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We present a proposal to produce bipartite and tripartite entanglement in a hybrid magnon-cavity
QED system. Two macroscopic yttrium iron garnet (YIG) spheres are coupled to a single-mode
microwave cavity via magnetic dipole interaction, while the cavity photons are generated via the two
photon process induced by a pump field. Using the mean field theory, we show that the second order
nonlinearity can result in strong bipartite entanglement between cavity photons and magnonic modes
under two conditions, i.e., δcδm = 2g2 and δc = −δm. For the later one, we also show the possibility
for producing the bipartite entanglement between two magnonic modes and tripartite entanglement
among the cavity photons and two magnonic modes. Combining these two conditions, we further
derive a third condition, i.e., δ2m − φ2 + 2g2 = 0, where the tripartite entanglement can be achieved
when two magnonic modes have different resonant frequencies.

Yttrium iron garnet (YIG) materials are good candi-
dates for demonstrating interesting phenomena in quan-
tum optics and condensed matter field of magnetism
due to its high Curie temperature, high spin density,
low dissipation rate and good tunability [1, 2]. Partic-
ularly, the ferromagnetic resonance (FMR) induced col-
lective spin dynamics gives rise to a new research field
of magnonics by combining the meso- and nanoscale sci-
ence. With modern lithography and sensing techniques,
a great amount of fascinating phenomena have been re-
ported theoretically and experimentally, including dy-
namics of skyrmions [3], magnetic vortices [4, 5], and
spin pumping effect [6–9] and so on. All these proper-
ties would enable further investigation of quantum opti-
cal phenomena in hybrid-quantum systems, integrating
of magnonic systems with photons [10, 11], qubits [12–
14], optomechanics [15–17] and others.
Besides, the interaction between an ensemble of spins

and the cavity field plays an important role in the devel-
opment of novel hybrid quantum system. In the field of
magnonics, photons confined to a cavity mode interact
more strongly with a matter polarization, producing the
cavity magnon polariton as a new type of quasi parti-
cle [18, 19]. This is because magnon polariton have spin
density many orders of magnitude higher than ensembles
consisting of atoms, molecules, nitrogen vacancy centers,
ion doped crystals and so on. Notably, strong coupling
between a Kittel mode in YIG sphere and the photonic
mode has been observed at the room temperature [20–
23].
Recently, this sub field of cavity electromagnonics in-

volving the interaction between magnon modes and the
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cavity light mode has developed rapidly. Many emergent
phenomena have been found, such as cavity spintron-
ics [24–26], bistability [27–29], magnon dark modes [22,
30], magnetically controllable slow light [31, 32], and
magnon-induced transparency [33, 34]. Particularly, the
preparation of entangled states in ferromagnetic mate-
rials, e.g., YIG spheres, has attracted great attention.
Several methods have been proposed theoretically to re-
alize bipartite and tripartite entanglements [15, 35–38].
Other applications have also been reported such as the
generation of squeezed states of magnons and phonons in
cavity magnomechanics [39], and the implementation of
nonreciprocal transmission for a microwave field [40].

In this paper, we present a novel method to pro-
duce strong bipartite and tripartite entanglements in a
two YIG spheres cavity QED system via the second or-
der nonlinearity of microwave field, which can be im-
plemented by utilizing nonlinear materials [41–44], pho-
tonic waveguide systems [45, 46] as well as the dynam-
ical Casimir effect demonstrated in optomechanics sys-
tem [47–50]. We first consider a special case where
two YIG spheres have the same resonant frequencies of
magnon modes. We obtain two conditions for realiz-
ing strong photon-magnon entanglement, and magnon-
magnon entanglement. Moreover, the tripartite entan-
glement among the cavity field and two magnon modes
can also be achieved under one of these two conditions.
Then, we consider the case where two magnon modes
have different resonant frequencies. We show that a new
condition for implementation of tripartite entanglement
can be easily derived if we combine these two conditions.
In contrast to previous proposals, the second order non-
linearity results in a strong gain of cavity photon num-
bers, and further enhances the interaction strength be-
tween photons and magnons, yielding strong entangle-
ments under weak nonlinearity.

