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We investigate a time-independent many-boson system, whose ground states are quasi-degenerate and become
infinitely degenerate in the thermodynamic limit. Out of these quasi-degenerate ground states we construct a
quantum state that evolves in time with a period that is logarithmically proportional to the number of particles,
that is, T ∼ logN. This boson system in such a state is a quantum time crystal as it approaches the ground
state in the thermodynamic limit. The logarithmic dependence of its period on the total particle number N
makes it observable experimentally even for systems with very large number of particles. Possible experimental
proposals are discussed.

I. INTRODUCTION

Spontaneous symmetry breaking is a well known phys-
ical phenomenon, where the observed ground state of a
many-particle system does not possess the symmetries of its
Hamiltonian[1], e.g., ferromagnetic materials break the rota-
tional symmetry and crystals break the spatial translational
symmetry. Wilczek suggested the possibility of spontaneous
breaking of time translational symmetry[2, 3]: the observed
ground state of a closed quantum system may oscillate pe-
riodically in time. This suggestion had drawn some quick
criticism[4, 5]. In 2015, a no-go theorem was proved to ex-
clude the possibility of spontaneous continuous time transla-
tional symmetry breaking in the ground state for a wide class
of Hamiltonians with short-range interactions[6]. However,
it was realized later that quantum time crystals can exist in a
periodically driven system[7]. This is now known as discrete
time crystal; its equilibrium state can vary with a period that is
multiple of the driving period[8–10]. Two experiments with
trapped ions and nitrogen-vacancy centers were performed,
confirming the existence of discrete time crystals[11, 12]. Re-
cently, the discussion about time crystals has expanded to the
systems with long-range interaction[13].

When spontaneous symmetry breaking occurs in a time in-
dependent system, the observed ground state is not the true
ground state but a superposition of many (quasi-)degenerate
ground states[14]. Two energy states are quasi-degenerate if
the energy gap between them approaches zero in the thermo-
dynamic limit. There have some efforts to construct a time
crystal with these (quasi-)degenerate ground states[15–17].
For such a time crystal, it typically oscillates with a period that
grows polynomially with particle number, i.e. T ∼ O(Nn).
It will be impossible in experiments to keep a many-particle
state from decoherence for such a long time.

In this work we study a time-independent many-boson sys-
tem. This boson system has many quasi-degenerate ground
states, which become infinitely degenerate in the thermody-
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namic limit. With these ground states, we are able to con-
struct states that oscillate with time with a period T that is
logarithmically proportional to the number of particles N, that
is, T ∼ logN. Due to this logarithmic dependence, the period
is short enough for possible experimental observation even for
very large N. We find that the observables that are usually
used in time crystal experiments are not suitable for our sys-
tems. We suggest to observe the time crystal by measuring the
square of overlap between the states of such a quantum time
crystal at different times, i.e., |〈Ψ(0)|Ψ(t)〉|2 with a technique
based on the Hong–Ou–Mandel interference[18].

II. TWO-MODE INTERACTING BOSON SYSTEMS

The interacting system of N bosons that we are going to
consider has only two modes. In a certain parameter range,
this system has many quasi-ground states, which approach the
true ground state in the thermodynamics limit N→ ∞. This is
the critical feature of this system and a necessary condition
for spontaneous symmetry breaking to occur.

A. Theoretical model

The two-mode interacting boson system is described by the
following Hamiltonian[14, 19, 20]

Ĥ =−(â†
1â2 + â†

2â1)+
γ

N
[n̂1(n̂1−1)+ n̂2(n̂2−1)]

+
4γ

N
n̂1n̂2 +

γ

N
(â†

1â†
1â2â2 + â†

2â†
2â1â1) , (1)

where â†
1(â1) and â†

2(â2) are the creation (annihilation)
operators of two modes and N is the total number of
bosons. This simple theoretical model can now be realized
in experiments[21]. In the above, we have set the strength
of single particle hopping as the unit of energy and therefore
γ is a dimensionless parameter characterizing the interaction
strength and the pair hopping. In addition, for simplicity, we
set h̄≡ 1.
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In the thermodynamic limit N → ∞, this quantum many-
body system can be described by a mean-field model. Math-
ematically, one can simply replace the operators â†

