s

Λs
K̂+, (19c)

together the additional result correspondent to the term involv-
ing the time derivative on the Dyson map appearing in Eq. (9):

∂tη̂sη̂
−1
s =

1

Λs

(
Λ̇s + 2sλ̇∗sλs

)
K̂0 +

λ̇∗s
Λs
K̂−

+
1

Λs

(
λ̇sΛs − Λ̇sλs − sλ̇∗sλ

2
s

)
K̂+. (20)

Here like everywhere else, the dot at the top of functions
means time derivative. After simple algebraic manipulations,
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we obtain the time-dependent coefficients in the Eq. (18),
which are written as

Ws(t) =
1

Λs

[
ω(sΦ2

s − χs) + 2s(αλs + βλ∗sχs)

+
i

2
(Λ̇s + 2sλ̇∗sλs)

]
, (21a)

Us(t) =
1

Λs

[
ωλ∗s + α− sβλ∗2s + i

λ̇∗s
2

]
, (21b)

Vs(t) =
1

Λs

[
ωλsχs − sαλ2

s + βχ2
s

+
i

2
(λ̇sΛs − Λ̇sλs − sλ̇∗sλ

2
s)

]
. (21c)

Notice the obtained Hamiltonian operator from transforma-
tion Eq. (3) is not an Hermitian in general, due to the alge-
braic structure of the Dyson mapping. We have to impose the
hermiticity condition on ĥs(t), reads as ĥs(t) = ĥ†s(t), which

leads to the following relations

Ws(t) =W∗s (t), Vs(t) = U∗s (t). (22)

Thus, the hermiticity condition on ĥs(t) implies to the Hermi-
tian counterpart of the operator (10) the restrictive form

ĥs(t) = 2Ws(t)K̂0 + 2Us(t)K̂− + 2U∗s (t)K̂+, (23)

wherein the time-dependent coefficientsWs(t) and Us(t):

Ws(t) = ωR −
2sΦs

χs − 1

× [|α| cos (ϕs − ϕα)− |β| cos (ϕs + ϕβ)] , (24a)

Us(t) =
1

1− χs

[
α− χsβ

∗ + ieiϕsΦsωI
]
. (24b)

Here α = |α|eiϕα , β = |β|eiϕβ and ω = ωR+iωI with ωR and
ωI the real and imaginary part of ω, respectively. The Dyson
map parameters are now constrained to the following set of
coupled nonlinear differential equations:

Φ̇s =
2

χs − 1

{
[ΦsωI − |α| sin (ϕs − ϕα)](1 + sΦ2

s) + |β| sin (ϕs + ϕβ)[s(2χs − 1)Φ2
s + χ2

s]

}
, (25a)

ϕ̇s = 2ωR −
2

(χs − 1)Φs

{
|α| cos (ϕs − ϕα)(1 + sΦ2

s)− |β| cos (ϕs + ϕβ)(sΦ2
s + χ2

s)

}
, (25b)

Λ̇s = 2Λs

{(
2sΦ2

s

χs − 1
− 1

)
ωI −

2sΦs

χs − 1
[|α| sin (ϕs − ϕα)− |β| (2χs − 1) sin (ϕs + ϕβ)]

}
, (25c)

which arise due to the hermiticity conditions expressed in Eq.
(22). Otherwise, we reinforce that the Hamiltonian (23) is
Hermitian for each Dyson map parameter which satisfies the
Eq. (25). Also, as in Refs. [60–62], we refers to zs as being
the only free parameter determining the Dyson map, with Φs,
ϕs and Λs coming from the set of coupled equations (25), and
εs coming from Eq. (15). This implies that a given pair (|zs|,
Φs) must be further corroborated by a real and positive εs.

The results described up to Eq. (21) were obtained in Refs.
[68, 69] for which the authors just considered the simplest
case Vs(t) = Us(t) = 0. On the other hand, we have im-
posed more general conditions (22) to achieve the hermiticity
of ĥs(t). Furthermore, notice that for the case of the su(1, 1)
Lie algebra, our results reproduce exactly the same obtained
in [60, 61, 71], where the authors considered the one-mode
realization of the Lie algebra, what reinforces the fact that the
Hermitian counterpart is independent of the Lie algebra real-
ization, such as in the time-independent case treated in Ref.
[72].

