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Boltzmann's H-Theorem, formulated 150 years ago in terms of H-function that also bears 

his name, is one of the most celebrated theorems of science and paved the way for the 

development of nonequilibrium statistical mechanics. Nevertheless, quantitative studies 

of the H-function, denoted by H(t), in realistic systems are relatively scarce because of the 

difficulty of obtaining the time-dependent momentum distribution analytically. Also, the 

earlier attempts proceeded through the solution of Boltzmann's kinetic equation, which 

was hard. Here we investigate, by direct molecular dynamics simulations and analytic 

theory, the time dependence of H(t). We probe the sensitivity of nonequilibrium 

relaxation to interaction potential and dimensionality by using the H-function 

H(t).  We evaluate H(t) for three different potentials in all three dimensions and find that 

it exhibits surprisingly strong sensitivity to these factors. The relaxation of H(t) is long in 

1D, but short in 3D. We obtain, for the first time, a closed-form analytic expression for 

H(t) using the solution of the Fokker-Planck equation for the velocity space probability 

distribution and compare its predictions with the simulation results. Interestingly, H(t) is 

found to exhibit linear response when vastly different initial nonequilibrium conditions 

are employed. The oft-quoted relation of H-function with Clausius's entropy theorem is 

discussed. 

 

One hundred and fifty years ago, in 1872, Boltzmann introduced his H-function and H-

theorem, which heralded the birth of statistical mechanics. [1-3]  It attempted to address many 

of the fundamental questions about the time evolution of nonequilibrium distribution functions 

and was successful in answering some of them. Since Newton's equations are time-reversible, 
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the evolution of an initial nonequilibrium state irreversibly to a unique equilibrium state has 

always been a subject of intense discussions that involve, among other theories, Poincare's 

recurrence and Boltzmann's H-theorem. The former is resolved by noting the extraordinarily 

long time for the recurrence in a macroscopic system; the latter continues to be subjects of 

interest and lively speculation. Boltzmann's H-theorem has retained the status of one of the best 

well-known theorems of statistical mechanics, even though it is fairly restrictive and, in 

principle, strictly applicable only to a dilute gas. [1–3]  However, H-function is general, 

although has not been evaluated in many applications. 

In its original form, Boltzmann's theorem considers the nonequilibrium function H(t)  

defined by the following integration, [1–5] 

H(t) ( , ) ln ( , )d f t f t=−  p p p                  (1) 

where ( , )f tp is the time-dependent single-particle momentum (p) distribution function defined 

in the usual fashion by, 
1

( , ) ( ).
N

i

i

f t 
=

= −p p p  It is a singlet distribution function. 

Note the simplicity of Eq. (1): it does not contain integration over position coordinates. 

Thus, it is not an average over the full phase space. If we need to make any connection with 

thermodynamics like entropy, then this point becomes useful, as we discuss later. Thus, the 

nonequilibrium state is nonequilibrium with respect to momentum only. In essence, the H-

function assumes either the system is homogeneous or the position relaxation is much slower 

than momentum relaxation.  

 Boltzmann's H-Theorem states that if the distribution ( , )f tp  satisfies Boltzmann's 

transport equation, then [1–8]  

0
dH

dt
                                               (2) 
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The equality sign is satisfied only at equilibrium when the distribution attains the 

Maxwell form. That is, when ( , )f tp  is not an equilibrium distribution, the function H will 

continuously increase till the equilibrium distribution is reached. Thus, the time dependence of 

H(t) can be a quantitative measure of the rate of approach of f(p,t) to equilibrium. 

Differentiation of the H function is given by, 

  
 

( )
 3

, tdH(t)
d 1 ln ( , t)

dt t

f
f


= − +


p

p p                  (3) 

Since, at equilibrium, / t 0f  = implies 
dH

0
dt

=  at equilibrium. 

