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ABSTRACT

Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be
affected by contextual variables such as the rater’s or ratee’s gender, major, or experience. Identi-
fication of such heterogeneity sources in IRR is important for implementation of policies with the
potential to decrease measurement error and to increase IRR by focusing on the most relevant sub-
groups. In this study, we propose a flexible approach for assessing IRR in cases of heterogeneity
due to covariates by directly modeling differences in variance components. We use Bayes factors
to select the best performing model, and we suggest using Bayesian model-averaging as an alter-
native approach for obtaining IRR and variance component estimates, allowing us to account for
model uncertainty. We use inclusion Bayes factors considering the whole model space to provide
evidence for or against differences in variance components due to covariates. The proposed method
is compared with other Bayesian and frequentist approaches in a simulation study, and we demon-
strate its superiority in some situations. Finally, we provide real data examples from grant proposal
peer-review, demonstrating the usefulness of this method and its flexibility in the generalization of
more complex designs.

Keywords: Bayesian inference; inter-rater reliability; mixed-effect models; heterogeneous variance components; grant
peer review
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1 Introduction
Inter-rater reliability (IRR) has been used to assess the quality of ratings and assessments in psychology, education,
health, hiring, proposal and journal peer review, and with other areas involving multiple raters. From a measurement
perspective, individual ratings (such as scores applicants receive from a hiring committee) may be thought of as
imprecise estimates of the true underlying quality of a measured subject or object. IRR enumerates the consistency
among raters, and it may be described as the correlation between scores of different raters given to the same subject or
object of measurement (Webb et al., 2006).

A notable portion of research is focused on the identification of heterogeneity sources in IRR with respect to contextual
variables, such as rater or ratee characteristics, with the goal of identifying policies with the potential to generally
decrease measurement error and to increase the IRR especially for the lower-IRR subgroups. For example, IRR was
found to vary for different research areas of grant-proposal peer review (Mutz et al., 2012), and to increase after
reviewer training (Sattler et al., 2015). In the context of teacher hiring, IRR was found to be lower for internal than
external applicants (Martinková et al., 2018), and lower for novice than experienced applicants (Goldhaber et al.,
2021). In the context of teacher assessment, the IRR was found to be higher for the ratings of live vs. recorded lectures
(Casabianca et al., 2013).

Different estimation techniques were considered in the past to account for heterogeneity in IRR with respect to groups.
The most common approach involves stratification of the data and separate estimation of IRR in subgroups with
ANOVA or mixed-effect models (Sattler et al., 2015). More complex mixed-effect models allowing for heterogeneous
variance components were shown to detect group differences in IRR even in those cases where no difference was
detected using the stratification approach (Martinková et al., 2018). Another method is based upon generalized-
estimation equations (GEE, Mutz et al., 2012). Bartoš et al. (2020) compared different methods for IRR estimation
under heterogeneity with respect to a single grouping variable in a simulation study where the data-generating model
was known, showing that both frequentist and Bayesian mixed-effect models, as well as general additive models, can
provide accurate estimates of group-dependent IRR.

However, further methodological complexities arise in real-life situations which were not solved by previous studies.
The variance components of the ratings may be affected by a combination of contextual factors, such as the rater’s or
ratee’s age, gender, major, or internal vs. external status, which may be of different types (besides binary also nominal,
ordinal, or metric). Furthermore, the model specification — inclusion or exclusion of the different contextual factors
— might need to be inferred from the data. Researchers might also be interested in whether a particular contextual
factor does or does not affect the variance components, i.e., testing a hypothesis whether the effect of a given factor
differs from zero. To our best knowledge, there has been no study estimating IRR or reliability with heterogeneous
variance mixed-effects models in cases of heterogeneity due to a combination of covariates. None have dealt with
model selection, nor is any general approach available.

To fill this existing research gap, we propose a flexible general approach to IRR estimation and hypothesis testing using
Bayes factors (BF) in those cases of variance heterogeneity due to covariates and unknown data-generating models.
Our work builds upon studies of Bayesian mixed-effects models with heterogeneous variance components (Williams
et al., 2020; Williams et al., 2019) which were previously shown to provide a richer understanding of the psychological
processes in various contexts, and upon the work of Dablander et al. (2020) who recently introduced a default Bayes
factor test for the inequality of variances. We also consider model-averaged estimates which incorporate uncertainty
in the model selection process for the final estimate (Depaoli et al., 2020; Hoeting et al., 1999; Raftery, 1996; Raftery
et al., 1995).

The paper proceeds as follows: We first introduce the IRR in the multilevel modeling framework. We extend it
to heterogeneous variance components, and introduce Bayesian hypothesis testing and model-averaging in Section 2.
Second, we describe a simulation study and compare the proposed methodology to alternative approaches in Section 3.
Third, we illustrate the methodology on real data sets from ratings of the grant proposals in Section 4. Finally, in
Section 5, we conclude with a discussion of the results, and of further computational aspects of IRR estimation,
including the aspects of generalizations in more complex designs. Sample R code and additional tables and figures are
provided in electronic Supplementary Material at https://osf.io/bk8a7/.

2 Methods

2.1 IRR in multilevel modeling framework

In the simplest case of a multilevel linear model with a one-way analysis of variance, rating j of subject i, denoted
Yij , is modelled as

Yij = µ+ γi + εij , (1)
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where µ is the grand mean rating, γi is the ratee-specific deviation from the grand mean – the random intercept that
together with the µ represents the ratees’ true ratings – with structural variance σ2

γ , and finally, εij is the random
error of the rating with a residual variance σ2

ε . For the sake of estimation, it is standard to assume independent and
identically distributed (IID) γi ∼ N(0, σ2

γ) and εij ∼ N(0, σ2
ε ), and random errors εij to be uncorrelated with the ratee

effects γi. Note that the assumption of IID error implies that there are different raters at each rating, or that the rater
effect is neglected.

Under the model defined by Equation 1, IRR is defined as the ratio of the true variance due to ratees, σ2
γ , to the total

variance σ2
γ + σ2

ε , i.e.,

IRR =
σ2
γ

σ2
γ + σ2

ε

, (2)

corresponding to the intra-class correlation coefficient denoted as ICC(1,1), see McGraw and Wong, 1996; Shrout and
Fleiss, 1979, for more details and further possibilities.

The variance components in IRR defined by Equation 2 can be estimated using various frequentist and Bayesian
approaches to provide an estimate of IRR. The Maximum Likelihood (ML) estimates are found as parameters max-
imizing the likelihood function given the data (Searle, 1997). The REstricted (or REsidual) Maximum Likelihood
(REML) method is an adaptation in which the marginal likelihood function is maximized with respect to variance
components (σ2

γ , σ
2
ε ), while the third parameter µ is integrated out of the likelihood function. For a balanced design of

the model defined by Equation 1, that is when the same number of ratings is given to all ratees, the REML estimates
of variance components are identical to those from the one-way ANOVA method of moments (Searle et al., 2006).

Finally, the Bayesian estimation (e.g., Gelman & Hill, 2006) starts with specifying prior distributions for all model
parameters (the variance components p(σ2

γ , σ
2
ε ) and mean p(µ)). The posterior distribution is then obtained through

the Bayes’ rule, by multiplying the prior distributions by the likelihood and standardizing by the probability of data
(i.e., the marginal likelihood).

2.1.1 Incorporating heterogeneous variance components

The multilevel model defined by Equation 1 can be further generalized. The generalization suggested here involves
the variance terms, possibly together with the mean, depending on covariates. For Yij being the rating j of subject i,
we assume the following multilevel model

Yij = µi + γi + εij , (3)

where the mean µi, is modelled as a regression on covariates xi

µi = αµ + β>
µxi, (4)

γi is a random effect of subject i, and εij is a random error term for rating j on subject i as in Equation 1. We
moreover allow the covariates to influence the variance-terms. In other words, we assume that γi ∼ N(0, σ2

γi) and
εij ∼ N(0, σ2

εi) with subject-specific variance terms σ2
γi, and σ2

εi being modelled as a regression on possibly a different
set of covariates ui and vi:

σεi = αεe
β>
ε ui , (5)

σγi = αγe
β>
γ vi .

In this equation, βε are linear effects attributed to covariates ui explaining the variability in variance terms σεi, while
βγ are linear effects attributed to covariates vi explaining the variability in variance terms σγi. The logarithmic link
transforms the linear predictor into a multiplicative factor of the square root of the variance components’ grand means,
ensuring that the resulting variance is positive given that the grand means of the variance components are positive.

