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Non-equilibrium radiation is addressed theoretically by means of a stochastic lattice-gas model.
We consider a resonating transmission line composed of a chain of radiation resonators, each at
a local equilibrium, whose boundaries are in thermal contact with two blackbody reservoirs at
different temperatures. In the long chain limit, the stationary state of the non-equilibrium radi-
ation is obtained in a closed form. The corresponding spectral energy density departs from the
Planck expression, yet it obeys a useful scaling form. A macroscopic fluctuating hydrodynamic
limit is obtained leading to a Langevin equation whose transport parameters are calculated. In this
macroscopic limit, we identify a local temperature which characterises the spectral energy density.
The generality of our approach is discussed and applications for the interaction of non-equilibrium
radiation with matter are suggested.

Radiation at thermal equilibrium has been a trigger-
ing problem underlying the quantum revolution [1, 2].
Since then, this problem has been revisited recurrently
in different contexts either in physics or in engineering.
Examples are abundant in condensed matter, statistical
mechanics and quantum field theory among others [3–6].

Radiation out of thermal equilibrium is a problem of
wide and obvious interest, yet still largely uncharted de-
spite important advances [7–13]. The purpose of this let-
ter is to present a hydrodynamic description of non equi-
librium radiation. While a wide range of problems can
be formulated which involve non equilibrium radiation
[14–16], we focus to the case of two blackbody equilib-
rium radiation reservoirs held at different temperatures
TR 6= TL and connected by a properly designed long res-
onating line of length L as sketched in Fig.1.

Before dwelling into the details of our model, we now
summarize our main findings. Non equilibrium radiation
is described using a coarse grained, boundary driven, mi-
croscopic lattice gas model for the energy transfer along
the resonator, which accounts for hopping of photons be-
tween neighbouring cells of size ` (`� L). We show that
this lattice gas model belongs to the well documented
zero range process (ZRP) [17]. The long time probabil-
ity distribution P∞ (η) of photon configurations is ob-
tained in (10,11). Its continuous limit allows to identify
a macroscopic hydrodynamic regime for the steady state
akin to the macroscopic fluctuation theory [18, 19]. In
this regime, the fluctuating local spectral energy density
uν (x, t) is constrained by a continuity equation,

∂tuν (x, t) = −∂xj(x, t) (1)

where the fluctuating spectral current j (x, t) obeys the
Langevin equation,

j (x, t) = −D (uν) ∂xuν (x, t) +
√
σ (uν) ξ (x, t) . (2)

Here ξ (x, t) is a weak (L� 1) and delta-correlated white
noise, ξ (x, t) ξ (x′, t′) = 1

Lδ (x− x′) δ (t− t′). The trans-

port coefficients,

D (uν) =
1

(1 + uν)
2 and σ (uν) =

2uν
1 + uν

, (3)

depend solely on the noise-averaged, local spectral energy
density uν (x) at frequency ν,

uν (x) ≡ uν (x) /gνhν =
zL + x

L (zR − zL)

1− zL − x
L (zR − zL)

, (4)

where zR/L ≡ exp
(
−hν/kBTR/L

)
and gν ≡ 8πν2/c3 is

the 3d density of states of the radiation. This expres-
sion, very distinct from the Planck distribution, abides
the scaling (18) which allows to identify a macroscopic
local temperature function Tτ (x) at the hydrodynamic
scale. A measurement of local radiation fluxes through
apertures along the transmission line akin to standard
blackbody measurements is displayed in Fig.1. It pro-
vides an experimental way to directly access uν (x) and
probe the predicted scaling form and its departure from
Planck distribution.

The rest of the letter is devoted to a description of
our model and setup, to a derivation of the results just
stated and finally, to a discussion of their meaning and
applicability.
The Physical Setup – The two blackbody radiation

reservoirs in Fig.1 are held at distinct temperatures TR 6=
TL and are respectively characterised by the Planck dis-

tributions, uν (Tr) = gνhν
(
e
hν/kBTr − 1

)−1
, r = L,R

of their spectral energy densities at frequency ν. They
are connected by a long transmission line of length L
built out of a series of resonators, hereafter cells. In this
setup, illustrated in Fig.2, we assume that each cell k
of size `, is large enough so as the enclosed radiation is
at thermal equilibrium. For L � `, the density of cells
is finite and the precise nature of the coupling between
neighboring resonators is unimportant. Local thermal
equilibrium with the walls (the environment) is achieved
through local Kirchhoff law, a point appropriately ex-
plored in [13].
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FIG. 1. A resonating line connects two blackbody reservoirs
held at distinct temperatures TR 6= TL. The spectral energy
density uν(x) varies along the line of length L. Adopting the
standard measurement scheme of uν(x), the line is pierced at
various locations and an array of detectors of typical size `h
(see text) records the local non equilibrium spectral radiation
uν(x).

