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We provide a detailed comparison between the dynamics of high-temperature spatiotemporal
correlation functions in quantum and classical spin models. In the quantum case, our large-scale
numerics are based on the concept of quantum typicality, which exploits the fact that random pure
quantum states can faithfully approximate ensemble averages, allowing the simulation of spin-1/2
systems with up to 40 lattice sites. Due to the exponentially growing Hilbert space, we find that
for such system sizes even a single random state is sufficient to yield results with extremely low
noise that is negligible for most practical purposes. In contrast, a classical analog of typicality is
missing. In particular, we demonstrate that, in order to obtain data with a similar level of noise
in the classical case, extensive averaging over classical trajectories is required, no matter how large
the system size. Focusing on (quasi-)one-dimensional spin chains and ladders, we find a remarkably
good agreement between quantum and classical dynamics. This applies not only to cases where both
the quantum and classical model are nonintegrable, but also to cases where the quantum spin-1/2
model is integrable and the corresponding classical s→∞ model is not. Our analysis is based on the
comparison of space-time profiles of the spin and energy correlation functions, where the agreement
is found to hold not only in the bulk but also in the tails of the resulting density distribution. The
mean-squared displacement of the density profiles reflects the nature of emerging hydrodynamics
and is found to exhibit similar scaling for quantum and classical models.

I. INTRODUCTION

Building on seminal results in chaos and random-
matrix theory [1, 2] as well as more recent developments
such as the eigenstate thermalization hypothesis [3–6], it
is now well established that generic quantum and clas-
sical many-body systems relax to thermal equilibrium
at long times [6–11]. In this context, one of the most
generic nonequilibrium situations is given by transport
processes of local densities due to a global conservation
law [11]. Such transport processes describe the slow re-
laxation from local to global equilibrium and dominate
the late-time and long-wavelength properties of systems
with conservation laws. Gaining a deeper understanding
how such a macroscopic hydrodynamic behavior emerges
from the underlying microscopic equations of motion is
the subject of ongoing theoretical research [11, 12], while
novel experiments with different quantum-simulator plat-
forms nowadays allow the controlled exploration even of
anomalous types of quantum transport and hydrodynam-
ics [13–15]. Key insights have been gained not least due
to improved numerical machinery [16–21], as well as the
introduction of suitable random-circuit models, which
provide minimal models to capture the universal prop-
erties of chaotic quantum systems [12, 22–26].
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An important role, which can strongly influence the
nature of transport in a given model, is played by inte-
grability. On one hand, in the case of classical mechan-
ics, integrability is well defined in terms of the Liouville-
Arnold theorem, which requires L (mutually commuting)
constants of motion for a system of L spins [27, 28]. The
trajectories in such integrable systems remain strictly
confined to a small part of phase space, resulting in a
breakdown of ergodicity. In contrast, if there are not
enough constants of motion, integrability is absent and
chaotic dynamics is expected to emerge as a consequence.
On the other hand, such a clear-cut definition of inte-
grability is not available in the case of quantum sys-
tems [29]. One commonly applied definition is solvabil-
ity in terms of the Bethe Ansatz, which includes im-
portant systems such as the spin-1/2 Heisenberg chain
and the one-dimensional Fermi-Hubbard model [30–34].
In particular, for such models it is possible to con-
struct extensive sets of (quasi)local integrals of motion
[11, 35, 36], reminiscent of the definition of integrabil-
ity in classical mechanics. Building on this intricate al-
gebraic structure, much progress in understanding the
dynamics of integrable quantum systems has been re-
cently made within the framework of generalized hydro-
dynamics [37–39], which provides analytical support for
early numerical studies [11]. In particular, while inte-
grable systems (due to their coherent quasiparticle exci-
tations) are often expected to exhibit ballistic transport
and finite Drude weights [11], the latter indicating that

ar
X

iv
:2

20
7.

02
06

1v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  3

0 
N

ov
 2

02
2

https://orcid.org/0000-0001-7728-0133
https://orcid.org/0000-0003-2184-5275
https://orcid.org/0000-0003-3476-524X
https://orcid.org/0000-0003-1444-4262
https://orcid.org/0000-0001-8461-4015
https://orcid.org/0000-0003-0608-0884
mailto:tjark.heitmann@uos.de


2

induced currents remain (at least partially) conserved on
indefinite time scales, it has become clear that the dy-
namics of integrable systems is much richer. This in-
cludes parameter regimes where normal diffusive trans-
port [40, 41], usually associated with chaos, can occur.
Moreover, if the integrable model additionally possesses
a non-Abelian symmetry, it was found that transport is
neither ballistic nor diffusive, but superdiffusive instead
[42, 43]. More specifically, it has been argued that this
combination of integrability and non-Abelian symmetry
generically leads to superdiffusion within the Kardar-
Parisi-Zhang (KPZ) universality class with dynamical ex-
ponent z = 3/2 [11, 43–51], first reported numerically in
the case of high-temperature spin transport in the spin-
1/2 Heisenberg chain which is SU(2) symmetric [47, 52].

Integrability only accounts for a small region of the
full parameter space and is typically found in one-
dimensional models. Especially in the case of quantum
many-body systems, it appears that integrability is very
fragile and even a tiny integrability-breaking perturba-
tion will induce chaos and generic behavior in the limit
of large system sizes and long times [6]. Nevertheless,
interesting phenomena such as prethermalization can oc-
cur in the regime close to integrability [53, 54], and it
is an interesting question to what extent the dynamics
of weakly perturbed systems can be understood due to
their vicinity to an integrable point [55–59]. Generally,
however, the vast majority of quantum and classical sys-
tems, particularly in spatial dimensions larger than one,
are nonintegrable and generic. For such systems, one
typically expects that the emerging transport behavior
at long times is given by standard diffusion. Such nor-
mal diffusive transport has indeed been numerically con-
firmed in a variety of models [41, 60–65]. However, the
numerical extraction of quantitative values for transport
coefficients (e.g., diffusion constant), especially in the
quantum case, is quite challenging and still an actively
pursued direction of research [18, 19, 21]. Furthermore,
even in the case of nonintegrable systems which fulfill
various indicators of quantum and classical chaos, there
still exist counterexamples to the expected diffusive be-
havior. This includes models with additional symmetries
or conservation laws and models with kinetic constraints
[25, 66, 67], which can host anomalous types of transport
such as subdiffusion, as well as long-range systems where
transport can become superdiffusive [68–70].