In the following, we briefly outline a proof of the H-theorem. We start with the 

Boltzmann kinetic (or transport) equation that, in its final form, is written as, 

(1)
(1). . ( , , )r p

coll

f
f r p t

t m t

   
+  +  =       

p
F ,                             (4) 

where the collisional term is written as, 

( )
(1)

2 (2) (2)

2 1 2 1 2 12( ') ( ')| |fi

coll

f
d d d E E T f f

t
   

 
 = − − − 

 
 p p p P P     (5) 

One can easily identify the energy and momentum constraints. Note that otherwise, we 

use the indices for the initial state and the final states, as "i" and "f". The T-matrix gives the 

transition probability. At this stage, we employ the assumption of molecular chaos to express 

the two-particle distribution function f(2) in terms of the product of two one-particle distribution 

functions. By certain algebraic manipulations, we are led to the following condition for the 

time derivative of the H function,  [4] 

( ) ( ) ( ) ( ) ( )
23 3 3 (1) (1) (1) (1) (1) (1) (1) (1)

2 1 2 f i f i fi 2 1 2 1 2 1 2 1

dH 1
d d d E E T ln ln

dt 4
f f f f f f f f     

  =− − − −  −
  p p p P P

                                     (6)         
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The integrand in Eq. (6) is never positive, so the H-theorem is satisfied. Thus, in the above 

derivation, H-theorem is tied to the validity of the  Boltzmann kinetic equation. 

  Despite the formidable character of Eq. (6), a calculation of the H-function itself is 

easy to implement, and its quantitative evaluation can be carried out without any 

approximation. We first need to obtain or define a nonequilibrium time-dependent momentum 

distribution function. The simplicity lies in the singlet character of the density distribution. 

Note that the criticism of molecular chaos assumption that is explicit in Eq. (6) is not at all 

required in the definition of H-function given in Eq. (1). Thus, while it is very difficult to 

evaluate Eq. (6), Eq. (1) can be evaluated by computer simulations by creating various 

nonequilibrium momentum distribution functions. As the time-dependent nonequilibrium 

distribution approaches the Maxwell-Boltzmann velocity distribution, the H-function also 

evolves simultaneously and provides a measure of the nature and time scale of the relaxation. 

Up to date, we are aware of only a few explicit evaluations of this function. [4,9–12] This is 

because initial studies attempted to obtain H(t) through the solution of Boltzmann kinetic 

equation, which is hard. [4] There have also been several studies using a generalized 

Boltzmann H-function defined differently where the following expression has been 

used,  [5,13,14] 

  
( , )

( ) ( , ) ln
( )]

GB

eq

P x t
H t dxP x t

P x

 
= −   

 
 .                                                  (7) 

This generalized form of the Boltzmann's H-function serves a similar purpose as the 

original Boltzmann's H-function. Here, Peq(x) is the equilibrium distribution of a given variable 

x. The variable "x" has often been assumed to be a position variable or a combination thereof. 

This is the form advocated in the well-known monograph of Kubo and Toda. [5] 

  In this work, we shall be concerned with quantitative aspects of nonequilibrium 

velocity relaxation using the original H-function. We ask the following questions: (i) What are 

the time scales of the growth of this function? We imagine that this would be related to the 



5 
 

friction or diffusion constant of the gas, but the quantitative dependence is not clear. (ii) One, 

fortunately, knows the exact solution of the momentum space Fokker-Planck equation which, 

even in such a simple case, gives a non-trivial time dependence of the single-particle 

momentum-space distribution function, f(p,t). We would like to check the reliability of this 

description. (iii) What is the range of validity of Boltzmann's H-theorem for interacting 

systems? We ask this question because Boltzmann's entire treatment was for dilute gas, and the 

H-function does not contain any spatial variables. Furthermore, Boltzmann's proof used his 

kinetic equation, which we know has limited validity. (iv) Does H(t) satisfy linear response? 

This could be an intriguing question because Maxwell velocity distribution can be regarded as 

stabilized by a harmonic force constant Bk T

m
. (v) How can we relate this to entropy in a rigorous 

way, given that the original H-function contains only velocity?  

In order to understand, examine and employ the H-Theorem, it is essential to create a 

proper nonequilibrium momentum distribution function in an isolated system. We studied 

several such distribution functions and evaluated H(t) for different 3D, 2D, and 1D systems, 

namely (i) Lennard-Jones, (ii) soft-sphere, and (iii) hard-sphere corresponding to initial 

nonequilibrium velocity distributions. The simulation details have been described in 

Supplementary Material. 