The Model – We now outline the assumptions underly-
ing the microscopic lattice model used for the description
of the radiation in the transmission line. We consider a
one-dimensional lattice k = 1, . . . , N of N = L/` cells.
The left and right blackbody reservoirs are respectively
located at k = 0 and k = N + 1, so that TL ≡ T0 and
TR ≡ TN+1. The radiation consists of a gas of photons
occupying the lattice cells and hopping between neigh-
boring cells. This hopping is described by random tran-
sitions between cells occupation numbers configurations
η = {n1, . . . , nN}, with nk = 0, 1, 2, . . ., i.e nk is un-
bounded. An example of a configuration is displayed in
Fig.2.

2
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FIG. 2. Examples of photon configurations in the lattice
model with corresponding transition rates. Each cell k of
size ` accounts for a lattice site, where radiation is locally at
thermal equilibrium with surrounding walls. The three pro-
cesses (1,2,3) namely, in-cell creation and annihilation (red),
bulk (green) and boundaries (purple) inter-cell exchanges are
indicated.

We denote ηi,j ≡ {n1, . . . , ni + 1, . . . , nj − 1, . . . , nN},
nj > 0, a photon configuration which relatively to η, has
an excess of one photon in the ith cell and a depletion of
one photon in cell j. For the bulk and boundary cells we
consider the three following processes:

1. Creation/annihilation: η
ck(nk)−−−−−−⇀↽−−−−−−
ak(nk+1)

ηk photons are

absorbed at the boundaries of the kth cell at a rate
ak and created at a rate ck. These rates depend
on nk and we set ak = 0 for nk = 0 for all k.
Furthermore, these rates are constrained by local
detailed balance (12) within each cell k.

2. Bulk exchange: ηk,k+1

q−⇀↽−
q
ηk,k+1, namely the hop-

ping of photons between neighboring cells is sym-
metric and occurs at a rate q. We shall set q = 1
in the sequel.

3. Boundary processes – At the boundary cells k = 1
and k = N , we assign:

i) η
α−⇀↽−
γ
η1 : The left reservoir respectively ab-

sorbs and injects photons from/into the trans-
mission line at rates γ and α.

ii) η
δ−⇀↽−
β
ηN : The right reservoir respectively ab-

sorbs and injects photons from/into the trans-
mission line at rates β and δ.

Physically, the rates α and δ express the radiation fluxes
from the reservoir into the transmission line through
small apertures of area A, namely, α = 2Acuν (T0) /h
and δ = 2Acuν (TN+1) /h (see Fig.2 and Supplemental
Material S I [20]).

The three processes (1, 2, 3) listed above, underlie the
dynamics of non equilibrium radiation states by means
of the probability Pt (η) for a configuration η of photons
at time t. This dynamics of configurations is thus given
by solutions of a master equation, ∂tPt (η) = L [Pt (η)]
where the generator L, linear in Pt, specifies the rate of
probability flow between occupation configurations. We
are interested in the form of the long time probability
P∞ (η) ≡ limt→∞ Pt (η), namely in the solutions of the
kernel equation,

L [P∞ (η)] = 0 . (5)

Since the processes (1) and (2 + 3) are independent, we
look for solutions with independent generators,

L ≡ L⊥ + L‖ (6)

where L⊥ accounts for process (1) and L‖ ≡ Lbulk +
Lboundary accounts for processes (2) and (3). Expres-
sions of these generators are given in the Supplementary
Material S IV in [20]. To evaluate the kernel of L‖, we
consider the statistics of the total current Qt of indepen-
dent photons hopping on the lattice, and removed and
injected from the boundary blackbody reservoirs at rates
(α, β, γ, δ) during the time interval [0, t]. We define the
cumulant generating function 〈eλQt〉 of Qt, the average



3

〈· · · 〉 being on the Poisson processes governing the time-
dependent boundary dynamics (S II in [20]). In the long

time limit, we expect 〈eλQt〉 ' eµ
‖(λ)t. Hence, the knowl-

edge of µ‖(λ) allows to obtain the cumulants of Qt by

lim
t→∞

〈Qnt 〉c
t

=
dnµ(λ)

dλn
|λ=0 . (7)

To compute µ‖(λ), we rely on the assumption that pho-
tons are independent, which allows to study separately
the effect of right and left reservoirs. The number of pho-
tons leaving the transmission line from its left boundary
in the time interval [0, t] is,

QL[0,t] =
−→
1 [0,t] −

←−
1 [0,t] (8)

where
−→
1 [0,t] (resp.

←−
1 [0,t]) is the number of photons leav-

ing (resp. entering) the left reservoir to (resp. from)
cell 1 in the time interval [0, t]. Since photons are in-
dependent, we decompose the total current by parti-
tioning the time interval [0, t] into Nt segments [tk, t]
with tk being the time at which the kth photon en-
tered the system. The total current QL[0,t] then appears
as the sum of elementary contributions of each pho-
ton that has entered the resonator between times 0 and
t, QL[0,t] =

∑Nt
k=0Q

k
[tk,t]

. This partition simplifies the
calculation of the left part of the cumulant generating

function µL(λ) = limt→∞ 1
t ln〈eλQL

[0,t]〉 by factorising it
into a product of single photon contributions (see S II
in [20] for details). A similar calculation for the current
QR[0,t] of photons leaving the transmission line from its
right boundary and the corresponding generating func-
tion µR(λ) leads to [20],

µ‖(λ) = µL − µR =
αβ(eλ − 1)− γδ(1− e−λ)