Even though strongly correlated many-body quantum
systems generally do not have an obvious classical limit,
a natural choice in the case of quantum spin models is
to consider the limit of infinite spin quantum number
s→∞, where the quantum spin operators become clas-
sical three-dimensional vectors. In this context, it is an
intriguing question to ask whether and to what extent
the dynamics, and in particular the transport proper-
ties, of the quantum and the corresponding classical spin
model agree with each other. In particular, even though
the emerging late-time transport behavior of quantum
models may effectively be described by a classical hy-

drodynamic theory (e.g., a diffusion equation), it is not
obvious that quantum and classical dynamics agree on a
detailed quantitative level (for instance regarding the ex-
plicit value of diffusion coefficients). Such a quantitative
agreement is nontrivial even at high temperatures, where
quantum effects are less pronounced, due to the differ-
ent microscopic equations of motion. Moreover, sending
s → ∞ can break the integrability of the original spin-
1/2 model. Complementing earlier work in this direction
[71–73], the goal of this paper is to provide a comprehen-
sive comparison between quantum and classical dynam-
ics in models of interacting spins. To this end, we focus
on the buildup of spatiotemporal correlation functions
of local spin and energy densities, which probe transport
properties in the linear response regime [11], and are also
intimately related to experimentally accessible quantities
such as the spin structure factor measurable with inelas-
tic neutron scattering [74].

Studying the dynamics of quantum many-body sys-
tems is notoriously challenging due to the exponentially
growing Hilbert space. In this paper, we rely on the con-
cept of quantum typicality [20, 75], which refers to the
fact that even a pure random quantum state can faith-
fully approximate the full ensemble average. In particu-
lar, as we will explain below in more detail, the statis-
tical error of quantum typicality decreases exponentially
with the size of the system. As a consequence, signif-
icantly less averaging over random states is required in
larger systems to obtain the same accuracy. Combined
with efficient sparse-matrix techniques for the time evo-
lution of pure quantum states, quantum typicality en-
ables us to simulate spatiotemporal correlation functions
in systems with Hilbert-space dimensions far beyond the
range of full exact diagonalization. More specifically, we
solve the time-dependent Schrödinger equation for mod-
els with up to 40 spin-1/2 degrees of freedom, i.e., the to-
tal Hilbert space has dimension 240 ≈ 1012, which yields
converged results for the buildup of spatiotemporal cor-
relation functions on sufficiently long time scales to ex-
tract the asymptotic hydrodynamic behavior. Crucially,
we demonstrate that for such enormous Hilbert-space di-
mensions, the statistical fluctuations of quantum typi-
cality are strongly suppressed, such that even a single
random state approximates the spatiotemporal correla-
tion function with an extremely low level of noise that
is negligible for all practical purposes. These results are
then compared to the corresponding classical system. In
contrast to quantum systems, the phase space of classical
mechanics only grows linearly with the number of lattice
spins, such that simulations are significantly less costly
and much larger system sizes can be treated in principle.
However, as we demonstrate in this paper, a classical ana-
log of the concept of typicality is missing. In particular,
we show that the statistical fluctuations in the classical
trajectories are not reduced with increasing system size,
such that it remains necessary even for larger and larger
systems to perform extensive statistical averaging over a
high number of trajectories to achieve the same low noise
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level as in the quantum case.
Focusing on (quasi-)one-dimensional spin chains and

ladders, we typically find a remarkably good agreement
between quantum and classical dynamics. This applies
not only to cases where both the quantum and classi-
cal model are nonintegrable, but also to cases where the
quantum model is integrable and the corresponding clas-
sical model is not. Our analysis is based on the compar-
ison of space-time profiles of the spin and energy corre-
lation functions, where the agreement is found to hold
not only in the bulk but also in the tails of the resulting
density distribution. This fact also manifests itself in the
time dependence of the mean-squared displacement of the
density profiles, which reflects the nature of emerging hy-
drodynamics and exhibits very similar scaling for quan-
tum and classical models, at least on the time and length
scales considered here, with the exception of cases where
transport is dominated by integrability. Furthermore, we
show that such a correspondence between quantum and
classical dynamics can also be achieved in less obvious
cases where the original quantum system is not directly
written in spin language. In particular, we consider the
one-dimensional Fermi-Hubbard model, which by means
of a Jordan-Wigner transform can be brought into the
form of a particular type of spin ladder, for which we
then take the s→∞ limit.

The rest of this paper is structured as follows. In
Sec. II, we introduce the quantum spin models, their
classical counterparts, as well as the corresponding ob-
servables which are studied in this paper. Our numeri-
cal approach based on quantum typicality is introduced
in Sec. III, where we also explain the methods used to
integrate the quantum and classical equations of mo-
tion as well as the role of averaging. We present our
results for spin and energy transport in Sec. IV, where
we consider spin chains in Sec. IV A and spin ladders in
Sec. IV B. Moreover, we discuss charge transport in the
Fermi-Hubbard chain in Sec. IV C. We summarize our
findings and conclude in Sec. V.

II. MODELS AND OBSERVABLES

A. Models

In this paper, we consider different versions of (quasi-
)one-dimensional lattice models described by Hamiltoni-
ans of the form

H =

L∑
r=1

hr (1)

with periodic boundary conditions L+ 1 ≡ 1. For quan-
tum spin models, the lattice sites are occupied by station-
ary spins with spin quantum number s, represented by
spin vector operators sr = (sxr , s

y
r , s

z
r). Their components

fulfill the defining spin algebra (~ = 1),

[ sµr , s
ν
r′ ] = i δrr′ εµνλ s

λ
r , (2)

where δrr′ is the Kronecker delta, εµνλ is the antisym-
metric Levi-Civita symbol, and µ, ν, λ ∈ {x, y, z}. For
spin quantum number s = 1/2, the components can be
expressed in terms of Pauli matrices, sµr = σµr /2.