Under a model defined by Equation 3, the IRR in Equation 2 from Section 2.1 is generalized to depend on the set of
covariates ui and vi:

IRRi = IRR(ui,vi) =
σ2
γi

σ2
γi + σ2

εi

=
α2
γe

2β>
γ vi

α2
γe

2β>
γ vi + α2

εe
2β>

ε ui
. (6)

Note that when including covariates xi in the fixed part of the model defined in Equation 4, the estimates as well as
the meaning of the variances in Equations 5 change, and the interpretation of IRR in Equation 6 changes as well. More
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specifically, by including overall effects of ratee characteristics in a model, the between-ratee variance will typically
be reduced in some groups and the group differences in σ2

γ will become smaller. As a practical consequence, the
interpretation of the IRR in such a case relates to an instance whereby the final judgment takes into consideration the
covariates. As an example, Goldhaber et al., 2021 assumed that hiring officials were likely to take the rater type into
consideration when interpreting the professional references’ ratings of teacher applicants, and thus their inter-rater
reliability estimates were adjusted for these sources of variation by including the rater type into the fixed part of the
model. If, on the contrary, the final judgments are completed based solely upon the ratings, a simpler version of the
model given by Equation 3 should be considered, in which µ is a constant, i.e., βµ in Equation 4 is restricted to 0.

Also note that we generally allow a possibly different set of covariates xi, ui, and vi to explain the means µi, structural
variances σγi, and residual variances σεi in Equation 3, that we will use in the real data example in Section 4.3. How-
ever, in certain situations, a simpler and more restrictive model may be assumed, in which the same set of covariates
is used, as we will do in our simulation study in Section 3 and in the real data examples in Section 4.1 and 4.2.

2.2 Bayesian hypothesis testing and model-averaging

With Equation 3 denoting the most complex model, a number of submodels can be considered as special cases based
on restricting some of the effects in βµ,βγ ,βε to zero. With a number of models to select from, we can select the
best fitting model (as discussed in this subsection) and use parameter estimates for the best-fitting model for the final
estimate of IRR. Alternatively, we can incorporate the uncertainty of the model selection process and calculate the
model-averaged parameter estimates.

2.2.1 Bayes factors

We consider here the Bayesian hypothesis testing framework of Jeffreys (1931) which evaluates the evidence in support
of / against any model by the usage of Bayes factors. Bayes factors are computed as a ratio of the marginal likelihoods
of the competing models (Etz & Wagenmakers, 2017; Kass & Raftery, 1995; Rouder & Morey, 2019; Wrinch &
Jeffreys, 1921)

BF10 = p(data |M1)
p(data |M0) , (7)

with the marginal likelihood p(data |Mm) quantifying the model’s m relative predictive performance by integrating
the likelihood over the parameter space (Jefferys & Berger, 1992).

The Bayes factor is a continuous measure of evidence in favor of M1 and against M0. For ease of interpretation,
we can label the resulting Bayes factors as weak (BF10 between 1 and 3), moderate (between 3 and 10), strong
(between 10 and 100), and very strong (larger than 100) (Jeffreys, 1939, Appendix I; Kass and Raftery, 1995; Lee and
Wagenmakers, 2013, p. 105).

2.2.2 Bayesian model-averaging

In addition to model selection and using the single best fitting model for parameter estimation, we should also consider
Bayesian model-averaging (Hoeting et al., 1999; Kass & Raftery, 1995; Leamer, 1978).

Bayesian model-averaging accounts for the uncertainty of model selection by weighting the posterior model estimates
by posterior model probabilities. First, we need to assign prior model probabilities p(Mm) to the individual models
m and update them with the Bayes’ rule into posterior model probability p(Mm | data) according to the Bayes’ rule
(Fragoso et al., 2018; Hinne et al., 2020; Hoeting et al., 1999),

p(Mm | data) = p(data |Mm)× p(Mm)∑M
m=1 p(data |Mm)× p(Mm)

. (8)

We then combine the posterior parameter estimates p(θ | data,Mm) from the m = 1, . . . ,M individual models based
on posterior model probabilities p(Mm | data),

p(θ | data) =
M∑
m=1

p(θ |Mm, data)× p(Mm | data), (9)

which allows us to acknowledge the uncertainty about the considered models. We follow a common convention in
Bayesian model-averaging and assign an equal prior model probability to models assuming the absence and presence
of the difference between the groups for either the mean, structural, or residual variance, resulting in p(Mm) = 1/M
(Gronau et al., 2021; Kass & Raftery, 1995; Madigan et al., 1994; Raftery et al., 1995).

3
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Furthermore, Bayesian model-averaging allows us to quantify evidence in favor of including a specific parameter
across the whole set of specified models with a comparable structure. E.g., for a difference between the groups in a
residual variance σ2

ε , the Bayes factor from Equation 7 is extended into inclusion Bayes factor (Gronau et al., 2021;
Hinne et al., 2020),

BFεε︸︷︷︸
Inclusion Bayes factor

for difference in ε

=
∑

a∈A p(Ma | data)∑
b∈B p(Mb | data)︸ ︷︷ ︸

Posterior inclusion odds
for difference in ε

/∑
a∈A p(Ma)∑
b∈B p(Mb)︸ ︷︷ ︸

Prior inclusion odds
for difference in ε

, (10)

where A represents a set of models for which the groups differ in the σ2
ε parameter, and B represents a set of models

for which they don’t differ.

2.2.3 Parametrization and choice of priors

To employ the Bayesian framework consisting of Bayes factors and Bayesian model-averaging, we need to complete
the models by specifying prior distributions for all the parameters in Equations 4 and 5. Here, we restrict ourselves
to consideration of binary covariates, testing for and quantifying the differences between groups (see Discussion for
suggestions on dealing with other types of covariates). We use effect coding (i.e., we assign the values of -0.5 and
0.5 for the two levels), so the prior distribution on the regression coefficients β corresponds to the difference (for the
mean rating) or standard deviation ratio (for the structural and residual variances) between the groups. Consequently,
the intercept parameters α represent the unweighted grand means, i.e., they have common interpretation across all
possible submodels.

For the simulation study and the real-data example, we use the following priors

αµ ∼ Normal(0, 1), (11)
αγ , αε ∼ Normal+(0, 1),

βµ, βγ , βε ∼ Normal(0, 0.52),

where Normal+ stands for the half-normal distribution, and

γi ∼ Normal(0, σ2
γi),

yij ∼ Normal(µi + γi, σ
2
εi),

where µi is defined by Equation 4 with x = −0.5 for the first group, and x = 0.5 for the second group, and σ2
γi and

σ2
εi are defined by Equation 5 for each participant i.

Our reasoning behind the choice of priors is as follows: Since the intercept parameters are common across all models
(i.e., we are not going to test for the presence or absence of the intercept), we can specify weakly informative prior
distributions on them (Gelman & Hill, 2006). Here, we use standard normal prior distribution for the grand mean in-
tercept, αµ ∼ N(0, 1), and half normal prior distributions for the structural and residual standard deviation intercepts,
αγ , αε ∼ N+(0, 1). This setting corresponds to the expectation that the outcome variable is somewhat standardized,
i.e., the grand mean is located around zero and the overall variance of the data is around one. If the outcome variable
corresponded to a differently scaled measure, we would adjust the means and standard deviations of the prior distri-
butions to reflect the overall expectations (e.g., we could use αµ ∼ N(100, 152) and αγ , αε ∼ N+(0, 152) if we were
working with IQ scores).

In contrast to the common intercepts, the regression parameters β can differ between the submodels (omitting a
predictor equals to setting the corresponding β = 0). Subsequently, the prior distribution on the regression parameters
defines the hypothesis test for the presence or the absence of the effect for a given predictor. Here, we use informed
Normal(0, σ2) prior distributions on the regression coefficients where σ2 parameter controls informativeness (i.e.,
deviations from the null hypotheses we are interested in) of the test. This corresponds to specifying a two sided
hypothesis on the regression parameters for the means and standard deviations. In our view, the choice of σ2 = 0.52

used in the simulation study and the real data example corresponds to testing for “medium sized” differences in means
and standard deviation ratios (i.e., mean differences lower than 1, and standard deviation ratios lower than 2.7).