γ(βN + 1)− β(γ − 1)
. (9)

The generating function µ‖(λ) coincides with those de-
scribing the dynamics of a class of stochastic lattice gas
models known as the zero-range-process (ZRP) [21]. This
result is not obvious since, unlike our model, the ZRP de-
scribes interacting particles. Yet, based on this identity,
we use the result, proven for ZRP [22], that the long time
probability P∞ (η) solution of L‖ [P∞ (η)] = 0 in (5), is
a product measure, namely,

P∞ (η) =

N∏

k=1

πk (nk) . (10)

Each term πk (nk) accounts for the bookkeeping of pho-
ton occupation number in cell k at local equilibrium, and
it is expressed in terms of the steady state fugacities zk,

πk (nk) = (1− zk) znkk . (11)

Under this form, a sufficient condition for local equilib-
rium is expressed by a detailed balance condition,

ck (nk)

ak (nk + 1)
=
P∞

(
ηk
)

P∞ (η)
= zk . (12)

Expressions (11) and (12) generalize the condition
for thermal blackbody radiation with fugacity zB =
exp (−hν/kBT ) [20]. It is immediate to check that (11)
implies L⊥ [P∞ (η)] = 0. Hence (5) amounts to solutions
of L‖ [P∞ (η)] = LZRP [P∞ (η)] = 0 characterised by fu-
gacities [20, 22],

zk =
k
N (γδ − αβ) + αβ − 1

N [γδ + (α+ δ)]

βγ
(
1− 1

N

)
+ 1

N (β + γ)
. (13)

Fugacities in the blackbody reservoirs are given by
zL/R ≡ z0/N+1 = exp

(
−hν/kBTL/R

)
. Taking the large

N limit in (13) leads to the boundary conditions [19],

z0 = e
− hν
kBTL =

α

γ
, zN+1 = e

− hν
kBTR =

δ

β
, (14)

[23], so that (9) rewrites,

µ‖(λ) =
1

L

(
1− e−λ

) (
zL eλ − zR

)
. (15)

Boundary conditions (14) can also be obtained in a dif-
ferent way if one notes that µ‖(λ) in (15) abides the
Gallavotti and Cohen relation [24, 25],

µ‖(λ) = µ‖(−λ− E) (16)

where E is a field that brings the radiation out of equi-
librium. Taking E ≡ ln zR − ln zL, corresponds to (14).

To establish (4) for the spectral energy density uν (x),
we now consider the hydrodynamic continuous limit ob-
tained by averaging over cell sizes `. Namely, defining
k`/L = k/N ≡ x (0 ≤ x ≤ 1), with L→∞, `→∞, and
keeping a finite density of cells `/L→ dx. This averaging
procedure , applied to the fugacity in (13) gives,

zk → z (x) =
α

γ
+x

(
δ

β
− α

γ

)
= zL+x (zR − zL) . (17)

The spectral energy density of the radiation at frequency
ν in cell k inside the transmission line is uν (k) =
gνhν 〈nk〉 with 〈nk〉 =

∑
η nkP∞ (η) = zk/(1 − zk). In

the continuous limit, 〈n (x)〉 = z(x)
1−z(x) leads to (4) for the

macroscopic spectral energy density uν (x) as announced
in the introductory part.

Expression (4) manifestly differs from the Planck spectral
energy density, a direct consequence of the non equilib-
rium nature of the radiation at the macroscopic scale.
This difference is illustrated in Fig. 3a for different val-
ues of the ratio τ ≡ TR/TL and at a fixed position along
the transmission line. The same observation holds for a
fixed value τ 6= 1 while varying the position x along the
line (Fig.3b).

A remarkable scaling form,

uν (x) ≡ 8πh

c3
ν3Φ (ν/Tτ (x)) (18)
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FIG. 3. Behaviour of uν (x) in (4) - Difference with the
Planck spectral distribution. (a) uν (x = 1/2), plotted as a
function of ν/TL for different values of the ratio τ ≡ TR/TL.
The Planck distribution uB for the same temperature function
Tτ ( 1

2
) is plotted for comparison. The difference between the

two functions appears clearly except for τ = 1. (b) Same
plots but for different positions x and for a fixed ratio τ ≡
TR/TL = 5.

for uν (x) is observed in Fig.4 where the function Tτ (x),
a temperature, is to be determined. It is interesting to
note that while uν (x) is not a Planck distribution for
τ 6= 1, the scaling form (18) implies

∫
dν uν (x) ∝ T 4

τ (x),
a behaviour reminiscent of the thermodynamic result. To
understand these results and to determine the tempera-
ture Tτ (x), we now propose a fluctuating hydrodynamic
description.

In the limit L → ∞, upon rescaling space, x → x/L
and time, t→ t/L2, the evolution of the stochastic model
(9,10) can be described using a fluctuating hydrodynamic
Langevin equation (2) relating a current density j(x, t)
to the fluctuating local spectral energy density uν (x, t),
both being constrained by the continuity equation (1).

x=0.2
x=0.4
x=0.6
x=0.8

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

FIG. 4. Scaling form (18) for uν (x). All curves evaluated

at a fixed temperature ratio τ = TR
TL

= 5 but for different

values x of the position, collapse to a single curve upon a
proper rescaling ν/Tτ (x) thus defining the temperature func-
tion Tτ (x).