Model. - As shown in Fig. 1, we consider a magnon-
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FIG. 1. (a) Schematic of hybrid magnon-cavity QED system.
Two YIG spheres with resonant frequencies ωm1 and ωm2 are
located inside a microwave cavity driven by a pump field and
a auxiliary probe field εp. The pump field photons are trans-
ferred to the probe field photons via two photon process with
nonlinear interaction strength Ω. Here, γ1 and γ2 denote the
decay rates of two magnonic modes, while κ denotes the decay
rate of the cavity mode. (b) Interactions among the subsys-
tems. Two magnon modes linearly couple to the cavity mode
with coupling strengths g1 and g2, respectively. The second-
order nonlinear interaction result in bipartite entanglements
between two magnon modes and the cavity mode, respec-
tively. With some specific conditions, two magnon modes can
be entangled, which further leads to tripartite entanglements.

photon hybrid system where two YIG spheres are placed
in a single mode microwave cavity with resonant fre-
quency ωc. With current experimental techniques, strong
couplings between cavity photons and collective spin ex-
citations in YIG spheres can be achieved [10, 20, 24, 51–
53]. In our system, we only take into account the Kittel
modes which have spatially uniform profile and subject
to giant magnetic moments, i.e., Mj = γeS

(j)/V . Here,
γe = e/mec is the gyromagnetic ratio for electron spin
and S

(j) (j = 1, 2) denotes the collective spin operator of
the j−th YIG sphere, which couples the external mag-
netic field and the magnetic field inside the cavity. Thus,
the frequency of the Kittel mode in j−th YIG sphere

ωmj = γH
(j)
z , which can be flexibly tuned by adjusting

the external magnetic field. By means of the Holstein-
Primakoff transform [54], the collective spin operators
can be approximately represented by the boson creation
and annihilation operators (m̂†

j and m̂j) with [m̂j , m̂
†
j ] =

1. Then, the raising and lowering operators of the spin

can be approximately expressed as m̂j ≈ Ŝ
(j)
+ /

√

(2S)

and m̂†
j ≈ Ŝ

(j)
− /

√

(2S) with Ŝ
(j)
± =

∑N
j=1 σ̂

(j,N)
± and

S = Ns being the total spin number of the corresponding
collective spin operator, with the total number of spins
N = ρV and the spin number s = 5/2. Here, we con-
sider a typical yttrium iron garnet with high spin density
ρ = 4.22×1027 m−3 and diameter d = 1 mm [27, 55]. The
cavity is driven by a weak auxiliary field with resonant
frequency ωp and a pump field with resonant frequency
ωP = 2ωp. We must point out that the probe field is
just used to obtain the conditions for implementation
of entanglements, which is not essential in experiments.
Under the rotating wave approximation in the frame of
the probe field, the Hamiltonian of this magnon cavity

system shown in Fig. 1 is (setting ~ = 1)

Ĥ = δcâ
†â+

∑

j=1,2

[

δmjm̂
†
jm̂j + gj(âm̂

†
j + â†m̂j)

]

+Ω(â2 + â†2) + εp(â+ â†) (1)

where â(â†) denotes the annihilation (creation) operator
of cavity mode, δc = ωc − ωp and δmj = ωmj − ωp. gj =√
5NγeBvac denotes the magnon-cavity coupling with the

magnetic field of vacuum Bvac =
√

2π~ωc/Vvac. εp is
the driving strength of the probe field, and the cavity
photons interacts with the pump field via two photon
process with nonlinear interaction strength Ω. Such kind
of second order nonlinear interaction can be implemented
in various quantum systems [41–50].
The dynamics of this coupled system is described by

the quantum master equation, which reads

dρ̂

dt
= −i[Ĥ, ρ̂] +

κ

2
L̂κ[ρ̂] +

∑

j=1,2

γj
2
L̂(j)
γ [ρ̂], (2)

where ρ̂ is the density matrix of the system. The decay
terms are given by L̂κ[ρ̂] = 2âρ̂â† − â†âρ̂ − ρ̂â†â and

