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We calculate the frame potential for Brown-
ian clusters of N spins or fermions with time-
dependent all-to-all interactions. In both cases
the problem can be mapped to an effective sta-
tistical mechanics problem which we study using
a path integral approach. We argue that the kth
frame potential comes within ε of the Haar value
after a time of order t ∼ kN+k log k+log ε−1. Using
a bound on the diamond norm, this implies that
such circuits are capable of coming very close to a
unitary k-design after a time of order t ∼ kN . We
also consider the same question for systems with
a time-independent Hamiltonian and argue that
a small amount of time-dependent randomness
is sufficient to generate a k-design in linear time
provided the underlying Hamiltonian is quantum
chaotic. These models provide explicit examples
of linear complexity growth that are also analyt-
ically tractable.

I. INTRODUCTION

The ability to sample from the Haar distribution of
unitaries on a Hilbert space H is a widely useful capabil-
ity [1–3] and is often a crucial ingredient in modern quan-
tum information processing tasks including randomized
benchmarking [4–6] and demonstrations of quantum ad-
vantage [7] in noisy intermediate-scale quantum process-
ing devices. More generally, Haar-random unitaries and
related matrix distributions are foundational to many ar-
eas of modern quantum information science, where they
play central roles in our understanding of quantum infor-
mation scrambling [8, 9], quantum chaos in many-body
thermalizing systems [10–13], and models of black hole
dynamics in holographic quantum gravity [14–18]. How-
ever, it is known that for N qubits, the number of ele-
mentary 2-qubit gates needed to generate samples from
the Haar distribution is exponential in N [19]. In such a
setting, it is important to understand under what condi-
tions one can approximately sample from the Haar dis-
tribution with more modest resources [10, 20, 21]. For
many purposes it is sufficient to reproduce moments of
the Haar distribution involving at most k copies of U and
k copies of U†, and any ensemble which does so is called
a k-design [22–25]. Examples include the calculation of
average purity (k = 2), averages of out-of-time-order cor-
relators (k = 2), and higher Renyi entropies (k = Renyi
index).

The purpose of this paper is to show that a wide vari-
ety of Brownian quantum many-body systems form good
approximate k-designs in time linear in k. This scal-

ing of the time-to-design is essentially optimal in its k-
dependence up to a log k factor [12, 18], so our results
establish that these quantum chaotic model systems are
optimal generators of quantum randomness [26]. Our
calculations build on a growing body of work featur-
ing random circuits and Brownian models [20, 27–40],
which have been used to establish polynomial complexity
growth in specific circuit constructions. Our Brownian
spin and fermion models are based on similar technical
methods, but the simple mean-field nature of our models
allows us to straightforwardly establish linear complexity
growth in a large-N limit. These results may have prac-
tical relevance in any application calling for k-designs
[22, 24]. They are also interesting from the perspective
of formal computational complexity theory. In particu-
lar, by virtue of approximating a k-design in linear time,
our models also have linearly-growing complexity as mea-
sured by more robust information-theoretic notions of
strong circuit complexity [21, 40].

To characterize the growth of complexity in these sys-
tems, we focus on calculating the Frame Potential (FP)
[24, 41], which has recently gained interest as a diagnos-
tic of quantum chaos [10, 11, 20, 21]. Qualitatively, the
FP provides a measure of distance between a particu-
lar channel of interest and the Haar-random ensemble.
Specifically, given any unitary channel E , the kth Frame

Potential F
(k)
E measures the 2-norm distance between the

channel and the Haar-random ensemble, with minimal

value F
(k)
E ≥ F (k)

Haar = k! if the channel E is indistinguish-
able from the Haar-random ensemble. Quantitatively,

the difference F
(k)
E − F

(k)
Haar bounds the diamond norm

between the two channels, so any circuit that achieves a

near-minimal value F
(k)
E ∼ k! is strictly indistinguishable

from the Haar-random ensemble in precise information-
theoretic terms that we review below [20, 21].

In this paper, we analyze in detail the Frame Potential
for Brownian spin and fermion models with all-to-all in-
teractions. In both cases we arrive at effective statistical
models describing the FP similar in spirit to the mapping
in Refs. [20, 42], except that the all-to-all and Brownian
character of our models leads to much simpler statistical
models that are analytically tractable. In particular, we
show that the kth Frame Potential is equivalent to the
partition function Z = Tr

[
e−βHeff

]
of an effective Hamil-

tonian with a tractable mean-field structure, where the
inverse temperature β = 2t is given by the depth t of the
Brownian circuit. As a result, we can make precise state-
ments about the FP – and therefore the system’s circuit
complexity – just by studying the spectrum of the effec-
tive Hamiltonian Heff . In particular, at long times t→∞
the FP is governed entirely by the Hamiltonian’s ground
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FIG. 1. Linear growth of complexity in Brownian spin and fermion clusters. The cluster evolves under time-dependent unitary
dynamics U (a) composed of Brownian 2-body interactions (spins) or Brownian 4-body interactions (fermions). To compute

the Frame Potential F (k) we consider 2k replicas (b) labelled by r, r = 1, . . . , k for forward and backward time evolution,
respectively. Following disorder averaging, the 2k-replica system is governed by an effective Hamiltonian Heff whose ground
state manifold (c) is k!-fold degenerate for spins and 2kk!-fold degenerate for fermions. For spins, each ground state corresponds
to one of k! possible pairings (red) between the r, r replicas, labelled by elements π of the symmetric group Sk. For fermions
there is an extra factor of 2k coming from ± signs attached to each pairing. In both cases, a finite gap ∆ to the excited state
manifold guarantees that the clusters form k-designs in a time t ∼ kN linear in both k and N given k ≤ eN .

state manifold and gap ∆ to the excited state manifold.
We also show how the resulting partition function can be
accurately calculated using a path integral approach.

We also discuss straightforward extensions of our con-
struction to time-independent Hamiltonians [11, 21, 34].
While a single fixed Hamiltonian or even an ensemble
of Hamiltonians cannot form a good approximate k-
design at long time [10, 11], we argue here that time-
independent Hamiltonians perturbed by a small amount
of Brownian noise can form good approximate k-designs
in time linear in k. For simplicity we focus here on an
ensemble of Hamiltonians chosen from the Gaussian ran-
dom matrix ensemble, but we expect similar arguments
to hold for generic strongly chaotic quantum Hamiltoni-
ans.

Before analyzing our Brownian models, we first review
relevant formal definitions of complexity and summarize
our main technical results in Section II. We then turn to
specific models, considering first a Brownian model on
N spins in Section III for which we obtain the effective
Hamiltonian controlling the FP. A parallel path integral
calculation reproduces the partition function for this ef-
fective Hamiltonian, which is the FP. We then consider
an analogous Brownian model on N fermions in Section
IV and again compute the FP via a path integral method.
The main difference is an extra fermion parity symmetry
arising from the fermionic degrees of freedom. We also
analyze 1/N corrections in the fermionic path integral
and check that they do not modify our results. Finally,
in Section V we turn to a discussion of time-independent
Hamiltonians perturbed by Brownian noise, focusing on

the simple toy model of a Gaussian random Hamiltonian.
We conclude in Section VI with a summary of our results
and a discussion of future directions and open problems.

II. FORMAL DEFINITIONS OF k-DESIGNS

Before going further, we need to define good approxi-
mate k-designs. Given an ensemble E of unitaries acting
on H, the k-th moment map M̃E,k acts on an operator
X on H⊗k as [39]

M̃E,k(X) = EU∈E
[
U⊗kX(U†)⊗k

]
. (1)

If each U and U† are equiprobable in E , then the moment
map is a Hermitian superoperator with a real spectrum
and a complete set of eigenoperators. An ensemble is
a k-design if M̃E,k = M̃Haar,k, and it is an approximate
k-design if

‖M̃E,k − M̃Haar,k‖� < ε�, (2)

where ‖·‖� denotes the diamond norm [43, 44]. This norm
bounds the single shot distinguishability of two channels
even in the presence of ancilla. Another weaker notion
of approximate k-design is an approximate k-copy tensor
product expander, which requires

‖M̃E,k − M̃Haar,k‖∞ < ε∞, (3)

where ‖ · ‖∞ is the operator norm on channels.
Here we study these notions in the context of two all-

to-all Brownian models, one built from spins [38] and
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one built from fermions [45]. In both cases, we show that
time evolution for a time t satisfying

t > t0(c1kN + c2 log ε−1
� ) (4)

is sufficient to generate an approximate k-design for any
k ≤ D. Here c1,2 are numbers, D is the dimension of
Hilbert space and N is the number of spins or Majorana
fermions. For the weaker notion of k-copy tensor prod-
uct expander, the time is less than (4) but still linear in
kN . We also analyze ensembles generated by perturb-
ing chaotic time-independent Hamiltonians with a small
amount of random noise, and we find that various no-
tions of quantum chaos are sufficient to guarantee that
the resulting ensemble forms an approximate k-design in
time linear in k.

The notion of a frame potential (FP) plays a central
role in our analysis. Given an ensemble E , the k-th FP
is

F
(k)
E = EU∈E,V ∈E |Tr(V †U)|2k. (5)

If E is the Haar ensemble, then F
(k)
Haar = k!, which is the

minimal possible value [10]. An equivalent condition to E
being a k-design is F

(k)
E = k!, the Haar value. Moreover,

if an ensemble has a frame potential that is sufficiently
close to k!, then it is necessarily a good approximate k-
design in the above diamond norm sense. This is because
the FP is related to a 2-norm, and the two norms can be
related as

||M̃E,k − M̃Haar,k||2� ≤ D2k
[
F

(k)
E − F (k)

Haar

]
, (6)

where D is the dimension of the Hilbert space [20].

III. BROWNIAN SPIN CLUSTER

Having established a concrete definition for complexity
via k-designs and the Frame Potential, we now turn to
specific models where the FP can be computed explicitly.
We first consider a Brownian 2-body spin cluster, which
we analyze using an effective Hamiltonian and a path
integral approach.

A. Effective Hamiltonian approach

Consider a system of N spins with a time-dependent
Hamiltonian consisting of a sum over random 2-body
terms,

H(t) =
∑
i<j,αβ

Jijαβ(t)σiασjβ , (7)

where i, j = 1, ..., N denote the spins, and σiα, α =
1, 2, 3, denotes α-th Pauli operator. Jijαβ is a Brown-
ian Gaussian variable with mean zero and variance

E[Jijαβ(t)Ji′j′α′β′(0)] = δii′δjj′δαα′δββ′δ(t)
J

N
. (8)

Here E denotes average over the couplings Jijαβ(t).
Because the couplings are white noise correlated with

zero average, in any average of time evolution operators
we can always reinterpret Tr(V †(t)U(t)) = Tr(U(2t)),
where U(2t) is a Brownian evolution for twice as long
with the couplings in (0, t) determined by the original U
and the couplings in (t, 2t) determined by the original V .
The FP is thus

F
(k)
b-spin = E

{
Tr[U(2t)⊗k ⊗ U(2t)∗⊗k]

}
, (9)

Now for the Brownian spin model (7), the FP is

F
(k)
b-spin = Tr(e−2tHk), where

Hk =
J

2N

∑
i<j,αβ

(
k∑
r=1

{σriασrjβ − (σr̄iασ
r̄
jβ)∗}

)2

. (10)

Here, we have used the fact that Jijαβ is a Brownian vari-
able (8). This defines our effective statistical model: the
frame potential is simply the thermal partition function
of the Hamiltonian Hk at inverse temperature β = 2t.

