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A POINCARÉ MAP FOR THE HOROCYCLE FLOW ON PSL(2,Z)\H AND THE

STERN-BROCOT TREE

CLAUDIO BONANNO, ALESSIO DEL VIGNA, AND STEFANO ISOLA

Abstract. We construct a Poincaré map Ph for the positive horocycle flow on the modular surface

PSL(2,Z)\H, and begin a systematic study of its dynamical properties. In particular we give a com-

plete characterisation of the periodic orbits of Ph, and show that they are equidistributed with respect to

the invariant measure of Ph and that they can be organised in a tree by using the Stern-Brocot tree of

rational numbers. In addition we introduce a time-reparameterisation of Ph which gives an insight into

the dynamics of the non-periodic orbits. This paper constitutes a first step in the study of the dynamical

properties of the horocycle flow by purely dynamical methods.

1. Introduction

Hyperbolic geometry has been a crucial ground for the development of important ideas of ergodic theory

since its inception. Geodesic flows on surfaces of constant negative curvature were the first non-trivial

examples of ergodic flows. In addition, several geometric coding techniques have been developed for such

flows, stemming from a 1898 work of J. Hadamard, later developed by M. Morse and G. Hedlund in the

1920s and 30s. Subsequently, interest also grew in the study of positive and negative horocycle flows, which

move respectively along the stable and unstable manifolds for the geodesic flow. More concretely, these types

of flow move tangent vectors sideways along the horocycle whose center is in the direction of the tangent

vector.

The geodesic flow is also one of the first systems for which coding was used to study its dynamical

properties. It was E. Artin in the 1920s who noticed that by coding a geodesic on the hyperbolic Poincaré

half-plane H by means of the continued fraction expansions of its end points, it was possible to deduce

the existence of periodic and everywhere dense geodesic on the modular surface M := PSL(2,Z)\H. This

observation was later developed in the 80s in papers by R. L. Adler and L. Flatto, and by C. Series (see

[1, 21]). Nowadays it is a classical result that the geodesic flow on the unit tangent bundle of the modular

surface SM has a Poincaré section for which the associated Poincaré map has a factor map on one of the

coordinates which is the Gauss map. This connection has been very useful in the study of the rich dynamics

of the geodesic flow, and has brought to connections between different aspects of the two systems, such as S.

G. Dani’s correspondence ([8]) between Diophantine approximation properties and the behaviour of certain

orbits of the geodesic flow on the modular surface, and the D. H. Mayer’s correspondence ([15]) between the

Selberg Zeta function and the dynamical zeta function of the Gauss map.

Many dynamical properties have been studied also for the (positive/negative) horocycle flow on surfaces

of constant negative curvature (see e.g. [9]). In particular it is known that the dynamics is less rich than

that of the geodesic flow. In the case of the modular surface M, the only invariant measures on SM are

the hyperbolic volume form and the measures supported on the periodic orbits. Instead in the case of
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compact surfaces, the horocycle flow is uniquely ergodic and has no periodic orbits. Finer and quantitative

ergodic properties are also known: the rigidity of the flow and its rate of mixing have been studied by M.

Ratner ([17, 18]); in the case of the modular surface, the periodic orbits are known to be asymptotically

equidistributed on SM ([20, 12, 22]); the Birkhoff averages of suitably regular observables have been proved

to have a polynomial rate of convergence ([10, 19]). However the beautiful results that we have recalled have

been obtained by methods of harmonic analysis and representation theory. A notable exception is given by

an equidistribution result for long periodic orbits in [22], which is proved by ergodic methods but does not

contain an estimate for the rate of convergence.

The main objective of this work is to construct a Poincaré map for the positive horocycle flow on the unit

tangent bundle SM, and begin a systematic study of its properties. We believe that this paper represents

a first step in the study of the dynamical properties of the horocycle flow without using other structures of

the modular surface. First of all we work in the same framework used to approach the geodesic flow. We

define a Poincaré map Ph for the positive horocycle flow using a cross-section with respect to which the

geodesic flow has a Poincaré map whose factor map on the first coordinate is the extended Farey map, the

slow version of the Gauss map (see Appendix B). We obtain a map Ph which is defined on a two-dimensional

set W homeomorphic to R+ × R+, whose action on the first coordinate is defined in terms of matrices in

SL(2,Z), and preserves an infinite measure ν which is absolutely continuous with respect to the Lebesgue

measure (the same holds for the Poincaré map of the geodesic flow). The map Ph is defined in Section 4,

in which we also give the explicit expression of the first return time function to the cross-section along the

horocycle flow, thus constructing a suspension flow isomorphic to the horocycle flow on SM. Let us stress

that it is a suspension flow on a system preserving an infinite measure, thus its ergodic properties, such as

mixing, need to be studied by the results of infinite ergodic theory.

In Section 5 we study the periodic points of Ph. Without appealing to known results, we give a complete

characterisation of the periodic points. We prove that there exists a one-parameter family of periodic points

which are characterised by having the first coordinate in Q+ (Theorem 5.8), and show that the periodic

orbits are asymptotically equidistributed on W with respect to the invariant measure ν (Theorem 5.11).

The behaviour of the periodic points may be studied also by looking at their rational coordinate. Using

the Stern-Brocot tree, which is a binary tree containing all the rational numbers in Q+, we construct an

algorithm to obtain all the points in a periodic orbit and to list them in the dynamical order (see Appendix

C). It is immediate to realise that as the period of the orbit diverges, the rational coordinates of the points

in the periodic orbit cover all the positive rational numbers.

Lastly, in Section 6 we study the behaviour of the non-periodic orbits. We show that there exists a

time-reparameterization Th of Ph which has factor map on the first coordinate isomorphic to the so-called

backward continued fraction map, whereas the second coordinate of Th is strictly increasing for non-periodic

orbits. This can be interpreted as a proof of the existence of a subsequence of times along which the

non-closed horocycles converge to the cusp of M.

Let us remark that as far as we know the only other Poincaré maps for the horocycle flow on the modular

surface which have been constructed are those in [4] (see also [13]) and in the recent [14]. These maps use a

cross-section defined in terms of the identification of SH with the space of unimodular lattices. In Section 7

we discuss the relations with the construction in [4].

Before getting into the construction of the Poincaré map Ph in Section 4, we collect what the reader needs

to know about the properties of the Stern-Brocot tree in Section 2 and about the modular surface M in

Section 3.
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2. Stern-Brocot trees of positive rational numbers

In this section we recall the Stern-Brocot tree and its permuted versions, binary trees which contain all

the positive rational numbers in their reduced form exactly once. Farey sum of two fractions, defined to be

a

c
⊕ b

d
:=

a+ b

c+ d
.

The Farey sum is used to generate all the positive fractions. Let 1/0 denote the “fraction” of infinity, and

let F−1 = {0/1, 1/0}. Then for k ≥ 0 we recursively define the Stern-Brocot sets Fk as the set of fractions

containing Fk−1 and the Farey sum of two consecutive fractions in Fk−1. In each set the fractions are arranged

in increasing order. Recall that the Farey sum of two fractions a/c and b/d satisfies a/c < a/c⊕ b/d < b/d.

Thus we find

F0 =

{

0

1
,
1

1
,
1

0

}

, F1 =

{

0

1
,
1

2
,
1

1
,
2

1
,
1

0

}

, F3 =

{

0

1
,
1

3
,
1

2
,
2

3
,
1

1
,
3

2
,
2

1
,
3

1
,
1

0

}

,

and so on. We call Farey pair two consecutive fractions in a Stern-Brocot set. In the following we use that

a Farey pair p/q, p′/q′ with p/q < p′/q′ satisfies p′q − q′p = 1.

2.1. The Stern-Brocot tree. The Stern-Brocot sets are a strictly increasing sequence of sets which even-

tually contain all positive rational numbers in reduced form. One can then arrange the fractions in a binary

tree, the Stern-Brocot tree T , according to the order they appear in the Stern-Brocot sets. Figure 1 shows

the first few levels of the Stern-Brocot tree. The fractions 0/1 and 1/0 are the generators of all the fractions,

hence they constitute the first level of the tree, T−1. Then the level T0 is given by 1/1 the only fraction in

F0 \ F−1. Recursively, the k-th level Tk of the tree is given by the fractions in Fk \ Fk−1. The fractions are

arranged in increasing order, and each is connected to a fraction of the previous level. It is clear by definition

of the Stern-Brocot sets that each fraction p/q in Fk which is not in Fk−1 is the Farey sum of two fractions

a/c, b/d in Fk−1, of which exactly one, say a/c, is in the level Tk−1 of the Stern-Brocot tree. In this case we

say that a/c is a parent of p/q, which in turn is the daughter of a/c. In addition, all fractions in a level Tk,
excluding 0/1 and 1/0, have two daughters in Tk+1. This induces a natural notion of sisters fractions, two

fractions which have a parent in common.

0
1

1
0

T−1

T0

T1

T2

T3

T4

1
1

1
2

1
3

1
4

1
5

2
7

2
5

3
8

3
7

2
3

3
5

4
7

5
8

3
4

5
7

4
5

2
1

3
2

4
3

5
4

7
5

5
3

8
5

7
4

3
1

5
2

7
3

8
3

4
1

7
2

5
1

Figure 1. The first six levels of the Stern-Brocot tree.

The structure of binary tree of T makes it possible to code each fraction p/q by the path one has to follow

on T from the root 1/1 to p/q by using L for left and R for right to denote the motion from a fraction to
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the left and to the right daughter respectively. Analogously, using the matrices in SL(2,Z)

I =

(

1 0

0 1

)

, L =

(

1 0

1 1

)

, R =

(

1 1

0 1

)

one can set
1

1
↔ I and

p

q
↔ M

(

p

q

)

∈ {L,R}∗

where a motion on the tree corresponds to right multiplication by L if we move to the left and by R if we

move to the right. In this way

p

q
↔ M

(

p

q

)

=

(

a b

c d

)

∈ SL(2,Z) and
p

q
=

a

c
⊕ b

d
,

so that p = a+ b and q = c+ d.

Example 2.1. We have

1

1
↔ M

(

1

1

)

= I ,
1

2
↔ M

(

1

2

)

= L ,
2

1
↔ M

(

2

1

)

= R ,

and thus for example

5

8
↔ M

(

5

8

)

= LRLR =

(

2 3

3 5

)

and
5

8
=

2

3
⊕ 3

5
.

This coding can be extended to all x ∈ R+ by using the continued fraction expansion of an irrational number

and its slow convergents {Ak/Bk}k, so that

R \Q ∋ x ↔ M(x) ∈ {L,R}N and M(x) = lim
k→∞

M

(

Ak

Bk

)

.

Remark 2.2. Note that using this coding

x ∈ [0, 1) ⇔ M(x) = L · · · and x ∈ (1,∞) ⇔ M(x) = R · · ·

2.2. The permuted Stern-Brocot tree. Starting from T and the {L,R} coding of the fractions, the

permuted Stern-Brocot tree T̂ is obtained from the Stern-Brocot tree T by moving each fraction to the

position reached by the motions of its coding on T as read from right to left. Figure 2 shows the first few

levels of the the permuted Stern-Brocot tree. For example, since

2

3
↔ M

(

2

3

)

= LR

the fraction 2/3 can be reached in T̂ by the motions RL, that is starting from 1/1 we first go downward to

the right and then downward to the left. This sequence of motions describes the new position of 2/3 in T̂ .

Given a finite word w = (w1w2 · · ·wn−1wn) let ŵ denote its reverse, that is ŵ = (wnwn−1 · · ·w2w1). Then

M̂ denotes the reverse sequence of motions of a rational number, that is M̂(p/q) is the reverse of the word

M(p/q), so that looking at the examples we have considered above we have

M̂

(

2

3

)

= RL and M̂

(

5

8

)

= RLRL .

The following lemma can be proved by using some results in [5]. For completeness we give a proof in

Appendix A.

Lemma 2.3. The matrices M(p/q) and its reverse M̂(p/q) satisfy the following relation

M

(

p

q

)

=

(

a b

c d

)

⇔ M̂

(

p

q

)

=

(

d b

c a

)

.
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Figure 2. The first six levels of the permuted Stern-Brocot tree.

It is interesting to notice that T̂ is strictly related to the extended Farey map U : R+ → R+

U(x) :=







x

1− x
if 0 ≤ x < 1

x− 1 if x ≥ 1
. (2.1)

Indeed, given p/q its daughters in T̂ are p/(p+q) and (p+q)/q which correspond to the elements of U−1(p/q).

In Appendix B the map U will pop up as the factor map on the first coordinate of the Poincaré map for

the geodesic flow with respect to a section C (to be defined below) on the unit tangent SM of the modular

surface. For more details about the Stern-Brocot trees and their relations with one-dimensional maps we

refer to [7].