First, we consider the anisotropic Heisenberg chain
(XXZ chain) with local energy terms

hr = J
(
sxrs

x
r+1 + syrs

y
r+1 + ∆szrs

z
r+1

)
, (3)

where J > 0 is the antiferromagnetic exchange cou-
pling constant and ∆ parametrizes the anisotropy in z
direction. For any anisotropy, the total magnetization
Sz =

∑
r s

z
r is conserved, [H, Sz ] = 0. We note that the

spin-1/2 XXZ chain is integrable in terms of the Bethe
Ansatz, which has consequences for the transport prop-
erties of the model. In particular, the energy current is
an exact constant of motion such that energy transport
in the spin-1/2 XXZ chain is dissipationless for all values
of ∆ [11]. Therefore, we here focus on the dynamics of
magnetization which can exhibit various types of behav-
ior depending on the choice of ∆, as discussed in detail
in Sec. IV A below. On the other hand, when considering
the classical version of the XXZ chain with s → ∞ (cf.
Sec. II C), the integrability of the model is broken such
that one would naively expect chaotic dynamics resulting
in the emergence of diffusive transport. While diffusive
energy transport has indeed been found in classical XXZ
chains, it turns out that observing clean spin diffusion in
all ∆ regimes is a subtle issue [76–84]. This might be re-
lated to the fact that taking the classical limit s→∞ is
in some sense only a “weak” integrability-breaking per-
turbation [59, 85, 86], as it leaves the overall structure
(such as the symmetries) of the Hamiltonian intact. As
a consequence, the impact of this perturbation on the
original quantum dynamics might be less pronounced.
As we demonstrate in App. A, observing the onset of
standard spin diffusion in classical spin chains (in a ∆
regime where quantum dynamics is ballistic) is indeed
extremely challenging and requires the analysis of large
system sizes on long time scales.

Second, as a quasi-1D spin model, we study the
isotropic Heisenberg ladder (XXX ladder),

hr = J
∑
l=1,2

sr,l · sr+1,l +
J

2

r+1∑
r′=r

sr′,1 · sr′,2 , (4)

where the local energy is defined on a “plaquette” con-
sisting of four spins. As above, the total magnetization
Sz =

∑
r,l s

z
r,l is conserved. However, in contrast to the

XXZ chain, the XXX ladder is nonintegrable for s = 1/2.
Thus, this is an example where both the quantum and
the classical model are nonintegrable.

Moving deeper into the realm of “genuinely quantum”
models, we also consider the Fermi-Hubbard chain with
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local Hamiltonians

hr = −th
∑
σ=↑,↓

(
c†r,σcr+1,σ + h.c.

)
(5)

+U

(
nr,↑ −

1

2

)(
nr,↓ −

1

2

)
,

where th is the hopping amplitude of the spin-σ fermions
and U is the on-site interaction strength. The creation
operator c†r,σ creates a spin-σ particle at site r, whereas

the annihilation operator cr,σ annihilates a spin-σ parti-
cle at site r. They fulfill the fermionic anticommutation
relations,{

cr,σ, cr′,σ

}
= 0 ,

{
cr,σ, c

†
r′,σ

}
= δrr′ , (6)

and define the local particle number operator
nr,σ = c†r,σcr,σ. Similar to the XXZ chain, the Fermi-
Hubbard chain is a prime example of an integrable
quantum system. In particular, as in the XXZ chain,
energy transport in the Fermi-Hubbard chain is ballistic
for all values of U such that we here focus only on charge
transport. Notably, by Jordan-Wigner transformation
[87], this model is in turn equivalent to a modified
version of the spin ladder,

hr = −2J‖
∑
l=1,2

(
sxr,ls

x
r+1,l + syr,ls

y
r+1,l

)
(7)

+
J⊥
2

r+1∑
r′=r

szr′,1s
z
r′,2

with J‖ = th and J⊥ = U . Each leg of the spin ladder is
associated with one of the fermionic species ↑ or ↓. The
local magnetizations in the spin formulation correspond
to occupation numbers in the Hubbard language,

nr,σ = szr,l +
1

2
. (8)

B. Setup and observables

We study the dynamics of local densities %r of either
magnetization (M) or energy (E) based on the time-
dependent density-density correlation function,

Cr,r′(t) = 〈%r(t)%r′〉 , (9)

where 〈•〉 = Tr [ ρβ• ] denotes the expectation value
with respect to the canonical density matrix ρβ =
exp(−βH)/Z and Z = Tr [ exp(−βH) ] is the canonical
partition function at inverse temperature β = 1/kBT .
Here, operators evolve in time according to the Heisen-
berg picture, i.e., %r(t) = exp(iHt) %r exp(−iHt).

In the following, we fix r′ = L/2 and study the time
dependence of the profile

Cr(t) ≡ Cr,L/2(t) = 〈%r(t)%L/2〉 . (10)

0

0.1

1 36 1 36

1 36
t

r

C
r
(t
)

t

r

C
r
(t
)

t

r

C
r
(t
)

t

r

C
r
(t
)

C
r
(t
)

r

tJ = 5

r

tJ = 10

r

QM
CM

tJ = 15

Figure 1. Exemplary plot of an initially peaked density profile
that broadens over time by diffusion. The data shows quan-
tum and classical magnetization dynamics in the XXZ spin
chain with anisotropy ∆ = 1.5 and system size L = 36. For a
more detailed discussion of the results, see Sec. IV A below.
Note that the legend in the lower right panel applies to all
other panels.