D. Time-evolution

The first step in studying the dynamic behavior of the sys-
tem described by the non-Hermitian Hamiltonian operator
(10) was given by obtaining the associated Hermitian Hamil-
tonian operator (23) by means of the time-dependent Dyson
mapping. From now on, our discussion concerns the pro-
cedure for solving the Schrödinger equation (1b). For this
purpose, we follow a similar strategy adopted in Ref. [73],
whereby we have to consider the transformation

|ψs(t)〉 = Ŝs(t)|ψ̃s(t)〉, (26)

with the unitary operator Ŝs(t) defined as follows

Ŝs(t) = exp
[
ξs(t)K̂+ − ξ∗s (t)K̂−

]
. (27)

In Eq. (27) the time-dependent parameter ξs(t) = rs(t)e
iφs(t)

with rs(t), φs(t) real functions and rs(t) ≥ 0. By substituting
the Eq. (26) into Eq. (1b), we obtain the Schrödinger equation
for the vector state |ψ̃s(t)〉

i∂t|ψ̃s(t)〉 = Ĥs(t)|ψ̃s(t)〉, (28)

for which the transformed Hamiltonian reads

Ĥs(t) = Ŝ−1
s ĥsŜs + i∂tŜ

−1
s Ŝs. (29)
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After straightforward calculations, the transformed Hamilto-
nian Ĥs reduces to

Ĥs(t) = 2Ωs(t)K̂0, (30)

with

Ωs =Ws − 2
√
−s|Us| tanh (

√
−srs) cos (φs + ϕUs), (31)

and the parameters rs and φs having to satisfy the set of cou-
pled differential equations

ṙs = −2|Us| sin (φs + ϕUs), (32a)

φ̇s = −2Ws

− 4
√
−s|Us| coth (2

√
−srs) cos (φs + ϕUs), (32b)

where we have adopted the polar form Us = |Us|eiϕUs .
Therefore, the formal solution of Eq. (28) becomes

|ψ̃s(t)〉 = R̂s(t)|ψ̃s(0)〉, (33)

in which R̂s(t) is defined as

R̂s(t) = exp
[
− 2iΩ̃s(t)K̂0

]
, (34)

with the time-dependent function Ω̃s(t) =
∫ t

0
dτΩs(τ). Fi-

nally, the formal solution to Eq. (1b) reads

|ψs(t)〉 = ûs(t)|ψs(0)〉, (35)

where the unitary time-evolution operator ûs(t) is given by

ûs(t) = Ŝs(t)R̂s(t)Ŝ
†
s(0). (36)

Furthermore, the solution of Schrödinger equation (1a) be-
comes

|Ψs(t)〉 = η̂−1
s (t)ûs(t)|ψs(0)〉

= η̂−1
s (t)ûs(t)η̂s(0)|Ψs(0)〉, (37)

from where we indentiy the time evolution operator Ûs(t) as

Ûs(t) = η̂−1
s (t)ûs(t)η̂s(0) . (38)

After discussing the formal apparatus establishing the connec-
tion between non-Hermitian aspects of the system dynamics
with its Hermitian counterpart, we are able to analyze any
cases associated with the Hamiltonian operator (10) without
considering the algebra realization.

III. THE K̂0 CASE

The simplest model associated with the non-Hermitian
Hamiltonian (10) is obtained assuming the time-dependent
coefficients α(t) = β(t) = 0, such that the Hamiltonian oper-
ator has the form

Ĥs(t) = 2ω(t)K̂0. (39)

The correspondent Hermitian counterpart (23) becomes

ĥs(t) = 2ωRK̂0 + 2i
ΦsωI

1− χs
[eiϕsK̂− − e−iϕsK̂+], (40)

wherein the time-dependent coefficients from Eq. (24) read
Ws(t) = ωR and Us(t) = ieiϕsΦsωI/(1 − χs). The time-
dependent Dyson map parameters given by Eq. (25) reduce to
the following forms

Φ̇s =
2Φs(1 + sΦ2

s)

χs − 1
ωI, (41a)

ϕ̇s = 2ωR, (41b)

Λ̇s = 2Λs

(
2sΦ2

s

χs − 1
− 1

)
ωI. (41c)

The solutions of these set of differential equations are given
by

Φs(t) = Φs(0)
Λs(0) + sΦ2

s(0) + 1

Λs(0) + [sΦ2
s(0) + 1]e2

∫ t
0
dτωI(τ)

, (42a)

ϕs(t) = ϕs(0) + 2

∫ t

0

dτωR(τ), (42b)

Λs(t) = Λs(0)
sΦ2

s(t) + 1

sΦ2
s(0) + 1

e−2
∫ t
0
dτωI(τ), (42c)

whereas the modulus of the free parameter zs becomes com-
pletely defined by the Eq. (17).