3. Preliminaries from hyperbolic geometry

We shall consider the upper half-plane

H := {z = x+ iy : x, y ∈ R, y > 0}

with the hyperbolic metric ds2 = (dx2 + dy2)/y2, so that H becomes a Riemannian manifold with constant

negative curvature −1. The boundary of the hyperbolic plane is ∂H = R ∪ {∞}, where we have set R :=

{x+ iy : y = 0}. Given Γ ∈ SL(2,R) we let Γ : H → H act as a Möbius transformation

Γ =

(

a b

c d

)

, Γ(z) =
az + b

cz + d
.

As the action of Γ and −Γ coincide, the group of orientation preserving isometries of H is taken to be

PSL(2,R) = SL(2,R)/{±I}. An important quantity related to a matrix Γ ∈ SL(2,R) is its deformation

factor at a point z, which we denote by def (Γ(z)) and is given by

Γ =

(

a b

c d

)

, def (Γ(z)) :=
d

dz
Γ(z) = (cz + d)−2 (3.1)

The deformation factor of a matrix is related to its lift as an action on the tangent bundle of H.

Let us denote by ζ ∈ TzH the tangent vectors to H at the point z, then to each tangent vector ζ we associate

the angle θ(ζ) ∈ (−π, π], which is the angle between ζ and the positive y-axis measured counterclockwise
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from the y-axis. The unit tangent bundle SH can be identified with PSL(2,R), to the effect that for each

(z, ζ) ∈ SH there exists a unique Γ(z,ζ) ∈ PSL(2,R) such that

z = Γ(z,ζ)(i) and ζ = di(Γ(z,ζ))(i), (3.2)

where i ∈ TiH is the unit vector based at i ∈ H with θ(i) = 0. Note that using the lift (Γ(z,ζ))∗ of Γ(z,ζ) to

SH, we can restate the above conditions as (z, ζ) = (Γ(z,ζ))∗(i, i).

3.1. Geodesic and horocycle flow on SH. As it is well known, the geodesics of H are the half lines

orthogonal to ∂H and the half circles with center on ∂H. Given (z, ζ) in the unit tangent bundle SH, we

denote by γz,ζ(t) the (unique) geodesic tangent to ζ at z and set

γ±
z,ζ := lim

t→±∞
γz,ζ(t) ∈ ∂H.

Note that γ+
z,ζ = ∞ if and only if θ(ζ) = 0, and γ−

z,ζ = ∞ if and only if θ(ζ) = π. In these two cases

the geodesic is a vertical half line with the other limit point on R. The geodesic flow is defined as the

one-parameter group gt acting on the unit tangent bundle SH as

gt : SH → SH, gt(z, ζ) = (γz,ζ(t), γ
′
z,ζ(t)),

where γ′
z,ζ(t) is the unit tangent vector to the geodesic at γz,ζ(t). Thanks to the identification of SH

with PSL(2,R), we can read the geodesic flow on SH as the action by right multiplication of matrices in

PSL(2,R). In particular, for t ∈ R

Γgt(z,ζ) = Γ(z,ζ)

(

et/2 0

0 e−t/2

)

. (3.3)

One defines the horocycle flow analogously. Let W+(z, ζ) denote the positive horocycle at (z, ζ). If θ(ζ) 6= 0,

the horocycle W+(z, ζ) is the circle tangent to R at γ+
z,ζ , passing at z and orthogonal to ζ, with ζ pointing

inward. In this case we denote by r+(z, ζ) its radius. If instead θ(ζ) = 0, then W+(z, ζ) is a horizontal line

passing at z with ζ pointing upward. The (positive) horocycle flow is defined as the one-parameter group

h+
s on SH which moves vectors orthogonal to W+(z, ζ) rightward on W+(z, ζ) at unit speed. In terms of

PSL(2,R) matrices, for all s ∈ R

Γh+
s (z,ζ) = Γ(z,ζ)

(

1 s

0 1

)

. (3.4)

Thanks to the reinterpretation of the flow action by right multiplication of matrices, it is straightforward to

verify the following commutation rules:

gt ◦ gs = gs ◦ gt and gt ◦ h+
s = h+

se−t ◦ gt , ∀ t, s ∈ R

3.2. The modular surface. We now consider the modular group PSL(2,Z), that is the subgroup of

PSL(2,R) generated by the two matrices

S :=

(

0 1

−1 0

)

and R :=

(

1 1

0 1

)

.

which act on H as

S(z) = −1

z
and R(z) = z + 1

Since S2 = (SR)3 = I the modular group is not free.

The modular surface is then defined to be the quotient M := PSL(2,Z)\H, with the quotient topology. The

standard fundamental domain F for M is the geodesic polygon

F =

{

z = x+ iy ∈ H : |x| ≤ 1

2
, |z| ≥ 1

}

.
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The identification of SH with PSL(2,R) implies that of SM with PSL(2,Z)\PSL(2,R). Let π : H → M
be the projection on the modular surface and let π∗ : SH → SM be its lift to the unit tangent bundles.

We let g̃t : SM → SM and h̃+
s : SM → SM be the projection of the geodesic and horocycle flows on the

modular surface, that is

g̃t = π∗ ◦ gt ◦ π−1
∗ and h̃+

s = π∗ ◦ hs ◦ π−1
∗ .

Motion on a geodesic or on a horocycle on M corresponds to the motion on one of the equivalent geodesics

or horocycles on H, up to identification of equivalent points.

4. The Poincaré map for the horocycle flow and its suspension

Given n ∈ Z let In denote the vertical line in H given by

In = {x+ iy ∈ H : x = n}

and let

I+ := I0 ∩ F = {z ∈ H : x = 0, y ≥ 1} and I− := I0 \ I+ = {z ∈ H : x = 0, 0 < y < 1}

Our Poincaré section for the geodesic and the horocycle flows on SM will be the set

C :=
{

(z, ζ) ∈ SM : z ∈ I+, θ(ζ) 6= 0, π
}

Set moreover C := {(z, ζ) ∈ SH : π∗(z, ζ) ∈ C}. Since S(i) = i and S(I+ \ {i}) = I−, whereas its lift

S∗ : SH → SH satisfies

θ(S∗(z, ζ)) = θ(ζ) + π (mod 2π) ∀ (z, ζ) ∈ SH with z ∈ I0,

for each (z, ζ) ∈ C there exists (z′, ζ′) ∈ SH with z′ ∈ I0 and θ(ζ′) ∈ (−π, 0) such that π∗(z′, ζ′) = (z, ζ).

Hence in the following we identify C with the set of points on I0 with tangent unit vector ζ pointing towards

the half-plane of points with strictly positive real part, in accordance with

C = π∗
(

{(z, ζ) ∈ SH : z ∈ I0 , θ(ζ) ∈ (−π, 0)}
)

, (4.1)

Stated otherwise, when we write (z, ζ) ∈ C we think of it as a couple with z ∈ I0 and θ(ζ) ∈ (−π, 0).

Analogously we set

C = {(z, ζ) ∈ SH : ∃Γ ∈ PSL(2,Z) such that Γ(z) ∈ I0 , θ(Γ∗(z, ζ)) ∈ (−π, 0)} . (4.2)

Subsets of C which play an important role in the rest of the paper are points with base on the lines In and

on the half-circles

Jn :=

{

x+ iy ∈ H :

(

x− n− 1

2

)2

+ y2 =
1

4

}

.

Note that In = Rn(I0) and Jn = RnL(I0), where

L :=

(

1 0

1 1

)

∈ PSL(2,Z)

acts on H by L(z) = z/(z + 1).

Note moreover that for each n ∈ Z the lines In, Jn and In+1 are the sides of the hyperbolic triangle

∆n :=

{

x+ iy ∈ H : n ≤ x ≤ n+ 1,

(

x− n− 1

2

)2

+ y2 ≥ 1

4

}

with vertices in n, n+ 1 ∈ R and ∞ (each ∆n contains three copies of the fundamental domain F).
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We now proceed with the construction of the Poincaré map on C for the horocycle flow h̃+
s for negative

times s (the Poincaré map on C for the geodesic flow g̃t is already known, but we remind its construction in

Appendix B). Let’s start by defining the set

W :=
{

(γ, r, ε) ∈ R+ × R+ × {−1, 0,+1} : r ≥ γ, ε = 0 if and only if r = γ
}

which is homeomorphic to R+ × R+. Now, for each (z, ζ) ∈ C the positive horocycle W+(z, ζ) is tangent

to R at γ+
z,ζ and intersects I0. Its radius thus satisfies r+(z, ζ) ≥ γ+

z,ζ , with strict inequality if and only if

W+(z, ζ) intersects I0 in two different points. We can therefore code (z, ζ) ∈ C using its horocycle W+(z, ζ)

by a point in W by setting

γ := γ+
z,ζ , r := r+(z, ζ), and ε =















−1 if θ(ζ) ∈ (−π/2, 0)

0 if θ(ζ) = −π/2

+1 if θ(ζ) ∈ (−π,−π/2)

.

The variable ε is equal to 0 if the horocycle W+(z, ζ) is tangent to I0 at z, whereas is equal to 1 or to −1

if z is the point of intersection of W+(z, ζ) with I0 of highest, respectively lowest, variable y. We have thus

defined a map

W : C → W , (z, ζ) 7→ W(z, ζ) = (γ+
z,ζ , r

+(z, ζ), ε). (4.3)

Given (z, ζ) ∈ C let us consider the horocycle flow h̃+
s (z, ζ) for s ∈ (−∞, 0), and let (z′, ζ′) be its first return

to C. We can thereby view the Poincaré map of h̃+
s on C as a map

Ph : W → W

(γ, r, ε) = W(z, ζ) 7→ Ph(γ, r, ε) = (γ′, r′, ε′) = W(z′, ζ′) .

It is clear that (z′, ζ′), viewed as a point of the set C (with slight abuse of notation), depends on the

configuration of W+(z, ζ) and on the value of ε (see Figures 3 and 4 below). In particular the first return

to C for h̃+
s with negative s occurs on one of the following sets: J−1, I−1 or I0 if ε = −1; I1, I2 or J0 if

ε = 0,+1 (here we are using that θ(ζ′) 6= −π). Then W+(z′, ζ′) will be the positive horocycle defined by

(z′, ζ′) as a point in C. If Γ ∈ PSL(2,Z) sends z′ ∈ C to I0, that is Γ(z′) ∈ I0 is the representative of z′ in

C, then W+(z′, ζ′) = Γ(W+(z, ζ)).

Our aim is now to describe the map Ph on the points of W, also in relation with the {L,R} coding of

γ ∈ R+ introduced in Section 2. The following lemma is a key result in order to characterize the map Ph in

dependence on the subset of C on which the first return occurs.

Lemma 4.1. For (z, ζ) ∈ C, let (γ, r, ε) = W(z, ζ). If the first return to C for h̃+
s with negative s along

W+(z, ζ) occurs on Γ−1(I0) for some Γ ∈ PSL(2,Z), then (γ′, r′, ε′) = Ph(γ, r, ε) satisfies

γ′ = Γ(γ) and r′ = def (Γ(γ)) r ,

where def (Γ(·)) is the deformation factor defined in (3.1).

Proof. The statement for γ′ simply follows from W+(z′, ζ′) = Γ(W+(z, ζ)) whenever the first return occurs

on Γ−1(I0). Let us now see how the radius of the positive horocycle W+(z, ζ) changes when when a matrix

in PSL(2,Z) acts on it. We first consider the action of the generators R and S. If Γ ∈
{

R,R−1
}

then the

horocycle Γ(W+(z, ζ)) is obtained by just translating W+(z, ζ) to the right or to the left. Therefore the

radius does not change, and def (Γ(z)) = 1 for all z. If, on the other hand, Γ = S = S−1, one easily checks

that x+ iy ∈ W+(z, ζ), a circle of radius r and center at γ + ir, if and only if (x− γ)2 + y2 − 2ry = 0, and

S(x+ iy) = X+ iY satisfies (X−γ′)+Y 2−2r′Y = 0 with γ′ = −1/γ and r′ = r/γ2. Since def (S(γ)) = γ−2

the result is proven also in this case. The general case now follows by noting that

def (Γ1Γ2(z)) = def (Γ1(Γ2(z))) def (Γ2(z))

for all z and all Γ1,Γ2 ∈ PSL(2,Z). �

8



The following tables describe the different cases that have to be considered to define Ph on W, providing

the following information: the subset of C on which the first return occurs; the matrix Γ as in Lemma 4.1;

the image (γ′, r′, ε′) = Ph(γ, r, ε) computed using the lemma along with simple arguments for ε′; the word

M(γ′) ∈ {L,R}∗ as a function of M(γ) as defined in Section 2, using the notation σ : {L,R}∗ → {L,R}∗
for the shift map.