L̂(j)
γ [ρ̂] = 2m̂j ρ̂m̂

†
j − m̂†

jm̂j ρ̂ − ρ̂m̂†
jm̂j with the cavity

decay rate κ and magnon decay rate γj , respectively.
Then, the time evolution of the bosonic operators, in-

cluding the thermal fluctuation over and above the mean
values, can be described by the quantum Langevin equa-
tions (QLEs), which reads

dâ

dt
= −i(δc − iκ)â− ig1m̂1 − ig2m̂2 − iεp

−2iΩâ† +
√
2κâin (3)

dm̂1

dt
= −i(δm1 − iγ1)m̂1 − ig1â+

√

2γ1m̂
in
1 (4)

dm̂2

dt
= −i(δm2 − iγ2)m̂2 − ig2â+

√

2γ2m̂
in
2 (5)

where âin and m̂in
j (j = 1, 2) denote input quan-

tum noises of the cavity mode and the j−th magnon
mode, respectively. They obey the following correla-
tions [56]: 〈âin(t)âin†(t′)〉 = δ(t−t

′

), 〈âin†(t)âin(t′)〉 = 0,

〈m̂in
j (t)m̂in†

j (t
′

)〉 = δ(t−t
′

), 〈m̂in†
j (t)m̂in

j (t
′

)〉 = 0. In the
following, we set g1 = g2 ≡ g, γ1 = γ2 ≡ γ for mathe-
matical simplicity. Generally, equations (3)-(5) can be
solved by using the mean field approximation, i.e., set-
ting an arbitrary operator ô = o + δô (o = a,m1,m2).
Here, o ≡ 〈ô〉 = Tr(ρ̂ô) denotes the average value of the
operator ô, while δô represents the quantum fluctuation
above the average value.
To show the physical mechanism of the entanglement

more clearly, we first set ωm1 = ωm2 ≡ ωm. Under
the steady-state approximation, Eqs. (3)-(5) can be lin-
earized, yielding

(δc − iκ)a+ g(m1 +m2) + 2Ωa∗ = −εp, (6)

(δm − iγ)mj + ga = 0, (7)
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where j = 1− 2 and δm = ωm − ωp. The solutions of the
above equations are given by

a =
εp

4Ω2 − |D0|2
(D∗

0 − 2Ω) , (8a)

m1 = m2 = −ga/δm, (8b)

where D0 = ∆c − 2g2/∆m with complex detuning ∆c =
δc − iκ and ∆m = δm − iγ. Then, one can easily ob-
tain the average photon number nc ≡ 〈a†a〉 ≈ |a|2 and
the magnon excitation numbers of the j−th YIG sphere
nmj ≡ 〈m†

jmj〉 ≈ |mj |2. In view of Eq. (8a) and drop-
ping all decay terms, it is noted that the cavity photons
can be excited with its maximal efficiency if the condition

δcδm = 2g2, (9)

is satisfied. Simultaneously, the magnon excitation num-
ber will also reaches its maximum.

(a) (b)

FIG. 2. Average photon number nc [panel (a)] and magnon
excitation number nm1(nm2) [panel (b)] on a logarithmic scale
as functions of normalized detunings δc/κ and δm/κ. Here,
the white dash curves indicate the condition δcδm = 2g2

where maximum value of average photon number and magnon
excitation number can be observed. System parameters are
given in the text.

In Fig. 2, we show the average photon number nc [panel
(a)] and the magnon excitation number nm1 (nm2) in
the first (second) YIG sphere [panel (b)] on a logarith-
mic scale as functions of the detunings δc and δm, re-
spectively. Here, we choose εp = κ and the nonlinear
interaction strength Ω/κ = 0.6, γ = κ, g/κ = 3.2 [17].
In Fig. 2(a), it is clear to see that there exists two ex-
citation branches in the cavity excitation spectrum with
the condition δcδm = 2g2. As shown in panel (b), similar
characteristics can be observed in the magnon excitation
spectrum. We must point out that the maximal value of
the magnon excitation numbers is just about 103 so that
weak excitation assumption m1,m2 ≪ 2Ns is satisfied
and the H-P approximation is valid. In the following, we
will show that how such a weak magnon excitation can
lead to strong entanglement between cavity photons and
magnons in both YIG spheres.
Bipartite entanglement. - First, let’s consider the

bipartite entanglement between cavity photons and

magnons by studying the properties of the quadrature
fluctuations of the cavity field and the magnon modes,
which are defined as δX = (δâ+ δâ†)/

√
2, δY = i(δâ† −

δâ)/
√
2, δx1 = (δm̂1+δm̂†

1)/
√
2, δy1 = i(δm̂†

1−δm̂1)/
√
2,

δx2 = (δm̂2 + δm̂†
2)/

√
2, and δy2 = i(δm̂†

2 − δm̂2)/
√
2.