We focus on the high-temperature limit β → 0, where
ρβ → 1/dL with Hilbert-space dimension dL (d denotes
the model-specific local Hilbert-space dimension). Ac-
cordingly, the density profile is obtained by calculating

Cr(t) =
Tr
[
%r(t)%L/2

]
dL

, (11)

where the different local densities, depending on the sys-
tem’s geometry, are defined as

%(M)
r =

{
szr , XXZ chain

szr,1 + szr,2 , XXX ladder
(12)

and

%(E)
r = hr . (13)

Moreover, in the case of charge transport in the Fermi-
Hubbard chain, we have %r = nr,↑+nr,↓−1 = szr,1 +szr,2,
i.e., analogous to the case of spin dynamics in the XXX
ladder.

Initially, a peaked spatial distribution arises for the
local magnetizations,

C(M)
r (t = 0)

{
6= 0 , r = L/2

= 0 , else
, (14)

as can be seen from the spatiotemporal density profiles
shown in Fig. 1. A similarly peaked initial density dis-

tribution also arises for C
(E)
r (t = 0), albeit accompanied

by two smaller peaks at adjacent lattice sites L/2 ± 1
due to shared bonds between local energy terms hr and
hr±1. The main contribution of this work is to provide
a detailed comparison between the real-time broadening
of such density profiles for quantum and classical spin
models.
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C. Classical limit

The classical counterpart of the quantum spin mod-
els introduced above is achieved by taking the limits of
both ~→ 0 and s→∞ while maintaining the constraint
~
√
s(s+ 1) = const. Then, the spin operators become

three-dimensional vectors of constant length, |sr| = 1,
and the relation (2) turns into

{ sµr , sνr′ } = δrr′ εµνλ s
λ
r , (15)

where { •, • } denotes the Poisson bracket. Consequently,
the time evolution of each spin is determined by the
Hamiltonian equations of motion,

ṡr = {sr,H} =
∂H
∂sr
× sr . (16)

The infinite-temperature correlation function (11) can be
obtained in the classical case by taking 〈•〉 as an average
over trajectories in phase space,

Cr(t) ≈
1

N

N∑
n=1

%r(t)%L/2(0) . (17)

For each of the N � 1 realizations, the initial configura-
tions sr(0) are drawn at random.

D. Diffusion on a lattice

The correlation functions Cr(t) can be connected to
the time dependence of local densities qr(t) in a scenario,
where the initial state is prepared close to the canonical
equilibrium density matrix ρβ as

ρ(0) ∝ e−β(H−ε%L/2) , (18)

which can be expanded in ε and, for high temperatures,
takes on the simple form

ρ(0) ∝ 1 + βε%L/2 . (19)

For this initial state and using Tr [ %r ] = 0,

qr(t) = 〈%r(t)〉 = Tr [ %r(t)ρ(0) ] (20)

∝ Tr
[
%r(t)%L/2

]
∝ Cr(t) ,

i.e., Cr(t) describes the dynamics of the local densities
qr(t) after an initial density distribution of the form
(14). Speaking differently, Cr(t) can be interpreted as
the dynamics and relaxation of some initial spin or en-
ergy excitation evolving on top of a featureless infinite-
temperature many-body background.

The local densities qr(t) show diffusive transport, if
they fulfill the lattice diffusion equation,

d

dt
qr(t) = D [qr−1(t)− 2qr(t) + qr+1(t)] (21)

with some diffusion constant D. The temporal growth of
the spatial variance,

Σ2(t) =

L∑
r=1

r2δqr(t)−
[
L∑
r=1

rδqr(t)

]2

, (22)

with δqr(t) ∝ qr(t) normalized to
∑
r δqr(t) = 1 for all

times t, can also be used for characterizing the dynam-
ics. A scaling according to Σ(t) ∝ tα is called ballistic
for α = 1, superdiffusive for 1/2 < α < 1, diffusive for
α = 1/2, subdiffusive for 0 < α < 1/2, and insulating for
α = 0.

Additionally, for initial density distributions of the
form (14), the solution of the diffusion equation (21)
reads

δqr(t) = exp(−2Dt)Ir−L/2(2Dt) , (23)

where Ir(t) is the modified Bessel function of first kind
and of order r. The corresponding spatial dependence for
fixed times t is well approximated by Gaussian functions,

δqr(t) =
1

Σ(t)
√

2π
exp

[
− (r − L/2)2

2Σ2(t)

]
, (24)

where Σ(t) = 2Dt. While the scaling analysis of the
spatial width (22) may hint at the existence of diffusive
transport, the form (24) of the spatial dependence of the
density distribution is a precise diagnostics.

III. NUMERICAL METHODS

A. Dynamical quantum typicality

For the quantum systems, we employ the concept of
dynamical quantum typicality (DQT) [88–95], which es-
sentially allows us to replace the trace in the calculation
of the correlation function (10) by a scalar product be-
tween two auxiliary pure states [96, 97],

Cr(t) = 〈φβ(t)| %r |ϕβ(t)〉+ ε(|φ〉) , (25)

where the states

|ϕβ(t)〉 = e−iHt%L/2 |φβ〉 , |φβ(t)〉 = e−iHt |φβ〉 (26)

are constructed with

|φβ〉 =

√
ρβ |φ〉√
〈φ| ρβ |φ〉

. (27)

The typical reference state |φ〉 is constructed as a random
superposition of states |k〉 in the given orthonormal basis,

|φ〉 =

dL∑
k=1

ck |k〉 , (28)
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where the complex coefficients ck are randomly drawn
from a distribution which is invariant under all unitary
transformations in the Hilbert space (Haar measure) [94].
In practice, the real and imaginary parts of the ck are
drawn independently from a standard normal distribu-
tion. The variance of the statistical error ε(|φ〉) that
arises in Eq. (25) is bounded from above [75],

σ(ε) < O
(

1√
dimeff

)
, (29)

where dimeff = Tr
[

e−β(H−E0)
]

with ground-state en-
ergy E0 is the effective Hilbert-space dimension at in-
verse temperature β. In the infinite-temperature limit,
limβ→0 dimeff = dL, which renders the typicality error
negligibly small for the system sizes considered here. Ad-
ditionally, for β → 0, the calculation of Eq. (25) can be
further simplified to [98]

Cr(t) = 〈ψ(t)| %r |ψ(t)〉+ ε(|φ〉) (30)

using just one pure state

|ψ(0)〉 =

√
%L/2 + c |φ〉√
〈φ|φ〉

, (31)

where the constant c ensures that the operator %L/2 + c
has nonnegative eigenvalues.