We start with the case ε = +1, for which we refer to Figure 3. We need to distinguish between the cases

γ > 1 and γ < 1. In the first case the first return occurs on I1, but in the last case it may occur on I1 or J0

depending on the value of the radius r of the horocycle. The case γ = 1 is special because the case θ(ζ′) = 0

is not admissible for points in C. The different possibilities are described in Table 1. We remark that in

some circumstances it is necessary to add the action of S to have θ(ζ′) in the interval (−π, 0). Moreover

the action on M(γ) has been computed by concatenation of the letters describing Γ and M(γ), using some

relations among the matrices such as SR−1 = RL−1.

Conditions on γ and r First return Γ Ph(γ, r, ε) M(γ′)

γ > 1 I1 R−1 (γ − 1, r,+1) σ(M(γ))

γ = 1 I2 SR−2 (1, r,−1) M(γ)

γ < 1, r > 1− γ I1 SR−1
(

1
1−γ ,

r
(1−γ)2 ,−1

)

Rσ(M(γ))

γ < 1, r = 1− γ I1 SR−1
(

1
1−γ ,

1
1−γ , 0

)

Rσ(M(γ))

γ < 1, r < 1− γ J0 L−1
(

γ
1−γ ,

r
(1−γ)2 ,+1

)

σ(M(γ))

Table 1. Definition of the map Ph for ε = +1.

In the case ε = −1, following h̃+
s with s negative, the points slide on the negative abscissa half-plane, so the

first return may occur on J−1 or on I−1, or back on I0 (see Figure 4). The different possibilities are described
in Table 2. In this case note that r ∈ (1 + γ, γ(1 + γ)) is possible only when γ > 1, and it corresponds to

the only situation for which the return occurs on I−1, since the horocycle does not intersect J−1 but does

intersect I−1.

Conditions on γ and r First return Γ Ph(γ, r, ε) M(γ′)

r > γ(1 + γ) J−1 L
(

γ
1+γ ,

r
(1+γ)2 ,−1

)

LM(γ)

r = γ(1 + γ) J−1 L
(

γ
1+γ ,

γ
1+γ , 0

)

LM(γ)

γ > 1, 1 + γ < r < γ(1 + γ) I−1 R (γ + 1, r,−1) RM(γ)

γ > 1, r = 1 + γ I−1 R (γ + 1, γ + 1, 0) RM(γ)

r < min{1 + γ, γ(1 + γ)} I0 I (γ, r,+1) M(γ)

Table 2. Definition of the map Ph for ε = −1.

It remains to describe the case ε = 0. In this case we necessarily have r = γ and everything works analogously

to the case ε = +1. See Table 3.

Having constructed the map (W,Ph), we now proceed to construct the associated suspension flow. Let

(z, ζ) ∈ C and (γ, r, ε) := W(z, ζ). The first return of the horocycle flow h̃+
s along W+(z, ζ) for negative

times s occurs at a time sh(z, ζ) < 0, which can accordingly be written as a function sh(γ, r, ε). Set

Σh := {(γ, r, ε, ξ) ∈ W× R : sh(γ, r, ε) ≤ ξ ≤ 0}
and use the map Ph to define the flow φs : Σh → Σh by

φs(γ, r, ε, ξ) =

{

(γ, r, ε, ξ + s) if sh(γ, r, ε) < ξ + s ≤ 0

(Ph(γ, r, ε), 0) if ξ + s = sh(γ, r, ε)
. (4.4)
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−1 0 1 2− 1
2

1
2

I−1 I0 I1 = R(I0) = RS(I0) I2 = R2S(I0)

J−1 J0

•
γ

(z, ζ)

(z′, ζ′)

•
γ

(z, ζ)
(z′, ζ′)

•
γ

(z, ζ) (z′, ζ′)

Figure 3. Action of the first return map Ph for ε = +1. The red horocycle has γ < 1 and r > 1 − γ, so that the first

return occurs on I1; the blue horocycle has γ < 1 and r < 1 − γ, so that the first return occurs on J0; the green horocycle

has γ = 1 so that the first return occurs on I2.

Conditions on γ and r First return Γ Ph(γ, r, ε) M(γ′)

γ = r > 1 I1 R−1 (γ − 1, γ,+1) σ(M(γ))

γ = r = 1 I2 SR−2 (1, 1, 0) M(γ)
1
2 < γ = r < 1 I1 SR−1

(

1
1−γ ,

γ
(1−γ)2 ,−1

)

Rσ(M(γ))

γ = r = 1
2 I1 SR−1 (2, 2, 0) Rσ(M(γ))

γ = r < 1
2 J0 L−1

(

γ
1−γ ,

γ
(1−γ)2 ,+1

)

σ(M(γ))

Table 3. Definition of the map Ph for ε = 0.

We made explicit the flow for s negative, the case s positive is defined analogously as Ph is an invertible

map. The next Proposition summarizes some basic ergodic properties of the dynamical systems (W,Ph) and

(Σh, φs).

Proposition 4.2. (i) The map Ph : W → W preserves the infinite measure ν which is absolutely continu-

ous with respect to the Lebesgue measure on W with density k(γ, r, ε) = r−2.

(ii) The flow φs : Σh → Σh preserves the measure ν̃ which is absolutely continuous with respect to the

Lebesgue measure on Σh with density k̃(γ, r, ε, ξ) = r−2. Moreover ν̃(Σh) = 4π2/3.

(iii) The dynamical system (Σh, ν̃, φs) is isomorphic to the system (SM, m̃, h̃+
s ), where m̃ is the projection

on SM of the Liouville measure dm(x, y, θ) = y−2 dx dy dθ on SH, with z = x+ iy and θ = θ(ζ).

Proof. Given (z, ζ) ∈ SH with θ(ζ) 6∈ {0, π}, consider its coordinates (γ, r, ξ) defined as γ = γ+
z,ζ , r = r+(z, ζ)

being the radius of the horocycle W+(z, ζ), and ξ ∈ R such that (z, ζ) = h+
ξ (z

′, ζ′) where z′ is the point in
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−1 0 1 2− 1
2

1
2

I−1 I0 I1 = R(I0) = RS(I0) I2 = R2S(I0)

J−1

J0

•
γ

(z, ζ)

(z′, ζ′)

•
γ

(z, ζ)

(z′, ζ′)

•
γ

(z, ζ)

(z′, ζ′)

Figure 4. Action of the first return map Ph for ε = −1. The red horocycle has γ < 1 and r > γ(1 + γ), so that the first

return occurs on J−1; the blue horocycle has γ > 1 and 1 + γ < r < γ(1 + γ), so that it does not intersect J−1 and thus

the first return occurs on I−1; the green horocycle has γ < 1 and r < min{1 + γ, γ(1 + γ)}, so that the first return occurs

on I0.

W+(z, ζ) with maximum value of the y component. We obtain the following expressions for the coordinates

(x, y, θ) of (z, ζ), where z = x+ iy and θ = θ(ζ):

x(γ, r, ξ) = γ − 2rξ

ξ2 + 1
, y(γ, r, ξ) =

2r

ξ2 + 1
, θ(γ, r, ξ) = −2 arctan

1

ξ
. (4.5)

From (4.5) it follows that the Liouville measure dm(x, y, θ) = y−2 dx dy dθ becomes

dm(γ, r, ξ) =
1

2 r2
dγ dr dξ

in the coordinates (γ, r, ξ), and we set dν̃ = r−2dγdrdξ. Moreover by the definition of ξ, the horocycle flow

h+
s acts in the coordinates (γ, r, ξ) simply by translation on ξ, that is

h+
s (γ, r, ξ) = (γ, r, ξ + s) .

These facts, together with m̃(SM) = 2π2/3, prove (ii) and (iii). Finally (i) follows from (ii). �

Let us calculate an explicit expression for the return time sh(γ, r, ε). From Lemma 4.1 it follows that

sh(γ, r, ε) is the time spent by flowing along the horocycle until its intersection with the right representative

of I0. Now, by the identification of SH with PSL(2,R) (see (3.2)), the map W can be defined also as a map
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from PSL(2,R) to W. In particular

(z, ζ) = W−1(γ, r, ε) ⇒ Γ(z,ζ) =







γ√
2r

− r+ε
√

r2−γ2

√
2r

1√
2r

r−ε
√

r2−γ2

γ
√
2r






. (4.6)

Proposition 4.3. For (z, ζ) = W−1(γ, r, ε) ∈ C with z ∈ I0 and θ(ζ) ∈ (−π, 0), let Γ(z,ζ) ∈ PSL(2,R) be

as in (4.6). Assume that the first return to C for h̃+
s with negative s along W+(z, ζ) occurs on Γ−1(I0) with

Γ ∈ PSL(2,Z), and set (γ′, r′, ε′) = Ph(γ, r, ε) and (z′, ζ′) = W−1(γ′, r′, ε′). Write also the corresponding

matrix Γ(z′,ζ′) in the form (4.6). Then sh(γ, r, ε) satisfies the equation
(

1 sh(γ, r, ε)

0 1

)

= Γ−1
(z,ζ) Γ

−1 Γ(z′,ζ′) .

Proof. The horocycle flow is represented by the right action of matrices in PSL(2,R) as in (3.4). Hence

Γh+
sh(γ,r,ε)

(z,ζ) = Γ(z,ζ)

(

1 sh(γ, r, ε)

0 1

)

.

In addition, if the first return to C occurs on Γ−1(I0) at the point Γ−1(z′, ζ′), we have

Γh+
sh(γ,r,ε)

(z,ζ) = Γ−1Γ(z′,ζ′) .

This concludes the proof. �

Using the above Proposition along with Tables 1, 2, 3, and Equation (4.6), we can make the form of sh(γ, r, ε)

explicit for all (γ, r, ε) ∈ W. By means of the functions

u(γ, r, ε) := −ε

√

r2 − γ2

γ
, v(γ, r, ε) := ε

r

γ
, δ(γ, r, ε) := δ0(ε) , (4.7)

where δ0(·) takes the value 1 at 0, and vanishes elsewhere, we get the expressions collected in the following

two tables. One may readily check that sh(γ, r, ε) < 0 for all (γ, r, ε) ∈ W and also sh ∈ L1(W, ν), so that

the (Σh, ν̃) as defined in Proposition 4.2 is a finite measure space.

Conditions on γ and r sh(γ, r, ε)

r < 1− γ ((u − v) ◦ Ph)(γ, r, ε)− (u− v)(γ, r, ε) + (δ ◦ Ph + δ)(γ, r, ε)

r ≥ 1− γ ((u + v) ◦ Ph)(γ, r, ε)− (u+ v)(γ, r, ε)− (δ ◦ Ph + δ)(γ, r, ε)

Table 4. The return time sh for ε ∈ {0,+1} in terms of the functions defined in (4.7).

Conditions on γ and r sh(γ, r, ε)

r < min{1 + γ, γ(1 + γ)} (u ◦ Ph − u)(γ, r, ε)

1 + γ ≤ r < γ(1 + γ) ((u − v) ◦ Ph)(γ, r, ε)− (u− v)(γ, r, ε) + (δ ◦ Ph + δ)(γ, r, ε)

r ≥ γ(1 + γ) ((u + v) ◦ Ph)(γ, r, ε)− (u+ v)(γ, r, ε)− (δ ◦ Ph + δ)(γ, r, ε)

Table 5. The return time sh for ε = −1 in terms of the functions defined in (4.7).

Remark 4.4. The expressions for the return time sh(γ, r, ε) displayed in Table 4 and 5 show that the sus-

pension flow φs : Σh → Σh over (W,Ph), defined in (4.4), has roof function which is not cohomologous to a

constant. If it were, there should be a function Ψ : W → R so that

sh −
∫

W

sh dν = Ψ ◦ Ph −Ψ .
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This does not happen because the sets on which we have defined the return time are not Ph-invariant. For

example, choosing (γ, r, ε) with ε = +1 and r ∈ ((1 − γ)(1 − 2γ), 1− γ), we see that (γ′, r′, ε′) = Ph(γ, r, ε)

satisfies ε′ = +1 and r′ = r/(1 − γ)2 > 1− γ′ = γ/(1− γ). On the other hand, the reader will have noticed

that the function v changes sign when passing from the first to the second row in Table 4.

5. Closed horocycles and the permuted Stern-Brocot trees

We have shown in Proposition 4.2 that the suspension flow φs over the system (W,Ph) is isomorphic

to the horocycle flow on SM with respective invariant measures. This implies that there is a one-to-one

correspondence between the closed horocycles on SM which intersect C and the periodic points of the map

Ph. This correspondence may be stated by saying that for a point (z, ζ) ∈ C with (γ, r, ε) = W(z, ζ) ∈ W,

there exist Γ ∈ SL(2,Z) and s ∈ (−∞, 0) such that (z, ζ) = Γ∗(h̃+
s (z, ζ)) if and only if there exists n ∈ N

such that Pn
h (γ, r, ε) = (γ, r, ε).

It is well-known (see e.g. [9, chap. 11]) that the closed horocycles are generated by the points (iy, i) ∈ SM.

More precisely, they are the projections on SM of the horocycles W+(iy, i) in SH given by the set of points

(x+ iy, i) with x ∈ R. Since h+
s : (x+ iy, i) → (x+ sy+ iy, i), they have length 1/y when projected on SM.