Neglecting higher-order fluctuations of the operators, the
evolution of quadrature fluctuations can be described by
the linearized QLEs, which reads

ḟ(t) = Af(t) + η (10)

where f(t) = [δX(t), δY (t), δx1(t), δy1(t), δx2(t), δy2(t)]
T,

and η(t) =
[√

2κX in,
√
2κY in,

√
2γxin

1 ,
√
2γyin1 ,

√
2γxin

2 ,
√
2γyin2

]T
is a vector denoting the input noises.

The drift matrix is defined as

A =

















−κ δc − 2Ω 0 g 0 g
−δc − 2Ω −κ −g 0 −g 0

0 g −γ δm 0 0
−g 0 −δm −γ 0 0
0 g 0 0 −γ δm
−g 0 0 0 −δm −γ

















(11)

For such as a system, a 6× 6 covariance matrix (CM)
V can be used to describe a continuous variable three-
mode Gaussian state. The corresponding element of
this CM is defied as V ij = 〈fi(t)fj(t

′

) + fj(t
′

)fi(t)〉/2
(i, j = 1, 2, ..., 6). Generally, we can solve the Lyapunov
equation to obtain the steady state CM V [57, 58], i.e.,

AV + VAT = −D, (12)

where the diffusion matrix is defined as D = [κ, κ, γ,
γ, γ, γ]T with Dijδ(t− t′) = 〈ηi(t)ηj(t′) + ηj(t

′)ηi(t)〉/2.
Then, we calculate the logarithmic negativity [59, 60]
to quantitatively measure the bipartite entanglement
Eαβ (α, β = a,m1,m2) between any two different modes,
i.e.,

Eαβ ≡ max{0,−ln2ν̃−} (13)

where ν̃− = min{eig(iΩ2Ṽ4)} with Ṽ4 = P1|2V4P1|2.
Here, Ω2 = ⊕2

j=1iσy, P1|2 = σz ⊕ I and V4 is a 4 × 4
CM of arbitrary two subsystems in this three-mode sys-
tem, which can be obtained by deleting rows and columns
of irrelevant modes in CM V . σy and σz are the Pauli
matrices. As usual, Eαβ > 0 denotes the existence of
bipartite entanglement.
Fig. 3(a) shows the bipartite entanglement Eam1

(Eam2) between the magnon mode in the first (second)
YIG sphere and the cavity mode as functions of the de-
tunings δc and δm, respectively. The system parameters
are the same as those used in Fig. 2. Obviously, strong bi-
partite entanglements between the magnon mode and the
cavity mode occur under two different conditions. One
is δcδm = 2g2 (white dashed curves) as demonstrated in
Fig. 2. The other (white solid line) is

δc = −δm, (14)
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FIG. 3. Density plot of bipartite entanglement Eam1 = Eam2

[panel (a)] and Em1m2 [panel (b)] versus normalized detun-
ings δc/κ and δm/κ. White dash curves indicate the condition
δcδm = 2g2, while white solid lines indicate the condition
δc = −δm. Panels (c) and (d) show the density plot of bi-
partite entanglements Eam1 = Eam2 and Em1m2 against the
normalized nonlinear interaction strength Ω/κ and detuning
δm/κ by fixing δc = −δm.

which can be understood by exploring the system in bare
state picture. Considering two bare states labeled by
|Nc, Nmj〉 and |Nc − 1, Nmj + 1〉, a bipartite entangle-
ment state such as (|Nc, Nm1〉 + |Nc − 1, Nm1 + 1〉)/