The validity of this fluctuating hydrodynamic descrip-

tion, a.k.a macroscopic fluctuation theory (MFT) [18],
relies on the assumption of local equilibrium around each
cell ` at an intermediate hydrodynamic scale (`� `h �
L) and for times much larger than `2h and much smaller
than L2, where the spectral energy density is uν (x) given
in (4). This assumption implies that only linear response
coefficients D (uν) and σ (uν) show up in the Langevin
equation (2). To calculate them, we use the cumulant
generation function µ‖(λ) in (15) of the total radiation
current

Qt =
L2

t

∫ t

0

dt′
∫ 1

0

dx j(x, t′) (19)

transferred between the reservoirs in a time window [0, t].
To calculate the transport coefficients σ (uν) and D (uν)
in (3), we note that the Gallavotti and Cohen relation
(16) generalises local detailed balance conditions (12) and
allows to recover the fluctuation-dissipation theorem in
the limit E → 0. Hence, expanding the generating func-
tion µ‖(λ) close to equilibrium, i.e. for τ ' 1 and by
setting uL ≡ u, uR ≡ u+ ∆u with ∆u� 1, leads to,

〈Q(t)〉
t

=
dµ‖(λ)

dλ
|λ=0 ≡ D (u)

∆u

L
(20a)

〈
Q2(t)

〉

t
=

d2µ‖(λ)

dλ2
|λ=0 ≡

σ (u)

L
. (20b)

The resulting expressions (3) forD (uν (x)) and σ (uν (x))
coincide with those established for the ZRP [26–29] (S V
of [20]). An elementary consequence [19] of the gener-
alised detailed balance relation (16), implies that they
abide the Einstein relation,

2D (uν)

σ (uν)
= − s′′ν , (21)

relating D and σ to the second derivative of the local

spectral entropy density sν (uν(x)) ≡ sν/ 8πkBν
2

c3 with re-
spect to uν .

Einstein relation (21) is useful since it allows to calcu-
late sν(x) by a direct integration and using (18). This
leads to

sν(x) = −8πkB
c3

ν2 [(1 + Φ) ln (1 + Φ)− Φ ln Φ] . (22)

Since Φ depends only on the argument ν/Tτ (x), then
s(x) =

∫∞
0

dν sν(x) = AsT
3
s (x), where As is a con-

stant which depends on Φ. The scaling form (18) implies
u(x) =

∫∞
0

dν uν(x) = Au T
4
u(x), where Au is another

constant which depends on Φ(x). From these two re-
lations, we recover the familiar thermodynamic relation
∂s(x)/∂u(x) ∝ 1/Tτ (x), so that Tτ (x) is indeed a local
temperature [30]. This result has been checked numer-
ically in Fig.5 where the two temperatures Tu and Ts,
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FIG. 5. Comparison between the temperatures Tu and Ts
defined from the energy and entropy densities u(x) and s(x),
as functions of the location x along the transmission line.

respectively retrieved from uν(x) in (18) and from sν(x)
in (22), are shown to coincide and to be equal to Tτ (x).

To summarize our findings, we have proposed a macro-
scopic hydrodynamic description of non equilibrium ra-
diation. We have considered the workable example where
the radiation is driven out of equilibrium by thermal cou-
pling to two blackbody reservoirs at different temper-
atures. Yet, the generality of our findings appears to
be independent of this specific model. We have shown
that our boundary driven lattice gas model based on
the bookkeeping of local photon exchanges, shares the
universality of the ZRP model [22, 26, 28, 29]. More-
over, a useful macroscopic hydrodynamic limit described
by the Langevin equation (2) has been obtained which
depends on two transport parameters D(uν) and σ(uν)
only. These results constitute an additional contribution
to an already abundant literature on stationary, out of
equilibrium, boundary driven systems [21, 27, 29, 31].
In the present case, the starting point of our study is a
rather general scheme for non equilibrium photon propa-
gation which could be further extended to other sources
of fluctuating light either coherent or incoherent (e.g.
lasers). Our results constitute a starting point to study
more complicated situations such as the action of non
equilibrium radiation on atomic motion (e.g. optical
tweezers or atomic cooling), or the dynamics of quantum
entanglement between two quantum particles interacting
with non equilibrium light. Dynamical phase transitions
and the existence of some form of condensation in the
ZRP are interesting directions worth pursuing. Another
interesting question is the control of fluctuating quan-
tities in the hydrodynamic description, e.g. by means
of ”Thermodynamic Uncertainty Relation” recently pro-
posed [32].
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Supplemental Material: Hydrodynamic description of Non-Equilibrium Radiation

S I. PHOTON ESCAPE RATE

In this section we present a derivation, using kinetic theory, of the relations α = 2Acuν (T0) /h and δ =
2Acuν (TL+1) /h, between the rates of incoming photons from the blackbody reservoirs at the boundaries, as defined
and depicted in Fig.2 in the main text .