In Figures 1 (a) to 1(c), we show the evolution of H(t) for different systems of dilute 

gases (at reduced density, * 0.10 =  and average reduced temperature, T*=2.0, which is 

obtained by a procedure described below) where not only the interaction potential is varied 

from system to system but also the dimensionality of the systems is changed. The initial 

nonequilibrium state is created by taking the amplitude of the velocities of all the particles 

exactly the same; the magnitude is in accordance with the equipartition theorem and 

temperature. This allows us to carry out the simulation in the microcanonical (NVE) ensemble. 

We see that in all the cases, the H-function sharply increases in a short time and subsequently 
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monotonically approaches the equilibrium value (shown by a black dotted line) at a longer 

time, which is the equilibrium value at the chosen temperature. Note that the time scales have 

been converted from reduced unit to real unit (in ps) using the argon parameters. In Figures 1 

(d) to 1(f), we show normalized H(t), defined as ( ) ( )( )( ) (0)eq eqH t H H H− −  and its 

exponential fit using the expression 
1 2 exp( / )A A t + − . The fitting parameters are given in 

Supplementary Material. 

It is evident from Figure 1 that the nonequilibrium relaxation function H(t) is sensitive 

to both potential and dimensionality. For 3D systems, the approach of H(t) to the equilibrium 

value is the fastest, while for 1D systems, it is the slowest. We also find that in all cases, the 

relaxation times of the systems interacting via Lennard-Jones potential are faster than those 

interacting via hard-sphere potential. This slow relaxation of H(t) for hard-sphere systems 

deserves further studies.  

 

Figure 1. Time evolution of H(t) obtained via computer simulations for (a) 3D, (b) 2D, and (c) 1D 

systems of dilute gases (at reduced density  * = 0.10, and average reduced temperature, T*=2.0) 

interacting with  Lennard-Jones, soft-sphere, and hard-sphere potentials. In all the cases, the H-

function increases monotonically and then attains equilibrium at a longer time, which is the 

equilibrium value at the final temperature, shown by black dashed lines in the figures. (d)-(f) 

Time evolution of the normalized H(t) for the systems shown in (a)-(c). Dotted lines show the 

exponential fitting of normalized H(t). Note the different time scales in each case. 
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While the validity of Boltzmann's theorem as the arrow of time was never in doubt at 

very low-density gas, quantitative estimates of time scales were not known. This in itself is an 

interesting issue because as density decreases, collisions become rare, and the rate of approach 

to equilibrium becomes slow. But the nature and time scales at higher densities remain 

unexamined. In order to examine such issues, we have performed simulations with two 

different initial nonequilibrium momentum distributions (as shown in Figures 2(a) and 2(b)). 

In Figure 2(c), we show the temporal evolution of H(t) for 1D Lennard-Jones systems with 

two different initial nonequilibrium conditions. While it seems H(t) shows distinct features in 

the two cases, the normalized H(t) exhibits similar behavior (as shown in Figure 2(d)) with 

almost same relaxation times (the relaxation times are given in Supplementary Material). 

Besides it, we have checked the validity of the linear response of H(t) in 2D and 3D systems. 

Thus, it is fair to say that H(t) exhibits a linear response.  

 
Figure 2. Evolution of the momentum distribution at different times when initially all particles 

have (a) same amplitude of velocity, and (b) uniform distribution of velocity. (c) Time evolution 

of H-function for 1D Lennard-Jones systems with two different initial distributions. (d) Time 

evolution of the normalized H-function, showing the validity of linear-response theory. Dotted 

lines show the exponential fitting of normalized H(t). The final distribution in each case is 

Maxwellian and identical. 
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The H function and entropy have been associated with each other from the beginning 

because both define a direction of time. Clausius's statement asserts that the entropy of an 

isolated system can only increase with time. In fact, for a one-component ideal gas, one can 

derive a simple relation between the two. For a 3D ideal gas at equilibrium, the velocity 

distribution is Maxwellian, and  one can easily evaluate the H function at equilibrium  to obtain, 

3/2

1 3
ln .