1,2 and
â1,2 with their corresponding complex variables a∗1,2 and a1,2
in Eq. (1)[14]. We choose a different set of variables P =
(|a2|2−|a1|2)/2 and Q = arg(a2)−arg(a1). Physically, P and
Q are the particle number difference and the phase difference
between the two modes, respectively. In terms of P and Q, the
mean-field model of the system is

Hm =−
√

1−4P2 cosQ+ γ
(
1−4P2)cos2 Q . (2)

Note that P and Q are a pair of dynamical variables that
are canonically conjugate to each other. Fig. 1 is the energy
landscape in the phase space of this mean-field Hamiltonian.
When γ < 1/2, the center of the phase space P=Q= 0 has the
lowest energy. When γ > 1/2, all the points on the dashed line
in Fig. 1(b) have the same lowest energy. That means that the
system is infinitely degenerate when γ > 1/2. As we shall see
in the next subsection, this infinite degeneracy corresponds to
a set of quasi-degenerate ground states in the quantum model
(1).
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FIG. 1. The energy landscape in the phase space of the mean-field
model Hm. (a) When γ < 1/2, the system has only one ground state
at (Q,P) = (0,0); (b) when γ > 1/2, the system has infinitely degen-
erate ground states, which are located on the dashed line.

B. Quantum energy levels

For mathematical simplicity, we transform this boson sys-
tem into a mathematically equivalent spin system. With
n̂1,2 = â†

1,2â1,2, we introduce Ŝx = (â†
1â2 + â†

2â1)/2, Ŝy =

(â†
1â2 − â†

2â1)/2i, Ŝz = (n̂1 − n̂2)/2. The quantum model
(1) becomes

Ĥ ′ = Ĥ/2 =−Ŝx +
2γ

N
Ŝ2

x . (3)

This Hamiltonian is also called Lipkin-Meshkov-Glick model
and describes a spin system with S = N/2 [22]. In this spin
formalism the energy eigenstates and energy levels are rather

obvious. As Ŝx commutes with Ĥ, the eigenstates of the sys-
tem are the eigenstates of Ŝx,

Ŝx|m〉= m|m〉 , m =−S,−S+1, · · · ,0, · · · ,S . (4)

For eigenstate |m〉, its corresponding energy level is

Em =
2γ

N
m2−m . (5)

When γ < 1/2, the lowest energy level is at m = S = N/2 and
the energy level increases monotonically as m decreases. And
the energy gap δEm between two neighboring levels |m−1〉
and |m〉 is

δEm = 1− 2γ

N
(2m−1)> 1−2γ . (6)

This means that the energy gap remains finite even in the ther-
modynamic limit N→ ∞.
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FIG. 2. The energy levels for γ > 1/2 which are labeled by quantum
number m and denoted by black bars. The ground state is at m0. The
energy gap δE between neighboring levels around m0 is ∝ 1/N. All
the energy levels marked by the gray area are quasi-ground states,
whose energies become degenerate when N → ∞. The width of the
gray area is about ∼

√
N. The energy gaps outside the gray area

remain finite even at the large N limit.