Consider a single blackbody cavity at temperature T , with an aperture of area A from which photons escape the
cavity. The escape rate is computed using the following kinematic argument. The number of photons that leave the
cavity per unit time dt through an aperture of area A, are those which reside in the volume Ac cos θdt, i.e

N = Aρphc cos θdt ,

where θ is the angle between the photon wave vector and the normal to the aperture. Hence, their escape rate is

α = A

∫ π/2

−π/2
dθ ρphc cos θ .

The photon density depends on the density of states, the photon frequency ν and the average occupation of this
frequency mode, namely

ρph = gνν 〈nν〉 .

Hence the rate is

α = 2Agννc 〈nν〉 .

Rewriting the above in terms of the spectral energy density uν (T ) = gνhν 〈nν〉, with the temperature in the reservoirs,
leads to the relations given in the text.

S II. CUMULANT GENERATING FUNCTION OF THE TOTAL RADIATION CURRENT

In this section, we present a calculation of the cumulant generating function µ‖ (λ) from equation (9) in the main
text.

We define the total number of photons that leave the transmission line from its left edge, in a time windows [0, t]

QL[0,t] =
−→
1 [0,t] −

←−
1 [0,t] , (S1)

where
←−
1 [0,t] is the number of photons hopping from cell 1 to the left reservoir and

−→
1 [0,t] is the number of photon

hopping from the left reservoir to cell 1, all in the time window [0, t]. The quantity of interest is the cumulant
generating function,

µL(λ) = lim
t→∞

1

t
ln〈eλQL

[0,t]〉 , (S2)

The total current of photons is a sum of elementary contributions of each photon that entered the chain of resonators
between times 0 and t,

QL[0,t] =

Nt∑

k=0

Qk[tk,t] , (S3)

where Nt is a random variable and tk is the time at which the kth photon entered the chain. Hence (see also appendices
of [S1, S2]),

〈
eλQ

L
[0,t]

〉
=
〈

eλ
∑Nt
k=0Q

k
[tk,t]

〉
=
∞∑

n=0

1

n!

∫
dt1 · · ·

∫
dtn α

n e−αt
n∏

k=0

〈
eλQ

k
[tk,t]

〉
, (S4)
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with ordered injection times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t describing the Poisson process. To factorise the expectation
value, we have used the assumption of independent photons, so that the calculation reduces to the single particle

expectation value,
〈

eλQ
k
[tk,t]

〉
.

The processes Qk[tk,t] can be regarded as indicators, i.e

Qk[tk,t] =

{
0 if a photon k has left the resonating chain

1 otherwise

Then, we denote ΠL (t− tk) the probability for a photon k to leave the transmission line from the left edge. Hence,

〈
eλQ

k
[tk,t]

〉
= ΠL (t− tk) + eλ (1−ΠL (t− tk)) .

For t → ∞, with fixed N and tk, the photon leaves the chain almost surely, so that the probability ΠL (t− tk)
converges to a finite and constant value Π∗L. This probability is in the kernel of

PL =




0 γ 0 · · · · · · · · · · · · 0
0 −γ − 1 1 0 · · · · · · · · · 0
0 1 −2 1 0 · · · · · · 0
0 0 1 −2 0 · · · · · · 0
...

... 0 0
. . .

. . . 0 0
...

...
...

...
. . .

. . . −2 −β − 1
0 0 0 0 0 0 β 0




(N+2)×(N+2)

.

Namely, defining the probability Pk for a photon in cell k to exit from the left, the (N + 2) component vector P is
harmonic PLP = 0 with boundary conditions, Pk=0 = 1 and Pk=N+1 = 0. The solution of this linear system is,

Π∗L = P1 =
γ (βN + 1)− γβ

γ (βN + 1)− β (γ − 1)
.

Thus, for t→∞, hence t� tk for all k, we obtain from (S4),

〈
eλQ

L
[0,t]

〉
=
∞∑

n=0

αne−αt

n!
tn
[
Π∗L + eλ (1−Π∗L)

]n
= eα t (F (λ)−1) ,

with

α (F (λ)− 1) =
αβ
(
eλ − 1

)

γ (βN + 1)− β (γ − 1)
≡ µL (λ) . (S5)

Repeating an analogous calculation for the total number of photons QR[0,t] entering from the right reservoir, leads to

lim
t→∞

1

t
ln
〈

eλQ
R
[0,t]

〉
= − γδ

(
1− e−λ

)

γ (βN + 1)− β (γ − 1)
≡ µR (λ) . (S6)

Altogether, the total cumulant generating function µ‖(λ) = µL − µR is given by (9) in the text,

µ‖(λ) =
αβ(eλ − 1)− γδ(1− e−λ)

γ(βN + 1)− β(γ − 1)
. (S7)

S III. LOCAL EQUILIBRIUM VIA CREATION AND ANNIHILATION RATES

In this section we establish the sufficient condition (12), in the main text, for a local equilibrium, i.e

ck (nk)

ak (nk + 1)
=
P∞

(
ηk
)