At first inspection, this Hamiltonian has k! zero energy
states given by all possible pairings of forward contours
with backward contours into infinite temperature ther-
mofield double states (or EPR state),

⊗
rs̄ |∞〉rs̄, where

r and s̄ appears once in the tensor product, with the
following property,

σriα|∞〉rs̄ = (σs̄iα)∗|∞〉rs̄, ∀i = 1, ..., N, α = 1, 2, 3.(11)

However, these states are not all exactly orthogonal, with
overlaps suppressed by powers of D. It is known that the
dimension of the space of all such pairings is exactly k!
provided k < D+1 [46, 47]. For simplicity, we restrict to
k < D+ 1 in the subsequent, but we expect that Brown-
ian models can still form good approximate k-designs for
larger values of k.

What about excited states? If ∆ is the gap to the first
excited state (which might depend on N and k), then we
can conclude that the ensemble of time evolutions forms
an approximate k-design once 2∆t > 4k logD+2 log ε−1

� .
This is based on a crude estimate of the FP,

F
(k)
b-spin ≤ k! + (D2k − k!)e−2∆t, (12)

combined with the bound (6). Note that if we have a
better estimate for the FP, we can get a better bound on
the time to come close to a k-design. We now analyze
the spectrum of Hk in detail and show that the gap is
∆ = 12J +O(1/N) independent of k and approximately
independent of N at large N .

1. k = 1

The effective Hamiltonian with k = 1 is

H1 =
J

N

∑
i<j,αβ

(1− σ1
iασ

1
jβ(σ1̄

iασ
1̄
jβ)∗). (13)
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The unique ground state is |∞〉 = |∞〉11̄. We can gen-
erate excited states by acting with a Pauli string P on
replica 1. Running over all possible Pauli strings gives a
complete basis for the 11̄ Hilbert space.

Given a Pauli string P , each term in H1 either com-
mutes with P or gets flipped,

P (1−O1(O1̄)∗)P = (1 +O1(O1̄)∗). (14)

Whereas the original terms annihilate |∞〉, the flipped
terms have |∞〉 as an eigenstate with positive eigenvalue,

(1 +O1(O1̄)∗)|∞〉 = 2|∞〉. (15)

Hence, for every term that gets flipped, the energy goes
up by 2J/N .

If P is a single Pauli operator, then 6(N − 1) terms
are flipped, so the energy is 12J N−1

N . There are 3N such
states.

A general Pauli string P 1 with M non-identity oper-
ators corresponds to M excitations. Each vector of the
form P 1|∞〉 is an exact energy eigenstate of H1,

H1P
1|∞〉 = E1(P )P 1|∞〉. (16)

Furthermore, the energy eigenvalue is approximately ad-
ditive,

E1(P ) ≈ 12JM +O(M/N), (17)

provided the excitations are dilute, M � N .

2. General k

In the general case, we have k! ground states. The
different pairings are not quite orthogonal at finite N ,
but they still span a k!-dimensional space of exact ground
states. Again, this is true provided k < D + 1.

The smallest gap arises from excitations on top of
a single pairing. The spectrum is exactly known and
matches the k = 1 case above with the minimum gap
12J +O(1/N).

The other possible excitations are multiple excitations
above a fixed pairing and domain walls. When the exci-
tations are dilute, their energies approximately add. The
domain wall state has energy 18J for even a single site in
the domain, and the energy of the domain wall is exten-
sive in the size of the domain. Hence, the whole partition
function in the long time limit can be estimated by study-
ing dilute towers of excitations on top of the k! ground
states. We present a detailed analysis of this situation
for k = 2 in Appendix B.

B. Path integral approach

Besides the effective Hamiltonian approach, the frame
potential allows a path integral representation, and for

our large N model, a saddle point analysis. We present
the saddle point analysis in the following. In this and the
following sections, we use T = 2t to denote the evolution
time for simplicity.

Using spin coherent states, a time evolution operator
can be cast into a path integral,

Tr[U(T )⊗k ⊗ U(T )∗⊗k]

=

∫
DΩ exp

∫
dt
∑
r

[ ∑
a=L,R;i

〈∂tΩra,i|Ωra,i〉

−
∑
i<j

∑
αβ

iJijαβ(σrL,iασ
r
L,jβ − σrR,iασrR,jβ)

]
, (18)

where 〈∂tΩri |Ωri 〉 is a short-hand notation for spin path
integral, and Ω is a representation for the spin coher-
ent state (such as Euler angle representation). The L

and R subindices denote the fields in U(T ) = T ei
∫
dtH(t)

and U∗(T ) = T ei
∫
dtH∗(t) respectively. T denotes time

ordering. More precisely, σL,iα = 〈Ω|σL,i,α|Ω〉 and
σR,iα = 〈Ω|σ∗R,i,α|Ω〉, where σ is the Pauli operator.
r = 1, ..., k is the replica index.

To get the frame potential, we average over the ensem-
ble by integrating out the Brownian Gaussian variables,

F
(k)
b-spin(T ) =

∫
DΩ exp

∫
dt
[∑
r,a,i

〈∂tΩra,i|Ωra,i〉

+
J

4N

∑
r,s

∑
a6=b

(
∑
iα

σra,iασ
s
b,iα)2

]
− 9

2
kNJT, (19)

where we use that 〈Ω|
∑
i σa,i ·σa,i|Ω〉 = 3N for the spin

coherent state to get the last term.
To proceed, we introduce the Green’s function

Grsab(t) = 1
N

∑
iα σ

r
a,iα(t)σsb,iα(t). After some manipula-

tion (see Appendix C for the derivation), the frame po-
tential is given by

F
(k)
b-spin(T ) =

∫
DGe−I , (20)

− I

N
= log Tre−

∫
dtH(t) − J

4

∑
rs

∑
a6=b

∫
dt(Grsab)

2 − 9

2
kJT,

(21)

where the first term in the large-N action gives the free
energy of 2k spin with the following Hamiltonian,

H(t) =
J

2

∑
rs

∑
a 6=b

Grsab(t)σ
r
a · σsb , (22)

where σra, a = L,R, and r, s = 1, ..., k, denotes the Pauli
operator for the 2k spins.

It is illuminating to first look at a single replica k = 1.
To look for a steady solution, we assume Gab is a constant
(we omit the superscript for the replica index for the
single replica case). The Hamiltonian is

H = JGLRσL · σR, (23)
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which only involves two spins a = L,R. Here we use
the property Gab = Gba that should be satisfied for a so-
lution. The eigenstates of this Hamiltonian include one
singlet state and three triplet states. So the action be-
comes

− I

N
= log[e3GLRJT + 3e−GLRJT ]− JT

2
(GLR)2 − 9

2
JT.

(24)

In the long time limit, the saddle-point solution is GLR =
3, consistent with the assumption of a time independent
solution. Using this saddle point solution, the frame po-
tential for k = 1 is

F
(1)
b-spin(T ) ≈

(
1 + 3e−12JT

)N ≈ e3Ne−12JT

. (25)

The decaying mode is precisely given by the elementary
excitation discussed in Section III A.

Now consider general k. We again assume the solution
is time independent to look for steady solutions. The
action can be simplified to

− I

N
= log Tre−TH − JT

2

∑
rs

(GrsLR)2 − 9

2
kJT.

H(t) = J
∑
rs

GrsLRσ
r
L · σsR. (26)

At the long time limit, the first term projects to the
ground state of H, which denote is denoted as |Ψ〉. The
equation of motion becomes

GrsLR = −〈Ψ|σrL · σsR|Ψ〉. (27)

It is clear that for any state |Ψ〉, −〈Ψ|σrL · σsR|Ψ〉 ≤ 3.
The equality is saturated for a spin singlet state between
σrL and σsR, so we have GrsLR ≤ 3.

Since the first term projects to the ground state, i.e.,
log Tre−TH = −T 〈Ψ|H|Ψ〉, using (27) the action be-
comes

− I

N
→ JT

2

∑
rs

(GrsLR)2 − 9

2
kJT. (28)

We expect (28) to be time independent. As the second
term is linear in the replica number, it indicates that the
L spins and the R spins will form k singlets. The choice
of singlets state can be described by a permutation. It
is not hard to verify that at long time limit, the saddle
point solution is

GrsLR = 3 · [P (π)]rs, (29)

where P (π) is the permutation matrix corresponding to
the permutation π.

Indeed, this is consistent with the Hamiltonian analysis
in Section III A. The singlet between the L spin and R
spin is corresponding precisely to the EPR state.

To get the finite time correction, we can plug the solu-
tion to the finite time action (see Appendix C for details),

and by including the degeneracy from the k! different per-
mutation matrices P (π), the frame potential is given by

F
(k)
b-spin(T ) ≈ k!e−I = k!e3Nke−12JT

. (30)

Using this result, the time to get an approximate k-design
reads

t ≥ 1

24J

(
3(log 2 + e−1)kN + 2 log ε−1

�
)
. (31)

IV. BROWNIAN SYK FERMION CLUSTER

The k-fold channel (1) averaged over Haar-distributed
unitaries can be regarded as a projection. The
invariant states for the projection are |Wπ〉 =∑
i1,i2,...,ik

⊗k
j=1 |ij〉 ⊗ |̄iπ(j)〉, where π is a permuta-

tion [10]. The frame potential is to count the number of
invariant states (see Appendix A for details), and since

there are k! different permutations, F
(k)
Haar = k!.

For the unitary generated by the Hamiltonian of a
fermionic model, it preserves a Fermi parity symmetry.
Namely, [U, (−1)F ] = 0. It means that there are more
invariant states, given by the following ones,

|W η
π 〉 =

∑
i1,i2,...,ik

k⊗
j=1

|ij〉 ⊗ (−1)ηjF |̄iπ(j)〉 (32)

where ηj = 0, 1. There are in total 2kk! different invari-

ant states. The frame potential will be F
(k)
f-Haar = 2kk!,

where F
(k)
f-Haar indicates the ensemble preserves Fermi par-

ity symmetry. We expect the frame potential of the
Brownian SYK model will be given by the same num-
ber.

A. Path integral approach

The Brownian SYK model is defined as

H(t) =
∑

i<j<k<l

Jijkl(t)ψiψjψkψl, (33)

where ψj , j = 1, ..., N , {ψi, ψj} = δij are Majorana
fermions. Jijkl(t) is a Brownian Gaussian variable with
mean zero and variance

E[Jijkl(t)Ji′j′k′l′(0)] = δii′δjj′δkk′δll′
233!J

N3
δ(t). (34)

Similar to the Brownian spin model, we can for-
mulate a path integral representation for the Brown-
ian SYK model (see Appendix D for detailed deriva-
tion). Introducing the bilocal variables Grsab(t, t

′) =
1
N

∑
i ψ

r
a,i(t)ψ

s
b,i(t

′), and the associated self-energy Σrsab,
where a, b = L,R denote the field in U and U∗ and
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r, s = 1, ..., k are the replica indices, the frame potential
is given by

F
(k)
bSYK(T ) =

∫
DGDΣ expN

[1

2
log det(∂t + Σ)

+

∫
dtdt′

(
1

2
ΣrsabG

rs
ab +

Jδ(t− t′)
16

cab(2G
rs
ab)

4

)
, (35)

where cLL = cRR = −1, cLR = cRL = 1, and the sum
over indices a, b, r, s is implicit.