Proposition 5.1. If y ≤ 1
2 the projection of the horocycle W+(iy, i) on SM intersects C.

Proof. By applying S to W+(iy, i) we see that S(W+(iy, i)) is the circle tangent to R at 0 and of radius
1
2y ≥ 1. Then R(S(W+(iy, i))), the circle tangent to R at 1 and of radius 1

2y ≥ 1, is equal to W+(z, ζ)

with (z, ζ) ∈ C and z ∈ I0. If y < 1/2, we can choose (z, ζ) to be the determined by the intersection of

R(S(W+(iy, i))) with I0 with smaller value of the variable y, therefore it follows that W(z, ζ) = (1, 1
2y ,−1).

If y = 1/2, the intersection of R(S(W+(iy, i))) with I0 consists of a single point, and therefore W(z, ζ) =

(1, 1, 0). �

Remark 5.2. In the previous Proposition, one can use the identification between SH and PSL(2,R) recalled

in Section 3, to prove that for the point (z, ζ) ∈ C in the intersection between R(S(W+(iy, i))) and I0 we

have

Γ(z,ζ) =







√
y

−1+
√

1−4y2

2
√
y

√
y

1+
√

1−4y2

2
√
y






.

Moreover h̃+
s (z, ζ) = (z, ζ) for s = −1/y since

SR−2







√
y

−1+
√

1−4y2

2
√
y

√
y

1+
√

1−4y2

2
√
y







(

1 − 1
y

0 1

)

=







√
y

−1+
√

1−4y2

2
√
y

√
y

1+
√

1−4y2

2
√
y






.

A consequence of Proposition 5.1 is that closed horocycles of length ℓ ≥ 2 correspond to periodic points of

the map Ph, and in particular the horocycle of length ℓ corresponds to the point (1, ℓ/2, ε) ∈ W with ε = ±1

if ℓ > 2, and ε = 0 if ℓ = 2. In the following we characterise the periodic points of Ph, their orbits and their

periods.

Example 5.3. Let us follow the orbits of two points of the form (1, r, ε) with r ∈ N under the action of Ph.

First, setting r = 1, the point (1, 1, 0) is a fixed point of Ph as shown in Table 3.

Setting instead r = 2, we can consider the point (1, 2,−1). Applying Ph according to Table 2 for r = γ(1+γ),

we find Ph(1, 2,−1) = (1/2, 1/2, 0). Then Ph(1/2, 1/2, 0) = (2, 2, 0) and Ph(2, 2, 0) = (1, 2,+1) by Table 3.

Finally we use Table 1 to get Ph(1, 2,+1) = (1, 2,−1). Hence (1, 2,−1) is periodic of period 4.

First we characterise the periodic points of Ph without using the known results on closed horocycles.

Proposition 5.4. If a point (γ, r, ε) ∈ W is periodic for Ph then γ ∈ Q.
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Proof. By using the map W given in (4.3), one realises that a closed horocycle on SM which intersects C
can be associated to a point (γ, r, ε) in W with ε ∈ {−1, 0}. Indeed, if (γ, r,+1) = W(z, ζ) is periodic, then

also (γ, r,−1) must be periodic, since they define the same closed horocycle.

Then, looking at Table 3 it follows that if (γ, r, 0) is periodic then either (γ, r) = (1, 1) or (2, 2), and we are

dealing with the fixed point or the period 4 orbit of Example 5.3, or else it can be reduced to a periodic

point with ε = −1.

We are thus left to study a periodic point of the form (γ, r,−1). Studying its orbit and the structure of

the correspondent closed horocycle (see Figure 4), one readily checks that there exists k ≥ 1 such that

Pk
h(γ, r,−1) = (γ, r,+1). Hence by Lemma 4.1 there exists Γ1 ∈ SL(2,Z) which yields γ = Γ1(γ) and r =

def (Γ1(γ)) r. Moreover, since the orbit of (γ, r,−1) is periodic, there exists m ≥ 1 such that Pm
h (γ, r,+1) =

(γ, r,−1), so that n = m + k is the period of (γ, r,−1). Again this implies that there exists Γ2 ∈ SL(2,Z)

which yields γ = Γ2(γ) and r = def (Γ2(γ)) r.

From Tables 1 and 2 it follows that Γ1 could also be the identity, but Γ2 cannot be such since Γ−1
2 (I0) is the

set on which one of the return along the horocycle occurs, after the return corresponding to (γ, r,+1). This

means that γ satisfies
aγ + b

cγ + d
= γ and |cγ + d| = 1

for a, b, c, d ∈ Z. Therefore γ ∈ Q. �

The following analysis of the relationship between the periodic orbits and the permuted Stern-Brocot tree

T̂ provides the opposite implication, that if γ ∈ Q then (γ, r, ε) is periodic for all r, ε.

5.1. Periodic orbits of Ph and the permuted Stern-Brocot tree. We start by studying the orbit of

the points (1, r,−1) ∈ W with r > 1. The case r = 1 is easy since the corresponding point in W is (1, 1, 0)

and has been already discussed in Example 5.3.

From the argument in the proof of Proposition 5.4 it follows that there exists k ≥ 1 such that Pk
h(1, r,−1) =

(1, r,+1). We then apply Table 1 to get Ph(1, r,+1) = (1, r,−1). Hence the points (1, r,−1) are periodic

for all r > 1, and all the points in their orbits correspond to returns to C occurring on sets Γ(I0), for

Γ ∈ SL(2,Z), in {z ∈ H : Re(z) ≤ 0}. In particular, let W+
r be the horocycle which is tangent to R at 1

and has radius r > 1. We need to determine all the sets Γ−1(I0) with Γ ∈ SL(2,Z) which intersect W+
r in

{z ∈ H : Re(z) ≤ 0}.
The easy case is given by the lines In = Rn(I0) with n ≤ 0. It is clear that W+

r ∩In is not empty if and only

if r ≥ 1 − n. It turns out that it is more useful to study the intersections with the geodesics with rational

end points in the intervals [n− 1, n] for n ≤ 0.

For a Farey pair p/q, p′/q′ ∈ Q+ with p/q < p′/q′ (see Section 2), let

g

(

p

q
,
p′

q′

)

:=

{

x+ iy ∈ H :

(

x+
1

2

p

q
+

1

2

p′

q′

)2

+ y2 =
1

(2qq′)2

}

(5.1)

be the geodesic with end points in −p/q and −p′/q′. For example g(0/1, 1/1) = J−1.

Lemma 5.5. For a Farey pair p/q, p′/q′ ∈ Q+ we have

g

(

p

q
,
p′

q′

)

=

(

M̂

(

p

q
⊕ p′

q′

))−1

(I0) ,

where M̂(a/b) ∈ {L,R}∗ is the reverse word associated to the rational number a/b as in Section 2.2, and

every symbol in M̂(a/b) is interpreted as a matrix of SL(2,Z) acting on H.

Proof. By definition of the Stern-Brocot sets, the half-circles g (p/q, p′/q′) are contained between two lines

In−1 and In for an integer n ≤ 0.
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Let us first consider the case n = 0, that is p/q, p′/q′ ∈ [0, 1]. In particular the Farey sum p/q ⊕ p′/q′

is in [0, 1], and for each m/s ∈ [0, 1] with m, s coprime, there is exactly one couple p/q, p′/q′ such that

m/s = p/q ⊕ p′/q′. We argue by induction on the level of m/s in the Stern-Brocot tree T . The minimum

level for m/s is one, and this is the level only of the fraction 1/2 = 0/1⊕ 1/1. In this case the result holds,

since

g

(

0

1
,
1

1

)

= J−1 = L−1(I0)

and M(1/2) = M̂(1/2) = L. Note that the geodesic g(0/1, 1/1) has ends in common with the geodesics

g(0/1, 1/2) and g(1/2, 1/1), and the last are the only geodesics of the family of geodesics g (p/q, p′/q′) with

p′q − q′p = 1. The two geodesics satisfy

M̂

(

1

2

)

g

(

0

1
,
1

2

)

= g

(

0

1
,
1

1

)

and M̂

(

1

2

)

g

(

1

2
,
1

1

)

= I−1 .

Let us assume now that m/s is in the (k + 1)-th level of T and the result holds for all fractions on all the

previous levels. Then there exist p/q, p′/q′ on two different previous levels in T and satisfy m/s = p/q⊕p′/q′.

Without loss of generality we assume that p/q ∈ Tℓ and p′/q′ ∈ Tℓ′ with ℓ > ℓ′, then by the construction

of T we have ℓ = k. It follows that M(m/s) = M(p/q)R since p/q < m/s < p′ < q′. In addition there

exists p′′/q′′ ∈ T such that p/q = p′′/q′′ ⊕ p′/q′, hence the geodesics g(p/q, p′/q′) and g(p′′/q′′, p′/q′) have

one common end point, and the first one lies below the second one in H. By the inductive assumption we

have

I0 = M̂

(

p′′

q′′
⊕ p′

q′

)

g

(

p′′

q′′
,
p′

q′

)

= M̂

(

p

q

)

g

(

p′′

q′′
,
p′

q′

)

and

M̂

(

p

q

)

g

(

p

q
,
p′

q′

)

= I−1

because g(p/q, p′/q′) and g(p′′/q′′, p′/q′) have their leftmost end point p′/q′ in common. This is the analogue

of what has been shown above for g(0/1, 1/1) and g(1/2, 1/1). Then

I0 = RM̂

(

p

q

)

g

(

p

q
,
p′

q′

)

= M̂
(r

s

)

g

(

p

q
,
p′

q′

)

= M̂

(

p

q
⊕ p′

q′

)

g

(

p

q
,
p′

q′

)

and the statement is proved for the fractions on the (k + 1)-th level of T which are in [0, 1].

The case n ≤ −1 follows by noting that if p/q, p′/q′ ∈ [|n|, |n|+ 1], then

R|n|
g

(

p

q
,
p′

q′

)

= g

(

p

q
− |n|, p

′

q′
− |n|

)

with p/q − |n|, p′/q′ − |n| ∈ [0, 1]. By the previous case we obtain

M̂

(

p− q|n|
q

⊕ p′ − q′|n|
q′

)

g

(

p

q
− |n|, p

′

q′
− |n|

)

= I0

hence

M̂

(

p− q|n|
q

⊕ p′ − q′|n|
q′

)

R|n|
g

(

p

q
,
p′

q′

)

= I0 .

Since from the structure of T we have M(m/s) = RkM(m/s− k) for all m/s ∈ [k, k + 1), we have

M̂

(

p− q|n|
q

⊕ p′ − q′|n|
q′

)

R|n| = M̂

((

p

q
⊕ p′

q′

)

− |n|
)

R|n| = M̂

(

p

q
⊕ p′

q′

)

and the statement is proved. �
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From the previous lemma it follows that the geodesics g(p/q, p′/q′) may be arranged in a tree which corre-

sponds to the Stern-Brocot tree T by the bijection

m

s
=

p

q
⊕ p′

q′
↔ g

(

p

q
,
p′

q′

)

with the convention that 1/1 corresponds to I0 = g(0/1, 1/0). If m/s is a daughter of m′/s′ in T , then the

two corresponding geodesics have one end point in common, given by the common parent of m/s and m′/s′,

and the geodesic corresponding to m/s lies in H below that of m′/s′.

At the same time, the tree of geodesics is in bijection with the permuted Stern-Brocot tree T̂ , since for

g(p/q, p′/q′) the word M̂(p/q ⊕ p′/q′) gives the position of m/s = p/q ⊕ p′/q′ in T̂ . This relation plays a

fundamental role when studying the action of the map Ph thanks to Lemma 4.1.

We now give an elementary result on the intersection of g(p/q, p′/q′) with the horocycle W+
r tangent to

R at 1 and of radius r > 1.

Lemma 5.6. For a Farey pair p/q, p′/q′ ∈ Q+, the horocycle tangent to R at ρ > 0 and of radius r ≥ ρ

intersects g (p/q, p′/q′) if and only if r ≥ (qρ+ p)(q′ρ+ p′).

Proof. We look for an equivalent condition to the existence of solutions to the system given by the polynomial

equation in (5.1) describing g(p/q, p′/q′) and the polynomial equation (x− ρ)2 + y2− 2ry = 0 describing the

horocycle tangent to R at ρ > 0 and of radius r ≥ ρ. The two circles have a tangency point if and only if
(

r +
1

2qq′

)2

= r2 +

(

ρ+
1

2

(

p

q
+

p′

q′

))2

which, using that p′q − pq′ = 1 and elementary computations, is equivalent to r = (qρ+ p)(q′ρ+ p′). Then

the two circles intersect if and only if the radius r is greater than or equal to the values for which they are

tangent. �

We are now ready to state the main result of this section, which provides a precise characterisation of the

orbits under Ph of the periodic points (1, r,−1) for all r ≥ 1 and of all the periodic points of Ph.