2 2
eq

B

H
mk T

 
=− + 

 
      (8)  

We can obtain the entropy per particle of an ideal gas from the Sackur-Tetrode equation, 

( )
3/2 5

ln 2 ln
2

id

B B BS k mk T k V= + +                                    (9) 

Thus, we obtain the following relation,  

constantid

B eqS k H= + ,                               (10) 

at constant volume V. We emphasize that this remarkable relation holds only for an ideal gas 

at equilibrium. There is an "ln V" term absorbed in the "constant" factor of Eq.(10). 

  As both the functions increase as an initial nonequilibrium state evolves to essentially 

the same values in the equilibrium state, it is natural to look for a relationship between H and 

S,  even as a function of time. However, there has been no convincing proof that such a relation 

should indeed exist. The only exact statement we can make is that both can serve as the arrow 

of time. A strictly valid definition for time-dependent entropy is not available. One can attempt 

to define evolving entropy of a sub-system that is in contact with a bath that is governed by 

faster dynamics. For example, we can change the temperature of the system in a controlled 

manner, slowly, such that one can define entropy in the intermediate states. However, that 

remains problematic because H(t), on the other hand, is defined for an isolated system. 

We first consider the case when the value of H(t) is only slightly different than the 

equilibrium value, i.e., when f(p,t) is close to Maxwell distribution. Let us define 
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( , ) ( , ) ( ).Mf p t f p t f p = −  The above analysis suggests that we can attempt a stochastic 

approach. We now use the Fokker-Planck equation in the momentum space for f(p,t). The 

equation is then is a Fokker-Planck equation [5,15] 

( , )
( , )[ ]

f p t p
E f p t

t p m p


 
   

= +   
   

                                    (11) 

The above equation has the solution, 

2 2

02 3/2

1
( , ) exp( [ ( )] / (2 (1 ( ))))

(2 (1 ( )))
B

B

f p t p p t mk T t
mk T t

= − −  −
−

            (12) 

where, ( ) tt e − = . Fortunately, we can obtain a closed-form analytic expression for H(t) using 

the Fokker-Planck equation for the momentum space probability distribution as follows (a 

detailed description is given in Supplementary Material), 

( )
3 1 3

( ) ln .
2 2 1 exp( 2 2B

H t
mk T t 

 
=− +  − − 

                                                           (13) 

We can see that this form already predicts the rapid rise of the H function at short times. 

Thus, the Fokker-Planck equation can capture the time dependence of H(t) through the 

distribution function f(p,t). We calculated the value of friction ( ) from the diffusion 

coefficient (D) using Einstein relation 
BD k T =  and put it in Eq. (13) to obtain H(t). In 

Figure 3, we compare the results obtained via simulation and Eq. (13) for 3D and 2D systems. 

In the case of 3D systems, we find that the Fokker-Planck equation provides a reasonable 

description for Lennard-Jones and soft-sphere systems but fails for hard-sphere systems. We 

further observe that for 2D and 1D systems, the Fokker-Planck equation-based description of 

H(t) fails. This failure needs further studies. 
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Figure 3: Comparison of H(t) obtained via simulation and Fokker-Planck equation for 3D and 

2D systems. We employ Eq. (13) to obtain the variation of H(t) with  obtained from simulation. 

Note that rapid evolution of H(t) in three dimensions while the slower decay in 2D. In 1D, the 

decay becomes much slower. 

 

The breakdown of the Fokker-Planck equation in one- and two-dimensional systems 

can be quite instructive. We attribute this failure to the emergence of memory effects even at 

low densities. Thus, the Markovian Fokker-Planck equation needs to be replaced by the non-

Markovian equation. [16,17] The Markovian description used here gives rise to too large value 

of the friction at short times. 

Let us again turn to the relationship of H(t) with entropy. By Boltzmann's formula, 

entropy is given by the total number of states. We can evaluate the entropy if we assume that 

the distribution changes infinitesimally slowly, say at 0 . In that limit, we can calculate the 

total number of states and hence the entropy. That is, we need to calculate the number of 

configurations Ω corresponding to a given slowly evolving momentum-space distribution 

function. 
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It is interesting to inquire about the range of validity of the H-Theorem. From its 

original proof by Boltzmann using his transport equation, it is not clear that the theorem 

remains valid at higher densities. We verified the validity at * 0.20 = . However, note that the 

relation between the H-function and entropy may not hold at high densities because the total 

entropy is increasingly dominated by intermolecular correlations as the density is increased 

progressively. 