Inspired by the Brownian spin model, we expect the
steady state is formed by paring one forward U and one
backward evolution U∗. Without loss of generality, we
assume the r-th and s-th replica have nontrivial corre-
lations. Under this assumption, the equation of motion
reduces to a two by two matrix equation, and can be
solved exactly (see Appendix D for details). The solu-
tion is given by

Ĝ(t1, t2) =
[θ(t12)

2
f+(t12)− θ(t12)

2
f+(−t12)

]
1

±
[θ(t12)

2
f−(t12)− θ(t12)

2
f−(−t12)

]
σ2,(36)

Σ̂(t1, t2) = ±δ(t12)Jσ2, (37)

where Ĝ =

(
GrrLL GrsLR
GsrRL GssRR

)
and t12 = t1−t2, and f±(t) =

e−Jt

e−JT+1
± eJt

eJT+1
. 1 is a two-by-two identity matrix and

the Pauli matrix σ2 is a Pauli matrix. The plus and
minus sign means that there two solutions for a fixed rs.

Because this solution is decoupled from the rest, we can
calculate the onshell action for a fixed rs (see Appendix D
for details),

−Iwh(T )

N
= log

(
2 cosh

JT

2

)
− JT

2
, (38)

where the subscript wh indicates that it is like a worm-
hole solution connecting the r-th and s-th replicas. On
the other hand, there is an obvious trivial solution given
by Ĝ = [sgn(t12)/2] · 1, Σ̂ = 0, with onshell action

−I0(T )

N
= log 2− JT

8
, (39)

where the subscript 0 indicates that it comes from a triv-
ial solution.

Thus, when there is a nonvanishing correlation be-
tween them, the onshell action tends to zero at long time
limit. On the other hand the trivial solution tends to in-
finity at the long time limit, indicating that they do not
contribute to the frame potential: it is exponentially sup-
pressed. While at time zero, both solutions leads to the
dimension of Hilbert space, 2N . This number is because
each replica contains N Majorana fermoins.

The above solutions are restricted to a two by two ma-
trix, i.e., the r-th and s-th replicas, and the remaining
step is to count how many different solutions can exist in

k replicas. The result is given by

F
(k)
bSYK(T ) =

k∑
m=0

2mm!

(
k
m

)2

e−(k−m)I0(T )e−mIwh(T ),

(40)

where m indicates the number of nontrivial paired solu-
tions and k−m indicates the number of trivial solutions
in the k possibilities. The prefactor is the degeneracy.

At time zero, the frame potential should give the di-
mension of Hilbert space of 2k Brownian SYK systems.
It seems that our result is greater than the dimension
of Hilbert space because the contribution from nontrivial
solutions are included. But as we will see in the follow-
ing, those nontrivial solutions should not be included at
time zero.

At the long time limit, the trivial solution will lead to
an exponential suppression with exponent proportional
to N , i.e.,

e−(k−m)I0(T ) = e(k−m)N(log 2− JT8 ), (41)

for m < k. Thus, the dominant solution is given by
m = k with maximal pairs in the k different replicas,

F
(k)
bSYK(T ) ≈ 2kk!(1 + kNe−JT ). (42)

Regarding the prefactor, while 2k is given by the sign
choice in (36), k! corresponds nicely to the permutation.

As we will see in the next section, the slowest decaying
mode is actually given by an elementary excitation, i.e.,
a single Majorana fermion. But one may wonder if col-
lective modes can have a smaller gap. To see it is not the
case, we consider fluctuations around the saddle point
solution. Schematically, we consider the fluctuation,

G = Ḡ+
1√
N
g, Σ = Σ̄ +

1√
N
σ. (43)

Here, we use Ḡ, Σ̄ to denote the saddle point solution,
and g, σ to denote the fluctuation, and the prefactor is a
proper scaling for a large N theory.

It turns out that we can focus on the fluctuations
around (36) for each fixed rs (we omit the index rs in
the following for simplicity). We expand the action to
the quadratic order of both σ and g, and then integrate
out σ to arrive at (see Appendix E for details)

δI =
1

2T

∑
ω

ĝ(−ω)

(
2J coth JT

2 −ω coth JT
2

ω coth JT
2 2J coth JT

2 + 12J

)
ĝ(ω),

(44)

where ĝ = (gLL, gLR)T , while the other two components
are related by gRR = gLL and gRL = gLR. Now it is a
free boson, we can get its free energy δF = 1

T log(1 −
e−ET ), where E = 2J

√
6 tanh JT

2 − 1 is the gap of the

boson. There is a critical T ∗, i.e., tanh JT∗

2 = 1
6 , after

which the boson becomes stable. When T < T ∗, we
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should not include the wormhole contributions, so the
frame potential (40) at time zero is correctly given by
the dimension of Hilbert space.

For a fixed permutation solution, we have k different
pairs of rs, which leads to k bosons. Because we are
interested in the long time behavior, we expect that a
renormalization flow of the mass E ≈ 2

√
5J due to high

order corrections gives an appropriate estimate of the col-
lective decaying mode. The large N structure indicates
that correction is of order O( 1

N ). So we expect the free
energy and thus the frame potential is given by

F
(k)
bSYK(T ) = 2kk!e−FT , (45)

−FT ≈ kN log(1 + e−JT )− k log(1− e−
(
E+O( 1

N )
)
T ),

(46)

where the first term is from elementary excitation, and
the second term is from collective modes.

Using this result, the time to reach an approximate
k-design at large N limit is given by

t ≥ 1

2J

(
(
3

2
log 2 + e−1)Nk + 2 log ε−1

�

)
. (47)

Note that here k ≤ 2N/2 since the Hilbert space dimen-
sion is D = 2N/2 for N Majorana fermoins.

B. Effective Hamiltonian

Here we provide an effective Hamiltonian analysis, and
identify the elementary excitation given rise to the slow-
est decaying mode. For the Brownian SYK model, the
Hamiltonian is given by (see Appendix F for details),

H =
4 · 3!J

N3
×∑

ijkl

[∑
r

(ψrL,iψ
r
L,jψ

r
L,kψ

r
L,l − ψrR,iψrR,jψrR,kψrR,l)

]
,(48)

where r = 1, ..., k is the replica index. Similar to the
Brownian spin model, the ground state of this Hamilto-
nian is given by the tensor product of EPR state, each of
which is from two possible EPR states (distinguished by
the plus and minus signs in the following) between two
contours α and α′

|GS〉 =
⊗
r,s

|∞〉r,s, (49)

(ψrL,j ± iψsR,j)|∞〉r,s = 0, ∀j = 1, ..., N. (50)

where in the tensor product r and s can only appear once.
The number of such ground states is given by

N(GS) = 2kk!. (51)

The elementary excitation (eigenstate) is given by
ψrL,i|GS〉 for any flavor i and replica r. The energy of
this excitation is

HψrL,i|GS〉 = JψrL,i|GS〉. (52)

The number of the elementary excitation is given by kN
for each degenerate ground state, so we expect the frame
potential is given by

F
(k)
bSYK(T ) = 2kk!(1 + kNe−JT ), (53)

which exactly reproduces the saddle point calculation
in (42). One should also notice that the swap opera-
tor in the fermionic case is not an independent mode but
simply given by the elementary excitation.

V. TIME-INDEPENDENT HAMILTONIANS

Whereas the time-dependent Brownian models con-
sidered above are especially convenient for theoretical
analysis, similar tools can also be used to character-
ize the growth of complexity in systems governed by
time-independent Hamiltonians such as those describ-
ing strongly-interacting chaotic many-body quantum sys-
tems. To make analytical progress in this scenario,
we perturb the many-body Hamiltonian H by Brown-
ian time-dependent sources, which allows us to map the
problem onto an effective statistical model after aver-
aging over the Brownian noise. Specifically, we con-
sider perturbing the original Hamiltonian H by time-
dependent sources Oα:

H → H +
∑
α

ξα(t)Oα. (54)

where the sources Oα are Hermitian and square to the
identity O2

α = I, and the couplings ξα(t) are white-
noise random variables with mean zero and variance
E(ξ2

α) = g/dt for an infinitesimal time step dt. Driv-
ing the system in this way typically adds energy to the
system, so we expect the system to heat up to infinite
temperature at long times. It is interesting to consider
whether variations of this model might allow us to ask
similar questions at finite temperature, but we leave these
possibilities open for future work.

To characterize the growth of complexity in this sys-
tem, we again compute the k-th frame potential, which
involves two copies of the operator

MU = U ⊗ · · · ⊗ U︸ ︷︷ ︸
k times

⊗U∗ ⊗ · · ·U∗︸ ︷︷ ︸
k times

. (55)

We have transposed the inverse time-evolution operators
U†s to guarantee that all copies of each random ξα(t)
occur at the same time slice. The FP is then

F
(k)
H = EU,V [Tr(M†VMU )] = Tr([EUMU ]†[EUMU ]).

(56)
Because the expectation values factorize, we simply need
to compute EUMU and study the decay rate of an initial
state summed over all initial states.

Because the Brownian coefficients ξα(t) are uncorre-
lated at different times, we can compute the disorder av-
erage separately for each timestep dt, similar to above.
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FIG. 2. Imaginary part of eigenvalues of Heff for D = 32 and
k = 1 with H a GOE random matrix, a single O given by a
diagonal matrix with equal numbers of ±1s, and g = 0.2. The
standard deviation of terms in H is taken to be log(D)/

√
D

to mimic an extensive qubit Hamiltonian with spectrum in
[− log(D), log(D)]. The dashed horizontal lines indicate 1/D
variance around −g, and the rightmost red circle indicates
the dark state.

Performing this disorder average for the full 2k copies of
U,U∗ after evolving for time T yields an effective time-
evolution operator exp [−iHeffT ] where

Heff =
∑
r

{Hr −H r̄} − ig

2

∑
α

(
k∑
r=1

{Orα − (Or̄α)∗}

)2

.

(57)
Notice that this effective Hamiltonian is non-Hermitian
due to the intrinsic decay from the O2 terms. This is
distinct from the completely Brownian model considered
above, which produced entirely imaginary terms in the ef-
fective Hamiltonian, allowing us to reinterpret the whole
problem as an equilibrium calculation in imaginary time.
In the present case, the imaginary terms are perturba-
tions to a fixed Hermitian Hamiltonian H, so instead we
think of the non-Hermitian O2 term as driving the decay
of eigenstates of the Hamiltonian H.