The time dependence is now a property of the pure
states and can be obtained by iteratively applying the
time evolution in small time steps,

|ψ(t+ δt)〉 = e−iHδt |ψ(t)〉 , δt� J . (32)

For each time step, the action of the time-evolution op-
erator on the state is obtained by massively parallelized
simulations on supercomputers, which rely on both Trot-
ter decompositions [99, 100] and Chebyshev-polynomial
expansions [101, 102].

B. Classical averaging

The simulation of the classical spin systems is done by
numerically solving the Hamiltonian equations of motion
(16) using a fourth-order Runge-Kutta (RK4) scheme.
We use a time step δt that is small enough to ensure
that the total energy and magnetization are conserved
to very high accuracy. The computational complexity
of the simulation of classical systems growths only lin-
early in their system size L and is mainly determined
by the number N of samples used in the averaging (17).
Importantly, there exists no analog of typicality in clas-
sical mechanics, such that we have to average over many
samples N � 1 of independent random initial-state con-
figurations, no matter how large the system size L. This
crucial difference between classical and quantum simula-
tions is illustrated in Fig. 2, which shows the single-state
trajectories of the equal-site correlation function CL/2(t)

(a)

(b)

C
L
/
2
(t
)

N = 100 N = 103 N = 109

10−2

10−1

100

CM (L = 36)

C
L
/
2
(t
)

N = 100 N = 103

10−2

10−1

100

QM (L = 12)

R
(t
)

tJ

10−8

10−4

100

104

0.1 1 10

QM (L = 8, 9, ...,
20)

CM (L = 24 , 2
5 , ..., 2

19)(c)

R
(t
)

tJ

10−8

10−4

100

104

0.1 1 10

QM (L = 8, 9, ...,
20)

CM (L = 24 , 2
5 , ..., 2

19)(c)

Figure 2. Single-state trajectories of CL/2(t) (blue lines) for
300 random initial states in the XXZ chain with ∆ = 1.5 in
the classical case (a) and the quantum case (b). Red and or-
ange lines show the corresponding averages over N = 103 and
N = 109 (only classical) trajectories. (c) Relative variance
R(t) of sample-to-sample fluctuations as obtained by Eq. (33)
for N = 103 and different system sizes L = 24, 25, . . . , 219

(classical) and L = 8, 9, . . . , 20 (quantum). Dashed line indi-
cates the value of R(0) for the classical case which is essen-
tially the second moment of the probability distribution for
%2L/2(0) that arises from the random initial configuration of
the state. Note that we consider the high-temperature limit
β → 0 and that CL/2(0) is set to 1.

for 300 random initial states in the classical [cf. Fig. 2(a)]
and the quantum [cf. Fig. 2(b)] version of the XXZ chain
with anisotropy ∆ = 1.5. In the classical case, each in-
dividual trajectory appears random and the behavior of
CL/2(t) can only be inferred from the average, whereby

the average over N = 103 trajectories still shows signif-
icant deviations from the average over N = 109 trajec-
tories. In contrast, in the quantum case, the individual
random realizations show only small deviations from the
average over N = 103 states, even for the small system
size L = 12 used here. Fig. 2(c) shows the corresponding
relative variance of the sample-to-sample fluctuations,

R(t) =
CL/2(t)2 − CL/2(t)

2

CL/2(t)
2 , (33)

for different system sizes L = 24, 25, . . . , 219 (in the clas-
sical case) and L = 8, 9, . . . , 20 (in the quantum case).

Here, the overbar in CL/2(t) denotes the average over

N = 103 samples. Note that a given quantity, here
CL/2(t), is sometimes called self-averaging if R(t) de-

creases with increasing L, e.g., R(t) ∝ L−1 is referred
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to as strong self-averaging in Ref. [103]. As shown in
Fig. 2(c), in the classical case, R(t = 0) starts at a value
that results from the second moment of the probability
distribution for the initial value %2

L/2(0). We find that

R(t) increases with time, as the average CL/2(t) itself
decays to smaller and smaller values. Importantly, there
is no dependence on system size in this behavior, even
for the exponentially increasing L. Thus, self-averaging
is absent in the case of classical dynamics such that large
values of N are necessary to faithfully capture the en-
semble average also for large system sizes L.

In the quantum case, R(t) shows a similar increase
in time as above, while at the same time being orders
of magnitudes smaller than in the classical case – even
for the smallest system size L = 8 shown. Crucially,
for increasing system size, R(t) decreases exponentially
in line with the typicality estimate (29). In this sense,
quantum typicality can be seen as an extreme form of
self-averaging as exponentially less random realizations
are required at larger L to accurately determine the full
ensemble average.

IV. RESULTS

The discussion of our numerical results includes the
comparison between quantum and classical density dy-
namics of magnetization in the 1D XXZ chain in
Sec. IV A, magnetization and energy in the quasi-1D
XXX ladder in Sec. IV B, as well as charge in the Fermi-
Hubbard model in Sec. IV C. In all cases, we will focus
on time scales where the bulk of the density distribution
is still reasonably concentrated around the center and
away from the boundaries. The time dependence of the
classical correlation functions is always rescaled by the
factor s̃ =

√
s(s+ 1) to account for the different lengths

of quantum and classical spins. For the quantum spin
s = 1/2 considered here, this factor is s̃ ≈ 0.87.

A. Magnetization dynamics in the 1D XXZ chain

We first focus on the dynamics of magnetization in the
integrable 1D XXZ chain (3) of size L = 36 for different
values of the anisotropy ∆ = 0.5, 1, and 1.5.