The sensitivity of H(t) to the interaction potential, of course, reflects the sensitivity of 

the relaxation of f(p,t). The difference between Lennard-Jones and hard-sphere systems has 

been examined earlier with the Enskog approximation. [18] This is an interesting aspect we 

believe deserves further examination. It represents at least partly the dependence on the range 

of potential. This agrees with the much slower relaxation in one dimension where the number 

of nearest neighbours is limited. Earlier studies in 1D have pointed out the anomalous nature 

of particle displacements in one dimension. [19,20] 

As remarked earlier, there appears to be surprisingly few numerical studies of H(t). The 

present study fills this lacuna and serves to provide a detailed understanding of Boltzmann's H-

theorem, which is one of the most celebrated theorems of science and paved the way for 

developing nonequilibrium statistical mechanics. We find in every case Boltzmann's H theorem 

is verified. We also find dimension and interaction potential dependent time scales which for a 

density of * 0.10 =  ranges from a few picoseconds in three dimensions to several hundred 

picoseconds in one dimension. The sensitivity of H(t) on the potential and dimensionality of 

the system should help to understand many basic aspects of nonequilibrium phenomena. It 

would be fascinating to employ it in many areas, such as plasma physics and active 

matter. [12,21,22]Finally, the failure of Fokker-Plack description points to the importance of 

non-Markovian or memory effects, which surprisingly is influenced by the interaction 

potential. 
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S1. Simulation details 

We have carried out a series of nonequilibrium molecular dynamic simulations of dilute 

gases in one, two, and three dimensions in order to study the evolution of H-function. Our 

model system consists of 10000 particles in each case. We have carried out these simulations 

in the microcanonical ensemble (constant N, V, and E) by applying the usual periodic boundary 

conditions. We choose three different radially symmetric potentials: (a) Lennard-Jones (LJ), 

(b) soft-sphere (SS), and (c) hard-sphere (HS) to define the interaction between any two 

particles. The potential forms are given below 

for Lennard-Jones,    ( )
12 6

4 ,LJU r
r r

 


    
= −    

     

                            (S.1) 

for soft-sphere,  ( )
12

,SSU r
r




 
=  

 
                                                (S.2) 

and, for hard-sphere,   
( )

0

HSU r if r

if r





=  

= 
                                            (S.3) 

We have taken the diameter and mass of the particles equal to unity in the reduced unit 

i.e., * 1.0 =  and * 1.0m = . For Lennard-Jones and soft-sphere potentials, we keep the 



interaction strength * 1.0. =  The reduced density ( )dim* m = is taken as 0.10 for all the 

systems, where superscript ‘dim’ represents the dimensionality of the system. 

The initial nonequilibrium state is created by taking the amplitude of the velocities of 

all the particles exactly the same; the magnitude is in accordance with the equipartition theorem 

corresponding to the reduced temperature * 2.0.BT k T = =  For 3D and 2D systems, it has 

been illustrated in Figure S1 while for the 1D system, it has been shown in Figure 2 (a). This 

approach allows us to carry out the simulation in the microcanonical (NVE) ensemble. 

 

Figure S1. An illustration of the initial nonequilibrium state created by taking the amplitude of 

the velocities of all the particles exactly the same for (a) 3D and (b) 2D systems. Thus, only the 

directions of the velocities of the individual particles are selected to the randomly distributed, on 

a sphere (for 3D) and on a circle (for 2D). 

 

Boltzmann’s H-function defined as,    ( ) ( , ) ln ( , )x y zH t dp dp dp f p t f p t= − ) is a 

relatively simple function; however, its evolution for 3D systems is quite complicated as it 

involves a three-dimensional integral. Besides it, the calculations become non-trivial because 

of the convergence problem, as we are studying the distribution functions. In order to get a 

converged result, we have to simulate large systems for a long time. 