At long times T → ∞ we expect all states to com-
pletely decay, except for a privileged set of at least k!
‘dark states’ that never decay. These states correspond
to all possible pairings of forward and backward contours
into k infinite temperature thermofield double states (see
Appendix G). Integrable systems with further symme-
tries may have additional dark states. To preempt this
possibility, we here consider only random matrix Hamil-
tonians with strong level repulsion.

Assuming that all other states decay, it follows that at
infinite time the FP will be k!, the Haar value. Hence, the
perturbed ensemble will eventually form a k-design pro-
vided these thermofield doubles are the only dark states.
Below, we demonstrate this in an explicit example where
H is a random matrix chosen from the GOE ensemble.

-0.2 -0.1 0 0.1 0.2

1

2

3

4
D

2 π
2 -

D

4
E -

1

D

2

FIG. 3. The distribution of eigenvalues of M . The figure
shows exact diagonalization for D = 256 from 50 samples.
The total density is normalized to one.

A. Random Matrix Hamiltonians

For simplicity, consider choosing the Hamiltonian H
from a standard random matrix ensemble, say the GOE
ensemble. For simplicity, we consider a single perturbing
operator Oα = O that is diagonal in the computational
basis with an equal number of ±1 randomly placed along
the diagonal. We can numerically study the spectrum of
the resulting non-Hermitian Heff for k = 1. We find that
there is indeed just 1! = 1 dark state |d〉 and that all
other states decay. An example of the spectrum can be
seen in Fig. 2; note the single dark state at the top of the
graph.

We can readily derive a perturbation theory argument
for this same conclusion. Consider first the case k = 1
and regard the non-Hermitian O2 term as a perturba-
tion on the bare Hamiltonian H. The bare eigenstates
are |n,m〉 with energies En − Em. Non-Hermitian per-
turbation theory (see Appendix G) shows that the first
correction to the energy of the |n,m〉 state is

δE = −ig
2
〈n,m|

(
O1 −O1

)2

|n,m〉

= −ig(1− 〈n,m|O1O1|n,m〉)
≈ −ig(1 +O(1/D)), (58)

since the matrix elements of the fixed operator O in the
random basis obtained from H will be of order 1/

√
D.

Hence, first order perturbation theory immediately pre-
dicts a constant decay rate g for all states, up to cor-
rections of order 1/D, in agreement with the spectrum
shown in Fig. 2.

The special case n = m, however, requires more care
because the bare energy is degenerate En−En = 0. The
matrix elements of the perturbation in the degenerate
space are

−ig
2
〈n, n|

(
O1 −O1

)2

|m,m〉

= −ig(δn,m − 〈n|O|m〉〈m|O|n〉). (59)

where we have used O1̄ = OT . The dark state |d〉 is in
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FIG. 4. Average decay gap of Heff for k = 1 as a function of
Hilbert space dimension D. H is a GOE random matrix, O is
a diagonal matrix with equal numbers of±1, and g = 0.2. The
standard deviation of terms in H is taken to be log(D)/

√
D.

For D = 10, 12..., 24 we average over 2000 samples, and for
D = 26, ..., 32 we average over 1000 samples. The blue curve
is a fit to function a+ b/

√
D + c/D, where the fit value of a

is 0.2006 which is very close to g = 0.2.

this sector, and is given by a symmetric superposition
over all basis states |n〉1 and their time reversed copies
|n〉1:

|d〉 =
1√
D

∑
n

|n, n〉11 . (60)

Accounting for this dark state, we now look at other
eigenstate of (59). The matrix elements take the form
(since the identity matrix is simple, we consider the non-
trivial part in (59))

Mnm = |〈n|O|m〉|2, (61)

where we have used the fact that O is a Hermitian op-
erator. It can be shown that the matrix element satis-
fies the Porter-Thomas distribution with mean 1/D and
variance 2/D2 (see Appendix H). Because the matrix M
is symmetric, and upper-triangular entries satisfy iden-
tical independent distribution, its eigenvalues satisfy the
Wigner’s semicircle law [48],

ρ(E) =

√
D

2π

√
2− D

4

(
E − 1

D

)2

, (62)

showing that the spectrum of the random matrix M will
sit between [1/D−

√
8/D, 1/D+

√
8/D]. It is consistent

with exact diagonalization of M in Fig. 3.
This analysis then predicts a single dark state, and the

rest states with decay rate −ig with corrections of order
1/
√
D. A fit of the minimum averaged decay rate (apart

from the dark state) for even dimensions from D = 10 to
D = 32 is shown in Fig. 4

In the case of general k, we can make similar pertur-
bative arguments starting from a given pairing (see Ap-
pendix G). Hence, we expect k! dark states and a minimal

decay rate of order g(1 − O(1/
√
D)). The FP can then

be bounded by

F
(k)
H ≤ k! + (D2k − k!)e−2gt. (63)

So taking D = 2N we get an approximate k-design after
a time

t >
1

2g

(
4kN log 2 + 2 log ε−1

�
)

(64)

growing linearly in the system size N . While the above
analysis relies on the fact that H is chosen uniformly
from the GOE ensemble, we expect similar conclusions
to hold whenH is any strongly-mixing Hamiltonian satis-
fying the eigenstate thermalization hypothesis. We leave
a detailed study of this possibility to future work.

VI. DISCUSSION AND OUTLOOK

In this paper we studied the quantum complexity
growth problem in a variety of quantum chaotic mod-
els. While quantum complexity has multiple meanings
and definitions, we focused here on k-designs, which mea-
sures how close an ensemble of unitaries is to the uniform
distribution equipped with the Haar measure. We ap-
proach the problem by investigating the frame potential
that quantifies the distance to a k-design. Compared to
other measures of complexity, the frame potential pro-
vides a significant advantage that allows one to map the
problem to a path integral representation which brings
to bear many well-developed tools in physics including
spectral and saddle-point analysis. These tools enable us
to prove the linear growth of circuit complexity in our
models.

Our models give representatives from different aspects
of quantum complexity: the Brownian spin model di-
rectly links to random quantum circuits, the Brownian
SYK model gives insight into holographic complexity,
and the random matrix model is a useful representation
of chaotic Hamiltonians. More importantly, our approach
actually provides connections between these complemen-
tary approaches. In all three descriptions, the k-th frame
potential involves 2k replicas. On the one hand, the
saddle point analysis in the Brownian spin/SYK model
clearly reveals that the saddle point solutions are classi-
fied by permutations, which is in accordance with the ef-
fective statistical model arisen in random circuits [20, 37].
Moreover, these solutions describe an emergent corre-
lation between different replicas, resembling the replica
wormhole geometry from the gravitational path integral
[49, 50]. On the other hand, the effective Hamiltonian
approach in the random matrix Hamiltonian allows us
to bring the full machinary of random matrix theory.
While it is true that time independent Hamiltonians are
not able to generate a random uniform ensemble, adding
a simple time-dependent perturbation are, provided the
Hamiltonian exhibits eigenstate theormalization hypoth-
esis. All these concepts are closely interrelated in quan-
tum chaos.
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Our studies provide a firm base for wide future direc-
tions. Looking forward, an outstanding question is the
holographic dual of the quantum complexity. Yet the
conjectured complexity-volume and complexity-action
dualities [14–17] still remain vague, our work creates a
new train of thought. As the replica wormhole under-
scores quantum thermalization in gravity, such as the
von Neumann entropy and the spectral form factor, it
seems natural to have a similar story in a holographic
dual of the frame potential. In a broader context, how
thermalization and complexity are related? It would be
interesting to look into the complexity growth in generic

quantum chaotic Hamiltonians, as our work suggests that
upon a simple Brownian perturbation, those Hamiltoni-
ans are able to produce a linear growth.
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Appendix A: Frame potential with Fermi parity
symmetry

Averaging over Haar measure of the unitary group
can be regarded as a projection to invariant states.
For the k-fold channel, the invariant states are
|Wπ〉 =

∑
i1,i2,...,ik

|i1〉 ⊗ |̄iπ(1)〉 ⊗ ... ⊗ |ik〉 ⊗ |̄iπ(k)〉 =∑
i1,i2,...,ik

⊗k
j=1 |ij〉 ⊗ |̄iπ(j)〉, where π is a permuta-

tion [10]. Thus, there are k! different invariant states
and the average over Haar ensemble of the unitary group
in the k-fold channel leads to∫

dUU⊗k ⊗ U∗⊗k =
∑
σ,π

[Q−1]σ,π|Wσ〉〈Wπ|, (A1)

where
∫
dU indicates the integral over Haar measure, and

Qσ,π = 〈Wσ|Wπ〉. In this language, the frame potential
is to count the number of invariant states. Namely,

F
(k)
Haar =

∫
dUdV |Tr(UV †)|2k

=

∫
dUdV Tr[U⊗kV †⊗k]Tr[U∗⊗kV T⊗k]

=
∑

π1,π2,π3,π4

(Q−1)π1,π2Qπ2,π3(Q−1)π3,π4Qπ4,π1

=
∑
π

1 = k!, (A2)

where in the last equality, the summation over elements
in permutation group gives k!.

For the unitary generated by the SYK models, it pre-
serves the Fermi parity symmetry. Namely, [U, (−1)F ] =
0. It means that there are more invariant states, as given
by the following ones,

|W η
π 〉 =

∑
i1,i2,...,ik

k⊗
j=1

|ij〉 ⊗ (−1)ηjF |̄iπ(j)〉 (A3)

where ηj = 0, 1. There are in total 2kk! different invari-
ant states. Thus, the frame potential will be given by
similarly summing over all the invariant states,

F
(k)
Haar =

∫ ′
dU

∫ ′
dV |Tr(UV †)|2k = 2kk!, (A4)

where
∫ ′
dU denotes the Haar measure in the subspace

that preserves Fermi parity symmetries.

Appendix B: Ground States of Brownian Spin
Effective Hamiltonian

In Section III A of the main text we presented a de-
tailed analysis of the ground-state manifold and gap to
the excited state in the Brownian spin model for k = 1.
Here we present a similar analysis for k = 2.

There are now 2! distinct ground states, and the per-
mutation symmetry is spontaneously broken in each pair-
ing of contours into thermofield doubles.

We may consider excitations around any particular
pairing. If only one of the pairings is excited, then the
spectrum is identical to the H1 case. The minimal en-
ergy cost of such an excitation, corresponding to a single
Pauli operator, is 12J . There are 6N such states.

Now what if both pairs are excited? Consider an exci-
tation of the form

P 1Q2|∞〉11̄|∞〉22̄ (B1)

and a term

J

2N

∑
αβ

(
σ1
iασ

1
jβ + σ2

iασ
2
jβ − (σ1̄

iασ
1̄
jβ)∗ − (σ2̄

iασ
2̄
jβ)∗

)2

.

(B2)
There are four possibilities, P 1 and Q2 can commute or
anticommute with the O1 and O2 operators in the term.
If at most one of them anti-commute, then we’re back in
the situation with H1. The term then contributes to the
energy exactly like it would in the H1 case.