√
2

will be produced if both states have the same excitation
probabilities. Thus, the probe field frequency must sat-
isfy ωp = (ωc + ωmj)/2, yielding δc = −δm. It is also
noted that, in a small regime near δc = δm = 0 (i.e.,
ωc = ωm1 = ωm2), the photon mode and magnon mode
are not entangled and the bipartite entanglementEam1 =
Eam2 = 0 since these two states can not be distinguished
[see panel (a)]. In Fig. 3(b), we show the bipartite en-
tanglement Em1m2 between two magnonic modes. In con-
trast to the bipartite entanglement Eamj , the bipartite
entanglement Em1m2 only appears in the regime near the
condition of δc = −δm1. In particular, the maximal bi-
partite entanglement between two magnonic modes oc-
curs at center point with ωc = ωm1 = ωm2. However, at
this point, the magnon mode and cavity mode are not
entangled, which is coincided with the system driven by
a JPA process [37].

Here, we must point out that the second order nonlin-
earity is the key for generating bipartite entanglements.
To show this point, we fix δc = −δm. Fig. 3(c) and
Fig. 3(d) show the Eam1 (Eam2) and Em1m2 against
the normalized detuning δm/κ and nonlinear interaction
strength Ω/κ, respectively. Obviously, Eam1 = Eam2 =
Em1m2 = 0 (non-entanglement) if the nonlinear inter-

action strength Ω = 0. Bipartite entanglements Eam1

(Eam2) and Em1m2 are significantly enhanced as the non-
linear interaction strength Ω increases. It is noted that
this second order nonlinearity induced bipartite entan-
glements reach up to 0.1 even for a weak nonlinear in-
teraction strength, e.g., Ω/κ = 0.5. It is as strong as
the phonon induced bipartite entanglements reported in
Ref. [61], where the average magnon excitation number is
above 107 to acquire strong nonlinear effect. Compared
with panels (c) and (d), we notice that it is possible to
find some regimes where mutual bipartite entanglements
(i.e., tripartite entanglement with non-zero Eam1, Eam2

and Em1m2
) can be achieved when the driving field is

detuned.
Tripartite entanglement. - To verify this feature, we

adopt the minimum residual contangle as a bona fide
quantification of tripartite entanglement [62, 63]. Here,
contangle is a CV analogue of tangle for discrete-variable
tripartite entanglement, and the minimum residual con-
tangle is given by

Rmin
τ ≡ min{Ra|m1m2

τ , Rm1|am2

τ , Rm2|am1

τ } (15)

where R
i|jk
τ ≡ Ci|jk −Ci|j −Ci|k ≥ 0 (i, j, k = a,m1,m2)

denotes the residual contangle with Cu|v being the con-
tangle of subsystems u and v (v can contain one or two
modes). Here, we consider that v contains two modes,
and the contangle Ci|jk = [max{0,−ln(2ν̃−)}]2, where

ν̃− ≡ min{eig(iΩ3Ṽ6)} with Ω3 = ⊕3
j=1iσy and Ṽ6 =

Pi|jkVPi|jk. Here, P1|23 = σz ⊕ I ⊕ I, P2|13 = I ⊕ σz ⊕ I
and P3|12 = I⊕I⊕σz denote partial transposition matri-
ces. Thus, Rmin

τ > 0 represents the existence of genuine
tripartite entanglement in the system.
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0.06
0.08

0
.1

0
.1
2

0
.1
4

0
.1
6

(a) (b)

FIG. 4. (a) The tripartite entanglement Rmin

τ verses normal-
ized detunings δc/κ and δm/κ. Black solid line indicates the
condition δc = −δm. (b) The maximal Tripartite entangle-
ment Rmin

τ is plotted as functions of the normalized nonlinear
interaction strength Ω/κ and coupling strength g/κ by fix-
ing δc = −δm and scanning magnon detuning δm over a wide
range.

Next, we will discuss the possibility for generating a
strong tripartite entanglement via the second-order non-
linearity. In Fig. 4(a), we show the tripartite entan-
glement Rmin

τ versus detunings δc and δm, respectively.
Here, the system parameters are the same as those used
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in Fig. 2, and the black solid line indicates the condition
δc = −δm. As expected, strong tripartite entanglements
occur near this condition with a non-zero cavity/magnon
detuning. Fig. 4(b) shows more clearly the presence of
tripartite entanglement by setting δc = −δm. Here, we
plot the maximal tripartite entanglement against the nor-
malized coupling strength g/κ and the nonlinear interac-
tion strength Ω/κ by scanning the magnon detuning δm
over a wide range. Obviously, strong tripartite entan-
glement can be produced when a set of suitable photon-
magnon interaction strength g and nonlinear interaction
strength Ω is chosen. It is noted that the tripartite entan-
glement is stronger than the OPA induced entanglement
reported in Ref. [38].