To assess the robustness of our results to the prior distribution specifications, we use two other choices of σ2 in the
real data example. In our view, the choices of σ2 = 0.252 and σ2 = 12 correspond to “small sized” and “large
sized” differences in means and standard deviation ratios, respectively. See Figure 1 for the considered resulting prior
distributions of the mean differences (left panel) and the resulting prior distributions of the ratios of standard deviations
(right panel) obtainable by taking the exponent of the prior distribution.
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Figure 1: Visualization of different options of prior distributions on the regression coefficients. We used the Normal(0,
0.52) prior distributions (in bold) for the simulation and the real data example and the remaining options as a robustness
check. The left panel visualizes the resulting prior distribution for the mean differences and the right panel for standard
deviation ratios.

3 Simulation study

We perform a simulation study to assess performance of the outlined methodology. We are specifically interested in an
estimation and hypothesis testing in consideration to the differences between groups in any of the modeled parameters
(i.e., means, structural standard deviations, and residual standard deviations) and IRR. We keep simulation settings
simple, in order to compare the outlined methodology to other model selections and model-averaging techniques,
considering that many of the other methods could not deal with more complex data settings.

For the simulation, we consider IRR in a group-specific variance components model, in other words, we assume a
single binary covariate, the group membership denoted by index g ∈ {0, 1}. For Yijg being the rating j of subject i
from group g, the original model defined by Equation 3 simplifies to

Yijg = µg + γig + εijg, (12)

where µg is the group-specific mean rating, γig ∼ N(0, σ2
γg) is ratee-specific deviation from the group mean with a

group-specific (structural) variance σ2
γg , and finally, εijg ∼ N(0, σ2

εg) is the random error of the rating with group-
specific residual variance σ2

εg . We assume normal distributions.

Under the model specified by Equation 12, the group-specific IRRg is then defined in the special case of Equation 6 as

IRRg =
σ2
γg

σ2
γg + σ2

εg

(13)

and it takes the two values of IRR0 and IRR1 depending upon the group, which is the only covariate assumed in this
design.

Possible submodels of the model defined by Equation 12 are derived as special cases based upon restricting the group-
specific parameters under a combination of conditions

A. µ0 = µ1 = µ,

B. σ2
γ0 = σ2

γ1 = σ2
γ ,

C. σ2
ε0 = σ2

ε1 = σ2
ε .

5
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Altogether, the combination of conditions A, B, and C leads to 7 possible submodels denoted as M1 – M7, and 1
unrestricted model (Equation 12) denoted as M8.

M1: [ABC] Yijg = µ+ γi + εij

M2: [ABC̄] Yijg = µ+ γi + εijg

M3: [AB̄C] Yijg = µ+ γig + εij

M4: [AB̄C̄] Yijg = µ+ γig + εijg

M5: [ĀBC] Yijg = µg + γi + εij

M6: [ĀBC̄] Yijg = µg + γi + εijg

M7: [ĀB̄C] Yijg = µg + γig + εij

M8: [ĀB̄C̄] Yijg = µg + γig + εijg

3.1 Data generation

Data generation was inspired by real data encountered in the context of teacher applicant ratings (Martinková et
al., 2018). Specifically, in Equation 12, we used two values for the standardized mean differences between the
groups (µ2 − µ1 = 0, or 0.4), for the structural variance ratios

(
σ2
γ1/σ2

γ2 = 1, or 1.5
)
, and for residual variance ratios(

σ2
ε1/σ2

ε2 = 1, or 1.5
)
, while we constrained the overall mean variance across groups to 1/G

∑G
g=1 σ

2
γg + σ2

εg = 1, and

the mean IRR across groups to 1/G
∑G
g=1 IRRg = 0.45. This led to eight simulation scenarios, with scenarios 4 and 8

split into two sub-scenarios depending upon whether the structural and residual variance ratios differed in the same or
the opposite direction (Table 1).

Table 1: Data Generation Scenarios
Scenario µ1 µ2 σγ1 σγ2 σε1 σε2 IRR1 IRR2
1 0.00 0.00 0.67 0.67 0.74 0.74 0.45 0.45
2 0.00 0.00 0.67 0.67 0.67 0.82 0.50 0.40
3 0.00 0.00 0.60 0.74 0.74 0.74 0.40 0.50
4.1 0.00 0.00 0.60 0.73 0.66 0.81 0.45 0.45
4.2 0.00 0.00 0.73 0.60 0.66 0.81 0.55 0.35
5 -0.20 0.20 0.67 0.67 0.74 0.74 0.45 0.45
6 -0.20 0.20 0.67 0.67 0.67 0.82 0.50 0.40
7 -0.20 0.20 0.60 0.74 0.74 0.74 0.40 0.50
8.1 -0.20 0.20 0.60 0.73 0.66 0.81 0.45 0.45
8.2 -0.20 0.20 0.73 0.60 0.66 0.81 0.55 0.35

Moreover, we manipulated the number of times the ratees were rated (J = 3, or 5) and the number of ratees per group
(I = 25, 50, 100, or 200) in each scenario. In total, 10 (scenarios including subscenarios) × 2 (number of ratings) ×
4 (number of ratees) = 80 conditions were simulated, 1000 times each, implying 80,000 randomly generated data sets.

3.2 Compared methods

We compared the Bayesian hypothesis testing and model-averaging methodology outlined in the Methods sections to
alternative frequentist and Bayesian ways of estimating and testing for the differences in group-specific mixed-effects
location scale models defined by Equation 12. Specifically, we used the maximum likelihood (ML) and restricted
maximum-likelihood (REML) estimation in the frequentist framework for linear mixed models and Markov chain
Monte Carlo (MCMC) estimation in the Bayesian framework.

Model selection. To assess the performance of the model selection with Bayes factors specified in Section 2.2.1,
we considered four frequentist model selection approaches and two Bayesian approaches.

The frequentist approaches include two stepwise selection procedures (backward and forward) and two model space
selection procedures based upon Akaike information criterion (AIC, Akaike, 1974) and the Bayesian information cri-
terion (BIC, Schwarz, 1978). In the forward stepwise selection procedure, we started with the simplest model. We
first tested for adding the difference in means (with REML) and then gradually tested expanding the model with dif-
ferences in structural and/or residual variances (with ML; see the left panel of Figure A1 in Appendix A for diagram).
In the backward stepwise selection procedure, we started with the most complex model. We first tested for gradually

6
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removing differences in the structural and/or residual variances (with ML) and then tested for removing the difference
in means (with REML; see the right panel of Figure A1 in Appendix A for the diagram). In the model selection pro-
cedures based upon information criteria, we estimated all the specified models (with ML) and subsequently selected
the best fitting model based on the lowest information criteria (AIC or BIC).

The Bayesian approaches include two model space selection procedures based upon posterior predictive perfor-
mance — the Watanabe–Akaike Information Criterion (WAIC, Watanabe & Opper, 2010) and Leave-One-Out cross-
validation (LOO, Vehtari et al., 2017). WAIC and LOO approximate the leave-one-out prediction error using the
log-likelihood evaluated with posterior parameter distribution (McElreath, 2018). While they are asymptotically
equivalent, LOO usually perform better in small samples and under weak prior distributions (Vehtari et al., 2017).
In our case, we use the individual ratings Yij as the basis of leave-one-out predictions.1

Model-averaging. To assess the performance of the parameter estimation with Bayesian model averaging, we used
two frequentist and two alternative Bayesian approaches.

The frequentist methods combine the estimates θ̂m from M individual models with weights ωm,

θ̂ =
M∑
m=1

θ̂m × ωm. (14)

The two frequentist approaches are based on information criteria (AIC, BIC), and specify the weight ωm for model m
as

ωAIC,m = exp(−1/2 ∆m(AIC))∑M
i=1 exp(−1/2 ∆i(AIC))

, (15)

ωBIC,m = exp(−1/2 ∆m(BIC))∑M
i=1 exp(−1/2 ∆i(BIC))

,

with

∆m(AIC) = AICm −min(AIC),
∆m(BIC) = BICm −min(BIC),

where AICm and BICm correspond to the AIC and BIC value of the mth model and ∆m(AICm) and ∆m(BICm)
correspond to the difference between the AIC or BIC, respectively, of the mth and the best fitting model (Hjort &
Claeskens, 2003; Wagenmakers & Farrell, 2004).