If both anti-commute, then after moving P 1 and Q1

through the term, the term becomes

J

2N

(
−σ1

iασ
1
jβ − σ2

iασ
2
jβ − (σ1̄

iασ
1̄
jβ)∗ − (σ2̄

iασ
2̄
jβ)∗

)2

,

=
J

2N

(
2σ1

iασ
1
jβ + 2σ2

iασ
2
jβ

)2
, (B3)

where we used operator pushing from 1̄ to 1 and from 2̄
to 2.

https://doi.org/10.1038/s41567-022-01539-6
https://doi.org/10.1088/1751-8113/41/5/055308
https://doi.org/10.1088/1751-8113/41/5/055308
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/276698.276708
https://doi.org/10.1017/9781316848142
https://doi.org/10.48550/ARXIV.1806.06840
https://doi.org/10.48550/ARXIV.1806.06840
https://doi.org/10.1155/S107379280320917X
https://doi.org/10.1155/S107379280320917X
https://arxiv.org/abs/https://academic.oup.com/imrn/article-pdf/2003/17/953/1881428/2003-17-953.pdf
https://arxiv.org/abs/https://academic.oup.com/imrn/article-pdf/2003/17/953/1881428/2003-17-953.pdf
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1007/JHEP03(2022)205
https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1103/PhysRevB.37.3557
https://doi.org/10.1103/PhysRevB.37.3557


12

The term no longer has |∞〉11̄|∞〉22̄ as an eigenstate,
but we can compute its average in that state (since we
already moved the Pauli strings through), giving

2× 22 × J

2N
. (B4)

This is a small correction on top of the H1 energies of P 1

and Q2 and does not close the gap.
Suppose P andQ are single Pauli operators. Then only

an O(1) number of terms out of the O(N2) total number
of terms will anti-commute with both P and Q. Since
such terms can only change the energy by an O(1/N)
amount, we conclude that the energy of two excitations
is approximately additive.

There is one exception to this rule, which occurs when
the excitations are on the same site in replica 1 and 2.
In that case, every term that anti-commutes with P also
anticommutes with Q. In this special case, there are a
O(N) terms that anti-commute with both (and no terms
that anti-commute with only one), but the average en-
ergy of this state is still the same as for two decoupled
excitations. Moreover, while the state is not an exact
eigenstate, by computing the variance of the energy we
learn that the energy is peaked around the average.

The general result is that for any dilute set of excita-
tions, the leading contribution to the energy is the sum of
the H1 energies for those excitations taken in isolation.
For an extensive (but dilute) number of excitations in
each pairing, there will be an extensive (but small) cor-
rection to the total energy which vanishes as the density
of excitations becomes more dilute.

A new type of excitation that is possible when k > 1 is
a “domain wall” between the two different ways of pair-
ing the system to produce a zero-energy state. Suppose
N1 spins are paired as 11̄, 22̄ and N2 spins are paired as
12̄, 21̄.

We can divide the J terms into three sets, those that
couple within N1, those that couple within N2, and those
that couple between N1 and N2. The within terms are
still exactly satisfied, so we need only consider the terms
that couple N1 to N2. For each i from the N1 and each
j from the N2, we have a term

J

2N

∑
αβ

(
σ1
iασ

1
jβ + σ2

iασ
2
jβ − (σ1̄

iασ
1̄
jβ)∗ − (σ2̄

iασ
2̄
jβ)∗

)2

.

(B5)
When acting on the domain wall state, this term is equiv-
alent to

J

2N

∑
αβ

(
σ1
iασ

1
jβ + σ2

iασ
2
jβ − σ1

iασ
2
jβ − σ2

iασ
1
jβ

)2
=

2J

N

∑
αβ

(1− σ1
iασ

2
iα)(1− σ1

jβσ
2
jβ). (B6)

Now, the domain wall state is not an eigenstate of this
term, but we can compute the expected value, 2J

N . There
are N1N2 terms (plus the sum over αβ), so the expected

value of the energy is

2JN1N232

N
= 18J

N1N2

N
. (B7)

If we have a domain wall separating macroscopic do-
mains, then the energy is extensive in N . The minimal
energy of such a domain wall is obtained for N1 = 1 and
N2 = N − 1, in which case the energy is 18J (at large
N). There are N such states. In fact, such a minimal
domain wall is just a combination of pairs of excitations
discussed above. The minimal domain wall can be cre-
ated from the ground state by applying a swap operator
between spin i in replica 1 and spin i in replica 2. Such
a swap operator can be decomposed as

SWAPi,12 =
1

2
(I + σ1

i · σ2
i ). (B8)

where σ1
i · σ2

i =
∑
α σ

1
iασ

2
iα. Applied to the ground

state, this produces a linear combination of the ground
state (probability 1/4) and three pairs of excitations
(probability 1/4 each). Hence, the average energy is
1
4 × 0 + 3

4 × 2× 12J = 18J , just as we found above.

Appendix C: Path integral for the Brownian spin
model

The time evolution operators have the following path
integral representation,

[TrU(T )]k[TrU(T )∗]k

=

∫
dΩ exp

∫
dt
∑
r

[ ∑
a=L,R;i

〈∂tΩra,i|Ωra,i〉

−
∑
i<j

∑
αβ

iJijαβ(σrL,iασ
r
L,jβ − σrR,iασrR,jβ)

]
, (C1)

where 〈∂tΩri |Ωri 〉 is a short-hand notation for spin path
integral, and Ω is a representation for the spin coher-
ent state (such as Euler angular representation). The L

and R subindices denote the field in U(T ) = T ei
∫
dtH(t)

and U∗(T ) = T ei
∫
dtH∗(t) respectively. T denotes time

ordering. More precisely, σL,iα = 〈Ω|[σL,i]α|Ω〉 and
σR,iα = 〈Ω|[σ∗R,i]α|Ω〉, where σ is the Pauli matrix.
r = 1, ..., k is the replica index. To get the frame po-
tential, we average over the ensemble by integrating out
the Brownian Gaussian variable,

F
(k)
b-spin(T ) =

∫
DΩ exp

∫
dt
[∑
r,a,i

〈∂tΩra,i|Ωra,i〉

+
J

4N

∑
r,s

∑
a6=b

(
∑
iα

σra,iασ
s
b,iα)2

]
− 9

2
kNJT, (C2)

where we use that 〈Ω|
∑
i σa,i ·σa,i|Ω〉 = 3N for the spin

coherent state to get the last term. To proceed, we define
the Green’s function Grsab(t) = 1

N

∑
iα σ

r
a,iα(t)σsb,iα(t),

which can be implemented via the following identity

1 =

∫
DFeN

∫
dt

∑
rs

∑
a6=b F

rs
ab (Grsab− 1

N

∑
iα σ

r
a,iασ

s
b,iα).



13

Thus, the action becomes

− I

N
=

∫
dt
[(∑

r,a

〈∂tΩra|Ωra〉 −
∑
rs

∑
a 6=b

F rsab
∑
α

σra,ασ
s
b,α

)
+
∑
rs

∑
a 6=b

(
F rsabG

rs
ab +

J

4
(Grsab)

2
)]
− 9

2
kJT. (C3)

We can see that the first term gives N copies of the free
energy for 2k spins, i.e., r = 1, ..., k and a, b = L,R, with
the Hamiltonian given by F rsab (t),∫
DΩ exp

∫
dt
(∑
r,a

〈∂tΩra|Ωra〉 −
∑
rs

∑
a6=b

F rsab
∑
α

σra,ασ
s
b,α

)
= Tr[e−

∫
dtH(t)], (C4)

and the Hamiltonian reads

H(t) = −
∑
rs

∑
a6=b

F rsab (t)σra · σsb , (C5)

where we have made a basis transformation for the R
spins using σsR,2, which combining with the complex con-
jugation is equivalent to a time reversal transformation.
Thus, we obtain the path integral representation of the
frame potential for the Brownian spin model with large-
N action given by

− I

N
= log Tr[e−

∫
dtH(t)]

+

∫
dt
∑
rs

∑
a6=b

(
F rsabG

rs
ab +

J

4
(Grsab)

2
)
− 9

2
kJT. (C6)

Since the action is quadratic in Grsab, we can integrate
out Grsab. This amounts to use equation of motion for G,

i.e., F rsab = −J2G
rs
ab, to eliminate G field. It is equivalent

to eliminate F rsab , which leads to

− I

N
= log Tre−

∫
dtH(t) − J

4

∑
rs

∑
a6=b

∫
dt(Grsab)

2 − 9

2
kJT.

H(t) =
J

2

∑
rs

∑
a 6=b

Grsab(t)σ
r
a · σsb . (C7)

1. k=1

We first look at a single replica k = 1, and then gen-
eralize to arbitrary k. To look for a steady solution, we
assume Gab is a constant (here we omit the superscript
for the replica index for simplicity). The Hamiltonian is

H =
J

2

∑
a6=b

Gabσa · σb, (C8)

which only involves two spins a = L,R. The eigenstates
include one singlet state and three triplet states. We can
immediately get the partition function

Tr[e−HT ] = e
3JT
2 (GLR+GRL) + 3e−

JT
2 (GLR+GRL),(C9)

and the action becomes

− I

N
= log[e3GLRJT + 3e−GLRJT ]− JT

2
(GLR)2 − 9

2
JT,

(C10)

where we use the properties Gab = Gba that should be
satisfied for a solution. The equation of motion is

GLR = 3

(
1− 4

3 + e4GLRJT

)
, (C11)

In the long time limit, the solution is GLR = 3, consis-
tent with the assumption of a time independent solution.
Using this saddle point solution, the frame potential for
k = 1 is

F
(1)
b-spin(T ) ≈

(
1 + 3e−12JT

)N ≈ e3Ne−12JT

. (C12)

2. General k

Now consider general k. We again assume the solution
is time independent to look for steady solutions. The
action can be simplified to

− I

N
= log Tre−TH − JT

2

∑
rs

(GrsLR)2 − 9

2
kJT.

H(t) = J
∑
rs

GrsLRσ
r
L · σsR. (C13)

At the long time limit, the first term projects the state
to the ground state of H. Let’s denote the ground state
of H to be |Ψ〉. The equation of motion becomes

GrsLR = −〈Ψ|σrL · σsR|Ψ〉. (C14)

It is clear that for any state |Ψ〉, −〈Ψ|σrL · σsR|Ψ〉 ≤ 3.
The equality is saturated for a spin singlet state between
σrL, and σsR, so GrsLR ≤ 3.

At the long time limit, since the first term projects to
the ground state log Tre−TH = −T 〈Ψ|H|Ψ〉 the action
becomes

− I

N
→ JT

2

∑
rs

(GrsLR)2 − 9

2
kJT. (C15)

We expect the action to be time independent. As the
second term is linear in the replica, it indicates that the
L spin and R spin will form k singlets. There are k!
different pairing, given by the permutation matrix. Then
it is not hard to verify that at long time limit, the saddle
point solution is

GrsLR = 3 · [P (π)]rs, (C16)

where P (π) is a permutation matrix corresponding to
permutation π. For each pair r and s spins, it forms a
triplet state.

Indeed, this is consistent with the Hamiltonian anal-
ysis. The singlets between the L spin and R spin are
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precisely the EPR state when we make the transforma-
tion back to the original spins.