0.01

0.02

0.
02

0.02

0.03

0.
03

0.04

0.
04

0.05

0.
05

0.06
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FIG. 5. (a) The tripartite entanglement Rmin

τ verses the fre-
quency difference between two magnonic modes φ/κ and the
detuning δm/κ. Here, we choose δc = −δm and white dash
curves indicate the condition δ2m−φ2+2g2 = 0. (b) The max-
imal tripartite entanglement Rmin

τ verses the nonlinear inter-
action strength Ω/κ and the frequency difference between two
magnon modes φ/κ by setting δ2m−φ2+2g2 = 0 and scanning
the detuning δm over a wide range.

Finally, let’s study the presence of tripartite entan-
glements when two magnon modes have different reso-
nant frequencies. To show the properties of tripartite
features more clearly, we define the average magnon fre-
quency ω̄m ≡ (ωm1+ωm2)/2 and the frequency difference
φ ≡ (ωm1 − ωm2)/2. Then, the detunings are given by
δm1 = δm + φ and δm2 = δm − φ with δm = ω̄m − ωp.
Based on the above analysis, it is found that there exist
two different conditions to realize strong bipartite entan-
glement between photon mode and single magnon mode
(see Eqs (8)). Therefore, the presence of tripartite en-
tanglement with two different magnon modes can be pre-
dicted if the frequency of the first magnon mode satisfies
δc = −δm1, while the frequency of the second magnon
mode satisfies δcδm2 = 2g2 simultaneously. Combining
these two conditions, one can easily obtain

δ2m − φ2 + 2g2 = 0 (16)

for achieving strong tripartite entanglement. To verify
this prediction, we plot Rmin

τ versus the detunings δm and
φ in Fig. 5(a). Here, we set δc = −δm and other system
parameters are the same as those used in Fig. 2. It is
clear to see that the maximal tripartite entanglements

appear at the condition δ2m − φ2 + 2g2 = 0 indicated by
white dashed curves. In Fig. 5(b), we show the influence
of the nonlinear interaction strength Ω on the presence
and quality of the tripartite entanglement. Here, we plot
the optimal tripartite entanglement versus φ/κ and Ω/κ
by scanning the detuning δm over a wide range. It is
found that the tripartite entanglement with two different
magnon modes can also be realized under weak nonlinear
interaction and it can be significantly enhanced as the
nonlinear interaction strength Ω increases.

In conclusion, we have proposed a scheme to gener-
ate bipartite and tripartite entanglement in a hybrid
magnon-cavity QED system, where the cavity photons
are generated via the two photon process. In the pres-
ence of the second order nonlinearity, we show that the
strong bipartite entanglement between the cavity mode
and magnon mode can be achieved under two conditions.
One is δcδm = 2g2, the other is δc = −δm. For the second
condition, it is also possible to produce mutual entan-
glement between two magnon modes near the resonance
region. Besides, we show that the optimal tripartite en-
tanglement can be implemented if the second condition
δc = −δm is fulfilled. Combining these two conditions,
we derive the third condition for realize the optimal tri-
partite entanglement associated with two magnon modes
with different resonant frequencies, i.e., δ2m−φ2+2g2 = 0.
All these conditions are helpful for experimentists to re-
alize macroscopic bipartite and tripartite entanglements
in hybrid magnon cavity QED systems.

We thank Dr. Jie Li at Zhejiang University for helpful
discussion. This work has been supported by the Na-
tional Natural Science Foundation of China (Grant No.
61975154).
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P. Malỳ. Nonlinear optical properties of nanocrystalline
diamond. Opt. Express, 18(2):1349–1357, 2010.



7

[42] C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan,
C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann,
L. Pavesi, and J. Schilling. Second-order optical nonlin-
earity in silicon waveguides: Inhomogeneous stress and
interfaces. Adv. Opt. Mater., 3(1):129–136, 2015.

