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Entropy production (EP) is a key quantity in thermodynamics, and yet measuring EP has re-
mained a challenging task. Here we introduce an EP estimator, called multidimensional entropic
bound (MEB), utilizing an ensemble of trajectories. The MEB can accurately estimate the EP of
overdamped Langevin systems with an arbitrary time-dependent protocol. Moreover, it provides
a unified platform to accurately estimate the EP of underdamped Langevin systems under certain
conditions. In addition, the MEB is computationally efficient because optimization is unnecessary.
We apply our developed estimator to three physical systems driven by time-dependent protocols
pertaining to experiments using optical tweezers: a dragged Brownian particle, a pulling process of
a harmonic chain, and an unfolding process of an RNA hairpin. Numerical simulations confirm the
validity and efficiency of our method.

I. INTRODUCTION

Entropy production (EP), referring to the quantifica-
tion of the irreversibility of a thermodynamic process,
is one of the most fundamental thermodynamic quan-
tities. The EP was originally identified in the Clausius
form in equilibrium thermodynamics. More recently, cru-
cial progress in the field of thermodynamics has been
the extension of the EP to general nonequilibrium phe-
nomena at the level of a single stochastic trajectory.
This extension triggered a renaissance of thermodynam-
ics, namely the establishment of stochastic thermody-
namics. Based on the novel EP formulation, EP theories
have been developed and extensively studied over the last
two decades. An early one is the fluctuation theorem [1–
5], which can be understood as a generalization of the
thermodynamic second law. Later developments include
a group of thermodynamic trade-off relations such as the
thermodynamic uncertainty relation (TUR) [6–13], the
power-efficiency trade-off relation [14–18], and the speed
limit [19–24].

Subsequently, experimentally feasible methods for
measuring the EP have been actively suggested and dis-
cussed [25–39]. In fact, measuring EP is not a trivial
task. It is almost impossible to measure the EP by us-
ing its definition, the logarithmic ratio of forward and
time-reversal path probabilities [40], since all path prob-
abilities cannot be measured, especially for a continuous
system. Instead, there exist two direct EP measurement
methods using the “equality” for the total EP, ∆Stot.
The first method uses the equality ∆Stot = ∆Ssys+Q/T ,
where ∆Ssys is the Shannon entropy change of a system
and Q is dissipated heat into a reservoir at temperature
T [40, 41]. In experiments, it is difficult to measure the
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amount of heat flow accurately with a calorimeter. One
may calculate Q from trajectory data instead, but this
requires full knowledge of the external and internal forces
acting on the system [41]. Therefore, this method is not
practically useful for complicated cases such as a biolog-
ical system. The second direct method uses the equality
for the average EP in terms of the probability density
function (PDF) and the irreversible probability current
as presented in Eq. (6) of Ref. [30]. The PDF and the
irreversible probability current can be estimated solely
from system trajectories without knowledge of applied
forces in the overdamped Langevin dynamics. Never-
theless, obtaining them precisely for a high-dimensional
system is infeasible in practice, which is called the “curse
of dimensionality”.

To overcome these shortcomings of the direct meth-
ods, several indirect methods using a thermodynamic
“inequality” have been suggested. Here, the EP can be
estimated from an ensemble of system trajectories, and
the curse of dimensionality can be mitigated by measur-
ing several observable currents only. The indirect meth-
ods are based on an inequality in the general form of
∆Stot ≥ B(Θ), where the EP bound B(Θ) is determined
by an observable current Θ. In a certain condition, one
can find an optimal observable current Θ∗, which yields
B(Θ∗) = ∆Stot. Then, the EP can be accurately esti-
mated by measuring Θ∗.

Regarding the above indirect methods, there exist two
representative inequalities. The first inequality is in TUR
form [6–10], where the EP is bounded by the relative
fluctuation of a certain observable current. To access a
tighter bound of this TUR, multidimensional TUR [11]
and Monte Carlo methods [30] have been developed.
However, TURs depend on the nature of the system dy-
namics; e.g, the TUR must be modified when a time-
dependent protocol is involved [13] or when a system fol-
lows underdamped Langevin dynamics [12, 42, 43]. Thus,
EP estimation based on TURs is not universal. More-
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over, if we use a TUR for an underdamped system, EP
estimation is not possible from only system trajectories,
but rather needs full knowledge and full controllability of
the applied forces [12, 42, 43]. Thus, no proper method
via TUR exists for estimating the EP solely from system
trajectories for underdamped dynamics.

The second inequality for the indirect method is the
Donsker–Varadhan inequality [44]. Recently, a machine
learning technique named NEEP (neural estimator for
entropy production) [33, 34, 37] utilized this inequal-
ity as an optimized function for a given neural network.
Though this technique yields a reliable result in over-
damped Langevin systems, a high computational cost is
required for a process with a time-dependent protocol
since the parameters of the neural network should be
reoptimized every single time. Otherwise, this machine
learning technique has also been applied to underdamped
Langevin dynamics; however, it has difficulty in estimat-
ing the EP accurately for large inertia [37].

In this study, we propose a unified and computation-
ally efficient method to estimate the EP by using the en-
tropic bound (EB) inequality introduced by Dechant and
Sasa [17]. Inspired by the multidimensional TUR [11], we
use multiple observable currents to obtain the optimal
EB for the EP. Thus, we call this the “multidimensional
entropic bound” (MEB). The MEB is universal in the
sense that it provides a unified platform to estimate the
EP for both overdamped and underdamped systems re-
gardless of the time dependence of the driving protocol.
The MEB can estimate the EP from system-trajectory
information when an irreversible force is absent, a com-
mon experimental setup. When an irreversible force is in-
volved, additional information about the force is required
to estimate the EP. For an underdamped system, sup-
plementary information on the velocity relaxation time,
which can be determined experimentally, is necessary to
estimate the EP.