To see the finite time correction, we can make the first
order perturbation theory by plugging the solution to the
finite time action

− I

N
= log Tre−3JT

∑
rs[P (π)]rsσrL·σ

s
R − 9kJT (C17)

= log(e9JT + 3e−3JT )k − 9kJT (C18)

≈ 3ke−12JT . (C19)

Including the degeneracy from the k! different permu-

tation matrices P (π), the frame potential is given by

F
(k)
b-spin(T ) ≈ k!e−I = k!e−3Nke−12JT

. (C20)

Appendix D: Path integral for the Brownian SYK
model

The fermonic path integral for the time evolution op-
erator is given by

[TrU(T )]k[TrU(T )∗]k =

∫
Dψ exp

∑
r

[
i

∫
dt
(1

2
ψrL,i(i∂t)ψ

r
L,i − Jijkl(t)ψrL,iψrL,jψrL,kψrL,l

)
+i

∫
dt
(1

2
ψrR,i(−i∂t)ψrR,i + Jijkl(t)ψ

r
R,iψ

r
R,jψ

r
R,kψ

r
R,l

)]
(D1)

where a = L,R denotes the field in forward U and back-
ward evolution U∗, respectively, and r = 1, ..., k denotes

different replica. The summation over flavor indices is
implicit. We can make a redefinition of ψR, ψR → iψR,
so that the path integral becomes

[TrU(T )]k[TrU(T )∗]k=

∫
Dψ exp

∑
r

∫
dt
(
− 1

2

∑
a=L,R

ψra,i∂tψ
r
a,i − iJijkl(t)[ψrL,iψrL,jψrL,kψrL,l − ψrR,iψrR,jψrR,kψrR,l]

)
,

(D2)

And after we average over the disorder distribution, we get

F
(k)
bSYK(T ) =

∫
Dψ exp

∫
dt
[
− 1

2

∑
a,i,r

ψra,i∂tψ
r
a,i +

4 · 3!J

N3

∑
ijkl

[∑
r

(ψrL,iψ
r
L,jψ

r
L,kψ

r
L,l − ψrR,iψrR,jψrR,kψrR,l)

]2]
,

(D3)

where we restore the summation of flavors to be clear.
To derive the large-N action, we introduce the bilocal

field Grsab(t, t
′) = 1

N

∑
i ψ

r
a,i(t)ψ

s
b,i(t

′), where a, b = L,R.
To implement this equation, we use the following delta
function

1 =

∫
DΣ exp

N

2

∑
rs,ab

∫
dtdt′Σrsab

(
Grsab −

1

N

∑
i

ψra,iψ
s
b,i

)
,

and we get the effective action (35). The equation of
motion is

G−1 = ∂t + Σ, (D4)

Σrsab(t, t
′) = −Jδ(t− t′)[2Grsab(t, t′)]3. (D5)

The equation of motion is a complicated matrix equa-
tion. But inspired by the invariant state, we observe that
when the matrix element for the GLR in the r-row and
the s-column is nonvanishing and all other elements in

the r-row and the s-column are zero, as well as the Gaa
is diagonal, the equation of motion for this fixed rs de-
couples from the rest, and is simplified to a two by two

matrix equation (i.e. Ĝ =

(
GrrLL GrsLR
GsrRL GssRR

)
. Note that we

will sometimes omit the index rs for simplicity). Then
the equation of motion can be solved with the boundary
condition ψra,i(t + T ) = −ψra,i(t + T ). The solution is
given by

Ĝ(t1, t2) =
[θ(t12)

2
f+(t12)− θ(t12)

2
f+(−t12)

]
12×2

±
[θ(t12)

2
f−(t12)− θ(t12)

2
f−(−t12)

]
σy, (D6)

Σ̂(t1, t2) = ±δ(t12)Jσy, (D7)

where t12 = t1 − t2, and

f±(t) =
e−Jt

e−JT + 1
± eJt

eJT + 1
. (D8)
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We have used the Pauli matrix σy to simply our notation
for the solution of the two by two matrix for a fixed r
and s. The plus and minus sign in the front of the σy
means that there two solutions.

Because this solution is decoupled from the rest, we
can calculate the onshell action for a fixed rs. The log det
part can be mapped to a partition function of Majorana
fermions with Hamiltonian H = 1

2 Σ̂. Thus we can get
the log det,

1

2
log det(∂t + Σ) = log

∫
Dχ exp

[
−
∫
dtχ
(1

2
∂t +H

)
χ

]
= log

(
2 cosh

JT

2

)
. (D9)

Other terms can be evaluated directly, then the onshell
action for the rs component gives

−Iwh(T )

N
= log

(
2 cosh

JT

2

)
− JT

2
, (D10)

where the subscript wh indicates that it is like a worm-
hole solution connecting r-th and s-th replicas.

On the other hand, there is an obvious trivial solution
given by Ĝ = [sgn(t12)/2] · 12×2, Σ̂ = 0, with onshell
action given by

−I0(T )

N
= log 2− JT

8
, (D11)

where the subscript 0 indicates that it comes from a triv-
ial solution.

Restricted to the r-th and s-th replicas, when there
is a nonvanishing correlation between them, the onshell
action tends to zero at long time limit. On the other
hand the trivial solution tends to infinity at the long time
limit, indicating that they do not contribute to the frame
potential: it is exponentially suppressed. While at time
zero, both solutions leads to the dimension of Hilbert
space, 2N . This number is because each replica contains
N Majorana fermoins.

The above solutions are restricted to a two by two ma-
trix, i.e., the r-th and s-th replicas, and the remaining
step is to count how many different solutions can exist
among the k replicas. The result is given by

F
(k)
bSYK(T ) =

k∑
m=0

2mm!

(
k
m

)2

e−(k−m)I0(T )e−mIwh(T ),

(D12)

where m indicates the number of nontrivial paired solu-
tions and k−m indicates the number of trivial solutions
in the k possibilities. The prefactor is the degeneracy. It
comes from picking m elements out of k possibilities for
the row and the column (so there is a square), and shuf-
fling the result, while the 2m factor accounts for the two
solutions corresponding to different sign choices in (D6).
At time zero, the frame potential should give the dimen-
sion of Hilbert space of 2k Brownian SYK systems. It
seems that our result is much greater than the dimension

of Hilbert space because the contribution from nontrivial
solutions are included. But as we will see in the follow-
ing, those nontrivial solutions should not be included at
time zero.

At the long time limit, the trivial solution will lead to
an exponential suppression with exponent proportional
to N , i.e.,

e−(k−m)I0(T ) = e(k−m)N(log 2− JT8 ), (D13)

for m < k. Thus, the dominant solution is given by
m = k with maximal pairs in the 2k different replicas,

F
(k)
bSYK(T ) = 2kk!ekN log(1+e−JT ) (D14)

≈ 2kk!(1 + kNe−JT ). (D15)

Regarding the prefactor, while 2k is given by the sign
choice, k! corresponds nicely to the permutation.

Appendix E: 1/N correction in the Brownian SYK
model

We consider the small fluctuations around the saddle
point solution,

G(t1, t2) = Ḡ(t1 − t2) +
1√
N
g(t1, t2), (E1)

Σ(t1, t2) = δ(t12)

(
Σ̄ +

1√
N
σ
( t1 + t2

2

))
. (E2)

Here we use Ḡ and Σ̄ to denote the solution, and g and
σ denote the fluctuation. The factor 1√

N
is a proper

rescaling for the large N theory.

The potential Jδ(t−t′)
16 cab(2G

rs
ab)

4 indicates that only

when Ḡrsab 6= 0 can one gets a nonvanishing contribution
in the quadratic order. Thus, we focus on these fluctua-
tions for each fixed rs with nontrivial solutions. We omit
the indices rs for simplicity. Other fluctuations will not
have a contribution at quadratic level and will also force
σ to be zero.

We expand each terms in the action up to quadratic
orders in the fluctuations. The log det leads to

−1

4

1

T 2

∑
Ω,ω

Tr[Ḡ(Ω + ω)σ(ω)Ḡ(Ω)ω(−ω)]

=
1

T

∑
ω

1

2

tanh JT
2

ω2 + 4J2

×
(
σ11(−ω) σ12(−ω)

)( 2J ω
−ω 2J

)(
σ11(ω)
σ12(ω)

)
,(E3)

where we have used the basis transformation σLL/RR =
σ11 ± σ̃11, σLR/RL = σ12 ± σ̃12. The Fourier transforma-
tion is defined through

σab(ωn) =

∫ T

0

dtσab(t)e
iωnt, (E4)

σab(t) =
1

T

∑
n

σab(ωn)e−iωnt, (E5)



16

where ωn = 2πn
T is the Matsubara frequency for bosons.

We denote ωn as ω, and
∑
n as

∑
ω for simplicity.

The term
∫
dtdt′ 12ΣrsabG

rs
ab leads to∫

dt
1

2

[
(gLL(t) + gRR(t))σ11(t) + (gLR(t) + gRL(t))σ12(t)

+(gLL(t)− gRR(t))σ̃11(t) + (gLR(t)− gRL(t))σ̃12(t)
]
,

where because the δ function resulted from Brownian-
ness, only g(t, t) is relevant, and we define gab(t) ≡
gab(t, t). Because σ̃11 and σ̃12 are zero modes, they will
serve as Lagrange multipliers to force gLL = gRR and
gLR = gRL. Then the above expression reduces to∫

dt(gLL(t)σ11(t) + gLR(t)σ12(t)). (E6)

Combining (E3) and (E6), and integrating out σ11 and
σ12, we get

− 1

T

∑
ω

1

2
coth

JT

2
×

(
gLL(−ω) gLR(−ω)

)( 2J −ω
ω 2J

)(
gLL(ω)
gLR(ω)

)
.(E7)

And finally, the term
∫
dtdt′ Jδ(t−t

′)
16 cab(2G

rs
ab)

4 gives

rise to −6J 1
T

∑
ω gLR(−ω)gLR(ω). Putting everything

together, we have the final result,

−δI =
1

T

∑
ω

−1

2
×

ĝ(−ω)

(
2J coth JT

2 −ω coth JT
2

ω coth JT
2 2J coth JT

2 + 12J

)
ĝ(ω), (E8)

where ĝ = (gLL, gLR)T . The free energy of this free boson
can be evaluated as

F =
1

T

∑
n

1

2
log(ω2

n + E2) =
1

T
log(1− e−βE), (E9)

where E = 2J
√

6 tanh JT
2 − 1 is the mass of the real

boson. There is a critical T ∗, i.e., tanh JT∗

2 = 1
6 , after

which these boson becomes stable. Thus, when T < T ∗,
we should not include these saddle point contributions as
we have discussed before.

For a fixed permutation solution, we have k different
rs, which leads to k bosons. Now we have same de-
generacy coming from 2kk!. For the late times, the free
energy for each of the degenerate solution including the
quadratic fluctuations reads

−FT = kN log(1 + e−JT )− k log(1− e−ET )
(

1 +O(
1

N
)
)
,

Inside the bracket of the second term, 1 is from the
quadratic fluctuation (E8), and O( 1

N ) is given by the
vacuum bubble. Because we are interested in the long
time behavior, we expect a renormalization flow of the
mass E due to high order corrections gives an appropri-
ate estimate of the collective decaying mode. The large
N structure indicates that correction is of order O( 1

N ),
namely, we expect the free energy is given by

−FT = kN log(1 + e−JT )− k log(1− e−
(
E+O( 1

N )
)
T ).