P∞ (η)
= zk . (S8)
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To this purpose, we consider the following rate model for equilibrium blackbody radiation.
For blackbody radiation at temperature T , the corresponding spectral energy density is given by the Planck distri-

bution

uν (T ) = gνhν 〈nν (T )〉 , (S9)

where gν = 8πν2/c3 is the density of modes of frequency ν inside the blackbody cavity, and 〈nν〉 is the average
occupation of these modes. It is calculated from the Bose-Einstein probability distribution πB (for Blackbody) to
observe n photons in the cavity,

πB (n) =
(

1− e
− hν
kBT

)
e
− hν
kBT

n
. (S10)

Accordingly, the Boltzmann factor is

e
− hν
kBT =

〈nν〉
1 + 〈nν〉

. (S11)

At this stage, it is interesting to introduce the fugacity zB by means of the change of variables, 〈nν〉 = zB

1−zB . It

implies zB = exp
(
− hν
kBT

)
and 0 < zB < 1. This allows to rewrite the distribution (S10) in terms of fugacities,

πB (nν) =
(
1− zB

) (
zB
)nν

. (S12)

We now show that this distribution is the stationary probability PB∞ of the following rate model.
Let us consider the radiation inside the cavity as a gas of photons, each carrying a momentum hν/c. The physical

processes of absorption and emission of photons from the cavity walls, are described by means of the rates a (nν)
and c (nν), respectively. The state of the radiation is encoded in the probability PBt (nν) to observe nν = 0, 1, 2, . . .
photons at time t inside the cavity. This probability evolves according to the master equation,

∂tP
B
t (nν) = LB

[
PBt (nν)

]
, (S13)

where the generator LB is

LB
[
PBt (nν)

]
= c (nν − 1)PBt (nν − 1) + a (nν + 1)PBt (nν + 1)− PBt (nν) [a (nν) + c (nν)] . (S14)

The above equation is constrained by a (0) = 0 = c (−1).
We now find the conditions on the rates a (nν) and c (nν) for which (S12) is the stationary state of (S13) [S3], i.e,

for t→∞ we take

PB∞ (nν) ≡ πB (nν) . (S15)

Stationarity is equivalent to LB
[
PB∞ (nν)

]
= 0, thus we write

0 =c (nν − 1)PB∞ (nν − 1) + a (nν + 1)PB∞ (nν + 1)− PB∞ (nν) [a (nν) + c (nν)]

=PB∞ (nν)

(
c (nν − 1)

[
PB∞ (nν − 1)

PB∞ (nν)
− a (nν)

c (nν − 1)

]
+ a (nν + 1)

[
PB∞ (nν + 1)

PB∞ (nν)
− c (nν)

a (nν + 1)

])
.

The right-hand-side vanishes, if and only if, (using (S15) and (S12))

c (nν)

a (nν + 1)
=
PB∞ (nν + 1)

PB∞ (nν)
= zB = e

− hν
kBT . (S16)

The generalization (S8) of (S16) is twofold: first, zk depends on the spatial index k of a cell along the transmission
line. Second, zk is not a Boltzmann factor in cell k, but it is rather given by (13) in the main text.

S IV. MASTER EQUATION FOR THE PHOTON-GAS MODEL

The purpose of this section is to build the generator L used in equations (5) and (6) in the main text. Then, to
prove that the stationary state is given by (10) and (11) of the main text.
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A. Construction of the Master equation generator L

The generator L is a linear function of the probability Pt (η) and it specifies the rate of flow of Pt (η) between
configurations η = {n1, n2, . . . , nN}. We recall that ηi,j accounts for a configuration which, relative to η, has an

excess of one photon in the ith cell and a depletion of one photon in the jth cell, namely,

ηi,j = {n1, . . . , ni + 1, . . . , nj − 1, . . . nN} , nj > 0.

Among the three possible processes (1,2,3) introduced in the main text, process (1) is independent of (2+3), so that
the generator L can be written accordingly as a sum of two independent contributions L = L‖ + L⊥ with obvious
notations.

The generator L‖ can be expressed as a sum of two contributions L‖ = Lboundary +Lbulk. As described in the main

text, L‖ generates the dynamics associated with the rates α, β, γ, δ, q – processes 1 and 3 in the main text, and L⊥
generates the dynamics associated with the rates ak and ck – process 2 in the main text. These three generators are
built from the following processes:

1. Boundary Transitions η
α−⇀↽−
γ
η1 correspond to probability flow from configuration η to η1 with rate α and

conversely with rate γ. A similar descriptions applies to transitions at k = N , so that the boundary generator
is

Lboundary [Pt (η)] =α
[
Pt
(
η1
)
− Pt (η)

]
+ γ [Pt (η1)− Pt (η)]

+δ
[
P
(
ηN , t

)
− Pt (η)

]
+ β [Pt (ηN )− Pt (η)] (S17)

2. Bulk: Transitions ηk,k+1

q−⇀↽−
q
ηk,k+1 reflect the assumption of symmetric photon exchange between adjacent cells

in the resonating chain, namely, there is an equal probability, per unit time, for a photon to go from cell k to
k+ 1 and vice-versa. Hence the bulk dynamics is described by a single transition rate q, and the bulk generator
is

Lbulk [Pt (η)] =

N−1∑

k=1

q
[
Pt

(
ηk,k+1

)
+ Pt

(
ηk,k+1

)
− 2Pt (η)

]
(S18)

eventually, we take q = 1.