Definition 5.7. Given p/q ∈ Q+ with p, q coprime, we call energy of p/q the number ξ(p/q) := pq.

Theorem 5.8. For all r ≥ 1, the point (1, r,−1) ∈ W is periodic for Ph and has period per(r) given by

per(r) = 2 ·# {a, b ∈ N : (a, b) = 1, ab < r} +# {a, b ∈ N : (a, b) = 1, ab = r} .

In addition, a point (γ, r, ε) ∈ W is periodic if and only if γ ∈ Q, and in this case if γ = a/b with a, b

coprime, it is in the orbit of the point (1, rb2,−1).

Proof. Let us consider a point (1, r,−1) ∈ W with r ≥ 1. Note that the case r = 1 has been already

discussed in Example 5.3, from which per(1) = 1. Then let r > 1. We have seen that (1, r,−1) is periodic

and that (1, r,±1) are in the same orbit. Moreover, all the other points in the orbit of (1, r,−1) are given

by the intersections of W+
r , the horocycle tangent to R at 1 and of radius r, with the sets Γ−1(I0) for

some Γ ∈ SL(2,Z). In particular, by Lemma 4.1, if W+
r intersects Γ−1(I0) then the point (γ′, r′, ε′), with

γ′ = Γ(1) and r′ = def (Γ(1))r, is in the orbit of (1, r,−1) for Ph. From this it follows first of all that a

first class of points in the orbit of (1, r,−1) are given by the intersections of W+
r with In = Rn(I0) for

1 − r ≤ n < 0. If n = 1 − r there is only one intersection, which gives ε′ = 0 for the corresponding point,

and if n > 1− r there are two intersections giving ε′ = ±1 for the point in the orbit. By Lemma 4.1 the sets
{

(1 + |n|, r,±1) : n ∈ Z− , 1 ≤ |n| < r − 1
}

∪
{

(1 + |n|, r, 0) : n ∈ Z− , |n| = r − 1
}

(5.2)

are made of points in the orbit of (1, r,−1). In the formula for the period of (1, r,−1), together with (1, r,±1)

they correspond to all the points with p ∈ N and q = 1.
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The other class of points in the orbit of (1, r,−1) is given by the intersections of W+
r with the geodesics

g(p/q, p′/q′) defined in (5.1). It is an elementary observation that, together with In, these geodesics cover

all the sets Γ−1(I0) for some Γ ∈ SL(2,Z) in H ∩ {Re(z) < 0}. By Lemma 5.6 the horocycle W+
r intersects

g(p/q, p′/q′) if and only if r ≥ (p+ q)(p′ + q′), and by Lemma 5.5 the intersection corresponds to the point

(γ′, r′, ε) with

γ′ = M̂

(

p

q
⊕ p′

q′

)

(1), r′ = def

(

M̂

(

p

q
⊕ p′

q′

)

(1)

)

r,

with ε′ = 0 if the two circles are tangent, ε′ = ±1 if there are two intersections. Let m/s = p/q ⊕ p′/q′.

Then γ′ = M̂(m/s)(1) is the fraction that in T̂ occupies the place of m/s in T .

Using the notations introduced in Section 2.1 and Lemma 2.3 we have

M

(

p

q
⊕ p′

q′

)

=

(

p′ p

q′ q

)

and M̂

(

p

q
⊕ p′

q′

)

=

(

q p

q′ p′

)

.

In particular, setting γ′ = m′/s′, it follows that

γ′ =
m′

s′
=

p+ q

p′ + q′
.

Moreover, using Definition 5.7 of the energy of a positive rational number, we obtain

ξ (γ′) = (p+ q)(p′ + q′) and def

(

M̂

(

p

q
⊕ p′

q′

)

(1)

)

= (p′ + q′)−2 = (s′)−2 . (5.3)

We can sum up the consequences of (5.2) and (5.3) by stating that a rational number a/b, with (a, b) = 1,

is the first component of a point in the orbit of (1, r,−1) under Ph if and only if r is greater or equal than

the energy ξ(a/b), and more precisely the orbit of (1, r,−1) is given by
{(a

b
,
r

b2
, ε
)

: (a, b) = 1 , ab < r , ε ∈ {−1,+1}
}

∪
{(a

b
,
r

b2
, 0
)

: (a, b) = 1 , ab = r
}

.

The first part of the statement of the theorem is proved. Proposition 5.4 and the characterisation of the

orbit of (1, r,−1) readily imply the second part of the statement. �

The result of Theorem 5.8 may be refined by studying the dynamical ordering of the points in the orbit of

(1, r,−1). By looking at the intersections of a horocycle W+
r with the geodesics g(p/q, p′/q′) defined in (5.1),

and at the ordering of these intersections described by the relative geometrical positions of the geodesics in

H, we can produce an algorithm to determine the points of the periodic orbit of (1, r,−1) in their dynamical

order up to (1, r,+1) by using the permuted Stern-Brocot tree T̂ . A description of this algorithm is given

in Appendix C.

Remark 5.9. Adopting an alternative point of view, we can look at the period per(r) of the Ph-periodic

orbit containing (1, r,−1) as the number of intersections of the horocycle W+(iy, i) = {x + iy : x ∈ R},
with y = 1/(2r), with the (geodesic) sides of the triangles forming the Farey tassellation of the domain

{x+ iy ∈ H : 0 ≤ x ≤ 1} (see Figure 5 below).

In particular, the horocycle W+(iy, i) intersects the geodesic joining a Farey pair p/q, p′/q′ ∈ [0, 1], with

p/q < p′/q′, if and only if y ≤ 1/(2qq′). Note moreover that given a Farey pair p/q, p′/q′ ∈ [0, 1], the

symmetric pair (q − p)/q, (q′ − p′)/q′ is in [0, 1] and yields a geodesic side of equal “height” (= 1/(2qq′)),

and there are no other pairs with this property. By the way, this symmetry accounts for the corresponding

symmetry of the walks associated to the dynamics of the periodic points of Ph on the permuted Stern-Brocot

tree (see Appendix C). The formula for the period can thus be rewritten as

per(r) = 2 ·#
{

p

q
,
p′

q′
Farey pairs in [0, 1] : qq′ < r

}

+#

{

p

q
,
p′

q′
Farey pairs in [0, 1] : qq′ = r

}

.

17



0 1
4

1
3

2
5

1
2

3
5

2
3

3
4

1

W+(iy1, i)

W+(iy2, i)

Figure 5. Farey tassellation of the domain {x+ iy ∈ H : 0 ≤ x ≤ 1} up to level 4 as defined in Section 2. We also show

two horizontal horocycles W+(iyk, i) with y = 1/(2rk), k = 1, 2: the blue horocycle has r1 = 2 and is tangent to some of

the geodesic sides of the triangles of the Farey tassellation; the red horocycle has 4 < r2 < 5.

To further clarify the connection with the construction made in the proof of Theorem 5.8, we observe that the

projection on SM of the geodesic joining a Farey pair p/q, p′/q′, via RS, is the geodesic joining P/Q, P ′/Q′

with P = q − p and Q = p (and similar primed relations), so that (P +Q)(P ′ +Q′) = qq′.

Finally, this picture would also provide a sort of duality between periodic horocycles and scattering geodesics

(i.e. vertical geodesics landing at rational points), in the sense that, in order to know the corresponding

paths on the tree, in the first case we have to look at the intersections (of the horocycle) with Farey triangles

(arcs of geodesics), while in the second case we have to look at the intersections (of the scattering geodesics)

with Ford circles (horocycles).

5.2. Distribution of periodic orbits. According to Theorem 5.8, the periodic orbits of Ph are nothing

more than the orbits of the one-parameter family of points {(1, R,−1)}R∈(1,∞) inW. Denoting byO(1, R,−1)

the orbit of (1, R,−1), which consists of per(R) points, we first prove the following proposition.

Proposition 5.10. The period per(R) of the Ph-periodic orbits O(1, R,−1) satisfies

per(R) =
12

π2
R log R+O(R), R → ∞.

Proof. By the formula for the period per(R) of the point (1, R,−1) given in Theorem 5.8, we have to estimate

the asymptotic behaviour of the cardinality of the set Π(R) := {a, b ∈ N : (a, b) = 1, ab ≤ R}, that is

#Π(R) =
R
∑

n=1

∑

(a,b)=1, ab=n

1

Now, the inner sum counts the number of ways in which one can split the set of prime numbers dividing n

into two disjoint sets. This in turn is equal to the number of square-free divisors of n. It is a standard result

in number theory (see e.g. [3]) that is obtained by summing over the divisors on n, denoted d|n, the square

of the Möbius function µ(·), that is µ2(d) = 1 if d|n and it is square-free, and µ2(d) = 0 if d|n but is not
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square-free. Therefore, using standard techniques in number theory, we can write

#Π(R) =

R
∑

n=1

∑

d|n
µ2(d) =

R
∑

n=1

µ2(n)

⌊

R

n

⌋

=

R
∑

n=1

µ2(n)
R

n
+O

(

R
∑

n=1

µ2(n)

)

=

=

R
∑

n=1

µ2(n)
R

n
+O(R) =

6

π2
R logR +O(R).

Since per(R) = 2#Π(R) +O(R), the proof is finished. �

Furthermore, a more refined number-theoretic argument allows us to conclude that the periodic orbits are

equidistributed with respect to the Ph-invariant measure ν. Although this is not surprising, after the results

in [20, 22, 4], we believe it is interesting as a further case of equidistribution of the periodic orbits for a

dynamical system with infinite invariant measure (see [11]). In particular, in the infinite measure settings,

one expects that the equidistribution holds for a family of measures not uniformly supported on the periodic

orbits. We state our result as in the classical Hopf Ratio Ergodic Theorem, that is by looking at the ratio of

the distribution into two different subsets, but the proof contains also the correct speed of convergence (see

(5.9)), which is slower than the cardinality of the periodic orbits.

Theorem 5.11. Let ν be the Ph-invariant measure on W with density k(γ, r, ε) = r−2. Then for all

A,B ⊆ W measurable sets with 0 < ν(A), ν(B) < ∞, we have

lim
R→∞

∑

(γ,r,ε)∈O(1,R,−1) χA
(γ, r, ε)

∑

(γ,r,ε)∈O(1,R,−1) χB
(γ, r, ε)

=
ν(A)

ν(B)
.

Proof. We know from Theorem 5.8 that

O(1, R,−1) =

{(

a

b
,
R

b2
,±1

)

: (a, b) = 1 , ab < R

}

∪
{(

a

b
,
R

b2
, 0

)

: (a, b) = 1 , ab = R

}

.

We study the distribution of the points of the orbits O(1, R,−1) as R → ∞ for a set of the form

A = {(γ, r, ε) ∈ W : s < γ < t , u < r < v , ε 6= −1} (5.4)

with s, t, u, v ∈ R+. The choice ε 6= −1 in A does not reduce the generality of the result as it is evident

from the structure of points in O(1, R,−1) and the fact that the set W ∩ {ε = 0} has vanishing ν-measure.

Moreover if the result holds for all open rectangles in (γ, r) it holds for all measurable sets. Finally, it is

enough to prove the result for 0 < s < t < 1, because if a point with γ = a/b is in O(1, R,−1) then also

a point with γ = b/a is in O(1, R,−1), and in the r-components of the two points the roles of a and b are

exchanged. Hence any set in W can be split in two subsets, one with γ-component in (0, 1) and the other

with γ-component in (1,∞), and it is enough to prove the result for one of these.

Let then s, t, u, v ∈ R+ with 0 < s < t ≤ 1 and A as in (5.4). The set

ΠA(R) :=

{

a

b
: (a, b) = 1 , ab ≤ R , s <

a

b
< t , u <

R

b2
< v

}

characterizes the γ-component of the points in A ∩ O(1, R,−1), so that
∑

(γ,r,ε)∈O(1,R,−1)

χ
A
(γ, r, ε) = #ΠA(R).

First of all, ΠA(R) can be written as

ΠA(R) =

{

a

b
: (a, b) = 1 , ab ≤ R , sb < a < bt ,

√

R

v
< b <

√

R

u

}
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so that the order of s, t, u, v in R+ changes the description of the set. One realizes that it is enough to

consider the cases

s < t = u < v and s ≤ u < v = t .

as the sets satisfying any of the other possibilities can be reduced to the union of sets falling in one of these

two cases. Anyway the computations are similar and the result follows by applying the same ideas.

We are now ready to study the asymptotic behaviour of #(A ∩ O(1, R,−1)) as R → ∞ for A defined as in

(5.4) with 0 < s < t = u < v and t < 1. Note that A is a rectangle in W as the condition r ≥ γ is satisfied

for all points in A. Hence

ν(A) =

∫ t

s

(∫ v

u

r−2 dr

)

dγ = (t− s)

(

1

u
− 1

v

)

. (5.5)

We have

#ΠA(R) =
∑

√
R/v≤b≤

√
R/u

∑

(a,b)=1
bs≤a≤bt

1 .