As an alternative Bayesian approach, the pseudo Bayesian model-averaging, similarly to the frequentist model-
averaging, uses information criteria to compute the model weights in Equation 15 (Geisser & Eddy, 1979; Gelfand,
1996). In contrast to Bayesian model-averaging, it does not require specification of prior model probabilities, since
the weights are based entirely on the LOO information criteria.

The last alternative approach, the Bayesian stacking of predictive distributions (Yao et al., 2018) is based upon stacking
which combines models in order to minimise leave-one-out mean square error (Breiman, 1996; LeBlanc & Tibshi-
rani, 1996; Wolpert, 1992). The stacking of posterior distribution is then based upon the leave-one-out predictive
distribution computed with LOO. Similarly to pseudo-Bayesian model-averaging, Bayesian stacking does not require
specification of prior model probabilities, however, it oftentimes does not allow inference about the true data structure
and is unable to provide compelling evidence in favor of simple models (Gronau & Wagenmakers, 2019a, 2019b).

3.2.1 Evaluation of the simulation results

We first evaluate the proportion of selecting the correct model based upon Bayes factors and we compare it with other
approaches. We evaluate the proportion of correct model selection averaged across all conditions and separately for
each of the data generating model and sample size.

Next, we compare our approach with other approaches in the precision of estimates of model parameters and of IRR.
As a measure of precision, we evaluate the root mean square error (RMSE). As a (relative) measure of bias, we also
evaluate the bias2/MSE ratio. This is again evaluated when averaged across all conditions, as well as for all the
individual model generating designs.

1We found that leave-one-rating cross-validation performed better than leave-one-ratee cross-validation in our simulations,
therefore, we show results only for leave-one-rating based metrics.
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Finally, we evaluate the calibration of our prior distributions and of inclusion Bayes factors with the so-called Bayes
factor design analysis (see, e.g., Schönbrodt & Wagenmakers, 2018; Stefan et al., 2019, for more details). Our goal
for this simulation was (1) to verify that the inclusion Bayes factors found evidence in favor of the difference in
parameters in those conditions where the parameters differed and evidence in favor of no difference in conditions
where the parameters do not differ, (2) to evaluate the proportion of misleading evidence, i.e., how often would the
inclusion Bayes factors find strong evidence in favor of a difference in scenarios with no difference present, and finally
(3) to verify that the evidence is increasing with an increasing sample size.

3.3 Implementation

The simulation was carried out in R version 3.5.1 (R Core Team, 2018). We used nlme R package version 3.1 (Pinheiro
et al., 2021) to estimate the frequentist version of the models and we have written a custom Rstan model with the
usage of rstan R package version 2.18.2 (Stan Development Team, 2018) for the Bayesian models. We further used
the bridgesampling R package version 3.1 (Gronau et al., 2020) to compute the marginal likelihoods via bridge
sampling (e.g., Gronau et al., 2017; Meng & Wong, 1996), and we used loo R package version 2.0 (Vehtari et al.,
2020) to compute WAIC, LOO, and pseudo-BMA and stacking weights with the usage of Pareto-smoothed importance
sampling (Vehtari et al., 2017).

3.4 Simulation results

3.4.1 Model selection

We first take a look at the averaged results across all conditions. The probability of selecting the correct model is
summarized in Table 2. Bayes factors, AIC, WAIC, and LOO are able to identify the correct model with precision
around 26% of the time in the smallest group sizes (N = 25), however, while Bayes factors and AIC steadily improve
with increasing sample sizes (up to 70% and 65% respectively), WAIC and LOO start lagging behind. Furthermore,
the step-wise forward and backward selection procedures start catching up with the Bayes factors with increasing
sample sizes (69%).

Table 2: Proportion (and Standard Error of Proportion) of the Correctly Selected Models (Averaged across Conditions,
Number of Ratings per Rated Subject j = 3).

Method N = 25 N = 50 N = 100 N = 200
BF 0.259 (0.005) 0.379 (0.005) 0.545 (0.006) 0.704 (0.005)
AIC 0.270 (0.005) 0.399 (0.005) 0.537 (0.006) 0.652 (0.005)
BIC 0.199 (0.004) 0.283 (0.005) 0.424 (0.006) 0.589 (0.006)
forward 0.223 (0.005) 0.349 (0.005) 0.526 (0.006) 0.687 (0.005)
backward 0.223 (0.005) 0.350 (0.005) 0.528 (0.006) 0.687 (0.005)
WAIC 0.264 (0.005) 0.372 (0.005) 0.479 (0.006) 0.552 (0.006)
LOO 0.262 (0.005) 0.374 (0.005) 0.480 (0.006) 0.560 (0.006)

Figure 2 displays model selection performance for individual data generating designs. The first column shows the
proportion of correctly selected models, the second column shows the proportion of selecting a more complex incorrect
model (i.e., a model containing all true parameter differences plus some additional incorrect differences), and the last
column shows the proportion of other incorrect models (models missing at least one parameter difference). We see a
well-known behavior of BIC being biased towards the simpler model, resulting in “better” performance under data-
generating scenario 1, and a bias of WAIC and LOO towards more complex models, resulting in a lower proportion
of correct model selection and increased selection of incorrect more complex models in the simpler data generating
designs. The same trends are visible in the case of j = 5 ratings per ratee, see the electronic Supplementary Material.

3.4.2 Parameter estimation

The RMSE of the residual SD estimates, averaged across all conditions, is summarized in Table 3. We can see that
with small samples (e.g., N = 25), the model averaging leads to more precise estimates of residual variance than
the estimates based upon the selected best-performing model. For example, Bayesian parameter estimation in the
models selected with Bayes factors resulted in RMSE of 0.075 while the Bayesian model averaging resulted in RMSE
of 0.069. With a growing sample size, the uncertainty in model selection disappears, and the RMSE of the two
approaches converge to the same value. The same trend can be seen for the IRR estimates in Table 4, however, the
benefits of model averaging are less pronounced than in the case of residual variances.

8



Assessing inter-rater reliability with heterogeneous variance components models A PREPRINT

Correct Incorrect (MC) Incorrect
(1)

µ1 = µ2

σα,1
2 = σα,2

2

σε,1
2 = σε,2

2

(2)
µ1 = µ2

σα,1
2 = σα,2

2

σε,1
2 ≠ σε,2

2

(3)
µ1 = µ2

σα,1
2 ≠ σα,2

2

σε,1
2 = σε,2

2

(4.1)
µ1 = µ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

(4.2)
µ1 = µ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

(5)
µ1 ≠ µ2

σα,1
2 = σα,2

2

σε,1
2 = σε,2

2

(6)
µ1 ≠ µ2

σα,1
2 = σα,2

2

σε,1
2 ≠ σε,2

2

(7)
µ1 ≠ µ2

σα,1
2 ≠ σα,2

2

σε,1
2 = σε,2

2

(8.1)
µ1 ≠ µ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

(8.2)
µ1 ≠ µ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

25 50 100 200
0.00
0.25
0.50
0.75
1.00

AIC BIC forward backwardBF WAIC LOO

Figure 2: Proportion of correct, incorrect - more complex (MC, containing all true parameter differences plus some
additional incorrect differences) and incorrect (missing at least one parameter difference) model selection. Red:
Bayesian, Blue: Frequentist model selection techniques. BF: Model selection with Bayes factor proposed here.

Analogous tables with the RMSE of the mean estimates and structural variances, which are not the main focus of IRR
and our study, are available in the electronic Supplementary Material, as well as the corresponding results for j = 5
ratings. The electronic Supplementary Material also provides figures with more detailed results for individual data
generating models. Namely, for the case of j = 3 and j = 5 ratings per ratee, we depict the bias, RMSE, and ratio of
bias2/MSE for estimates of the means, structural and residual variances, as well as IRR under different data-generating
models. We can see a fairly similar performance in the terms of bias and RMSE across methods with a decreasing
bias and RMSE with sample size and higher benefits of model-averaging in smaller samples. The bias2/MSE then
illustrates the bias variance trade-off between model-averaging and model selection, where the decrease in RMSE is
accompanied with a relative increase in bias.
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Table 3: RMSE (and Standard Error of RMSE) of the Residual SD Estimates (Averaged across Conditions, Number
of Ratings per Rated Subject j = 3).