When γ > 1/2, the energy level is the lowest at m0, which
is the largest integer smaller than or equal to N/(4γ). The
highest energy level is at m = −S. Without loss of essential
physics, we choose m0 = N/(4γ) by choosing an appropriate
value of γ . The energy gap between the ground state and the
first excited state is 2γ/N; the gap between the highest energy
level and the second highest is 1+2γ−2γ/N. The former ap-
proaches zero and the latter remains finite at the limit N→ ∞.
This means that for γ > 1/2 the energy gap δEm between two
neighboring levels has different dependence on N at differ-
ent levels m. We find that for a set of energy levels near the
ground state the gap approaches zero and for others it remains
finite at N → ∞. This is shown schematically in Fig. 2. To
accurately to describe this behavior, we define the energy gap
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∆Em between energy level |m〉 and the ground state |m0〉 and
we find that

∆Em =
2γ

N
(m−m0)

2 . (7)

This means that any energy level |m〉will approach the ground
state energy in the thermodynamic limit N → ∞ when m sat-
isfies

|m−m0| ∼ O
(

N1/2−δ

)
, (8)

where 0 < δ < 1/2. These energy levels are located in the
shadow area in Fig. 2. We call them quasi-ground states,
which form a sub-Hilbert space C. At the limit N → ∞, all
these quasi-ground states become the mean-field ground states
on the black dashed line in Fig. 1(b).
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FIG. 3. Energy eigenstates |m〉 in the quantum phase space for N =
440 and γ = 3/4. (a) The true ground state; (b) the 29th exited state.
The black lines represent the mean-field infinite degenerate ground
states.

C. Eigenstates in quantum phase space

As discussed above, in the case of γ > 1/2 there are many
quasi-ground states in the quantum model Ĥ, which corre-
spond to the infinitely many ground states in the mean-field
model. Such a correspondence becomes more apparent and
insightful when we plot these quasi-ground states in the quan-
tum phase space (see Fig. 3).

The quantum phase space is obtained by dividing the mean-
field phase space in Fig. 1 into Planck cells. The size of a
Planck cell, which is denoted by (Qi,Pj), is 1/N. A Wannier
function

{
|Qi,Pj〉

}
, which is localized along both P and Q

directions, is assigned for each Planck cell and all the Wan-
nier functions form a complete set of orthonormal basis[23–
27]. An energy eigenstate |m〉 is then projected to the quantum
phase space as

|m〉= ∑
i, j
|Qi,Pj〉〈Qi,Pj|m〉 . (9)

What is plotted in Fig. 3 is |〈Q,P|m〉|2. Two examples
are shown in Fig. 3: one is the true ground state |m0〉 and

the other is a quasi-ground state. It is clear from the figure
that both eigenstates are concentrated around the mean-field
ground states, which are marked by black solid lines in Fig. 3.

III. LOGARITHMIC TIME CRYSTAL

The quantum time crystal can be constructed as follows.
We choose an eigenstate |m1〉 with

m1 = m0−
⌊√ N

logN

⌋
, (10)

where bxc is the largest integer ≤ x. This state |m1〉 certainly
belongs to the sub-Hilbert space C as ∆Em1 = 2γ/ logN ap-
proaches zero when N → ∞. We construct a superposition
state |Φ0〉= (|m0〉+ |m1〉)/

√
2. It will evolve with time as

|Φ(t)〉= e−iEm0 t
√

2

[
|m0〉+ exp

(
− i2πt

T0 logN

)
|m1〉

]
, (11)

where T0 = π/γ is a constant with order O(1) and we have
ignored the minor difference between x and bxc. It is clear that
this quantum state will oscillate with a period of T0 log(N).

In real experiments, it is hard to prepare a state that is a
superposition of only two eigenstates. We consider a double-
Gaussian superposition state |Ψ(0)〉= ∑m cm|m〉, where

cm =
1√

2πσ

[
e−

(m−m0)
2

4σ2 + e−
(m−m1)

2

4σ2
]
, (12)

where σ is the width of the Gaussian distribution. Since we
do not want the Gaussian distributions to spread out the whole
sub-Hilbert space C of quasi-ground states, the width σ should
be much smaller than |m1−m0|. For simplicity, we choose
σ ∼ O(1).