The inner sum can be expressed in terms of the Legendre totient function φ(x, n), a generalisation of the

Euler totient function which counts the number of positive integers less or equal than x which are prime to

n. We get

#ΠA(R) =
∑

√
R/v≤b≤

√
R/u

(φ(bt, b)− φ(bs, b)) . (5.6)

The Legendre totient function has been studied less extensively than the Euler function. We refer the reader

to [23] where estimates of φ(x, n) are given in terms of φ(n), such as

φ(x, n) =
x

n
ϕ(n) +O





∑

d|n
µ2(d)



 . (5.7)

Moreover, as shown in the proof of Proposition 5.10, we have

N
∑

n=1





∑

d|n
µ2(d)



 =
6

π2
N logN +O(N), N → ∞

Using this estimate in (5.7) and then inserting the result in (5.6) we get

#ΠA(R) = (t− s)
∑

√
R/v≤b≤

√
R/u

ϕ(b) +O
(√

R logR
)

.

On the other hand, a classical result in number theory (see [3]) states that:

N
∑

n=1

ϕ(n) =
3

π2
N2 +O(N logN) (5.8)

and therefore

#ΠA(R) =
3

π2
R (t− s)

(

1

u
− 1

v

)

+ O
(√

R logR
)

.

Comparing with (5.5) have thus proved that in this first case
∑

(γ,r,ε)∈O(1,R,−1)

χ
A
(γ, r, ε) =

3

π2
Rν(A) +O

(√
R logR

)

. (5.9)

Let us now study the asymptotic behaviour of #(A ∩ O(1, R,−1)) as R → ∞ for the second case, namely

for a set A defined as in (5.4) with 0 < s ≤ u < v = t and t < 1, which is a trapezoid in W, and

ν(A) =

∫ v

u

(∫ r

s

r−2 dγ

)

dr = log
v

u
− s

(

1

u
− 1

v

)

. (5.10)
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In this case we find

#ΠA(R) =
∑

√
R/v≤b≤

√
R/u

∑

(a,b)=1
bs≤a≤R/b

1

so that using again the Legendre totien function and (5.7) we get

#ΠA(R) =
∑

√
R/v≤b≤

√
R/u

(

φ

(

R

b
, b

)

− φ(bs, b)

)

=
∑

√
R/v≤b≤

√
R/u

(

R

b2
ϕ(b)− s ϕ(b)

)

+O
(√

R logR
)

.

Using (5.8) along with [3],
N
∑

n=1

ϕ(n)

n2
=

6

π2
logN +O(1)

we obtain

#ΠA(R) =
3

π2
R

(

log
R

u
− log

R

v

)

− 3

π2
Rs

(

1

u
− 1

v

)

+O
(√

R logR
)

.

Comparing with (5.10) we see that (5.9) holds also in this case.

In conclusion, we have proved that all the sets A as in (5.4) satisfy (5.9). This immediately implies the

statement of the theorem for all couples of sets A,B of this form. The extension to all measurable sets with

finite ν-measure is straighforward. �

6. Non-periodic orbits

In this section we study the map Ph on non-periodic orbits. In particular we introduce a “time leap” for

Ph to rewrite it as a map from X := ([1,∞)× [1,∞)× {0,+1})∩W to itself. We need the following result.

Proposition 6.1. For the map Ph : W → W we have:

(i) for each (γ, r, ε) ∈ W with γ ∈ (0, 1) and ε 6= −1, there exists n1(γ, r) such that (γ′, r′, ε′) =

Pn1(γ,r)
h (γ, r, ε) satisfies γ′ ∈ [1,∞);

(ii) for each (γ, r, ε) ∈ W with ε = −1, there exists n2(γ, r) such that Pn2(γ,r)
h (γ, r,−1) = (γ, r,+1), and

n2(γ, r) = 2 ·# {a, b ∈ N : (a, b) = 1, (qγ + p)(q′γ + p′) < r}+
+# {a, b ∈ N : (a, b) = 1, (qγ + p)(q′γ + p′) = r} − 1

where

M
(a

b

)

=

(

q p

q′ p′

)

;

(iii) for each (γ, r, ε) ∈ W with γ 6∈ N and ε 6= −1, we have P⌊γ⌋
h (γ, r, ε) = (γ − ⌊γ⌋, r, ε);

(iv) for each (γ, r, ε) ∈ W with γ ∈ N, γ ≥ 2 and ε 6= −1, we have P(γ−1)
h (γ, r, ε) = (1, r,+1).

Proof. (i) Let (γ0, r0, ε0) := (γ, r, ε) ∈ W with γ0 ∈ (0, 1) and ε 6= 1 and use the notation (γn, rn, εn) =

Pn
h (γ, r, ε) for all n ≥ 1. To obtain (γ1, r1, ε1) we use Table 1 or Table 3. Let ε0 = +1. If r0 ≥ 1 − γ0

we obtain γ1 = 1/(1 − γ0) > 1 and we are done with n1(γ, r) = 1. If r0 < 1 − γ0, we obtain (γ1, r1, ε1) =

(γ0/(1− γ0), r0/(1− γ0)
2,+1), hence either γ1 ≥ 1 and we are done with n1(γ, r) = 1, or γ1 ∈ (γ0, 1) and we

consider (γ2, r2, ε2). In the case ε0 = 0, when γ0 = r0 ≥ 1/2 then as before γ1 = 1/(1− γ0) > 1 and we are

done with n1(γ, r) = 1. If γ0 = r0 < 1/2 we obtain again (γ1, r1, ε1) = (γ0/(1− γ0), r0/(1 − γ0)
2,+1), now

γ1 ∈ (γ0, 1) and we consider (γ2, r2, ε2). By repeating the argument, if we are not done at the n-th step, we

have γn = γ0/(1− nγ0) ∈ (γn−1, 1), rn = r0/(1− nγ0)
2 and εn = +1. At this point, if rn ≥ 1− γn, which is

equivalent to r0 ≥ (1 − (n + 1)γ0)(1 − nγ0), then γn+1 = 1/(1 − γn) > 1. Instead, if rn < 1 − γn, we have

γn+1 = γn/(1 − γn) = γ0/(1 − (n + 1)γ0) and again there are two cases: either γn+1 ≥ 1 and we are done,

or γn+1 < 1 and we proceed with the (n+ 1)-th step.
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We can conclude that either there exists n̄ such that r0 ≥ (1 − (n̄ + 1)γ0)(1 − n̄γ0), and then γn̄+1 > 1, or

the sequence {γn} is given by γn = γ0/(1−nγ0) for all n ≥ 1, and since for all γ0 ∈ (0, 1) there exists ñ such

that γ0 > 1/ñ, we have γñ+1 > 1. Therefore

n1(γ, r) = 1 + min

{

min {k ≥ 1 : r ≥ (1− (k + 1)γ)(1− kγ)} , min

{

j ≥ 1 :
γ

1− jγ
≥ 1

}}

.

(ii) If γ = 1, we are looking at the periodic point (1, r,−1), and we have argued that Pper(r)−1
h (1, r,−1) =

(1, r,+1) where per(r) is defined in Theorem 5.8. Hence n2(1, r) = per(r) − 1. For a general γ > 0 we need

to count the intersections of the horocycle tangent to R at γ and of radius r, with the sets In with n < 0

and with the geodesics g(p/q, p′/q′) defined in (5.1). The number of these intersections give n2(γ, r)− 1.

The intersections with the lines In exist for all n such that γ − r ≤ n < 0. In the formula for n2(γ, r)

they correspond to the cases s = 1 and m = |n|, for which

M

( |n|
1

)

=

(

1 |n|
0 1

)

and the condition is γ + |n| ≤ r. By Lemma 5.6, the intersections with the geodesic g(p/q, p′/q′) occur if

r ≥ (qγ+p)(q′γ+p′), and by Lemmas 5.5 and 4.1, to such an intersection it corresponds a point (γ′, r′, ε′) ∈ W

with

γ′ = M̂

(

p

q
⊕ p′

q′

)

(γ), r′ = def

(

M̂

(

p

q
⊕ p′

q′

)

(γ)

)

r.

Since in Section 2 we have shown that for all a, b ∈ N with (a, b) = 1 we have

M
(a

b

)

= M

(

p

q
⊕ p′

q′

)

=

(

p′ p

q′ q

)

and M̂

(

p

q
⊕ p′

q′

)

=

(

q p

q′ p′

)

,

we obtain the formula for n2(γ, r).

((iii) and (iv)) It is enough to repeatedly apply Ph as defined in Tables 1 and 3. �

Theorem 6.2. Let X := ([1,∞)× [1,∞)× {0,+1})∩W. For all (γ, r, ε) ∈ W there exists n̄(γ, r) ∈ N such

that P n̄(γ,r)
h (γ, r, ε) ∈ X. In particular it is well defined the map Th : X → X given by

Th(γ, r, ε) = Pτ(γ,r)
h (γ, r, ε) with τ(γ, r) =







⌊γ⌋+ 1 + n2

(

1
1+⌊γ⌋−γ ,

r
(1+⌊γ⌋−γ)2

)

if γ 6∈ N

γ − 1 if γ ∈ N

and n2(γ, r) defined as in Proposition 6.1. More specifically

Th(γ, r, ε) =
(

1

1 + ⌊γ⌋ − γ
,

r

(1 + ⌊γ⌋ − γ)2
, ε̃

)

.

Proof. From Proposition 6.1 we know that for all (γ, r,−1) we end up at (γ, r,+1) with n2(γ, r) iterations

of Ph, whereas if γ ∈ (0, 1) and ε 6= −1 a point with γ′ ≥ 1 is reached with n1(γ, r) iterations. Together,

these two steps imply the first part of the statement.

It is then possible to define a map Th from X to itself. Let us check that the times τ(γ, r) may be chosen as

in the statement. Considering first the case γ 6∈ N, Proposition 6.1-(iii) entails that the points (γ, r, ε) ∈ X

hit (γ−⌊γ⌋, r,+1) after ⌊γ⌋ iterations of Ph. Since γ−⌊γ⌋ ∈ (0, 1) and r ≥ γ > 1, we can apply Proposition

6.1-(i) with n1(γ − ⌊γ⌋, r) = 1, to get

P⌊γ⌋+1
h (γ, r, ε) =

(

1

1 + ⌊γ⌋ − γ
,

r

(1 + ⌊γ⌋ − γ)2
, −1

)

.

We can now apply Proposition 6.1-(ii) and conclude the computation of τ(γ, r) for γ 6∈ N. If γ ∈ N the

result immediately follows from Proposition 6.1-(iv), with the standard convention that P0
h is the identity

map. �
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Remark 6.3. We point out that the map Th is not the first return map of Ph onto X . For (γ, r, ε) with

γ ∈ N, since we are considering points in the periodic orbit of (1, r,+1), one can interpret Th as the map

that first sends (γ, r, ε) to the subset in W of points with γ′ ∈ (0, 1], and then goes once round the periodic

orbit. Hence it is the identity for γ = 1. If γ 6∈ N, the interpretation may be similar. We first reach the

subset in W of points with γ′ ∈ (0, 1], and then “follow” a close periodic orbit, whose period only depends

on r and γ.

Looking at the first component of the map Th, we are led to study the map

T : [1,∞) → [1,∞) , T (t) =
1

1 + ⌊t⌋ − t

for which an easy computation yields the following result.

Proposition 6.4. The dynamical system ([1,∞), T ) is topologically conjugate to the backward continued

fraction system ([0, 1), F ) given by

F : [0, 1) → [0, 1) , F (s) =
1

1− s
(mod 1)

with conjugacy φ : [1,∞) → [0, 1) given by φ(t) = 1− 1
t . As a consequence the map T preserves the infinite

measure dµ(t) = dt/(t(t− 1)). In particular, if t ∈ Q there exists kt ≥ 0 such that T kt(t) = 1, and therefore

T k(t) = 1 for all k ≥ kt.

Let us now consider the action of Th on the second component. One notes that if (γ, r, ε) is not periodic as

the second component is strictly increasing since (1 + ⌊γ⌋ − γ) < 1 for all γ 6∈ N. Hence if we wait enough

time, the map Ph makes the radius of the horocycle to increase, thus converging to the cusp of M.

Remark 6.5. The map F defined in Proposition 6.4 gets its name because can be obtained by flipping the

standard continued fraction transformation about the vertical line x = 1/2. Adler and Flatto showed in [2]

that F is the map obtained by inducing on (0, 1) the first component of the Poincaré map on C of the geodesic

flow g̃t (see the map Pg constructed in Appendix B, Equation (B.2)). On the other hand, we showed above

that F is (conjugate to) the map on [1,∞) obtained by a time-reparameterization of the first component

of the Poincaré map on C of the horocycle flow h̃+
s . We believe that this result helps to highlight how the

parabolic horocycle flow also contains an “expanding component”, which can be detected by an appropriate

reparameterization.