N = 25 N = 50 N = 100 N = 200
Model Selection
BF 0.075 (0.000) 0.056 (0.000) 0.039 (0.000) 0.025 (0.000)
AIC 0.075 (0.000) 0.053 (0.000) 0.037 (0.000) 0.025 (0.000)
BIC 0.076 (0.000) 0.060 (0.000) 0.044 (0.000) 0.026 (0.000)
forward 0.076 (0.000) 0.057 (0.000) 0.039 (0.000) 0.025 (0.000)
backward 0.076 (0.000) 0.057 (0.000) 0.039 (0.000) 0.025 (0.000)
WAIC 0.073 (0.000) 0.053 (0.000) 0.037 (0.000) 0.025 (0.000)
LOO 0.074 (0.000) 0.053 (0.000) 0.037 (0.000) 0.025 (0.000)
Full model 0.074 (0.000) 0.052 (0.000) 0.037 (0.000) 0.026 (0.000)
Model Averaging
BMA 0.069 (0.000) 0.052 (0.000) 0.038 (0.000) 0.025 (0.000)
AIC 0.069 (0.000) 0.051 (0.000) 0.037 (0.000) 0.025 (0.000)
BIC 0.070 (0.000) 0.054 (0.000) 0.041 (0.000) 0.026 (0.000)
WAIC 0.070 (0.000) 0.051 (0.000) 0.036 (0.000) 0.025 (0.000)
pseudoBMA 0.069 (0.000) 0.051 (0.000) 0.037 (0.000) 0.025 (0.000)
stacking 0.071 (0.000) 0.051 (0.000) 0.036 (0.000) 0.025 (0.000)

Table 4: RMSE (and Standard Error of RMSE) of the IRR Estimates (Averaged across Conditions, Number of Ratings
per Rated Subject j = 3).

N = 25 N = 50 N = 100 N = 200
Model Selection

BF 0.106 (0.001) 0.082 (0.000) 0.060 (0.000) 0.044 (0.000)
AIC 0.119 (0.001) 0.086 (0.000) 0.061 (0.000) 0.043 (0.000)
BIC 0.110 (0.001) 0.084 (0.000) 0.064 (0.000) 0.048 (0.000)

forward 0.112 (0.001) 0.085 (0.000) 0.062 (0.000) 0.045 (0.000)
backward 0.112 (0.001) 0.085 (0.000) 0.062 (0.000) 0.045 (0.000)

WAIC 0.106 (0.001) 0.081 (0.000) 0.059 (0.000) 0.043 (0.000)
LOO 0.106 (0.001) 0.081 (0.000) 0.059 (0.000) 0.043 (0.000)

Model Averaging
BMA 0.100 (0.001) 0.076 (0.000) 0.056 (0.000) 0.042 (0.000)

AIC 0.108 (0.001) 0.080 (0.000) 0.057 (0.000) 0.041 (0.000)
BIC 0.102 (0.001) 0.078 (0.000) 0.059 (0.000) 0.045 (0.000)

WAIC 0.100 (0.001) 0.076 (0.000) 0.055 (0.000) 0.041 (0.000)
pseudoBMA 0.099 (0.001) 0.075 (0.000) 0.055 (0.000) 0.041 (0.000)

stacking 0.103 (0.001) 0.077 (0.000) 0.056 (0.000) 0.041 (0.000)
Full model 0.122 (0.001) 0.087 (0.000) 0.061 (0.000) 0.043 (0.000)

3.4.3 Inclusion Bayes factor calibration

Finally, we turn our attention to performance of the inclusion Bayes factors in providing evidence for differences in the
mean, the structural and the residual variance between the two groups. Table 5 summarizes the proportion of inclusion
Bayes factors correctly favoring the true data generating model for each parameter in both types of scenarios (with
difference vs. without difference in a given parameter), averaged across data-generating scenarios of a given type,
and the rate of misleading strong evidence (BF10 > 10 in the case of no difference or BF10 < 1/10 in the case of a
difference between the groups), in brackets. The table suggests that the inclusion Bayes factors are well calibrated
for providing evidence about the differences in means but are noticeably biased when providing evidence towards no
difference in structural variances, and slightly biased towards models with no difference in residual variances in small
samples. However, the rate of misleading strong evidence is minimal, with less than 0.6% across the parameters and
conditions. The proportion of Bayes factors correctly favoring the true data generating process is quickly increasing
with the sample size, reaching the probability of 95% for differences in means and for differences in residual variances
with n = 200. The case of j = 5 ratings depicted in the electronic Supplementary Material then shows that the bias
towards no difference in a case of differences in structural variances is improving with the increased number of ratings,
pointing to a lack of information about the structural variances themselves in cases of a low number of ratings, which
favors the simpler models (i.e., models assuming no difference in structural variance).
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Table 5: Proportion (and Standard Error of Proportion) of Inclusion Bayes Factors Favoring the Correct Data-
Generating Mechanism and the Rate of Misleading Strong Evidence (in Brackets); Averaged across Different Data-
Generating Scenarios, Number of Ratings per Rated Subject j = 3.

Scenario N = 25 N = 50 N = 100 N = 200
Mean (µ)
Difference 0.626 (0.000) 0.814 (0.000) 0.961 (0.000) 1.000 (0.000)
No difference 0.846 (0.006) 0.888 (0.006) 0.923 (0.005) 0.944 (0.003)
Structural variances (σγ)
Difference 0.277 (0.000) 0.316 (0.000) 0.402 (0.000) 0.543 (0.000)
No difference 0.805 (0.004) 0.858 (0.006) 0.894 (0.006) 0.933 (0.004)
Residual variances (σε)
Difference 0.399 (0.000) 0.586 (0.000) 0.809 (0.000) 0.971 (0.000)
No difference 0.907 (0.004) 0.936 (0.004) 0.952 (0.002) 0.968 (0.003)

A more detailed behavior of the inclusion Bayes factors is depicted in Figure 3, visualizing the distribution of (log10)
inclusion Bayes factors for a difference in each parameter (columns) with increasing sample sizes (rows) across all
simulation conditions. Inclusion Bayes factors from data-generating scenarios with a difference in a given parameter
are depicted in red and inclusion Bayes factors from scenarios with no difference in a given parameter are depicted in
blue.

We can see that inclusion Bayes factors for differences in means BFµ,µ̄ and residual variances BFε,ε̄ quickly converge
at the correct solution, i.e. to the right side of the figure in case of a difference (depicted in red), and to the left side
of the figure in case of no difference (depicted in blue). However, the inclusion Bayes factors for the differences
in structural variances BFγ,γ̄ converge at the correct solution much slower due to the considerably smaller amount
of information about structural variances provided by only 3 ratings per subject. See the electronic Supplementary
Material for a comparison with the case of 5 rating per subject that shows a sightly improved performance.

4 Real data examples

We demonstrate the estimation of IRR with two datasets of grant proposal peer-review analyzed by Erosheva et al.
(2021) and available in the ShinyItemAnalysis R package (Martinková & Drabinová, 2018).

Unlike in the simulation presented in Section 3, with the real data, the true generating model is unknown. However, the
practical examples provide an illustration regarding the application of the proposed method; for the first two examples
incorporating a single covariate, we can also compare the results with those provided by other methods presented in
the simulation study.

In our analysis, we assume that the selection panels may take the applicant’s gender and career stage into consideration
when interpreting the ratings, i.e., we allow covariates to explain the fixed part µi in Equation 3). In Appendix C and
in the Supplementary Material, we include the results if no covariate adjustment is expected when interpreting the
ratings by the selection panel (i.e., when only models with a constant µ are considered).

4.1 AIBS grant proposal review data with single covariate

The first example involves peer-review ratings of the American Institutes of Biological Sciences (AIBS), analyzed by
Erosheva et al. (2021). In the AIBS dataset, each grant proposal was rated three times on the number of criteria as
well as on the overall merit score considered here as the dependent variable. The gender (nfemale = 25, nmale = 47) of
the principal investigator was used as a covariate / grouping variable.

The Bayes factor, as well as other model selection methods (both Bayesian and frequentist), indicated the simplest
model (M1) was the most suitable for the data (Table 6). However, there was a relatively large uncertainty about the
selected model, as can be seen from Table 7 which summarizes the weights for the individual models. The simulation
study suggested that with this small sample size, all methods have a low probability of selecting the correct model,
and it is hard to judge which of the models is true. The simulation also demonstrated that the model selection based
upon BIC more often prefers simpler models, which can also be observed in our practical example, where the model
weight based upon BIC is much higher (0.78) for model M1 than the weights for this model based upon other criteria.