(E10)

Appendix F: Effective Hamiltonian for the Brownian
SYK model

In (D3), the boundary condition is for any field config-
urations, so the above path integral can be regarded as
a partition function

[TrU(T )]k[TrU(T )∗]k = Tr[e−HT ], (F1)

with the Hamiltonian given by,

H =
4 · 3!J

N3
(F2)∑

ijkl

[∑
r

(ψrL,iψ
r
L,jψ

r
L,kψ

r
L,l − ψrR,iψrR,jψrR,kψrR,l)

]
.(F3)

The ground state of this Hamiltonian is given by the
tensor product of EPR state, each of which is two EPR
states of two contours r and s

|GS〉 = ⊗r,s|∞〉r,s, (ψrj ± iψsj )|∞〉r,s = 0, ∀j.(F4)

Then the number of such ground states is given by

N(GS) = 2kk!. (F5)

The elementary excitation (eigenstate) is given by
ψri |GS〉 for any flavor i and replica r. The energy of
this excitation is

Hψri |GS〉 = Jψri |GS〉. (F6)

The number of the elementary excitation is given by kN
for each degenerate ground state, so we expect the frame
potential is given by

F
(k)
bSYK(T ) = 2kk!(1 + kNe−JT ), (F7)

which exactly reproduces the saddle point calcula-
tion (D14).

1. Quadratic SYK model

Let’s consider the quadratic SYK model given by

H(t) =
∑
i<j

Jij(t)ψiψj , (F8)

where ψj , j = 1, ..., N , {ψi, ψj} = δij are Majorana
fermions. Jij(t) is a Brownian Gaussian variable with
mean zero and variance

E[Jij(t)Ji′j′(0)] = δii′δjj′
4J

N
δ(t). (F9)

Paralleled to the regular SYK model, we arrive at the
path integral,
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[TrU(T )]k[TrU(T )∗]k =

∫
Dψ exp

∑
r

[ ∫
dt
(
− 1

2

∑
i

ψrL,i∂tψ
r
L,i − i

∑
ij

Jij(t)(iψ
r
L,iψ

r
L,j)

)
+

∫
dt
(
− 1

2

∑
i

ψrR,i∂tψ
r
R,i − i

∑
ij

Jij(t)(iψ
r
R,iψ

r
R,j)

)]
. (F10)

Owing to the similarity between L and R fields after the
redefinition, we can include these two indices into r, such
that r = 1, ..., 2k,

[TrU(T )]k[TrU(T )∗]k = (F11)∫
Dψ exp

2k∑
r=1

∫
dt
[
− 1

2

∑
i

ψri ∂tψ
r
i − i

∑
ij

Jij(t)(iψ
r
i ψ

r
j )
]
.

(F12)

Then apparently, the action has a O(2k) symmetry. In-
tegrating out the Brownian variable, we have

E[TrU(T )]k[TrU(T )∗]k = (F13)∫
Dψ exp

∫
dt
[
− 1

2

∑
i,r

ψri ∂tψ
r
i +

J

N

∑
i<j

(
∑
r

ψri ψ
r
j )

2
]
.

where the Hamiltonian can be read out as

H =
J

N

∑
i<j

(∑
r

iψri ψ
r
j

)2
. (F14)

The ground state of this Hamiltonian is given by the
tensor product of EPR state, each of which is two EPR
states of two contours r and s

|GS〉 =
⊗
r,s

|∞〉r,s, (ψrj ± iψsj )|∞〉r,s = 0, ∀j.

(F15)

Then the number of such ground states is given by

N(GS) =
(2k)!

k!
� 2kk!, (F16)

which indicates that the SYK2 model is not able to reach
k design.

Appendix G: Non-Hermitian Perturbation Theory

Here we derive the perturbative decay rates Eqs. (58)
and (59), starting from the effective Hamiltonian Eq.
(57), in the limit of small g � 1. We write the effec-
tive Hamiltonian in the form

Heff = H + gV (G1)

where

H =
∑
r

Hr −Hr

V = − i
2

∑
α

(∑
r

[Orα − (Or̄α)∗]

)2

(G2)

are the bare Hamiltonian and non-Hermitian perturba-
tion, respectively.

1. k = 1

Consider first the simplest case k = 1 and a single per-
turbing operator Oα = O, where the bare Hamiltonian
and perturbation are

H = H1 −H1

V = − i
2

(
O1 −O1

)2

. (G3)

The bare Hamiltonian H has eigenstates |ψ(0)
nm〉 ≡ |n,m〉

with bare eigenenergies E
(0)
nm = En − Em. We as-

sume the energies En are nondegenerate, but the repli-
cated eigenenergies Enm are clearly degenerate whenever
n = m. The decay rate for each eigenstate |ψnm〉 appears
as an imaginary component in the perturbed eigenener-
gies Enm. We can compute this imaginary component
explicitly using first-order perturbation theory.

First consider the case n 6= m. Similar to standard
perturbation theory, we expand the perturbed eigenstate
and eigenenergies in powers of the small parameter g:

|ψnm〉 = |ψ(0)
nm〉+ g |ψ(1)

nm〉+O(g2)

Enm = E(0)
nm + gE(1)

nm +O(g2) (G4)

To lowest order in g, the Schrödinger equation is just the

bare eigenvalue equation (H − E(0)
nm) |ψ(0)

nm〉 = 0. At first
order in g, the Schrödinger equation yields

gH |ψ(1)
nm〉+ gV |ψ(0)

nm〉 = gE(0)
nm |ψ(1)

nm〉+ gE(1)
nm |ψ(0)

nm〉
(G5)

Taking the inner product with 〈ψ(0)
nm| and using the fact

that the bare Hamiltonian is Hermitian H† = H yields

the first result Eq. (58), where δE = gE
(1)
nm ∝ −ig.

Next consider the case n = m. This is a D-dimensional
subspace spanned by the vectors |n, n〉 for n = 1, . . . , D.
As discussed in the main text, we first identify the dark
state |d〉 = 1√

D

∑
n |n, n〉11 within this subspace and re-

move it. We then orthogonalize the remaining vectors so
that they span the D − 1-dimensional subspace orthog-
onal to |d〉. The states in this orthogonal subspace are
random vectors. We analyze the spectrum in the sub-
space in Appendix H.
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2. k > 1

The argument proceeds similarly for k > 1, but now
there are many more ways for the eigenenergies

En1m1n2m2...nkmk
=
∑
r

Enr −
∑
r

Emr (G6)

to be degenerate. In particular, we can always find k!
dark states. One of these is simply⊗

r

|n, n〉rr , (G7)

which is the 2k-replica generalization of Eq. (60). The
remaining dark states can be found by permuting the
forward replicas r (or the backward replicas r) amongst
themselves, giving k! dark states total. As mentioned in
the main text, these dark states are not all orthogonal,
but have overlaps that are suppressed by powers of the
Hilbert space dimension D. Nevertheless, these states
still span a space of dimension k! provided k < D+ 1. It
is very interesting to consider what happens for larger k,
especially in the context of computing replica limits, but
we leave these technical issues for future work.

Here we analyze the decay rate using the first-order
perturbation theory. While it is known that one can con-
struct an set of exact excited states using the eigenstate
from k = 1 [42], we argue that in the perturbation theory,
the smallest gap is indeed given by individual excitation
from k = 1. As before, the perturbation is given by

V =
−i
2

(
k∑
i=1

(Oi −Oī)

)2

(G8)

= −i

k −∑
i

OiOī +
∑
i 6=j

[OiOj +OīOj̄ ]−
∑
i 6=j

OiOj̄

 ,

(G9)

where in the second line, we separate the diagonal part
i = j and the off-diagonal part i 6= j. Notice here we take
O as a Pauli-Z matrix with O∗ = OT = O and O2 = 1.

For a general eigenstate state of the unperturbed
Hamiltonian, such as, |n1...nk,m1̄...mk̄〉, we have (k!)2

fold degeneracy by permuting the r and the r̄ replicas
independently, i.e., |nπ(1)...nπ(k),mπ′(1̄)...mπ′(k̄)〉.

Thus we should look at the matrix element of V in this
degenerate subspace. The diagonal elements are

〈n1...nk,m1̄...mk̄|V |n1...nk,m1̄...mk̄〉

= −i

(
k −

k∑
i=1

〈ni|O|ni〉〈mī|O|mī〉

)
. (G10)

Here we neglect the off-diagonal ones because they will
cancel on average. Following the same estimate from the
main text, 〈n|O|n〉 ∼ 1/

√
D, the diagonal elements are

approximate by

−ik (1−O(1/D)) . (G11)

We see that the diagonal it is enhanced by a factor of k.
Let’s consider the effect from the off-diagonal elements.

Since we have the coupling between at most two repli-
cas, the perturbation V can only connect two degener-
ate states related by a transposition. For transposition
(ni, nj), the operator that connects these two states is
OiOj , so we have the following matrix element

〈n1...ni...nj ...nk,m1̄...mk̄|V |n1...nj ...ni...nk,m1̄...mk̄〉
= −i|〈ni|O|nj〉|2. (G12)

And this gives us the transition amplitude which we an-
alyze in Appendix H. The upshot is that the variance of
this matrix element is 2/D2.

The perturbation matrix has dimension (k!)2 × (k!)2.
Its diagonal element is approximated by (G11). Its off-
diagonal element is nonzero only when two states can be

connected by a transposition. As there are 2 ·
(
k
2

)
∼ k2

transpositions. The factor of two is because we can
have transpositions from r replicas or r̄ replicas. This
is a sparse random matrix with approximate k2 nonzero
elements in a row with a total (k!)2 elements. We
approximate this sparsity by introducing a probability

p = 1
(k!)2

(
k
2

)
such that we have 1 − p probability to

have a vanishing entry and p probability to have an entry
with variance 2/D2. It turns out that when k � 1, the
eigenvalues of this matrix will satisfy the Wigner semi-
circle law [51]. The radius of the semicircle is given by√

(k!)2 · p · 2

D2
∼ k

D
. (G13)

It seems that the correction is enhanced by a factor of
k. But the diagonal element is also enhanced by a factor
of k, so the off-diagonal element only leads to a 1/D
correction to the diagonal element (G11). Thus the decay
rate for a generic state is kg(1−O(1/D)).

Like the situation in k = 1, we should pay spe-
cial attention to the degenerate subspace spanned by
|n1...nk, n1...nk〉. The matrix element is

〈m1...mk,m1...mk|V |n1...nk, n1...nk〉

= −i

k k∏
i=1

δmi,ni −
k∑
i=1

|〈mi|O|ni〉|2
∏
j 6=i

δmj ,nj

 .

(G14)

It is straightforward to check that off diagonal parts van-
ish in (G9).