Starting with the anisotropy ∆ = 1.5, Fig. 3(a1)-(c2)
shows the corresponding profiles Cr(t) from quantum and
classical dynamics at fixed times t in linear and semilog-
arithmic plots. For all values of t, the quantum and
the classical profiles show a very good agreement and
are accurately described by Gaussian functions (24) that
broaden over time. This is in line with the diffusive trans-
port that is expected in the regime ∆ > 1 [11]. In order
to illustrate the necessity for extensive averaging of the
classical data, we show additional data for different sam-
ple sizes N = 2l · 103 with l = 0, 1, . . . , 20 in the same
plots. While the time dependence of Cr(t) in the center of
the chain is already reasonably well captured for smaller
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Figure 3. (a1)-(c2) Profiles Cr(t) of magnetization densities
in the XXZ spin chain (3) with anisotropy ∆ = 1.5 and L =
36, sampled over N initial states. Solid lines are Gaussian
fits (24) to the QM data. (d) Time-dependent spatial width
Σ(t) as obtained by Eq. (22). Dashed and solid lines indicate
scaling tα for α = 1 and 1/2. To illustrate the necessity for
large sample sizes in the simulations of classical dynamics,
additional CM data is shown for different sample sizes N = 2l·
103 with l = 0, 1, . . . , 20 (grey scales). Note that we consider
the high-temperature limit β → 0 and that the legend in panel
(d) applies to all other panels.

sample sizes N = O(103), the level of noise away from the
center is considerable and only sufficiently suppressed for
the largest sample sizes N = O(109) − O(1010). In the
following, we will thus always use a rather large sample
size N = 109 for our simulations of classical systems.

In addition to the space-time profiles, Fig. 3(d) shows
the time dependence of the corresponding spatial width
Σ(t) as obtained by Eq. (22). Naturally, an accurate cal-
culation of Σ(t) also relies on a good signal-to-noise ratio,
which is again illustrated by additional data for smaller
sample sizes N in the classical results. For the largest
sample sizes, we see a very good agreement between the
quantum and the classical results, both in the initial bal-
listic scaling Σ(t) ∝ t as well as in the diffusive scaling
Σ(t) ∝

√
t for later times. The initial ballistic scaling

at short times can be understood as a local expansion of
the spin excitation below its mean free path. Above this
mean free path, the essentially classical hydrodynamic
description applies and the ballistic behavior crosses over
to the asymptotic diffusive transport.

Moving on to the isotropic spin chain, Fig. 4 shows
analogous data as above, but now for ∆ = 1.0. Similarly
as before, we see a good agreement between the classical
and the quantum results, albeit with some small but vis-
ible deviations in the profiles Cr(t) [cf. Fig. 4(a1)-(c2)].
Especially in the tails of the distributions, we find that
the overall shape of the profiles is no longer described by
Gaussian functions (24), indicating the shift from nor-
mal to anomalous diffusion. Indeed, the existence of su-
perdiffusion at the isotropic point is well established (see
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Ref. [43] and references therein). More specifically, it has
been shown that Cr(t) is well described by the KPZ scal-
ing function, which is similar to a Gaussian in the bulk of
the distribution, but exhibits faster than Gaussian decay
in the tails. Yet, for the system sizes and times shown
here, the agreement with the KPZ scaling function is not
fully developed, and the data is rather described by a
function ∝ exp(−a|r − L/2|3). The anomalous transport
is also reflected in the scaling of the spatial width Σ ∝ tα
with α = 2/3, which is captured both by the quantum
and the classical dynamics [cf. Fig. 4(d)].

As the final comparison in the 1D XXZ chain, Fig. 5
shows data for anisotropy ∆ = 0.5. In this regime, the
quantum dynamics is dominated by an extensive set of
conservation laws and a good agreement between quan-
tum and classical dynamics can no longer be expected.
This expectation is confirmed by the space-time profiles
Cr(t) [cf. Fig. 5(a1)-(c2)], where we observe noticeable
differences between the classical and the quantum results.
Interestingly, however, the rough shape of the profiles as
well as the overall speed at which they spread over time
are captured quite well by the classical results – at least
on the time scales shown here. This also pertains to the
scaling of the spatial width, Σ(t) ∝ t [cf. Fig. 5(d)], which
indicates the ballistic transport that has been rigorously
proven to exist for the quantum system in the thermo-
dynamic limit [35, 36, 105]. However, for longer times
tJ & 10, a slowdown in the scaling of the width Σ(t) in
the classical data becomes noticeable.

The similarities between the quantum and the classi-
cal data in Fig. 5 might indicate that taking the clas-
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Figure 4. (a1)-(c2) Profiles Cr(t) of magnetization densi-
ties in the XXZ spin chain (3) with anisotropy ∆ = 1.0
and L = 36, sampled over N initial states. Solid lines are
Gaussian fits (24) to the QM data. Dashed lines indicate
KPZ scaling functions [104]. Dotted lines indicate a func-
tion ∝ exp(−a|r − L/2|3). (d) Time-dependent spatial width
Σ(t) as obtained by Eq. (22). Dashed and solid lines indi-
cate scaling tα for α = 1 and 2/3. Note that we consider the
high-temperature limit β → 0 and that the legend in panel
(d) applies to all other panels.
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Figure 5. (a1)-(c2) Profiles Cr(t) of magnetization densities in
the XXZ spin chain (3) with anisotropy ∆ = 0.5 and L = 36,
sampled over N initial states. (d) Time-dependent spatial
width Σ(t) as obtained by Eq. (22). Solid line indicates scaling
tα for α = 1. Note that we consider the high-temperature
limit β → 0 and that the legend in panel (d) applies to all
other panels.

sical limit s → ∞ appears to be a rather weak form
of integrability breaking. In particular, while the quan-
tum s = 1/2 model features strict ballistic transport, the
classical model is expected to be fully chaotic and there-
fore to exhibit diffusive transport at ∆ = 0.5 (especially
since we are now away from the potentially special point
∆ = 1). However, as becomes clear from Fig. 5, this
conjectured diffusive behavior in the classical chain must
set in at significantly longer time and length scales. For
some additional data from classical dynamics in a larger
system of size L = 2000, see App. A.