Quantifying the evidence across all models with inclusion Bayes factors resulted only in weak evidence in support
of the absence of difference in the means, BFµµ = 2.74, weak evidence in support of the absence of difference in
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Figure 3: Visualization of log10 of the inclusion Bayes factors for each parameter aggregated across sample size n.
Positive values of log10 inclusion Bayes factors correspond to evidence in favor of difference in the parameter, negative
values correspond to evidence in favor of no difference in the parameter. Red: aggregated inclusion Bayes factors for
scenarios with difference for a given parameter. Blue: distribution visualizing the aggregated inclusion Bayes factors
for scenarios with no difference for a given parameter conditions.

Table 6: AIBS Peer-Review Example: IRR Estimates for Female (G1) and Male (G2) Principal Investigators.
IRRG1 LCI UCI IRRG2 LCI UCI 4ICC LCI UCI

Model Selection
BF/WAIC/LOO (M1) 0.37 0.22 0.52 0.37 0.22 0.52 0 0 0
AIC/BIC/forw/back (M1) 0.37 0.22 0.51 0.37 0.22 0.51 0 0 0
Model-Averaging
BMA 0.40 0.22 0.60 0.35 0.18 0.51 0.05 -0.08 0.30
AIC 0.40 0.20 0.60 0.34 0.18 0.51 0.06 -0.16 0.27
BIC 0.37 0.21 0.54 0.36 0.21 0.51 0.01 -0.10 0.12
WAIC 0.40 0.22 0.61 0.35 0.18 0.51 0.05 -0.08 0.31
stacking 0.37 0.22 0.52 0.37 0.22 0.52 0.00 0.00 0.00
pseudoBMA 0.40 0.22 0.60 0.35 0.18 0.51 0.05 -0.09 0.30

structural variances BFγγ = 1.38, and moderate evidence in support of the absence of difference in residual variances,
BFεε = 3.52. In other words, there was no clear evidence supporting differences in the means or in structural variances
between the two gender groups, but the data were more consistent with differences in residual variances between the
two gender groups.
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Table 7: AIBS Peer-Review Example: Model Weights.
Note: Stacking weights are not displayed due to their high variability and dependence on a simulation run (with the
majority of the stacking weights assigned to Model 1 and Model 3 across 5 different MCMC initialization conditions).

Method M1 M2 M3 M4 M5 M6 M7 M8
BMA 0.34 0.09 0.24 0.07 0.12 0.03 0.09 0.03
AIC 0.32 0.13 0.18 0.09 0.12 0.05 0.07 0.03
BIC 0.78 0.06 0.08 0.01 0.05 0.00 0.01 0.00
WAIC 0.21 0.12 0.16 0.09 0.15 0.08 0.11 0.06
pseudoBMA 0.24 0.11 0.17 0.09 0.16 0.07 0.11 0.06

4.2 NIH grant proposal review data with single covariate

For the second example, we used the data of peer-review ratings of the National Institutes of Health (NIH), analyzed
by Erosheva et al., 2020 and further discussed in Erosheva et al., 2021. We used the preliminary Investigator criterion
scores, and the gender (nfemale = 574, nmale = 1310) of the principal investigator as a covariate;

All model selection methods selected models which assumed a difference in residual variances: Bayes factors and BIC
suggested model M2, the model selection based upon LOO, WAIC, forward, and backward selection also suggested
a difference in means (model M6), while the method based upon AIC selected the most complicated model also
suggesting a difference in structural variances. According to models M2 and M6, the single-rater IRR for grant
proposals by male PIs is 0.36 (0.33 – 0.39), whereas for grant proposals by female PIs it is 0.33 (0.29/0.30 – 0.36)
with a difference in IRR of 0.04 (0.01/0.02 – 0.06). However, according to model M8, the difference of IRRs for male
and female PIs is insignificant -0.01 and with a wider CI of (-0.07 – 0.05) also covering zero, see the top panel of
Table 8.

Despite a much larger sample size than in the previous example, there is still considerable uncertainly about the
selected model (see Table 9). We again use model averaging to account for the model uncertainty, which results in
wider confidence intervals. Most of the approaches find differences in IRR between the two groups insignificant, with
a confidence interval of4IRR covering zero, see the last three columns of the bottom part of Table 8.

Table 8: NIH Peer-Review IRR Estimates Investigator Scale of the Complete Data Set of “Male” (G1) and “Female”
(G2) Principal Investigators. IRR estimates for G1, G2, and the difference of IRR (4IRR) are complemented with
lower (LCI) and upper (UCI) bounds of 95% confidence intervals for the frequentist models and of 95% central
credible intervals for the Bayesian models.

IRRG1 LCI UCI IRRG2 LCI UCI 4IRR LCI UCI
Model Selection

BF (M2) 0.36 0.33 0.39 0.33 0.30 0.36 0.04 0.02 0.06
AIC (M8) 0.35 0.31 0.38 0.36 0.31 0.41 -0.01 -0.07 0.05
BIC (M2) 0.36 0.33 0.39 0.33 0.30 0.36 0.04 0.02 0.06

forw/back (M6) 0.36 0.33 0.39 0.33 0.29 0.36 0.04 0.01 0.06
LOO/WAIC (M6) 0.36 0.33 0.39 0.33 0.29 0.36 0.04 0.01 0.06
Model-Averaging

BMA 0.36 0.32 0.39 0.34 0.30 0.41 0.01 -0.08 0.06
AIC 0.35 0.32 0.39 0.35 0.29 0.41 0.00 -0.07 0.08
BIC 0.36 0.32 0.39 0.34 0.29 0.39 0.02 -0.04 0.08

WAIC 0.36 0.32 0.39 0.34 0.30 0.40 0.01 -0.07 0.06
stacking 0.35 0.31 0.39 0.35 0.30 0.43 0.00 -0.10 0.06

pseudoBMA 0.35 0.31 0.39 0.35 0.30 0.42 0.00 -0.09 0.05

Quantifying the evidence across all models with inclusion Bayes factors resulted only in weak evidence in support
of the absence of difference in the means, BFµµ = 1.15, weak evidence in support of the absence of difference
in structural variances BFγγ = 2.21, and moderate evidence in support of the presence of difference in residual
variances, BFεε = 7.25. In other words, there was again no clear evidence in favor of differences in the means or
in structural variances between the two gender groups, but the data were more consistent with differences in residual
variances between the two gender groups. Acknowledging that the differences in residual variances may be caused by
differences in career stage, we investigate further in the next section.

13



Assessing inter-rater reliability with heterogeneous variance components models A PREPRINT

Table 9: Model-Averaging Weights for NIH Peer-Review IRR Estimates Investigator Scale of the Complete Data Set
of “Male” (G1) and “Female” (G2) Principal Investigators.

Method M1 M2 M3 M4 M5 M6 M7 M8
BMA 0.01 0.36 0.05 0.11 0.02 0.30 0.04 0.11
AIC 0.00 0.07 0.01 0.11 0.00 0.32 0.03 0.46
BIC 0.17 0.60 0.06 0.03 0.03 0.10 0.01 0.01
WAIC 0.01 0.24 0.00 0.16 0.01 0.32 0.01 0.24
pseudoBMA 0.09 0.17 0.07 0.10 0.05 0.29 0.07 0.14

4.3 NIH grant proposal review data with more covariates

We finally considered a more complex situation of IRR being dependent upon two covariates: gender and binarized
career stage. In this case, the model given by Equation 12 has 64 sub-models. Model selection using Bayes factors
identified that the data were best predicted by a model in which the means, structural variances, and residual variances
differed by career stage, with the posterior model probability of 0.23. Table 10 shows ten models which were best at
predicting the data, accumulating a total of 95% of the posterior model probabilities. We can see that despite the large
sample size and the considerable uncertainty about the best model, most of the best performing models consider the
career stage to be an important predictor for all parameters. However, gender does not seem to play a central role and
is slightly more often not even considered.

Table 10: Model structure for the ten best performing models in the NIH data set when considering both the gender
and career stage as predictors. Note: First three columns describe the model in terms of predictors of each parameter
(µ, σγ , and σε). Marg. Lik denotes the marginal likelihood, p(Mi) the prior model probability, and p(Mi | data) the
posterior model probability of each model.