In order to obtain the time-evolution of the quantum system,
we have to solve the set of differential equations expressed in
Eq. (32). For this purpose, notice that

Us(t) = |Us|eiϕUs = −i Φs

χs − 1
ωIe

iϕs ,

leads to the identities

|Us| cosϕUs =
ΦsωI

χs − 1
sinϕs, (43a)

|Us| sinϕUs = − ΦsωI

χs − 1
cosϕs, (43b)

which allows us to rewrite Eq. (32) as

ṙs =
2Φs

χs − 1
ωI cos (ϕs + φs), (44a)

φ̇s = −2ωR

− 4
√−sΦsωI

χs − 1
coth (2

√
−srs) sin (ϕs + φs). (44b)

A considerable simplification is brought for Eqs. (43) if we
assume that

ϕs = lπ − φs, (45)

which implies in the maximum rate of change in time of the
function rs for a given Us. Furthermore, from the Eq. (41a),
we obtain the following equality

2Φs

χs − 1
ωI =

Φ̇s

1 + sΦ2
s

,
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which leads to the simpler set of differential equation

ṙs = (−1)l
Φ̇s

1 + sΦ2
s

, (46a)

φ̇s = −2ωR. (46b)

We note that both equations in Eq. (46) become uncoupled,
and they can be directly integrated obtaining the solutions in
the form

rs(t) = rs(0) +
(−1)l

2
√−s ln

$s(t)

$s(0)
, (47a)

φs(t) = lπ − ϕs(0)− 2

∫ t

0

dτωR(τ), (47b)

with the function $s(t) reading

$s(t) =
1 +
√−sΦs(t)

1−√−sΦs(t)
. (48)

The integer l can be chosen in order to make rs > 0 everytime.
Furthermore, to determine the unitary time-evolution operator
in Eq. (36), we still have to calculate the parameter Ωs(t)
given in Eq. (31), which yields

Ωs(t) = ωR, (49)

under the previous assumptions. Although rs(t) seems to
be a complex function when s = 1, straightforward calcu-
lations show that the complex logarithm may be rewritten in
terms of the arc-tangent multi-valued real function. These so-
lutions are similar to those obtained in [62] by considering
the single-mode realization of su(1, 1), and correspond to the
well-known time-dependent Swanson oscillator with a pure
imaginary time-dependent frequency (ωR = 0). The authors
devise this kind of system by taking into account an oscillator
with a strongly parametric quadratic pumping.

As mentioned before, we reinforce that the obtained solu-
tions up to this point in our discussion are independent of the
Lie algebra realizations. Focusing our interest on the entan-
glement occurring in the non-Hermitian scenario, in what fol-
lows, we consider the two-mode bosonic realizations of Lie
algebras, and make a qualitative discussion on how to gener-
alize our investigation to the multimode non-interacting case.

IV. TWO UNCOUPLED MODES AND ENTANGLEMENT

The su(1, 1) and su(2) Lie algebras have immediate rel-
evance on issues concerning the nonclassical properties of
light in the context of quantum optics [74–76]. For in-
stance, Lie-group-theoretical approach is applied to analyze
SU(1, 1) and SU(2) interferometers in Ref. [77]. Also,
the bosonic realizations of su(1, 1) are applied to describe
the (non)degenerate parametric amplifier [5, 6, 78, 79], while
beam splitters [7, 8, 80] are described by means of the su(2)
Lie algebra. Important results concerning the multimode
bosonic realizations of Lie algebras are obtained which are

relevant for generalized coherent states [81–84]. In what fol-
lows, we restrict our analysis to the usual two-mode bosonic
realizations of the three elements of su(1, 1) and su(2) as de-
fined, for example, in Ref. [85].

As a measure of entanglement, the linear entropy is deter-
mined from

Ss(t) = 1− Tr[ρ̂
(1)
s (t)]2, (50)

with ρ̂
(1)
s (t) being the reduced density matrix for the first

mode, which is obtained by the sum over all the degree of
freedom of second mode, i.e., ρ̂(1)

s (t) = Tr2|ψs(t)〉〈ψs(t)|.
In fact, it corresponds to an approximation of the well-known
von-Neumann entropy [14].