3. Local creation/annihilation: Transitions η
ck(nk)−−−−−−⇀↽−−−−−−
ak(nk+1)

ηk describe the local (in-cell) processes of emission

(creation) and absorption (annihilation) of radiation from the walls of cell k, independently of all other cells.
Building on the analogy with the equilibrium dynamics described in the previous section S III of this Supple-
mental Material, the corresponding generator is

L⊥ [Pt (η)] =

N∑

k=1

[
ck (nk − 1)Pt

(
ηk
)

+ ak (nk + 1)Pt
(
ηk
)
− Pt (η)

(
ak (nk) + ck (nk)

)]
(S19)

Altogether, the generator L, of the master equation (5) in the main text becomes

L [Pt (η)] =L‖ [Pt (η)] + L⊥ [Pt (η)]

=α
[
Pt
(
η1
)
− Pt (η)

]
+ γ [Pt (η1)− Pt (η)]

+δ
[
P
(
ηN , t

)
− Pt (η)

]
+ β [Pt (ηN )− Pt (η)]

+

N−1∑

k=1

q
[
Pt

(
ηk,k+1

)
+ Pt

(
ηk,k+1

)
− 2Pt (η)

]

+
N∑

k=1

[
ck (nk − 1)Pt

(
ηk
)

+ ak (nk + 1)Pt
(
ηk
)

−Pt (η)
(
ak (nk) + ck (nk)

) ]
. (S20)
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B. Steady-State P∞ (η) and expression of zk

Here we show that (10) along with (11), from the main text, constitute the steady state for the master equation
generated by (S20), i.e we prove (5) of the main text –

L [P∞ (η)] = 0 . (S21)

First let us show that the stationary probability

P∞ (η) =
N∏

k=1

(1− zk) znkk , (S22)

is in the kernel of the generator L⊥. Inserting (S22) into (S19) gives

L⊥ [P∞ (η)] =
N∑

k=1

[
ck (nk − 1)

{
P∞

(
ηk
)
− P∞ (η)

ak (nk)

ck (nk − 1)

}

+ ak (nk + 1)

{
P∞

(
ηk
)
− P∞ (η)

ck (nk)

ak (nk + 1)

}]

=
N∑

k=1

[
ck (nk − 1)

{
P∞

(
ηk
)
− P∞ (η)

P∞
(
ηk
)

P∞ (η)

}

+ ak (nk + 1)

{
P∞

(
ηk
)
− P∞ (η)

P∞
(
ηk
)

P∞ (η)

}]

=0 ,

where we have used the local detailed balance relation (S8) (or (12) in the main text). We now proceed to consider
the generator L‖.

Inserting P∞ (η) from (S22), into the kernel equation (S21), leads to

0 =α
[
P∞

(
η1
)
− P∞ (η)

]
+ γ [P∞ (η1)− P∞ (η)]

+δ
[
P∞

(
ηN
)
− P∞ (η)

]
+ β [P∞ (ηN )− P∞ (η)]

+

N−1∑

k=1

q
([
P∞

(
ηk,k+1

)
− P∞ (η)

]
+
[
P∞

(
ηk,k+1

)
− P∞ (η)

])
.

We next use the following property of the stationary probability

P∞
(
ηk
)

= z−1k P∞ (η)

P∞
(
ηk
)

= zkP∞ (η)

so that,

0 =α
[
z−11 − 1

]
P∞ (η) + γ [z1 − 1]P∞ (η)

+δ
[
z−1N − 1

]
P∞ (η) + β [zN − 1]P∞ (η)

+
N−1∑

k=1

q
(
zkz
−1
k+1 − 1 + z−1k zk+1 − 1

)
P∞ (η) .

Since P∞ (η) factors out, we obtain the following relation for zk

0 =
z1 (γz1 − α) + (α− z1γ)

z1
+
zN (βzN − δ) + (δ − zNβ)

zN

+

N−1∑

k=1

q

(
zk − zk+1

zk+1
− zk+1 − zk

zk

)

=
(γz1 − α) (z1 − 1)

z1
+

(βzN − δ) (zN − 1)

zN

+
N−1∑

k=1

q

(
(zk − zk+1)

2

zkzk+1

)
.
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To satisfy this equation, namely making the right hand side to vanish, we assume

q (zk − zk+1) = α− z1γ = zNβ − δ = c , (S23)

where c 6= 0 is a real constant. After factoring out c, the equation reads

0 =
−z1 + 1

z1
+
zN − 1

zN
+
N−1∑

k=1

q

{
1

zk+1
− 1

zk

}
.

We observe that the sum in the last term is telescopic,

N−1∑

k=1

[
1

zk+1
− 1

zk

]
=

1

zN
− 1

z1
,

so that the equality holds

−1 +
1

z1
+ 1− 1

zN
+

1

zN
− 1

z1
= 0

We now obtain a closed form solution for zk, as shown in (13) in the main text. First, from q (zk − zk+1) = c we
obtain

zk = − c
q
k + Y ,

where Y is a real constant. It is determined from setting k = 1 and comparing to z1 from α− z1γ = c,

α− c
γ

= z1 = − c
q

+ Y .