µ σγ σε Marg. Lik. p(Mi) p(Mi | data)
Stage Stage Stage -7672.06 0.02 0.23
Stage Gender & Stage Stage -7672.15 0.02 0.21
Stage Stage Gender & Stage -7672.28 0.02 0.19
Stage Gender & Stage Gender & Stage -7673.39 0.02 0.06
Stage Gender Stage -7673.47 0.02 0.06

Gender & Stage Stage Stage -7673.77 0.02 0.04
Stage None Stage -7673.79 0.02 0.04

Gender & Stage Gender & Stage Stage -7673.87 0.02 0.04
Stage None Gender & Stage -7673.98 0.02 0.03

Gender & Stage Stage Gender & Stage -7673.99 0.02 0.03

An overall picture is provided using Bayesian model-averaging which combines estimates and evidence across all
models. We find weak evidence against difference in residual variance between the two gender groups, BFε,ε̄ =
1/1.82 = 0.55, however, we find very strong evidence for the difference between the two career stage groups in
residual variance, BFε,ε̄ = 1.09 × 1017. The model-averaged estimates of the residual standard deviation ratios are
0.98 (95% central credible interval: 0.91 – 1.00) for the two gender groups and 0.78 (0.74 – 0.83) for the two career
stage groups.

While the residual variance is a parameter of central importance for the assessment of measurement error and inter-
rater reliability, we may also derive from the results conclusions regarding structural variance, the mean, and regarding
between-group differences in these parameters. We find weak evidence against difference in structural variance be-
tween the two gender groups, BFγ̄,γ = 1/1.43 = 0.70, and we find moderate evidence for difference between the two
career stage groups, BFγ,γ̄ = 4.74. The model-averaged posterior mean estimates of the structural standard deviation
ratios are 0.96 (0.81 – 1.00) for the two gender groups and 0.85 (0.72 – 1.00) for the two career stage groups. We
find moderate evidence in favor of no difference in means by gender BFµ̄,µ = 1/0.18 = 5.57 and very strong evidence
for difference in mean by career stage BFµ,µ̄ = 1.24 × 1031. The model-averaged posterior mean estimates of the
differences in mean are −0.01 (−0.08 – 0.00) for the two gender groups, and −0.56 (−0.65 – −0.48) for the two
career stage groups.

Higher residual variance in the nonexperienced group is accompanied by only slightly higher structural variance, and
it leads to a somewhat lower IRR, see Table 11. Note that when only the models with no covariate effect on the mean
are considered, the structural variance in the nonexperienced group is higher, leading to higher IRR in this group, see
Table A4 in Appendix C.
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Table 11: Estimated Model-Averaged Marginal Means and 95% CI for Each of the Parameters.
Note: Exp – Experienced, nExp – Non-Experienced

Gender Stage µ σγ σε IRR
Female nExp 0.44 [0.37, 0.51] 0.63 [0.52, 0.73] 0.98 [0.93, 1.04] 0.29 [0.21, 0.37]

Male nExp 0.43 [0.37, 0.49] 0.60 [0.50, 0.68] 0.96 [0.91, 1.00] 0.28 [0.20, 0.34]
Female Exp -0.12 [-0.19, -0.05] 0.53 [0.47, 0.61] 0.76 [0.73, 0.81] 0.33 [0.27, 0.40]

Male Exp -0.13 [-0.20, -0.07] 0.51 [0.45, 0.56] 0.75 [0.72, 0.78] 0.32 [0.26, 0.37]

We further conducted a sensitivity analysis to assess how our conclusions would change if we specified different prior
distributions, i.e., tested different hypotheses. We used the two remaining prior distributions depicted in Figure 1; (1)
a more concentrated prior distribution around no effect with the standard deviation σ = 0.25 – testing for the presence
of smaller differences between the groups and (2) a wider prior distribution with standard deviation σ = 1 – testing
for the presence of larger differences between the groups.

We will only discuss here the residual variances, see Appendix B for more details. Between the two gender groups, we
found strong evidence for the absence of larger differences in the residual variances and no evidence supporting the
presence or the absence of small differences. For the groups segregated by career stage, we found very strong evidence
for presence of the effect, regardless of the specification of the alternative hypothesis. In other words, the data were
more consistent with no or small differences in residual variances between the two gender groups and there was clear
evidence in favor of differences in residual variances between the two career stage groups.

5 Discussion

In this work, we have presented a new flexible approach for assessing the IRR in cases where variance components,
depending upon covariates, are assumed to differ. We used mixed effect models with heterogeneous variances and
employed the Bayesian framework with Bayes factors and Bayesian model-averaging. In a simulation study, we com-
pared the methodology to other frequentist and Bayesian approaches and shown comparable or superior performace to
those of the other methods. More importantly, flexibility in the proposed methodology allows researchers to straight-
forwardly extend the presented models to cases with more covariates. Whereas Bayes factors can be used to select a
single model, researchers can further account uncertainty in the model structure with Bayesian model-averaging when
drawing inferences about either the presence or absence of the effect via inclusion.

The suggested methodology – Bayesian hypothesis testing and model-averaging – is, of course, not the only option
researchers can pursue. Authors with different philosophical views would advocate for different approaches, such as
estimation only or inference based upon confidence intervals (e.g., Cumming, 2014; Gelman & Hill, 2006). We prefer
the Bayesian hypothesis testing since we believe that Bayes factors (and likelihood ratio tests) are the only coherent
method of testing for the presence vs. absence of the effect. The problem with hypothesis testing based upon posterior
credible intervals (or p-values) is the assumption of either the presence (for credible intervals) or absence (for p-values)
of the effect at the onset of the analysis. In other words, it is impossible to provide evidence for/against an assumption
that is already taken for granted (e.g., Jeffreys, 1939).

The advantages of Bayesian hypothesis testing and model-averaging however come at an additional cost: the speci-
fication of prior distributions. Prior distributions are especially important upon the parameters of interest where they
define the hypotheses about the presence vs. the absence of an effect. Different prior distributions equal to different
hypotheses – different questions – being asked. Subsequently, different questions might lead to different answers (e.g.,
a one-sided vs. two-sided test). Nonetheless, as shown by the sensitivity analysis in Appendix B, similar prior distri-
butions correspond to similar questions which subsequently result in similar answers. To define a prior distribution,
researchers must be able to define the degree of effects they are interested in, see e.g., Johnson et al. (2010), Mikkola
et al. (2021), and O’Hagan et al. (2006) for detailed information about prior distribution elicitation.

The proposed method was further demonstrated when assessing IRR in a grant proposal peer-review with respect to
the applicant’s gender and career stage. The results suggested that the IRR is not likely dependent upon the gender
of the principal investigator, while it may be lower with a lower career stage. When demonstrated in this specific
example of grant peer review, it is worth noting the importance and the wide range of possible applications using the
proposed method. Our methods may be used to identify gaps in the IRR for various rating situations (applicant hiring
or promotion, classroom observation of teachers, journal peer-review, etc.) and with respect to the different types of
rater and ratee characteristics (dichotomous such as internal/external status, factors such as social status or marital
status, and continuous such as age).
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We also discussed how hypotheses regarding specific variance components may be addressed with the inclusion Bayes
factors. This is especially important because IRR is influenced by range restriction (Erosheva et al., 2021), meaning
that for a fixed residual variance, different values of IRR are obtained depending upon the structural variance. For
this reason, the difference between residual variances may be of greater interest than the difference in the IRR itself.
This aspect was also demonstrated with the NIH example by comparing the case of when the grand mean was allowed
to vary with covariates to the case of no covariate adjustment: In the latter case, the structural variance for the Non-
Experienced group was higher, leading to a somewhat higher IRR than in the Experienced group, while, when the
ratings accounted for the stage, the structural variance was somewhat lower for the Non-Experienced group, leading to
a somewhat lower IRR. Unlike IRR which provided contradictory conclusions, the inclusion Bayes factors provided
more coherent information and in both cases unanimously concluded there is a significant difference in the residual
variance and more error in the ratings from applicants in the Non-Experienced group.

Several limitations of the current study and possible directions for future research are worth mentioning: First, a
simulation study will always cover only a finite and rather limited number of parameter setups, and our simulation
study involved only one binary covariate. Nevertheless, the current simulation study was already extensive in terms
of the number of methods compared and the simulation time needed. Besides the computation time, some aspects of
the frequentist approaches would need to be solved. As an example, the parametrization is not straightforward in the
lme() and lmer() functions for cases involving additional covariates of variance components. The model selection
outlined in Appendix A also becomes more complicated with the addition of covariates of variance components and
the actual size of the entire space for possible models increases exponentially. Our real data examples show how a
model with one covariate can be applied to models with multiple covariates.