In addition, hereafter, we adopt the following notation:
when we explicit the s value, rather than use the subscript
s = ±1 in functions and operators we index them by the mi-
nus or plus (− or +) in according to the sign of s.

A. su(1, 1) entanglement

We have the elements of su(1, 1) related with the bosonic
operators âi and â†j which satisfy the Weyl-Heisenberg alge-
bra [86],

[âi, âj ] = [â†i , â
†
j ] = 0, [âi, â

†
j ] = δij . (51)

The relations are written as [74, 85]

K̂0 =
1

2
(â†1â1 + â†2â2 + 1), (52a)

K̂†+ = K̂− = â1â2, (52b)

and it is just the well-known realization commonly applied on
description of the two-mode squeezing of light fields [75].

For our purpose, we consider the initial separable two-mode
vacua state |ψ−(0)〉 = |0, 0〉 for which the condition r−(0) =
0 is true, and for which the Eq. (35) provides

|ψ−(t)〉 =
e−iΩ̃−

cosh r−

∞∑
n=0

einφ− tanhn r−|n, n〉, (53)

and the reduced density matrix becomes

ρ̂
(1)
− (t) =

∞∑
n=0

tanh2n r−
cosh2 r−

|n〉〈n|, (54)

and the correpondent linear entropy (50) is given by

S−(t) = 1− sech[2r−(t)]. (55)

From the Eq. (55) we see that the entanglement is zero when
r−(t) = 0, which is true for the initial state |ψ−(0)〉 =
|0, 0〉. The enhancement of the entanglement is always ver-
ified whenever the value of r−(t) increases in time, and
we note that the maximum entanglement occurs with infi-
nite squeezing, what seems to be possible as recently demon-
strated by Dourado and co-workers [62]. According to them,
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an infinite squeezing into a finite time interval is possible, for
the bosonic one-mode realization of su(1, 1), by considering
a time-dependent pure imaginary frequency generated by a
strong parametric pumping. Since the results represented in
Eqs. (42) and (47) are independent of the realization, our
solutions correspond to their ones by applying the change
Φ−(t) → −Φ−(t) for all the results, and taking l = 1 at
Eq. (47a).

Let us consider the imaginary part of complex frequency
being linear in time such that

ωI(t) = γ2t. (56)

In what follows, we examine the validity of time-dependent
Dyson map parameters expressed in (42) under the above
imaginary part of frequency by changing Φ− → −Φ− in all
previous results. Actually, this transformation is just conve-
nient for recovering the results obtained in Ref. [62]. Further,
the authors demonstrated that there is a region where the mod-
ulus of the free parameter exceeds the unity. In this region, the
hermitization process fails since we assume initially the con-
dition |z−(t)| 6 1.

In order to perform a more rigorous analysis, we verify that
the modulus of free parameter |z(t)| becomes equal to the
unity at two different times, namely, T± given by

T± =
1

γ

√
ln

[
Φ−(0)− Λ−(0)

Φ−(0)± 1

]
, (57)

and then we calculate the time T at which the maximum value
of |z−(t)| occurs by solving the equation

d|z−(t)|
dt

∣∣∣∣
t=T

= 0.

It provides

T =

√
2

2

√
T 2
− + T 2

+, (58)

and at this time, the free parameter can be read as

|z−(T )| =
1− Λ−(0)

Φ2
−(0)
− 1

Φ2
−(0)√[(

1− Λ−(0)
Φ2
−(0)

)2

− 1
Φ2
−(0)

] [
1− 1

Φ2
−(0)

] , (59)

by considering Φ−(0) > 0. It implies to set Φ2
−(0)−Λ−(0) >

1 to guarantee |z−(T )| > 0. If Φ−(0) � 1, we can neglect
terms of order O

[
1/Φ2

−(0)
]
, and then Eq. (59) reduces to

|z−(T )| ≈ 1. (60)

Just as expected under these considerations, we note that both
times T± becomes approximately equal to T . In other words,
we have the approximation

T ≈ T± ≈
1

2

√
ln

[
Φ−(0)− Λ−(0)

Φ−(0)

]
. (61)

Then, we numerically check the previous approximations to
|z−(T )| in Fig. 1, by plotting the modulus of the free pa-
rameter |z−(t)| in the dimensionless time scale γt with γ =
1/2 s−1 assuming the initial values for the Dyson map pa-
rameters Φ−(0) = 102 and Λ−(0) = 10−2. Whereas Fig.
2 shows the Dyson map parameters Φ−(t) and Λ−(t) in the
dimensionless time scale γt assuming the same parameters
set in Fig. 1. As the time goes to T , we have Φ−(T ) & 1
and Λ−(T ) & 0. At the initial time, the Dyson map pa-
rameters in Eq. (12a) assume the values ε−(0) ≈ 11.52
and µ−(0) ≈ 0.12 eiϕ−(0). Notice that both parameters are
needed to engineering the initial state |Ψ−(0)〉 = η̂−1

− (0)|0, 0〉
necessary to achieve the infinite squeezing. Additionally, in
face of our assumptions, Φ−(0) � 1, our results are in com-
pletely agreement to the analysis done in Ref. [60–62].