           In this work, the time scales have been converted from reduced time (t*) to real-time (t) 

using relation 
2

*t t
m




= , where the values of , m and   have been taken corresponding to 

that of argon atom i.e., 10/ 119.8 , 0.03994 / 3.405 10 .Bk K m kg mol and m  −= = =   

S2. Fitting parameters of normalized H(t) 

We show the normalized H(t) defined as ( ) ( )( )( ) (0)eq eqH t H H H− −  and its 

exponential fit using the expression 
1 2 exp( / )A A t + −  for 3D, 2D, and 1D systems in Figures 

1(d) to 1(f). We provide the fitting parameters in Table S1, S2, and S3 for 3D, 2D, and 1D 

systems, respectively. Figure S2 shows the time evolution of the normalized H-function (in 

logarithmic scale). We find that the time evolution of the H-function in the case of Lennard-

Jones potential is quite different from that of hard-sphere potential. We should also remark here 

that the approach of equilibrium in 1D is substantially slower than that in 2D and 3D.   

 

Figure S2. Time evolution of the normalized H-function (in logarithmic scale) for (a) 3D, (b) 2D, 

and (c) 1D systems of dilute gases (at reduced density * = 0.10, and average reduced temperature, 

T*=2.0) interacting with  Lennard-Jones, soft-sphere, and hard-sphere potentials. Dotted lines 

show the exponential fitting to the normalized H(t). 

 

 

 

 



Table S1. The fitting parameters for the normalized H(t) for three-dimensional systems. 

Systems A1 A2  (ps) 

Lennard-Jones 0.011 0.989 1.461 

Soft-sphere 0.015 0.985 1.952 

Hard-Sphere 0.021 0.979 2.181 

 

 

Table S2. The fitting parameters for the normalized H(t) for two-dimensional systems. 

Systems A1 A2  (ps) 

Lennard-Jones 0.013 0.987 5.064 

Soft-sphere 0.017 0.983 7.512 

Hard-Sphere 0.022 0.978 8.483 

 

Table S3. The fitting parameters for the normalized H(t) for one-dimensional systems. 

Systems A1 A2  (ps) 

Lennard-Jones 0.015 0.985 253.192 

Soft-sphere 0.019 0.981 333.127 

Hard-Sphere 0.024 0.976 386.723 

 

S3. Validity of linear-response theory 

 Similar to Figure 2, in Figures S3 (a) and S3 (b), we show the time evolution of H(t) 

for 1D soft-sphere and 1D hard-sphere systems, respectively, with two different initial 

nonequilibrium conditions. In case I, we have taken the amplitude of the velocities of all the 

particles exactly the same. In contrast, in case II, we have taken a uniform rectangular velocity 

distribution to create the initial nonequilibrium state. In Figures S3 (c) and S3 (d), we show 

the temporal evolution of normalized H(t) with two different initial nonequilibrium conditions 



and its exponential fit for 1D soft-sphere and hard-sphere systems. The relaxation times 

obtained by the exponential fit of normalized H(t) are given in Table S4. 

 

Figure S3. Time evolution of H-function for 1D (a) soft-sphere, and (b) hard-sphere systems with 

two different initial distributions. Time evolution of the normalized H-function, showing the 

validity of linear-response theory for (c) soft-sphere, and (d) hard-sphere systems. Dotted lines 

show the exponential fitting of normalized H(t). 

 

Table S4. The relaxation time obtained by exponential fit of normalized H(t) for one-

dimensional systems with two different initial nonequilibrium conditions.  

    

               Systems 

 (ps) 

Case I Case II 

Lennard-Jones 253.192 249.125 

Soft-sphere 333.127 334.725 

Hard-Sphere 386.723 389.646 

 



We have further checked the validity of linear response of H(t) for 2D and 3D systems. 

In Figure S4, we show the time evolution of H(t) for 2D and 3D Lennard-Jones systems having 

two different initial nonequilibrium momentum distributions: (i) all particles having the same 

amplitude of momentum with different directions, and (ii) uniform rectangular distribution of 

momentum. The temporal evolution of normalized H(t) shows the validity of linear response 

theory. Similar results have been obtained for soft-sphere and hard-sphere systems in 2D and 

3D. In Table S5, we provide the relaxation times obtained by the exponential fit of normalized 

H(t) for 2D and 3D Lennard-Jones systems. 