Secondly, we considered binary covariates only. However, our approach could be easily extended to other types of
covariates. For example, in the case of factors with multiple groups, one has to decide whether an ANOVA-like test for
at least one difference between the factor levels should be specified with orthonormal contrasts asserting that the prior
marginal levels are identical, making the levels interchangable (Rouder et al., 2012), or, whether a multiple treatments
vs control-like test should be specified with dummy coding, asserting that the control condition corresponds to the
grand mean and the coefficients for each treatment condition to differences / standard deviation ratios. Similarly,
priors on continuous covariates simply correspond to the unit change in the covariate, with the grand mean / variance
corresponding to the covariate value of 0, while the centering or re-scaling of the covariate prior to the analysis might
simplify the prior specification.

Thirdly, we considered only the simplest model with the ratee being the single structural source of error, while all
other possible sources of error (such as rater, occasion, etc.) were encompassed in the residual error. This model is
appropriate and widely used when most of the raters rate only a single ratee. In real-life applications, the hierarchy may
be more sophisticated (respondents nested within institutions, which themselves are nested within towns or countries),
and there may be more sources of error such as raters, so-called facets in the context of the Generalizability theory
(Brennan, 2001). Different generalizability and dependability coefficients may then be defined in such cases, and the
IRR of interest may need to be defined by more complex ratios with different interpretations. However, the cases of
heterogeneity would then be treated analogously, and the Bayesian approach suggested here would be easily applied
to more complex situations.

Regardless of the limitations, the study offers a flexible method for assessing the heterogeneity in IRR with respect
to rater and ratee characteristics. This may help identifying the subgroups with lower IRR and improving the IRR
of these groups and in general. This in turn may be of great importance to those designing the ratings and to policy
makers whose interest is to improve assessment systems and the selection processes.
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Appendix A: Model selection diagrams
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Figure A1: Diagram depicting the forward (left) and backward (right) stepwise selection procedures. Arrows visualize
the selection flow, nodes in wrapped in full line visualize the non-terminal steps, and nodes wrapped in dashed line
visualize the terminal steps.

Appendix B: Sensitivity to alternative prior distributions

For sensitivity analysis, we used the NIH grant proposal example with two covariates, discussed in Section 4.3. We
re-estimated the models under the two additional prior distributions depicted in Figure 1: (1) a tighter prior distribution
with σ = 0.25, specifying expectation of smaller differences between the groups and (2) a wider prior distribution with
σ = 1, specifying expectation of larger differences between the groups. Table A1 describes the resulting inclusion
Bayes factors under each parameterization and Table A2 describes the resulting model-averaged parameter estimates
under each parameterization. The results from the middle column are identical to those presented in Section 4.3.

Table A1: Inclusion Bayes Factors for Differences between the Groups for Each Parameter (Rows) across the Different
Prior Distribution Specifications.

Prior distribution setting σ = 0.25 σ = 0.50 σ = 1.00
Residual variances (σε)
Gender 0.96 0.55 0.31
Stage 2.00× 1017 1.09× 1017 7.84× 1016

Structural variances (σγ)
Gender 1.06 0.70 0.43
Stage 7.80 4.74 2.60
Mean (µ)
Gender 0.36 0.18 0.09
Stage 7.77× 1030 1.24× 1031 9.67× 1030

As expected, the different prior distributions had a noticeable effect on the degree of evidence either for/against the
differences in the means/standard deviation ratios. Table A1 suggests more evidence for the null hypotheses with
increasing standard deviation of the prior distribution, however, the qualitative conclusions remain essentially un-
changed. Evidence against the presence of differences in the residual variances was, at most, between weak and
moderate evidence, the later only under a prior distribution expecting large effects. The best performing models (not
displayed) are also similar under all model specifications, although the tightest prior distributions (σ = 0.25) included
both gender and stage as a predictor for the structural variances in the model with the highest posterior model proba-
bility (0.21) whereas the models with the medium (σ = 0.50) and wide (σ = 1.00) prior distributions included only
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Table A2: Posterior Model-Averaged Estimates (and 95% Credible Intervals) of Differences/Standard Deviation Ratios
between the Groups for Each Parameter (Rows) across the Different Prior Distribution Specifications.

Prior distribution setting σ = 0.25 σ = 0.50 σ = 1.00
Residual standard deviation ratio
Gender 0.97 (0.91 – 1.00) 0.98 (0.91 – 1.00) 0.99 (0.92 – 1.00)
Stage 0.78 (0.74 – 0.83) 0.78 (0.74 – 0.83) 0.78 (0.74 – 0.83)
Structural standard deviation ratio
Gender 0.95 (0.81 – 1.00) 0.96 (0.81 – 1.00) 0.97 (0.81 – 1.00)
Stage 0.84 (0.72 – 1.00) 0.85 (0.72 – 1.00) 0.87 (0.72 – 1.00)
Mean difference
Gender -0.01 (-0.10 – 0.00) -0.01 (-0.08 – 0.00) -0.00 (-0.07 – 0.00))
Stage -0.55 (-0.63 – -0.47) -0.56 (-0.65 – -0.48) -0.57 (-0.65 – -0.48)

stage for all three parameters in the model with the highest posterior model probability (0.23 and 0.34 respectively).
Most importantly, as suggested by Table A2, the posterior model-averaged estimates remain essentially unchanged
under the different prior distribution specifications.

Appendix C: Mean-unadjusted results for the NIH data

Here we present results assuming constant overall mean, i.e., restricting βµ in Equation 4 to 0, which corresponds
to evaluating variance components and IRR for the covariate unadjusted ratings. The best performing model sug-
gests differences in the structural and also in the residual variance for the two stage groups, but no effect of gender
(Table A3).

Table A3: Model Structure for the Best Performing Models in the NIH Data Set when Considering Both the Gender
and Career Stage as Predictors for Variance Components, and Assuming Constant Overall Mean. Note: First three
columns describe the model in terms of predictors of each parameter (µ, σγ , and σε). Marg. Lik denotes the marginal
likelihood, p(Mi) the prior model probability, and p(Mi | data) the posterior model probability of each model.

µ σγ σε Marg. Lik. p(Mi) p(Mi | data)
None Stage Stage -7743.49 0.06 0.44
None Stage Gender & Stage -7744.02 0.06 0.26
None Gender & Stage Stage -7744.11 0.06 0.24
None Gender & Stage Gender & Stage -7745.41 0.06 0.06

As in the covariate adjusted ratings (Section 4.3), we find a very strong evidence for the difference between the two
career stage groups in residual variance, BFε,ε̄ = 9.84 × 1016, and we find weak evidence against the difference in
residual variance between the two gender groups, BFε,ε̄ = 1/2.09 = 0.48. The model-averaged estimates of the residual
standard deviation ratios are 0.79 (0.75 – 0.83) for the two career stage groups and 0.98 (95% central credible interval:
0.92 – 1.00) for the two gender groups.

However, unlike in the case of covariate adjusted means presented in Section 4.3, for the structural variance, we find
very strong evidence for the difference between the two career stage groups, BFγ,γ̄ = 2.99 × 1016, with the model-
averaged posterior mean estimates of the structural standard deviation ratios of 0.79 (0.75 – 0.83) for the two career
stage groups.

The high values of structural variance in the Non-Experienced group subsequently lead to higher IRR values, see
Table A4.

Table A4: Estimated Model-Averaged Marginal Means and 95% CI for Each of the Parameters.
Note: Exp - Experienced, nExp – Non-Experienced

Gender Stage µ σγ σε IRR
Female nExp -0.06 [-0.09, -0.02] 0.81 [0.73, 0.91] 0.97 [0.93, 1.03] 0.41 [0.36, 0.47]

Male nExp -0.06 [-0.09, -0.02] 0.79 [0.71, 0.87] 0.95 [0.91, 0.99] 0.41 [0.35, 0.46]
Female Exp -0.06 [-0.09, -0.02] 0.53 [0.48, 0.60] 0.76 [0.73, 0.81] 0.33 [0.27, 0.39]

Male Exp -0.06 [-0.09, -0.02] 0.51 [0.47, 0.56] 0.75 [0.72, 0.78] 0.32 [0.27, 0.37]
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