B. Magnetization and energy dynamics in the
quasi-1D XXX ladder

Next, we move from 1D chains to quasi-1D spin lad-
ders (4), where the integrability of the quantum system is
broken. We compare the quantum and classical dynamics
for magnetization and energy in an isotropic spin ladder
of length L = 20. Note that this corresponds to 40 spin-
1/2 lattice sites in total, which is far beyond the range of
standard exact diagonalization and close the maximum
system sizes that are nowadays in reach of massively par-
allelized simulations on state-of-the-art supercomputing
clusters. The transport of both magnetization and en-
ergy in the quantum case s = 1/2 is known to be diffusive
in this model [60].

Fig. 6 shows the space-time profiles Cr(t) and the spa-
tial width Σ(t) for magnetization. Again, the profiles
Cr(t) show a very good agreement in the comparison
between the quantum and the classical results and are
accurately described by Gaussian functions (24). Addi-
tionally, the corresponding spatial width Σ(t) agrees very
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Figure 6. (a1)-(c2) Profiles Cr(t) of magnetization densities
in the XXX spin ladder (4) with L = 20, sampled over N
initial states. Solid lines are Gaussian fits (24) to the QM
data. (d) Time-dependent spatial width Σ(t) as obtained by
Eq. (22). Dashed and solid lines indicate scaling tα for α = 1
and 1/2. Note that we consider the high-temperature limit
β → 0 and that the legend in panel (d) applies to all other
panels.

well and the quantum and classical results lie on top of
each other, from the initial times of ballistic scaling Σ ∝ t
up to later times of diffusive scaling Σ(t) ∝

√
t.

Fig. 7 shows the same data as Fig. 6, but for the dy-
namics of local energy. The quantum and classical results
again agree very well and match the typical signatures
of diffusive transport. The only difference compared to
the results in Fig. 6 lies in the initial scaling of the spa-
tial width Σ(t), which, owing to the broader initial peak
for local energy densities, does start at a nonzero initial
value.

The good agreement between quantum and classical
dynamics in the XXX ladder might not be entirely sur-
prising due to the fact that we are considering high tem-
peratures β → 0 and that both the quantum and the
classical model are nonintegrable. However, we still find
it remarkable that Cr(t) agrees quantitatively on a very
detailed level, leading to an essentially indistinguishable
dynamics of the mean-squared displacement Σ(t). Cru-
cially, the latter is directly related to physically impor-
tant quantities such as the diffusion coefficient. Our re-
sults in Figs. 6 and 7 suggest that this diffusion coefficient
is the same in the quantum and the classical model, em-
phasizing that (the significantly less costly) simulations
of classical systems can provide a useful strategy to gain
insights into the properties of strongly correlated quan-
tum many-body systems. While not shown here, we ex-
pect a similarly good agreement between quantum and
classical dynamics also for XXZ spin ladders [i.e., when
incorporating an anisotropy ∆ in the Hamiltonian (4)].
In particular, studying the equal-site correlation func-
tions CL/2(t) of magnetization and energy, [72] found a
convincing agreement between the quantum and classical

dynamics in ladders with ∆ = 0.5, 1, and 1.5.

C. Charge dynamics in the Fermi-Hubbard chain

Finally, we turn to the dynamics of local charge densi-
ties in the integrable Fermi-Hubbard chain, where earlier
numerical studies have found clear signatures of diffu-
sive charge dynamics for strong interactions U/th ≈ 16
[41, 106]. However, let us note that this observation
of diffusion is at odds with generalized hydrodynam-
ics results, which predict the occurrence of superdiffu-
sive charge transport [11], given the SU(2) symmetry of
the Fermi-Hubbard model (similar to the case of spin
transport in the isotropic spin-1/2 Heisenberg chain).
Here, we consider a somewhat lower interaction strength,
U/th = 4, and study chains of length L = 18. Let us
stress again that, while the Fermi-Hubbard chain has no
obvious classical limit, the Jordan-Wigner transforma-
tion in Eq. (7) and the subsequent limit s → ∞ allows
for a comparison with classical dynamics also in this case.

Fig. 8 shows the corresponding space-time profiles
Cr(t) and the spatial width Σ(t). Comparing the re-
sults for the quantum and the classical dynamics, we see
a good agreement in the space-time profiles for all values
of t shown here. While the profiles are well described
by Gaussians (24) in the bulk of the system, we observe
notable deviations from these Gaussian fits in the tails of
the distributions [cf. Fig. 8(b1)]. This might be reminis-
cent of the superdiffusive KPZ scaling of spin transport
in the Heisenberg chain discussed above in Fig. 4. Then
again, the overall broadening of the profiles seems to fol-
low a diffusive scaling, Σ(t) ∝

√
t [cf. Fig. 8(d)], both for
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Figure 7. (a1)-(c2) Profiles Cr(t) of energy densities in the
XXX spin ladder (4) with L = 20, sampled over N initial
states. Solid lines are Gaussian fits (24) to the QM data. (d)
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quantum and classical dynamics. To be more precise, at
the longest time tth = 10 shown in Fig. 8(d), we actu-
ally do observe some slight deviations in the time depen-
dence of Σ(t), where the broadening in the classical case
becomes notably slower compared to the quantum case.
This observation might hint at the possibility that the
nonintegrable classical model supports diffusion, while
the original integrable Fermi-Hubbard chain asymptoti-
cally shows a crossover to superdiffusion. However, re-
solving the latter is numerically quite challenging.

Finally, we note that the remarkable agreement be-
tween quantum and classical dynamics observed for
U/th = 4 in Fig. 8 can in general neither be expected for
very small interactions U/th → 0 nor for much stronger
interactions. On the one hand, for weak interactions,
the charge dynamics becomes more and more ballistic,
as the model is approaching the limit of free fermions.
On the other hand, for much stronger values of U , the
on-site interaction dominates the dynamics and reduces
the effective number of interacting neighbors in the sys-
tem [107], which is expected to affect the comparability
between quantum and classical dynamics.