0 1 2
0

1

γt

|z −
(t
)|

γT

FIG. 1. The modulus of free Dyson map parameter |z−(t)| in
the dimensionless time γt with γ = 1/2 s−1 for the initial values
Φ−(0) = 102 and Λ−(0) = 10−2. We evaluate the time-evolution
until the dimensionless time γT ≈ 2.15.

Furthermore, as mentioned before, in according to Eq. (55)
the maximum entanglement occurs in the limit r−(t) → ∞,
and therefore, from Eq. (47a) with l = 1, we see this happens
exactly at t = T+ expressed in Eq. (57). Nevertheless, T+

can be approximated to T as given by Eq. (61) by considering
Φ−(0) � 1. In Fig. 3, we plot the linear entropy (55) in the
dimensionless time scale γt assuming the same parameters
of the earlier plots. Additionally, we also plot the degree of
squeezing r−(t) in the inset at Fig. 3, in which we observe the
further squeeze the state is, the greater entanglement measure
between modes becomes. In our case, the degree of squeezing
tends towards the infinite, and the linear entropy approximates
to its maximum value which corresponds to the unity.
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0 1 2
0

102

γt

Φ
−

(t
)

(a)

γT

0 1 2
0

10−2

γt

Λ
−

(t
)

(b)

γT

FIG. 2. The Dyson map parameters (a) Φ−(t) and (b) Λ−(t) against
the dimensionless time γt with γ = 1/2 s−1 for the initial values
Φ−(0) = 102 and Λ−(0) = 10−2. We evaluate the time-evolution
until the dimensionless time γT ≈ 2.15.

0 1 2
0

1

γt

S −
(t
)

0 1 2
0

3

γt

r −
(t
)

γT

γT

FIG. 3. The linear entropy S−(t) against the dimensionless time γt
with γ = 1/2 s−1 for the initial values Φ−(0) = 102 and Λ−(0) =
10−2. Also, we plot the degree of squeezing r−(t) in the inset. The
critical dimensionless time at which the degree of squeezing diverges
is given by γT ≈ 2.15.

B. su(2) entanglement

The su(2) Lie algebra can be expressed in terms of two
bosonic operators as follows [85, 87]:

K̂0 =
1

2
(â†1â1 − â†2â2), (62a)

K̂+ = K̂†− = â†1â2, (62b)

which is nothing but Schwinger’s representation of angular
momentum. In the unitary representation of the Lie algebra
previously assumed, the total number n of bosons in the sys-
tem is constant. The vacuum state is understood as the state
with no boson in mode 1 and n = 2j bosons in mode 2 with
j = 0, 1

2 , 1,
3
2 , · · · meaning that |ψ+(0)〉 = |0, n〉, such that

K̂−|0, n〉 = 0, for which we have assumed r+(0) = 0. Under
these conditions, the time-evolved state in Eq. (35) reduces to

|ψ+(t)〉 = ζn cosn r+

n∑
k=0

C
1
2

n,ke
ikφ+ tank r+|k, n− k〉, (63)

where ζn = exp
[
inΩ̃+

]
is a time-dependent global phase

factor while Cn,k =
(
n
k

)
the binomial coefficient.

Similarly as done before for the case of the SU(1, 1), we
start from the reduced density matrix for the first mode written
as

ρ̂
(1)
+ (t) =

n∑
k=0

Cn,k tan2k r+

[1 + tan2 r+]n
|k〉〈k|, (64)

for which the correspondent linear entropy S+(t) is given by

S+(t) = 1− cosn(2r+)Pn

[
1 + cos2(2r+)

2 cos(2r+)

]
, (65)

determined in terms of the Legendre Polynomial Pn(·). Note
that while for the SU(1, 1) the linear entropy depends on the
hyperbolic functions on r−, for the case of SU(2) the depen-
dence occurs in terms of polynomial forms on the trigonomet-
ric functions, evidencing the periodic behavior of the entropy
in time. Moreover, it can be verified that, for a given n, the
maximum entanglement measure occurs for r+ → π/4+2kπ
with k ∈ Z. At this limit, the linear entropy (65) reduces to

Smax
+ = 1− Γ

(
n+ 1

2

)
√
πn!