 

Figure S4. Time evolution of H-function for (a) 2D, and (b) 3D Lennard-Jones systems with two 

different initial distributions. Time evolution of the normalized H-function, showing the validity 

of linear-response theory for (c)2D, and (d) 3D Lennard-Jones systems. 

 

 



Table S5. The relaxation time obtained by exponential fit of normalized H(t) for 2D and 

3D Lennard-Jones systems with two different initial nonequilibrium conditions.  

    

               Systems 

 (ps) 

Case I Case II 

2D Lennard-Jones 5.064 4.996 

3D Lennard-Jones 1.461 1.474 

 

S4. Density dependence of H(t) 

According to Boltzmann’s H-theorem, for a dilute gas, H(t) is an ever-increasing 

function of time till it reaches an equilibrium value. However, for dense fluids, the validity of 

the H-theorem has remained doubtful. In order to check the validity of Boltzmann’s H-theorem 

for dense fluids, we have performed simulations at higher densities. Figure S5 shows the 

temporal evolution of the H-function of 3D Lennard-Jones systems at three different densities, 

* 0.10, 0.20 0.30.and =  We find that the H-theorem remains valid even at higher densities. 

Further, as the density increases, the momentum relaxation becomes faster. 

 

Figure S5. (a) Variation of H(t) as a function of time for 3D Lennard-Jones systems at different 

densities, * = 0.10, 0.20 and 0.30. (b) Time evolution of the normalized H(t) for the systems 

shown in (a). Dotted lines show the exponential fitting of normalized H(t). 

 

The fitting parameters for the exponential fitting of the normalized H(t) are provided in 

Table S6. 



Table S6. The fitting parameters for the normalized H(t) for three-dimensional Lennard-

jones systems at different densities. 

Density A1 A2  (ps) 

* = 0.10 0.013 0.987 1.461 

* = 0.20 0.011 0.989 0.615 

* = 0.30 0.016 0.984 0.145 

 

S5. Closed-form analytic expression for H(t) using the Fokker-Planck 

equation 

In the absence of external potential, the solution of the Fokker-Planck equation in the 

momentum space provides the expression for the momentum distribution function as follows,  

 
( )

( ) ( ) ( )

( )

23 2 2 2

0 0 0
exp( ) exp( ) exp( )1

( , ) exp
2 1 exp( 2 2 1 exp( 2 )

x y z

B B

x y zp t p t p t
f t

mk T t mk T t

p p p
p

  

  

− − − − − −
= −

− − − −

 + +   
  

    

  (S.4) 

Here m is the mass of the particle; px0, py0, pz0 denote the x-component, y-component, and z-

components of initial momentum, and px, py, pz are the current momentum of the particle at 

time t along x, y, and z directions. T is the absolute temperature of the system and  is the 

friction experienced by the particle.  

On the other hand, the Boltzmann H function in three dimensions is defined as, 

   ( ) ( , ) ln ( , )x y zH t dp dp dp f p t f p t= −              (S.5) 

We next substitute Eq. (S.4) in Eq. (S.5) and perform an integration over px, py, and pz to obtain, 

after a lengthy algebraic manipulation, the following simplified equation  

( )
3 1 3

( ) ln .
2 2 1 exp( 2 2B

H t
mk T t 

 
= − +  − − 

              (S.6) 



It is interesting to note that Eq. (S.6) is independent of the initial velocities. Therefore, the 

major limitation of this approach is that it cannot capture the effects of the initial distributions 

used to generate a nonequilibrium configuration.  

S6. Normalized velocity autocorrelation function (VACF) 

In Figure S6, we show the normalized velocity autocorrelation functions for 3D, 2D, 

and 1D Lennard-Jones systems. In the case of 1D system, the diffusion constant obtained via 

VACF is very low compared to that in the 3D system, leading to a very high value of friction 

obtained using the Einstein relation 
BD k T = . Thus, the H(t) obtained by the closed-form 

analytical solution of the Fokker-Planck equation reaches equilibrium much faster than that 

obtained via simulation. 

 

Figure S6. The normalized velocity autocorrelation function (VACF) of (a) 3D, (b) 2D, and (c) 1D 

Lennard-Jones systems. 
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