Denote the nontrivial matrix appeared in (G14) by

Mmn = |〈m|O|n〉|2, (G15)

the information of eigenvalues of M determines the full
spectrum in (G14). To see that, denote the eigenvectors
of M by |Ei〉, i = 0, ..., D− 1 with eigenvalues Ei. There
is a special state given by

|E0〉 ≡ |d〉 =
1√
D

∑
n

|n, n〉. (G16)
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It has eigenvalue one E0 = 1. Apart from E0, we assume
E1 > ... > ED−1. The other D − 1 states are random
vectors and will be analyzed in detail in Appendix H.

All eigenstates of (G14) can be constructed as

|Ei1 , ..., Eik〉 =

k⊗
j=1

|Ei〉j , (G17)

with eigenvalues

−i

k − k∑
j=1

Eij

 . (G18)

Then we see that among the Dk eigenstate of this matrix,
there is exactly one zero mode |E0, ..., E0〉. It is now clear
that the first excited states are

|Ψj〉 = |E0, ..., E1, ..., E0〉 (G19)

=

(
j−1⊗
i=1

|E0〉i

)
⊗ |E1〉j ⊗

 k⊗
i=j+1

|E0〉i

 ,(G20)

for j = 1, ..., k, namely, there are k-fold degeneracy for
first excited state, and the eigenvalue is

−i (k − (k − 1)E0 − E1) = −i(1− E1). (G21)

Because the eigenvalue of M satisfies Wigner semicircle
law with radius ∼ 1/

√
D (Appendix H), E1 < 1/

√
D.

The minimal decay rate is given by

−ig(1−O(1/
√
D)), (G22)

which is the same as k = 1.
Due to permutation symmetry, we actually have k!

such subspace spanned by |n1...nk, nπ(1)...nπ(k)〉. We ex-
pect the matrix element between different subspace is
similar to the analysis before except now we have a much
bigger matrix, i.e., it is enlarged by a factor of Dk. As a
consequence, the correction will be highly suppressed by
D−k/2, and it is safe to neglect this correction.

Therefore, for small g and arbitary k ≤ D, we expect
that there are k! dark states and k · k! degenerate states
with the minimal decay rate g(1−O(1/

√
D)). We have

also numerically checked that the averaged minimal gap
is independent of k for k = 1, 2.

Appendix H: Eigenvalues of the perturbation matrix

In this section, we analyze the eigenvalue of the matrix
in the degenerate subspace in the first-order perturbation
theory for k = 1. There is a dark state with zero decaying
rate, apart from this, we are interested in the decaying
rate of other states in the degenerate subspace |nn〉, n =
1, ..., D.

The nontrivial matrix is (61) and also given as follows,

Mnm = |〈n|O|m〉|2, (H1)

where O is taken to be a Pauli-Z matrix, and |n〉 is an
eigenvector of a GOE matrix. We are interested in eigen-
values of M .

Because the constraint for the eigenvector is that they
are real and satisfy the normalization, an eigenvector of
a GOE random matrix has the distribution [48]

ρ(x1, .., xD) = π−D/2Γ
(D

2

)
δ
( D∑
i=1

x2
i − 1

)
, (H2)

where xi is each component of the eigenvector. It can
be understood as the projection of an eigenvector onto n
orthonormal axes. Because eigenvectors are orthogonal,
it can be also understood as projection of all eigenvectors
onto a fixed normal axis. These two quantities are the
same in orthogonal ensembles. We can integrate outD−1
components to get

ρ(x) =
Γ(D2 )

π1/2Γ(D−2
2 )

(1− x2)
D−3

2 . (H3)

This can be interpreted as projection of an eigenvector
to a fixed unit axis. In the large D limit, it is easy to see
that x ∼ D−1/2, and the distribution tends to

ρ(x)→
(
D

2π

)1/2

e−
D
2 x

2

. (H4)

Now consider the transition amplitude of the Hermi-
tian operator O, Onm = 〈n|O|m〉. To estimate this quan-
tity at large D limit, we first imagine m is fixed and then
allow m to move orthogonally. When the m-th eigen-
vector is fixed, the transition amplitude is equal to the
projection of n-th eigenvector to a fixed axis O|m〉. An
essential difference is that this axis in general is not nec-
essary a unit axis. The norm is

σ2
m = 〈m|O†O|m〉. (H5)

So simply using change of random variables, the distri-
bution of projection is

ρOnm(x;σm) =
1

σm
ρ

(
x

σm

)
, (H6)

where the second argument implies the distribution de-
pends on the norm of the axis. Now we allow the m-
th eigenvector to move orthogonally as well, so σm will
change accordingly. Assume σm satisfies a distribution
ρσm(x), if we know this distribution, then we have [48]

ρOnm(x) =

∫
dzρOnm(x; z)ρσm(z). (H7)

For our purpose, the norm is actually fixed due to the
factor that O†O = 1 for Pauli-Z operator. Thus σm = 1,
and in the large D limit,

ρOnm(x) =

(
D

2π

)1/2

e−
D
2 x

2

. (H8)
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Consistent with our intuition, the distribution does not
depend on n and m. We will also need

ρ|Onm|2(x) =

(
D

2πx

)1/2

e−
D
2 x. (H9)

From the above discussion, we know that the ma-
trix element Mnm satisfies identical independent distri-
bution (H9). Thus it is a Wigner matrix. We expect its
eigenvalues will satisfy Wigner’s semicircle law. Accord-
ing to this distribution, the mean is 1/D and the variance
is 2/D2, Wigner’s semicircle law predicts

ρ(E) =

√
D

2π

√
2− D

4

(
E − 1

D

)2

, (H10)

which agrees well with a numerical calculation of the ran-
dom matrix, see Fig. 3

Appendix I: Strong complexity, k-designs, frame
potential

Our calculations of the k-th frame potential immedi-
ately tell us about the growth of circuit complexity in
these models. Here we review the connection between k-
designs, the k-th frame potential, and circuit complexity,
following the arguments in [10, 21]. These connections
can be motivated by a simple observation: it is very dif-
ficult to distinguish a k-design U from the completely
depolarizing channel D that sends every input state ρ0

to the infinite-temperature state:

D(ρ0) = I/Tr[ρ0]. (I1)

From the perspective of local observables, both of these
channels produce maximally mixed states, so we cannot
tell them apart unless we can prepare and measure very
complicated states with substantial many-body correla-
tions.

We can phrase this observation in concrete terms by
posing a simple adversarial game between two players,
Alice and Bob. In this game, Alice constructs either an
ε-approximate k-design U on N qubits or the completely
depolarizing channel D and hands this channel to Bob;
Bob’s task is to distinguish which channel U ,D has been
given to him using only a single use of the channel. To
complete this task, Bob is allowed to use an N -qubit
reference system R as well as pre- and post-preparation
circuits of total depth r = r′ + r′′ (see Fig. 5). Using
these tools, Bob looks for a ‘bias’ signal

S ≡ β](r,U) ≡ |Tr[M (U ⊗ I − D ⊗ I) (|Ψ〉 〈Ψ|)]| (I2)

which indicates whether the channel is distinct from the
depolarizing channel, where I is the identity channel act-
ing on the reference R. Bob attempts to maximize this
bias signal by searching over all possible initial states
|Ψ〉 and projective measurements M , which are prepared

FIG. 5. Distinguishing a unitary channel U from the depolar-
izing channel D. To distinguish U from D, Bob is allowed to
use an ancilla system R, along with arbitrary pre- and post-
preparation circuits of depth r′ + r′′ = r. Bob cannot reliably
distinguish a k-design U from D unless he has circuits of depth
at least r ∼ kN/ logN .

by the pre- and post-processing circuits of depth r′, r′′,
respectively. (Because of the cyclicity of the trace, we
actually don’t need to search over initial states |Ψ〉 and
measurements M separately. It suffices to fix |Ψ〉 as a
maximally-entangled TFD state between Q,R and con-
sider a search over all measurements M that can be pre-
pared by circuits of depth r or less.) The gist of the
argument is that the probability Pr[S ≥ τ ] for Bob to
find a substantial bias is extraordinarily small if he is
only allowed to use short circuits of depth r . kN/ logN
or less. In this sense, we say that a k-design U has circuit
complexity r that grows linearly with k.

We now provide a more rigorous proof of these argu-
ments. Following Ref. [21], we say that a channel U has
strong δ-unitary complexity at most r if the optimal bias
signal is sufficiently close to its optimal value:

S = β](r,U) ≥ 1− 1/D2 − δ. (I3)

In the following, we prove that every ε-approximate k-
design U has strong δ-unitary complexity at most r ∼
kN/ logN .

To show this we utilize Markov’s inequality,

Pr[S ≥ τ ] = Pr[S2k ≥ τ2k] ≤ τ−2kE[S2k] (I4)

which bounds the probability of obtaining a substantial
bias signal S ≥ τ = 1 − 1/D2 − δ in terms of the 2k-th
moments of the bias. If the channel U is an ε-approximate
k-design, then the right-hand side can be bounded by

τ−2kE[S2k] ≡ τ−2kE
[
Tr[M (U ⊗ I − D ⊗ I) (|Ψ〉 〈Ψ|)]2k

]
≤ ((2k)!)2

Dkτ2k

(
C2k +

ε

(2k)!D3k

)
(I5)

where C2k are the Catalan numbers and D = qN is the
dimension of the system’s Hilbert space. We refer the
reader to Corollary 5 of [21] for a technical proof of this
bound.
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Finally, the probability Pr[Cδ ≤ r] of Bob obtaining a
substantial bias signal S is given by a union bound over

all measurements M that can be prepared by depth-r
circuits:

Pr[Cδ ≤ r] := Pr

[
max
M

S ≥ 1− 1

D2
− δ
]

= Pr

[
max
M
|Tr[M (U ⊗ I − D ⊗ I) (|Ψ〉 〈Ψ|)]| ≥ 1− 1

D2
− δ
]

≤ |M |
(1− 1/D2 − δ)2k

E
[
|Tr[M (U ⊗ I − D ⊗ I) (|Ψ〉 〈Ψ|)]|2k

]
≤ 3

(
C2k +

ε

(2k)!D3k

)
D2N2r |G|r

(
64k4

D(1− δ)2

)k
(I6)

where we assume 1 − δ ≥ 2/D. In the final line we
estimated the number |M | of unique projective mea-
surements that can be performed using depth-r circuits,
which is crudely bounded from above by

|M | ≤ (2D2 + 1)N2r |G|r (I7)

if these circuits are constructed from a 1- and 2-body
gate set G of cardinality |G|.

Assuming N ≥ |G| and k ≤ D/2, the probability
Pr[Cδ ≤ r] that Bob obtains a substantial bias signal
remains exponentially small until

r &
k(N − 4 log k)

logN
. (I8)

We therefore conclude that every ε-approximate k-design
U has strong circuit complexity r that grows linearly
with k. Moreover, our calculation of the frame potential
Eqs. (12), (53), (63) presented in the main text demon-
strates that our Brownian circuits form an ε-approximate
k-design after a time 2∆t > 4k logD + log ε−1/2. We
therefore immediately conclude that these Brownian cir-
cuits generate δ-strong complexity of depth at least r ∼
kN/ logN that grows linearly in time r ∼ t.
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