. (66)

We see the entanglement measure has a direct dependence on
the total number n of bosons, and it goes to the maximum
value Smax

+ = 1 when n → ∞. This dependence on n is
plotted in the Fig. 4.

Here, we also restrict our analysis to the linear imaginary
part ωI(t) given by Eq. (56). Thus, before analyzing the pos-
sibility of achieving the maximum entanglement as done for
the SU(1, 1) case, we investigate the Dyson map parameters.

From Eq. (17), we can obtain the time at which the mod-
ulus of the free parameter goes to its upper limit, which cor-
responds to |z+(t)| → ∞. We have this happens when the
following condition is complied:

Φ2
+(T ) = 1− Λ+(T ), (67)
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0 100
0

1

n

Sm
a
x

+

FIG. 4. The linear entropy in function of the total number n of
bosons when r+ = π/4. Each point corresponds to the maximum
entanglement measure for a given n. In this case, the linear entropy
approximates to unity in the limit n → ∞. The black diamonds are
use to indicate the cases plotted as function of time in Fig. 7.

for 0 < Λ+(T ) ≤ 1, where we are supposing it is achieved at
the time instant T , which is given by

T =
1

γ

√√√√√√1

2
ln

Φ2
+(0)

(
1 + Λ+(0)

Φ2
+(0)

)2

+ 1
Φ2

+(0)

1 + 1
Φ2

+(0)

. (68)

In fact, T represents the largest time in which the Dyson map
(12a) can hermitize the non-Hermitian Hamiltonian through
the relation expressed in Eq. (3). The behavior of the free
Dyson map parameter |z+(t)| is represented in the Fig. 5.

We can suppose the function r+(t) → π/4 at the time t =
T ′, such that

lim
t→T ′

r+(t) =
π

4
,

0 1 2
0

5

γt

|z +
(t
)|

γT

FIG. 5. The modulus of free Dyson map parameter |z+(t)| in
the dimensionless time γt with γ = 1/2 s−1 for the initial values
Φ+(0) = 102 and Λ+(0) = 10−2. We evaluate the time-evolution
until the dimensionless time γT ≈ 2.15.

0 1 2
0

102

γt

Φ
+

(t
)

(a)

γT

0 1 2
0

10−2

γt

Λ
+

(t
)

(b)

γT

FIG. 6. The Dyson map parameters (a) Φ+(t) and (b) Λ+(t) against
the dimensionless time γt with γ = 1/2 s−1 for the initial values
Φ+(0) = 102 and Λ+(0) = 10−2. We evaluate the time-evolution
until the dimensionless time γT ≈ 2.15.

which is achieved when the following equation holds

T ′ =
1

γ

√√√√√ln

Φ+(0)
1 + 1

Φ+(0) + Λ+(0)
Φ2

+(0)

1− 1
Φ2

+(0)

, (69)

by assuming r+(T ) = π/4 and l = 1 in Eq. (47a). Addi-
tionally, if we consider Φ+ � 1 and Λ+ � 1, we can neglect
terms of order O [1/Φ−(0)]. So that, under these assump-
tions, both times T and T ′ expressed into Eqs. (68) and (69),
respectively, become approximately equal to each other, and
then

T ≈ T ′ ≈ 1

γ

√
ln Φ+(0). (70)

Therefore, there are no inconsistencies occurring in time-
evolution of the Dyson map parameters as can be seen nu-
merically in the Fig. 6. For these plots, we consider a di-
mensionless time scale γt with γ = 1/2 s−1, and the ini-
tial time Dyson map parameters Φ+(0) = 102 and Λ+(0) =
10−2. Moreover, the time-dependent Dyson map parameters
ε+(t) and |µ+(t)| = ε+(t)|z+(t)|/2 can be obtained from
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Eqs. (15) and (17). Both parameters are needed to engi-
neering the initial state |Ψ+(0)〉 = η̂−1

+ (0)|0, n〉 necessary
to achieve the maximum entanglement value. Thus, at the ini-
tial time, the parameters of Dyson map ε+(0) ≈ 11.51 and
µ+(0) ≈ 0.12 eiϕ+(0).