[43] A. F. Borghesani, C. Braggio, and G. Carugno. Genera-
tion of microwave radiation by nonlinear interaction of a
high-power, high-repetition rate, 1064 nm laser in ktiopo
4 crystals. Opt. Lett., 38(21):4465–4468, 2013.

[44] A. F. Borghesani, C. Braggio, and M. Guarise. Mi-
crowave emission by nonlinear crystals irradiated with a
high-intensity, mode-locked laser. J. Opt., 18(6):065503,
2016.

[45] E. Nitiss, J. Q. Hu, A. Stroganov, and C. S. Brès. Opti-
cally reconfigurable quasi-phase-matching in silicon ni-
tride microresonators. Nat. Photonics, 16(2):134–141,
2022.

[46] X. Guo, C. L. Zou, and H. X. Tang. Second-harmonic
generation in aluminum nitride microrings with 2500%/w
conversion efficiency. Optica, 3(10):1126–1131, 2016.

[47] C. K. Law. Effective hamiltonian for the radiation in a
cavity with a moving mirror and a time-varying dielectric
medium. Phys. Rev. A, 49(1):433, 1994.

[48] V. Dodonov. Fifty years of the dynamical casimir effect.
Physics, 2(1):67–104, 2020.

[49] S. Tanaka and K. Kanki. The dynamical casimir effect
in a dissipative optomechanical cavity interacting with
photonic crystal. Physics, 2(1):34–48, 2020.

[50] V. Macr̀ı, A. Ridolfo, O. Di Stefano, A. F. Kockum,
F. Nori, and S. Savasta. Nonperturbative dynami-
cal casimir effect in optomechanical systems: vacuum
casimir-rabi splittings. Phys. Rev. X, 8(1):011031, 2018.

[51] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifen-
stein, A. Marx, R. Gross, and S. T. B. Goennen-
wein. High cooperativity in coupled microwave res-
onator ferrimagnetic insulator hybrids. Phys. Rev. Lett.,
111(12):127003, 2013.

[52] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Us-

ami, and Y. Nakamura. Hybridizing ferromagnetic
magnons and microwave photons in the quantum limit.
Phys. Rev. Lett., 113(8):083603, 2014.

[53] M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan,
M. Kostylev, and M. E. Tobar. High-cooperativity cavity
qed with magnons at microwave frequencies. Phys. Rev.

Appl., 2(5):054002, 2014.
[54] T. Holstein and H. Primakoff. Field dependence of the

intrinsic domain magnetization of a ferromagnet. Phys.

Rev., 58(12):1098, 1940.
[55] Y.P. Wang, G. Q. Zhang, D. K Zhang, X. Q. Luo,

W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q.
You. Magnon kerr effect in a strongly coupled cavity-
magnon system. Phys. Rev. B, 94:224410, 2016.

[56] C. W. Gardiner and P. Zoller. Quantum Noise. Springer-
Verlag Berlin, 2000.

[57] D. Vitali, P. Tombesi, M. J. Woolley, A. C. Doherty, and
G. J. Milburn. Entangling a nanomechanical resonator
and a superconducting microwave cavity. Phys. Rev. A,
76(4):042336, 2007.

[58] P. C. Parks and V. Hahn. Stability theory. Springer New
York, 1993.

[59] G. Vidal and R. F. Werner. Computable measure of en-
tanglement. Phys. Rev. A, 65(3A):032314, 2002.

[60] M. B. Plenio. Logarithmic negativity: a full entangle-
ment monotone that is not convex. Phys. Rev. Lett.,

95(9):090503, 2005.
[61] J. Li and S. Y. Zhu. Entangling two magnon modes via

magnetostrictive interaction. New J. Phys., 21(8):85001,
2019.

[62] G. Adesso and F. Illuminati. Continuous variable tan-
gle, monogamy inequality, and entanglement sharing in
gaussian states of continuous variable systems. New J.

Phys., 8:15, 2006.
[63] G. Adesso and F. Illuminati. Entanglement in continuous

variable systems: recent advances and current perspec-
tives. J. Phys. A-Math. Theo., 40(28):7821, 2007.