The overlap between |Ψ(t)〉 and |Ψ(0)〉 can be evaluated as

〈Ψ(0)|Ψ(t)〉=
N/2

∑
m=−N/2

|cm|2 exp(−i∆Emt) . (13)

When N is very large, we can replace the summation by inte-
gral,

〈Ψ(0)|Ψ(t)〉 ≈
∫

∞

−∞

dm |cm|2 exp(−i∆Emt)

=A(t)
{

1+ exp
[
− N2

4Σ2(t) log2 N

]
exp
(
−i

2πt
T (t)

)}
, (14)

where

T (t) = T0 logN
(

1+
64γ2σ4t2

N2

)
,

Σ(t) =

√(
N

8γσt

)2

+σ2,

A(t) =
1
2

√
N

N +8iγσ2t
. (15)
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It is clear from T (t) that when t�O(N) the system oscillates
with a period of T0 logN. A(t) shows that the amplitude of the
oscillation will gradually decrease with time. However, within
the time interval 0 < t � O(N) we should be able to observe
many periods of oscillations since the period of oscillation is
of order O(log(N)). In addition, the oscillations are enveloped
by a Gaussian function with width Σ(t) which increases with
time. Instead of doing integral, one can also do the summation
in Eq.(13) numerically. Both results are shown in Fig. 4 for
comparison; they agree very well.

0 1 2 3 4 50

0 . 5

1  N u m e r i c a l A n a l y t i c a l

|〈Ψ
(0)

|Ψ
(t)〉

|2

t   /  T
FIG. 4. The oscillations of logarithmic time crystal (12). The solid
line is the analytical result in Eq.(14) and the squares are numerical
results obtained by directly summing Eq.(13). N = 29240, m1 =
m0 +91, σ = 1.

IV. EXPERIMENTAL SCHEME

In literature, the time crystal dynamics is usually illustrated
with the correlation function of the polarization along the z
direction, 〈Ŝz(0)Ŝz(t)〉 [28]. For the quantum time crystal
Eq.(11), we have

〈Ŝz(0)Ŝz(t)〉= A0,+e−iδEm0+1t +A0,−e−iδEm0 t

+A1,+e−iδEm1+1t +A1,−e−iδEm1 t , (16)

where A j,± = (N/2+1)N/2−m j(m j±1), j = 0,1. The four
characteristic frequencies δEm j±1 are just the energy gaps be-
tween the neighboring levels at the two states |m0〉 and |m1〉.
Therefore, we have δEm j±1�O(1/ logN) and the oscillation
period is much longer than logN. So the correlation function
Eq.(16) can not be used to observe the dynamic behavior of
our logarithmic quantum time crystal. We propose to use the
experimental scheme shown in Fig. 5, where |〈Ψ(0)|Ψ(t)〉|2
is measured.

In Fig. 5, there are two identical two-mode boson systems,
which are denoted as a and b, created with atoms and optical
devices. The tunneling between system a and b can be tuned:
initially the optical potential barrier between them is high so
that there is no tunneling; the barrier is lowered in the later
stage of the experiment to allow Hong-Ou-Mandel interfer-
ence. Initially when the tunneling is off, both system a and b
have the same number of bosons and evolve with time under
the Hamiltonian Eq. 1 .

A swap operator V̂ between these two systems is defined as

V̂ |ψ〉a⊗|φ〉b = |φ〉a⊗|ψ〉b , (17)

FIG. 5. The experiment scheme. (i) Two identical boson systems a
and b; each has two modes, denoted by 1,2. Initially, the two systems
are independent and they are prepared in states, |Ψ(0)〉 and |Ψ(t)〉,
respectively. (ii) We allow the atom tunneling between the modes ai
and bi (i = 1,2) to realize Hong-Ou-Mandel interference. (iii) We
count particle number parity in system b. Repeat the above process
for many times. This scheme effectively measures |〈Ψ(0)|Ψ(t)〉|2.

where |·〉a and |·〉b are states of systems a and b. It is easy
to see that 〈V̂ 〉 = |〈ψ|φ〉|2, i.e., the expectation value of the
swap operator V̂ is the overlap between two quantum states
|ψ〉 and |φ〉. As V̂ has only two eigenvalues ±1, measuring
the expectation of operator V̂ requires statistically counting
its eigenvalues within a large ensemble. In our system, V̂ =
V̂1⊗V̂2, where V̂i is the swapping on individual modes i= 1,2.
So measuring V̂ can be achieved by measuring V̂1 and V̂2.