Furthermore, at the time T given by Eq. (70), r+(T ) ≈ π/4
under the previous approximations. This value corresponds to
the maximum entanglement measure for a given n, expressed
in Eq. (65). The behavior of the linear entropy (65) is plotted
in the dimensionless time scale γt with γ = 1/2s−1 in Fig. 7,
together with the parameter r+(t) in the inset. We observe the
further r+ approximates to π/4, more the linear entropy goes
to its maximum value dependent on n, as expressed in Eq.
(66) and illustrated in Fig. 4. We indicate by big diamonds in
Fig. 4, the correspondent cases analyzed in Fig. 7.

0 1 2
0

1

γt

S +
(t
)

n = 1

n = 10

n = 100

0 1 2
0

π
4

γt

r +
(t
)

γT

γT

FIG. 7. For n = 1 (solid line), n = 10 (dashed line) and n = 100
(dotted line), we plot the linear entropy S+(t) against the dimension-
less time γt with γ = 1/2 s−1 for the initial values Φ+(0) = 102

and Λ+(0) = 10−2. The dimensionless time at which the maximum
entanglement occurs is γT ≈ 2.15. The black diamonds on the max-
imum values of entropy are used to indicate the correspondent value
at the plot in Fig. 4 by the same symbols.

C. Towards a generalization: multimode realizations

Our analysis can be generalized to the multimode bosonic
realizations of both Lie algebras. For instance, we can con-
sider the multimode bosonic realizations proposed by Lo and
coworkers in Ref. [81–84]. It is clear that the mapping be-
tween non-Hermitian and Hermitian representations through
the time-dependent Dyson map remains the same as discussed
until Section III, see Eqs. (39) and (40). From Refs. [81–84],
the su(1, 1) multimode bosonic realization reads as

K̂0 =
N∑

i,j=1

Kij
(

2â†i âj + δij

)
,

K̂+ = K̂†− =
1

2

N∑
i,j=1

kij â
†
i â
†
j ,

for which the equalities Kij = K∗ji and kij = kji are verified.
They arise from the commutation relations in Eq. (11) with
s = −1 that require

Kij =
1

4

N∑
k=1

kikk
∗
kj ,

kij =

N∑
k,l=1

kikk
∗
klklj .

In addition, the su(2) multimode bosonic realization can be
written as

K̂0 =

N∑
i,j=1

Jij â
†
i âj ,

K̂+ = K̂†− =

N∑
i,j=1

ϑij â
†
i âj .

Due to the commutation relations in (11) with s = 1, the fol-
lowing conditions must hold

Jij =
1

2

N∑
k=1

(
ϑikϑ

∗
jk − ϑ∗kiϑkj

)
,

ϑij =

N∑
k=1

(Jikϑkj − ϑikJkj) .

Therefore, we can develop a similar analysis to characterize
entanglement between uncoupled modes by setting the rep-
resentations in which the K̂0 operator is composed only by
uncoupled modes K̂0 ∝ â†kâk, while the K̂+ = K̂†− ∝ â†j â

†
k

or K̂+ = K̂†− ∝ â†j âk with j 6= k for the su(1, 1) and su(2),
respectively. The computation of the multipartite entangle-
ment measure is not an easy task, although it is possible to
investigate the existence of entanglement through multipartite
entanglement criteria as the proposed by Hillery et al. in Ref.
[20]. Also, bipartite multimode entanglement measures can
be analyzed by means of the linear entropy of each biparti-
tion.

V. CONCLUSION

In summary, we obtained the explicit solutions for Dyson
map and time-evolution operator without mention the Lie Al-
gebras realization. In what follows, we note that there is no
apparent interaction between the modes in the non-Hermitian
Hamiltonian (39), when we look from the point of view of
conventional quantum mechanics and its trivial Hilbert space
metric. Nevertheless, the hermitization procedure applied to
(39) consists in defining a non-trivial dynamical metric that
leads to a Hermitian counterpart (40), in which the interac-
tion between the two modes becomes evident, and quantum
correlations such as entanglement can exist in this case. The
key point in this discussion is that non-Hermitian Hamiltonian
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operators describing a non-interacting two-modes system can
induce quantum correlations such as entanglement between
the modes due to non-hermiticity only.