This gives Y = c
(

1
q − 1

γ

)
+ α

γ , so that zk becomes,

zk = −c
(
k − 1

q
+

1

γ

)
+
α

γ
.

The constant c is determined from setting k = N and comparing to zN from zNβ − δ = c,

c+ δ

β
= zN = c

(
1−N
q
− 1

γ

)
+
α

γ
,

which gives

c =

δ
β − α

γ

1−N
q − 1

γ − 1
β

=
q (αβ − γδ)

βγ (N − 1) + q (β + γ)

Thus, for zk we obtain

zk = −ck
q

+ c

(
1

q
− 1

γ

)
+
α

γ

=
c (γ (1− k) + q) + qα

qγ

=
1

qγ

q (αβ − γδ) (γ (1− k) + q) + qα (βγ (N − 1) + q (β + γ))

βγ (N − 1) + q (β + γ)

=
k (γδ − αβ)− γδ + αβN + q (α+ δ)

βγ (N − 1) + q (β + γ)
.

From the above, equation (13) from the main text is obtained by setting q = 1 and with a simple rearrangement of
terms

zk =
k
N (γδ − αβ) + αβ − 1

N [γδ + (α+ δ)]

βγ
(
1− 1

N

)
+ 1

N (β + γ)
. (S24)
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SV. TRANSPORT COEFFICIENTS

In this section we address an important point regarding the transport coefficients (3) and (20) of the main text.
The latter are given in terms of the spectral energy density at the reservoirs, i.e uL/R, while the former are given in

terms of the steady state profile (4), i.e uν (x) =
zL+ x

L (zR−zL)

1−zL− x
L (zR−zL) . We now show that these two expression are related

by continuity of the fugacity z (x) given by (17) in the main text.
First, we observe that expressions (20), in terms of the fugacities at the reservoirs, are (close to equilibrium

uL ≡ u, uR ≡ u+ ∆u with ∆u� 1)

σ (u) =2z (u) (S25a)

D (u) =
1

2

dσ (u)

du
, (S25b)

where z = u/(1 + u). Therefore, we can rewrite the cumulant generating function (15) from the main text, as

µ (λ) =
1

2L

(
1− e−λ

) (
eλ (z′ + 2z) + (z′ − 2z)

)

=
2

L
sinh

(
λ

2

)(
D (u) cosh

(
λ

2

)
+ σ (u) sinh

(
λ

2

))
.

From here we proceed as follows: since the fugacity (and its derivative) is continuous both in u and x, and the
stationary profile (4) obeys the boundary conditions (14), by continuity, the coefficients in (20) are given by (3).

SVI. TEMPERATURE COMPARISON

In this section we elaborate on the integrals of the spectral entropy (22) and energy (18) densities, and their relation
to the temperature function Tτ (x). Specifically, we define and derive the constants As/u/T .

Starting from the scaling form of the spectral energy density, we have

u (x) =
8πh

c3

∫ ∞

0

dν ν3Φ

(
hν

kBTτ (x)

)

=
{
Y ≡ hν

kBTτ (x)

}

=
8πh

c3

(
kBTτ (x)

h

)4 ∫ ∞

0

dY Y 3Φ (Y )

≡AuT 4
τ (x)

Hence,

Au =
8πk4B
(hc)

3

∫ ∞

0

dY Y 3Φ (Y ) . (S26)

For the integral of the spectral entropy density (22), denoting

f (Φ) = − [(1 + Φ) ln (1 + Φ)− Φ ln Φ]

we have,

s (x) =
8πkB
c3

∫ ∞

0

dν ν2f (Φ)

=
{
Y ≡ hν

kBTτ (x)

}

=
8πkB
c3

(
kBTτ (x)

h

)3 ∫ ∞

0

dY Y 2f (Φ (Y ))

≡AsT 3
τ (x)
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so that,

As =
8πk4B
(hc)

3

∫ ∞

0

dY Y 2f (Φ (Y )) . (S27)

It is worth noting that since the scaling function Φ is not the Planck function, i.e

Φ (Y ) 6= 1

eY − 1
,

the ratio of the constants depends only on the integrals

As
Au

=

∫∞
0

dY Y 2f (Φ (Y ))∫∞
0

dY Y 3Φ (Y )
. (S28)

Hence the derivative of the entropy density with respect to the energy density is

∂s (x)

∂u (x)
=

∂

∂u (x)
AsT

3
τ (x)

=As
∂

∂u (x)

(
u (x)

Au

) 3
4

=
As

A
3/4
u

3

4
u−

1
4 (x)

=
As

A
3/4
u

3

4

1

A
1/4
u

1

Tτ (x)

=
3

4

As
Au

1

Tτ (x)
.

Thus, we deduce the last constant

AT =
3

4

∫∞
0

dY Y 2f (Φ (Y ))∫∞
0

dY Y 3Φ (Y )
. (S29)

At equilibrium, τ = 1, the scaling function Φ is the Planck function and the ratio of integrals (S28 ) equals 4/3 thus
setting AT,eq = 1.
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