7. Relations with [4]

In [4] the authors have introduced a Poincaré section for the horocycle flow on M using the identification

of SH with the space of unimodular lattices. By adapting their argument to our notations, let

C̃ := {(z, ζ) ∈ SM : y ≥ 1 , 0 < x ≤ 1 , θ(ζ) = π} ,

that is all the vectors pointing downwards with base point in the subset of the fundamental domain1 of M
with imaginary part greater than or equal to 1. As in Section 4 we set

C̃ :=
{

(z, ζ) ∈ SH : π∗(z, ζ) ∈ C̃
}

.

Setting

Ω :=
{

(α, β) ∈ R2 : α, β ∈ (0, 1] , α+ β > 1
}

,

the set C̃ may be identified with Ω by

z =







β
α −

⌊

β
α

⌋

+ i 1
α2 if β

α 6∈ Z

1 + i 1
α2 if β

α ∈ N
. (7.1)

1Here we are thinking of the fundamental domain in the strip x ∈ (0, 1].
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Theorem 7.1 ([4]). The Poincaré map of the horocycle flow h̃+
s with negative s on the section C̃ in the

variables (α, β) ∈ Ω is the Boca-Cobeli-Zaharescu map studied in [6] and defined to be

V : Ω → Ω , V (α, β) =

(

β,−α+

⌊

1 + α

β

⌋

β

)

.

One of the main features of the map V is its relation with the Farey sequences. We recall that for each fixed

Q ∈ N the Farey sequence F(Q) is the collection of fractions in [0, 1] which written in reduced form have

denominator less than or equal to Q. If

F(Q) =

{

0

1
=

p0
q0

<
1

Q
=

p1
q1

<
p2
q2

< · · · < pN−1

qN−1
<

1

1
=

pN
qN

}

,

the relation between V and F(Q) introduced in [6] is that

V

(

qi−1

Q
,
qi
Q

)

=

(

qi
Q
,
qi+1

Q

)

for all i = 1, . . . , N , with the convention qN+1 = q0. Hence the denominators of the fractions in the Farey

sequence F(Q) describe a periodic orbit of V of period N = N(Q), one less than the cardinality of F(Q).

Moreover, it is shown in [4] that this periodic orbit corresponds to a closed horocycle of length Q2.

Let us find the corresponding periodic orbit for the Poincaré map Ph. As explained in Remark 5.2, the

closed horocycle of length Q2 corresponds to the Ph-periodic point (1, Q2/2,−1) ∈ W for Q ≥ 2, with orbit

O
(

1,
Q2

2
,−1

)

=

{(

a

b
,
Q2

2 b2
,±1

)

: (a, b) = 1 , ab <
Q2

2

}

∪
{(

a

b
,
Q2

2 b2
, 0

)

: (a, b) = 1 , ab =
Q2

2

}

.

Therefore if one follows the closed horocycle W+
Q2/2, tangent to R at 1 and of radius Q2/2, from its lowest

point on I0 until it closes on SM, then one finds N(Q) passages through the section C̃. Each of these

passages occurs between two consecutive returns to the section C we have used to define the map Ph. In

particular, we use the suspension flow φs defined in (4.4) in terms of the map Ph to identify the passages

through C̃.

Proposition 7.2. For all Q ≥ 2, for a point (γ, r, ε) ∈ O(1, Q2/2,−1) there exists s∗ ∈ (sh(γ, r, ε), 0) such

that φs∗(γ, r, ε, 0) ∈ C̃ if and only if γ = a/b and r = Q2/(2b2), with (a, b) ∈ N× N in the set

F̃(Q) :=

{

(a, b) = 1, a ≤ b ≤ Q, ab ≤ Q2

2

}

∪
{

(a, b) = 1, a > b, a+ b ≤ Q, a(a+ b) >
Q2

2

}

.

Hence # F̃(Q) = N(Q) for all Q ≥ 2. In addition, the point φs∗(a/b,Q
2/(2b2), ε, 0) corresponds to the point

(α(a, b), β(a, b)) ∈ Ω given by

(α(a, b), β(a, b)) =











(

b
Q ,

a+⌊Q−a
b

⌋b
Q

)

if a
b ≤ 1

(

a+b
Q , a

Q

)

if a
b > 1

.

Proof. Let Q ≥ 2 and consider all points (γ, r, ε) ∈ O(1, Q2/2,−1). Looking at the part of the horocycle

flow from the point in C corresponding to (γ, r, ε) to its first return to C, we need to determine whether there

is a passage through C̃.
Let us first consider the case ε = +1. If γ = a/b > 1 then, by Table 1, the first return to C occurs on I1 with

Ph(a/b,Q
2/(2b2),+1) = ((a − b)/b,Q2/(2b2),+1). Therefore along this portion of the horocycle flow there

is no passage through C̃, since the vector never points downward. If γ = a/b = 1, then a = b = 1 and the

first return to C occurs on I2. In this case, before the return to I2, the horocycle W+
Q2/2 intersects I1 and

on this intersection the vector points downward. The intersection point is z = 1 + iQ2, so that from (7.1)

α(1, 1) =
1

Q
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and β/α ∈ N, which implies

β(1, 1) = 1 =
Q

Q
.

If γ = a/b < 1 and b ≤ Q, then the return to C occurs after a passage through the point

z =
a

b
+ i

Q2

b2

with vector pointing downward. This yields a passage through C̃ with

α(a, b) =
b

Q
,

β(a, b)

α(a, b)
−
⌊

β(a, b)

α(a, b)

⌋

=
a

b

by (7.1), from which

β(a, b) =
a+ ⌊Q−a

b ⌋b
Q

.

If instead b > Q, then there is no passage through C̃ before the first return to C. Otherwise, there would be

a point (z̄, ζ̄) ∈ SM with z̄ ∈ I+, that is with imaginary part greater or equal than 1, and θ(ζ̄) ∈ (−π, 0),

equivalent in SM to (z, ζ) = W−1(a/b,Q2/(2b2),+1). But this is impossible, since S∗(z, ζ) has base point

in I+ and angle in (0, π).

For the case ε = 0 we can repeat exactly the same argument. We have thus proved half of the result. Indeed,

we have proved that for ε = 0,+1, for a point (γ, r, ε) ∈ O(1, Q2/2,−1) there exists s∗ ∈ (sh(γ, r, ε), 0) such

that φs∗(γ, r, ε, 0) ∈ C̃ if and only if γ = a/b and r = Q2/(2b2), with (a, b) ∈ N× N in the set
{

(a, b) = 1, a ≤ b ≤ Q, ab ≤ Q2

2

}

.

In addition the point φs∗(a/b,Q
2/(2b2), ε, 0) corresponds to the point

(α(a, b), β(a, b)) =

(

b

Q
,
a+ ⌊Q−a

b ⌋b
Q

)

∈ Ω.

We now consider the case ε = −1. Looking at Table 2, if the radius is big enough the first return to C
occurs on J−1. Hence we are dealing with the portion of the flow on the horocycle W+ tangent to R at a

point γ and of radius r between I0 and J−1. Let us consider the action of the matrix S ∈ SL(2,Z) on this

horocycle. Since S(I0) = I0 and S(J−1) = I1, we get the flow on S(W+) between I0 and I1. In addition,

if (z, ζ) = W−1(γ, r,−1) (see (4.3)), then (z̄, ζ̄) = S∗(z, ζ) satisfies θ(ζ̄) ∈ (π/2, π) since θ(ζ) ∈ (−π/2, 0).

Therefore along the portion of the flow on S(W+) we are looking at, there is no passage through C̃ because

the vector never points downward. Since W+ and S(W+) are equivalent in SM, this shows that in this first

case there is no passage through C̃ before the first return to C.
By Table 2 we are thus left with two cases to consider. The first corresponds to γ = a/b > 1, r = Q2/(2b2) <

γ(1 + γ) = a(a + b)/b2, and first return to C on I−1. We argue as before by looking at the action of the

matrix L ∈ SL(2,Z). If W+ is the horocycle tangent to R at γ and of radius r, then L(W+) is the horocycle

tangent to R at L(γ) = γ/(1 + γ) ∈ (0, 1) and of radius r/(1 + γ)2 < L(γ). This new horocycle does not

intersect I0, and since L(I0) = J0 and L(I−1) = I1, we look at the portion of the flow along this horocycle

from J0 to I1. Since L(γ) ∈ (0, 1), there exists a point

z =
γ

1 + γ
+ i

2r

(1 + γ)2
=

a

a+ b
+ i

Q2

(a+ b)2

at which the vector points downward. Therefore, if Q2/(a+ b)2 ≥ 1, we have found a passage through C̃. If
instead Q2/(a + b)2 < 1 there is no passage through C̃ as can be shown by arguing as in the case ε = +1,
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γ > 1 and b > Q before. Therefore, in this first case we obtain a passage through C̃ if and only if (a, b) is in

the set
{

(a, b) = 1, a > b, a+ b ≤ Q, ab ≤ Q2

2
< a(a+ b)

}

and one realises that the condition (a+ b) ≤ Q implies ab ≤ Q2/2. In addition, using (7.1), we obtain

α(a, b) =
a+ b

Q
,

β(a, b)

α(a, b)
−
⌊

β(a, b)

α(a, b)

⌋

=
a

Q
.

It follows that a ≥ Q/2, hence 2a+ b > Q, so that β(a, b) = a/Q.

The second case we need to consider corresponds to r < 1+γ and the first return to C occuring on I0. In this

case, the horocycle W+ along which we are flowing is equivalent to L(W+), which needs to intersect J0 in

two points, without intersecting other copies of I0 in the meantime. Again we are using that L(I0) = J0. It

means that the radius r/(1+ γ)2 of L(W+) is smaller than 1/2. Hence no point along the horocycle L(W+)

is in C̃.
We have thus examined all the points in the orbit of (1, Q2/2,−1), finding all the passages through C̃. The
proof is finished. �

The ideas in the proof of Proposition 7.2 may be used also for non-periodic orbits. One can show that

following the orbit of a point (γ0, r0, ε0) ∈ W, there is a passage through the section C̃ between two consecutive

returns to C, (γn, rn, εn) = Pn
h (γ, r, ε) and (γn+1, rn+1, εn+1) = Pn+1

h (γ, r, ε) for n ≥ 0, if and only if

(γn, rn, εn) ∈
{

γ ≤ 1 , r ≥ 1

2
, ε 6= −1

}

∪
{

γ > 1 ,
(1 + γ)2

2
≤ r < γ(1 + γ) , ε = −1

}

.

Appendix A. Proof of Lemma 2.3

We check that the relation holds for different combinations of the matrices L and R in M(p/q). Let us

assume that M(p/q) starts with L and ends with R, hence it can be written as

M

(

p

q

)

= Ln1Rm1Ln2Rm2 . . . LnsRms (A.1)

for s ≥ 1, n1 ≥ 1, and ms ≥ 1. We argue by induction on the number of blocks LnjRmj in the matrix.

Recall that

Ln =

(

1 0

n 1

)

, Rm =

(

1 m

0 1

)

.

If s = 1 it is enough to compute

LnRm =

(

1 m

n nm+ 1

)

and RmLn =

(

nm+ 1 m

n 1

)

.

Assuming that the statement holds for s− 1 ≥ 1, let’s prove it holds for s. Writing M(p/q) as

M

(

p

q

)

= M ′ LnsRms , with M ′ = Ln1Rm1Ln2Rm2 . . . Lns−1Rms−1 ,

we have

M̂

(

p

q

)

= RmsLnsM̂ ′

being M̂ ′ the reverse function of M ′. Since we can apply the statement to M ′ by the inductive assumption,

M ′ =

(

a′ b′

c′ d′

)

⇔ M̂ ′ =

(

d′ b′

c′ a′

)

,

and we can compute that

M

(

p

q

)

=

(

a′ + b′ns a′ms + b′(nsms + 1)

c′ + d′ns c′ms + d′(nsms + 1)

)
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and

M̂

(

p

q

)

=

(

d′(nsms + 1) + c′ms b′(nsms + 1) + a′ms

d′ns + c′ b′ns + a′

)

.

Thus the lemma is proved if M(p/q) is written as in (A.1). The second case we consider is when M(p/q)

starts with R and ends with L. However this case can be reduced to the first one by exchanging the role of

M(p/q) and its reverse. Lastly we consider the cases when M(p/q) starts and ends with the same matrix,

either L or R. Let us assume that M(p/q) can be written as

M

(

p

q

)

= Ln1Rm1Ln2Rm2 . . . Lns−1Rms−1Lns (A.2)

for s ≥ 1, n1 ≥ 1, and ns ≥ 1. If s = 1 the matrix contains only L and coincide with its reverse. The

statement follows by the form of the matrices Ln. If s > 1 we can write

M

(

p

q

)

= M ′Lns

with

M ′ = Ln1Rm1Ln2Rm2 . . . Lns−1Rms−1

a matrix of the case considered in (A.1). Hence the statement is true for M ′ and

M ′ =

(

a′ b′

c′ d′

)

⇔ M̂ ′ =

(

d′ b′

c′ a′

)

,

Hence we can compute that

M

(

p

q

)

=

(

a′ + b′ns b′

c′ + d′ns d′

)

and M̂

(

p

q

)

=

(

d′ b′

d′ns + c′ b′ns + a′

)

.