V. CONCLUSION

In this paper, we have compared the quantum and clas-
sical dynamics of spatiotemporal density-density correla-
tion functions in different (quasi-)one-dimensional sys-
tems for high temperatures T → ∞. In the quantum
case, we employed the concept of quantum typicality in
combination with an efficient forward propagation of pure
states to obtain results in spin-1/2 systems with up to

40 lattice sites with an extremely low level of statisti-
cal noise. In order to achieve a similar signal-to-noise
ratio in the classical case, we performed extensive aver-
aging over large samples of N = O(109)−O(1010) classi-
cal trajectories. Based on the comparison of space-time
profiles of spin and energy correlations, we found a re-
markably good agreement between quantum and classi-
cal dynamics – not only in cases where both the quan-
tum and classical model are nonintegrable, but also in
cases where the quantum spin-1/2 model is integrable
and the corresponding classical s → ∞ model is not.
Further, we found that this agreement not only holds in
the bulk but also in the tails of the density distributions.
The good agreement between quantum and classical re-
sults also manifested itself in the time dependence of the
mean-squared displacement of the density profiles, which
exhibited very similar scaling for quantum and classical
models, at least on the time and length scales considered
here.

Furthermore, we showed that such a correspondence
between quantum and classical dynamics can also be
achieved in less obvious cases where the original quantum
system is not directly written in spin language. In partic-
ular, we considered the one-dimensional Fermi-Hubbard
model, which by means of a Jordan-Wigner transform
can be brought into the form of a particular type of
spin ladder, for which we then take the s → ∞ limit.
The results from the simulations of quantum and clas-
sical dynamics showed a good agreement, both for the
space-time profiles of local charge as well as the time
dependence of the corresponding spatial width, at least
for the interaction strength considered here. This agree-
ment is expected to break down for smaller interaction
strengths, where the Fermi-Hubbard model approaches
the integrable limit of free particles, as well as for much
stronger interaction strengths, where the effective num-
ber of interacting neighbors per site is reduced signifi-
cantly [107].

There are several future directions of research to ex-
plore. Apart from the question how far the agreement
between quantum and classical dynamics carries over to
finite temperatures, it would also be interesting to fur-
ther explore the Fermi-Hubbard model in more detail.
For instance, one might expect that the agreement be-
tween quantum and classical dynamics increases in the
extended Fermi-Hubbard model, where additional inter-
actions increase the effective number of interacting neigh-
bors. Moreover a study in higher spatial dimensions
would be interesting, where the range of the simulation
of quantum systems is severely limited.
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Appendix A: Large classical XXZ chain with ∆ = 0.5

Complementary to the results for the XXZ chain with
anisotropy ∆ = 0.5 discussed in Sec. IV A, we here
present additional classical results for longer times and a

significantly larger chain of size L = 2000.
Fig. 9 shows the corresponding dynamics of the equal-

site correlation function CL/2(t) for different sample sizes

N = O(105) − O(106). For the largest sample size
shown, a diffusive decay CL/2(t) ∝ t−α with α = 1/2
becomes visible on longer time scales, which follows from
the Gaussian profile [cf. Eq. (24)]

f(r̃, t) =
1√

4πDt
exp

(
− r̃2

4Dt

)
, r̃ = r − L/2 (A1)

where the diffusion constant D may serve as a single fit
parameter. In addition to the data for CL/2(t), we also
show the correlation function Cr(t) at a site r = L/2+100
far away from the center of the chain, where Cr(t)
starts in the initial infinite-temperature many-body back-
ground and increases at times when the density peak in
the center of the chain has spread sufficiently far over
the system. Remarkably, despite the considerable fluctu-
ations that are still present for the shown sample size, the
time dependence of Cr(t) appears to be well captured by
the function (A1). Note that we do not perform another
fit, but instead reuse the diffusion constant D obtained
in the fit to CL/2(t).

However, a genuine confirmation of diffusion would
again require the study of the full spatial dependence of
the density distributions Cr(t). This in turn necessitates
a substantially larger sample size N , which, given the
combination with large L and long time scales, remains
numerically challenging. A more instructive approach
to the transport behavior in larger systems might be to
study the density dynamics in momentum space, i.e., the
decay of long-wavelength Fourier modes of the real-space
data Cr(t), for a different class of initial states [108].
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transport in one-dimensional quantum lattice models,
Rev. Mod. Phys. 93, 025003 (2021).

[12] V. Khemani, A. Vishwanath, and D. A. Huse, Opera-
tor Spreading and the Emergence of Dissipative Hydro-
dynamics under Unitary Evolution with Conservation
Laws, Phys. Rev. X 8, 031057 (2018).

[13] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho,
E. Demler, and W. Ketterle, Spin transport in a tunable
Heisenberg model realized with ultracold atoms, Nature
588, 403 (2020).

https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/ 10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/ 10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/ 10.1103/RevModPhys.83.863
https://doi.org/ 10.1103/RevModPhys.83.863
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/ 10.1016/j.physrep.2016.02.005
https://doi.org/ 10.1103/RevModPhys.93.025003
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1038/s41586-020-3033-y


12

[14] D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp,
K. Srakaew, S. Hollerith, J. Rui, S. Gopalakrishnan,
N. Y. Yao, I. Bloch, and J. Zeiher, Quantum gas mi-
croscopy of Kardar-Parisi-Zhang superdiffusion, Science
376, 716 (2022).

[15] M. K. Joshi, F. Kranzl, A. Schuckert, I. Lovas, C. Maier,
R. Blatt, M. Knap, and C. F. Roos, Observing emer-
gent hydrodynamics in a long-range quantum magnet,
Science 376, 720 (2022).

[16] J. Wurtz, A. Polkovnikov, and D. Sels, Cluster trun-
cated Wigner approximation in strongly interacting sys-
tems, Ann. Phys. (NY) 395, 341 (2018).
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