The symmetric eigenstate |S〉 and asymmetric eigenstate
|AS〉 of V̂i can be expressed in terms of Fock states as follows

|S〉= superpose
{
(â†

i − b̂†
i )

2α(â†
i + b̂†

i )
β |vac〉

}
, (18)

|AS〉= superpose
{
(â†

i − b̂†
i )

2α−1(â†
i + b̂†

i )
β |vac〉

}
, (19)

where â†
i (b̂

†
i ) refers to the creation operator on mode ai(bi)

and α and β are positive integers. We perform the following
transformation,(

â†
i + b̂†

i

)
/
√

2→ â†
i ,

(
â†

i − b̂†
i

)
/
√

2→ b̂†
i . (20)

This transformation can be realized experimentally with
atoms tunneling between ai and bi under a Bose-Hubbard
Hamiltonian [29]. This is essentially Hong-Ou-Mandel in-
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terference. After the transformation, the eigenstates of V̂i be-
come

|S′〉= superpose
{
(b̂†

i )
2α(â†

i )
β |vac〉

}
,

|AS′〉= superpose
{
(b̂†

i )
2α−1(â†

i )
β |vac〉

}
. (21)

This means that observing even(odd) particle numbers in
mode bi corresponds to eigenvalues +1(−1) of V̂i. Hence if
the particle numbers in mode b1 and b2 have the same parity,
we know the measured quantity of V̂ is +1; otherwise, it is
−1.

The basic experimental steps are shown in Fig. 5. Initially,
we prepare system b in state |Ψ(0)〉 and let it evolve for a
period of time t so the state becomes |Ψ(t)〉. At this same mo-
ment, we prepare system a in state |Ψ(0)〉. Then we turn off
the tunneling between different modes and turn on the the tun-
neling between system a and b, realizing Hong-Ou-Mandel
interference. Finally, we observe the number of particles in
both modes of system b. By repeat this experiment many
times for different t, 〈V̂ 〉= |〈Ψ(0)|Ψ(t)〉|2 is obtained.

V. DISCUSSION AND CONCLUSION

Before concluding, we need to mention that performing
perturbed external fields [16] actually fails to produce a log-
arithmic time crystal state. Because the field, like gŜz, can
only superpose the state |m0〉 with its nearest levels. To be
honest, how to realize logarithmic time crystal is still an open
question for us. But we do have some speculations. In solid

physics, electrons can be excited from the band bottom to the
band top by the phonons with specific momentum and energy,
where the momentum of phonons is tuned by the structure of
Brillouin-zone. In our model, the system can be excited by a
laser from |m0〉 to |m1〉 when the frequency of laser is equal to
∆Em1 = Em1−Em0 . But only controlling the frequency cannot
assure that the intermediate states are not superposed. So, we
need to speculate that there may be some extra characteristics
(like Brillouin-zone with respect to electrons) about our log-
arithmic time crystal state to rule the momentum of laser so
that it can be achieved.

In conclusion, we have studied a two-mode boson system
of N particles. In a certain parameter regime, this system has
many quasi-ground states, which forms a sub-Hilbert space
C and become degenerate with the true ground state in the
thermodynamic limit N → ∞. We have been able to super-
pose these quasi-ground states and construct a quantum time
crystal that oscillates with a period that is logarithmically pro-
portional to the number of particles, T ∼ O(log(N)). Such
a logarithmic dependence makes the period short enough for
possible experimental observation even when the number of
particle is large. A experimental scheme based on Hong-Ou-
Mandel interference has been proposed.
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