Thus the lemma is proved if M(p/q) is written as in (A.2). The analogous argument works when M(p/q)

starts and ends with R.

Appendix B. The Poincaré map for the geodesic flow and its suspension

In this appendix we show for completeness the construction of the Poincaré map for the geodesic flow

with respect to the Poincaré section C defined in (4.1). This is similar in spirit to the results in [1, 21] and

uses essentially the same Poincaré section as in [16].

Let (z, ζ) ∈ C and γz,ζ(t) be the geodesic tangent to ζ at z. Since θ(ζ) ∈ (−π, 0) we have γ+
z,ζ ∈ R+ and

γ−
z,ζ ∈ R−. We let

G :=
{

(γ, η) : γ, η ∈ R+
}

and consider the map

G : C → G, (z, ζ) 7→ G(z, ζ) =
(

γ+
z,ζ ,−γ−

z,ζ

)

.

Using the identification of SH with PSL(2,R), the map G can be defined also as a map from SL(2,R) to

G. Following the notation of Section 3, we have

(z, ζ) = G−1(γ, η) ⇒ Γ(z,ζ) =







(

η
γ

)
1
4 γ√

γ+η
−
(

γ
η

)
1
4 η√

γ+η

(

η
γ

)
1
4 1√

γ+η

(

γ
η

)
1
4 1√

γ+η






. (B.1)

We now consider the Poincaré map on C of the geodesic flow g̃t starting from a point (z, ζ) ∈ C and along

γz,ζ(t) for positive times t. Let (γ, η) = G(z, ζ). Given (z′, ζ′) the point in C of the first return, we can

describe the Poincaré map as a map

Pg : G → G, Pg(γ, η) = (γ′, η′) := G(z′, ζ′) .
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Our aim is now to describe the map Pg on the points of G, also in relation with the {L,R} coding of γ ∈ R+

introduced in Section 2. The map Pg depends on the set of C defined in (4.2) on which the first return

occurs. The following analogue of Lemma 4.1 holds and the proof is similar.

Lemma B.1. For (z, ζ) ∈ C, let (γ, η) = G(z, ζ). If the first return to C for g̃t with positive t along γz,ζ(t)

occurs on Γ−1(I0) for some Γ ∈ PSL(2,Z), then (γ′, η′) = Pg(γ, η) satisfies

γ′ = Γ(γ) and η′ = −Γ(−η).

Different cases have to be considered (see Figure 6). Given (z, ζ) = G−1(γ, η), if γ > 1 the first return

to C for gt with t positive along γz,ζ(t) occurs on I1 = R(I0). On the other hand, if γ < 1 it occurs on

J0 = L(I0). Finally, when γ = 1 there are no returns to C along γz,ζ(t) for positive t. However we can

extend the map also to this case, and using Lemma B.1 we obtain

(γ′, η′) = Pg(γ, η) =























(γ − 1, η + 1) if γ > 1
(

γ
1−γ ,

η
1+η

)

if γ < 1

(0,∞) if γ = 1

(B.2)

so that we recognise the map U defined in (2.1) as the factor map of Pg on the first coordinate.

−1 0 1− 1
2

1
2

I−1 I0 I1

J−1

J0

••
γ−η

(z, ζ) (z′, ζ′)

••
γ−η

(z, ζ)

(z′, ζ′)

Figure 6. Action of the first return map Pg . The red geodesic has γ > 1 and thus the first return to C of the geodesic

flow occurs on I1; the blue geodesic has γ < 1, so that the first return to C of the geodesic flow occurs on J0.

Let us now consider the {L,R} coding of γ ∈ R+. Using that M(γ) = R · · · when γ > 1, M(γ) = L · · ·
when γ < 1, and M(γ) = I when γ = 1, we obtain

M(γ′) =

{

σ(M(γ)) if γ 6= 1

λ if γ = 1
,

where λ denotes the empty word.

We can now construct the suspension flow associated to (G,Pg). Let (z, ζ) ∈ C and apply the geodesic flow

along γz,ζ(t) for t positive. Letting (γ, η) := G(z, ζ), the first return of the geodesic flow gt(z, ζ) on C occurs

at a time tg(z, ζ) > 0, which can then be written as a function of (γ, η) as ρg(γ, η) := tg(G−1(γ, η)). Let

us now compute ρg(γ, η). When γ > 1, we have seen that the first return on C along γz,ζ(t) for t positive
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occurs on I1. Hence, using the identification between SH and PSL(2,R) and (3.3), we write

Γgt(z,ζ) =

(

a b

c d

)

(

e
t
2 0

0 e−
t
2

)

where Γ(z,ζ) =

(

a b

c d

)

,

from which it follows that tg(z, ζ) is the positive solution of

Re

(

a e
t
2 i+ b e−

t
2

c e
t
2 i+ d e−

t
2

)

= 1 .

A straightforward computation and (B.1) give

tg(z, ζ) =
1

2
log

(

ac+ d2

ac− c2

)

and ρg(γ, η) =
1

2
log

(

1 + 1
η

1− 1
γ

)

if γ > 1.

When γ < 1, we have seen that the first return on C along γz,ζ(t) for t positive occurs on J0. Hence, as

before it follows that tg(z, ζ) is the positive solution of
∣

∣

∣

∣

∣

(

a e
t
2 i+ b e−

t
2

c e
t
2 i+ d e−

t
2

)

− 1

2

∣

∣

∣

∣

∣

=
1

2
.

A straightforward computation and (B.1) give

tg(z, ζ) =
1

2
log

(

b2 − bd

ac− a2

)

and ρg(γ, η) =
1

2
log

(

1 + η

1− γ

)

if γ < 1.

Let now

Σρ :=
{

(γ, η, τ) ∈ R+ × R+ × R : γ 6= 1 , 0 ≤ τ ≤ ρg(γ, η)
}

and consider the flow φt : Σρ → Σρ defined by

φt(γ, η, τ) =







(γ, η, τ + t) if 0 ≤ τ + t < ρg(γ, η)

(Pg(γ, η), 0) if τ + t = ρg(γ, η)
,

and analogously for other values of t. Then (Σρ, φt) is the suspension flow over the map Pg, for which the

following proposition holds.

Proposition B.2. The following properties hold.

(i) The map Pg : G → G preserves the infinite measure µ which is absolutely continuous with respect to

the Lebesgue measure on G with density h(γ, η) = (γ + η)−2.

(ii) The flow φt : Σρ → Σρ preserves the measure µ̃ which is absolutely continuous with respect to the

Lebesgue measure on Σρ with density h̃(γ, η, τ) = (γ + η)−2. Moreover µ̃(Σρ) = π2/3.

(iii) The dynamical system (Σρ, µ̃, φt) is isomorphic to the system (SM, m̃, g̃t), where m̃ is the projection

on SM of the Liouville measure dm(x, y, θ) = y−2 dx dy dθ on SH, where z = x+ iy and θ = θ(ζ).

Proof. Given (z, ζ) ∈ SH with θ(ζ) 6∈ {0, π}, consider its coordinates (γ, η, τ) defined by (γ, η) = G(z, ζ),
and τ ∈ R such that (z, ζ) = gτ (z

′, ζ′) where z′ is the point of the geodesic γz,ζ(t) with maximum value of

the y component. We obtain the following expressions for the coordinates (x, y, θ) of (z, ζ), where z = x+ iy

and θ = θ(ζ):

x(γ, η, τ) =
γ eτ − η e−τ

eτ + e−τ
, y(γ, η, τ) =

γ + η

eτ + e−τ
, θ(γ, η, τ) = −2 arctan(eτ ) . (B.3)

From (B.3) it follows that the Liouville measure dm(x, y, θ) = y−2 dx dy dθ becomes

2 dµ̃ =
2

(γ + η)2
dγ dη dτ
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in the coordinates (γ, η, τ). Moreover by the definition of τ , the geodesic flow acts in the coordinates (γ, η, τ)

simply by translation on τ , that is

gt(γ, η, τ) = (γ, η, τ + t) .

These facts, together with m̃(SM) = 2π2/3, prove (ii) and (iii). Finally (i) follows from (ii). �

Appendix C. The dynamics of the periodic points of Ph on the permuted Stern-Brocot

tree

Here we describe the algorithm to find the points of the periodic orbit of (1, r,−1) for Ph in their dynamical

order up to (1, r,+1) (refer to Figure 7 where the case r ∈ (10, 11) is shown):

(a) the initial condition is the point (1, r,−1) ∈ W and for completeness we consider the case r ∈ N, with

r ≥ 2 (the case r = 1 has already been studied and for r ∈ [1, 2) no fraction other than 1/1 in T̂ has

energy small enough to be in the periodic orbit). If r 6∈ N then the points with ε = 0 should be excluded

in the next steps. Then we start with the fraction 1/1;

(b) go down on the left along T̂ finding the fractions 1/n for n ≤ r (here we are applying L to the γ-

components). These fractions correspond to the points (1/n, r/n2,−1) ∈ W if 2 ≤ n < r, and to the

point (1/n, 1/n, 0) ∈ W if n = r. Note that for the energy ξ(1/r) = r, and it is an elementary remark

that there is only another fraction at the same level in T̂ with energy greater than or equal to r, namely

r/1;

(c) if r = 2, it is clear that the only other fraction in T̂ with energy less than or equal to r = 2 is 2/1,

hence we obtain the point (2/1, 2, 0), from which we get (1, r,+1);

(d) if r ≥ 3 go up back to the fraction 1/(r − 1) (applying L−1), to find the corresponding point (1/(r −
1), r/(r−1)2,+1) ∈ W. The right sister of 1/(r−1) is the fraction (r−1)/(r−2), and ξ((r−1)/(r−2)) > r

for all r ≥ 4. If r = 3, the right sister of 1/2 is 2/1, we get the point (2/1, 3,−1) ∈ W, and we continue

as in step (i);

(e) if r ≥ 4, keep going up back to the fractions 1/n with 2 ≤ n < r − 1 (applying L−1), to find the

corresponding point (1/n, r/n2,+1) ∈ W, and stop going up at n∗ if the right sister n∗/(n∗−1) satisfies

ξ(n∗/(n∗ − 1)) = n∗(n∗ − 1) ≤ r. In this case we go to the right (applying RL−1 = SR−1) to the

fraction n∗/(n∗ − 1), corresponding to the point (n∗/(n∗ − 1), r/(n∗ − 1)2,−1) ∈ W if n∗(n∗ − 1) < r,

and to the point (n∗/(n∗ − 1), n∗/(n∗ − 1), 0) ∈ W if n∗(n∗ − 1) = r;

(f) repeat the same algorithm: first go left until possible with points with ε = −1 or ε = 0; then go back up

with points with ε = +1 until the energy of the right sister of the fraction is small enough to go right

with ε = −1; eventually we reach a fraction which is a right descendant (hence it has no right sisters)

and in correspondence with a point with ε = +1, from which we cannot go down; then we go up back

visiting all the already seen fractions, this time with ε = +1, until we get to the fraction n∗/(n∗ − 1) of

step (e), in correspondence with the point (n∗/(n∗ − 1), r/(n∗ − 1)2,+1) ∈ W;

(g) move up to the fraction 1/(n∗−1), the direct parent of 1/n∗ and n∗/(n∗−1), (applying R−1) obtaining

the point (1/(n∗ − 1), r/(n∗ − 1)2,+1). The same pattern described in (e) and (f) repeats, that is we

move to the right to the fraction (n∗ − 1)/(n∗ − 2) with ε = −1, and then apply step (f), until we reach

again (n∗ − 1)/(n∗ − 2), this time with ε = +1, and then go back to 1/(n∗ − 2);

(h) repeat step (g) moving up until reaching 1/2 in correspondence with the point (1/2, r/4,+1) ∈ W, then

go right to 2/1 with ε = −1;

(i) now apply the steps in (b)-(g) by interchanging left with right. This follows from the symmetry of the

Stern-Brocot trees, for which a reflection of the tree along a vertical line passing through 1/1 sends the

fraction p/q to the fraction q/p. In particular the energy of these specular fractions is the same. Then

we visit all the fractions with energy less than or equal to r which lie on this right side of T̂ , until we
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reach back 2/1 in correspondence with the point (2/1, r,+1) ∈ W. The last step is to go back to 1/1

and to (1, r,+1), the last point in the periodic orbit of (1, r,−1).
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Figure 7. Representation on the permuted Stern-Brocot tree of the periodic orbit of (1, r,−1) for Ph in the case r ∈ (10, 11).
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