Basically, we presented a time-dependent non-Hermitian
Hamiltonian embedding the generators of SU(1, 1) and
SU(2) Lie groups in a unified. By applying the Ansatz of
time-dependent Dyson map and metric operator described
by the same algebraic structure, we verify that the Hermi-
tian counterpart also exhibits a SU(1, 1) or SU(2) dynamical
symmetries. So that, the Hermitian counterpart becomes in-
dependent of the algebra realization, as demonstrated in Ref.
[72] for the time-independent Swanson model. Furthermore,
the obtained Hermitian counterpart (23) reduces to that one
studied in Refs. [68, 69] by setting Us = Vs = 0 rather
than the general assumptions read in (22). Nevertheless, these
more general constraints have allowed us to derive a non-
trivial result, from which a non-Hermitian system with a non-
apparent interacting term exhibits entanglement, which is ver-
ified by mapping on its Hermitian counterpart. In terms of
two-modes Lie algebra realizations, we show that the uncou-
pled non-Hermitian Hamiltonian (39) has a Hermitian coun-
terpart (40) in which the modes are coupled, and it leads to a
non-trivial entanglement only due to the time-dependent com-
plex frequency: which may be seen as a metric-dependent en-
tanglement. The nontrivial dynamical Hilbert space metric
allows us to correlate quantum systems even in absence of in-
teraction terms in non-Hermitian Hamiltonian. It happens due
to the generality of the Hermitian Dyson map structure (12a),
which makes the metric to be non-local depending on the
choice of parameters. We investigated, for both Lie algebras,
the case where the non-hermiticity is given by a frequency
ω(t) = ωR(t) + iγ2t, also considering the transformation
Φ− → −Φ− for comparison to the results obtained in Ref.
[62]. Our investigations showed that the maximum entangle-
ment measure by means of linear entropy is achieved at a fi-
nite time interval T given by Eqs. (61) and (70), from which
we can write T ≈ (1/γ)

√
ln Φ± by assuming Φ± � 1, and

neglecting the terms proportional to Λ±/Φ± � 1.
Although the authors in Ref. [88] argued that descriptions

of two interacting subsystems are possible if and only if the
metric operator of the compound system can be obtained as a
tensor product of positive operators on component spaces. We
believe this statement is too restrictive and not necessary since
the Dyson map is, in general, not unique and it may lead to
a wide class of non-trivial metrics associated with the Hilbert
space. Furthermore, the interpretation of non-Hermitian quan-
tum systems (with nontrivial metric operators in their Hilbert
spaces) is made by mapping the problem to locally Hermi-
tian ones with a standard trivial metric, which allows a clear
description of dynamics.

Thus, the algebraic structure of quantum mechanics allows

us to go towards generalizations of many interesting math-
ematical structures and the physical phenomena associated
with them. In what concerns non-Hermitian quantum me-
chanics, the algebraic language seems to play a key role in
understanding the physical aspects of non-Hermitian physics,
once the hermiticity is closely related to the geometry of
Hilbert space encoded in its metric. For instance, in Ref. [48]
was shown that a deformed algebra applied to the study of
Dirac oscillator leads to a natural map of the relativistic sys-
tem in the non-Hermitian version of the well-known Jaynes-
Cummings optical model. The symmetrical approaches may
be useful tools to understand non-Hermitian effects which are
naturally explained by a duality between non-Hermitian mod-
els in flat spaces and their counterparts, which could be Her-
mitian, in curved spaces [89]. In this regard, the SU(1, 1)
and SU(2) Lie groups and their correspondent algebras may
provide future investigation towards hyperbolic and spherical
spaces [90], and their non-stationary generalizations.

In conclusion, our work may contribute to the theoretical
progress of time-dependent non-Hermitian quantum systems
in the context of compound systems to bring new possibili-
ties of applications in quantum information areas, many-body
quantum physics, and also for improving our understanding of
the mathematical structure of quantum mechanics. Although
engineering effective non-Hermitian Hamiltonians seems to
be a feasible task by considering continuous measurements
and post-selection [91], or even through adiabatic elimina-
tion techniques [92, 93], we believe the most intriguing non-
Hermitian phenomena in closed quantum systems are encoded
at the nontrivial Hilbert space metrics, and engineering them
is still a challenge. Recent discussions about curving Hilbert
space as done in Refs. [89] also appoint to this fact. Perhaps,
the experimental breakthroughs of curved spaces in nanopho-
tonic structures [94, 95], in which curved spaces may be de-
signed, might shed light on future investigations in this subject
to pave the way on build nontrivial geometries embracing the
non-Hermitian physics.
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