This paper is organized as follows. In Sec. II, we derive
the formulae for the MEB and describe the EP estima-
tion process using it. In Sec. III, we explain the relation
between the MEB and various TUR bounds. In Sec. IV,
we apply the MEB to three systems with time-dependent
driving forces that can be realized in experiments using
optical tweezers. We conclude the paper in Sec. V.

II. MULTIDIMENSIONAL ENTROPIC BOUND

The EB is the inequality between the EP and an ob-
servable current [17]. As this bound holds for both over-
damped and underdamped Langevin systems with an ar-
bitrary time-dependent protocol, it can be a good start-
ing point to obtain a unified and efficient EP estima-
tor applicable to both overdamped and underdamped
Langevin dynamics. In this section, we introduce the
multidimensional entropic bound (MEB) estimator by in-
corporating multiple observable currents systematically
into the EB estimator.

A. Derivation of the integral and the rate EB

Here, we consider an M -dimensional Langevin system
with a state vector q(t) = (q1, · · · , qM )T, where T de-
notes the transpose of a matrix, described by the follow-
ing equation of motion:

q̇(t) = A(q(t), t) +
√

2B(q(t), t) • ξ(t), (1)

where A = (A1, · · · , AM )T is a time-dependent drift
force, B is a positive-definite symmetric M ×M diffusion
matrix, and ξ = (ξ1, · · · , ξM )T is a Gaussian white noise
satisfying 〈ξi(t)ξj(t′)〉 = δijδ(t− t′) for i, j ∈ {1, · · · ,M}.
The symbol • in Eq. (1) represents the Itô product. From
now on, we sometimes drop the arguments of functions
for simplicity.

A component of q can be an odd-parity variable such
as a velocity under time-reversal operation. The time
reversal of a state q is denoted by q̃ = (q̃1, · · · , q̃M )T with
q̃i = εiqi, where εi = 1 for an even-parity variable and
εi = −1 otherwise. The drift force can be divided into
reversible and irreversible parts as A(q, t) = Arev(q, t) +
Airr(q, t) with [45]

Arev(q, t) ≡ 1

2

[
A(q, t)− ε�A†(ε� q, t)

]
,

Airr(q, t) ≡ 1

2

[
A(q, t) + ε�A†(ε� q, t)

]
, (2)

where ε = (ε1, · · · , εM )T, � denotes the element-wise
product, i.e., a� b = (· · · , aibi, · · · )T, and † is an opera-
tion changing the sign of the odd-parity parameters.

The Fokker–Planck equation associated with Eq. (1) is

∂tP (q, t) = −∇[J rev(q, t) + J irr(q, t)] , (3)

with the PDF P (q, t). The reversible current J rev(q, t)
and the irreversible current J irr(q, t) are defined as

J rev
i (q, t) ≡ Arev

i (q, t)P (q, t), (4)

J irr
i (q, t) ≡ Airr

i (q, t)P (q, t)−
∑
j

∂qj [Bij(q, t)P (q, t)] ,

(5)

with B(ε � q, t) = B(q, t). Note that for an over-
damped Langevin system with even-parity variables only,
Arev(q, t) vanishes, and thus J rev(q, t) = 0 and the total
current coincides with J irr(q, t). As dissipation origi-
nates from the irreversible current, the EP is determined
only by J irr(q, t). Therefore, the total EP rate σtot is
given by [17, 46, 47]

σtot(t) ≡
∫
dq
J irr(q, t)TB(q, t)−1J irr(q, t)

P (q, t)
. (6)

Hereafter, we use the kB = 1 unit. Note that for
underdamped Langevin systems, the matrix is not di-
rectly invertible since Bij = 0 when the component
index i or j denotes a positional variable. For such
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an index i, we first set Bii = b (b > 0) and Bij =
0 (i 6= j), then take the inverse of B and calculate
J irr(q, t)TB(q, t)−1J irr(q, t) in Eq. (6), and finally take
the b → 0 limit. Since J irr

i (q, t) ∝ b, this limit leads
to J irr

i (q, t)2Bii(q, t)
−1 ∼ b → 0. For underdamped sys-

tems, this procedure amounts to writing B and J irr in
terms of velocity-variable components only.

In this study, we consider the following form of an av-
eraged observable current generated by the irreversible
current during time τ :

〈Θ(τ)〉 =

∫ τ

0

dt

∫
dq Λ(q, t)TJ irr(q, t), (7)

where Λ(q, t) = (Λ1, · · · ,ΛM )T is a weight vector of the
irreversible current for a given observable. Then, the
averaged current rate at time t is given as

〈Θ̇(t)〉 =

∫
dq Λ(q, t)TJ irr(q, t) . (8)

The EB in an integral form can be derived from Eq. (7)
as follows:

〈Θ(τ)〉

=

∫ τ

0

dt

∫
dqP (q, t)

1
2Λ(q, t)TB(q, t)

1
2
B(q, t)−

1
2J irr(q, t)

P (q, t)
1
2

≤

√∫ τ

0

dt 〈ΛTBΛ〉q
√

∆Stot(τ), (9)

where 〈· · · 〉q =
∫
dq · · ·P (q, t) and the total EP

∆Stot(τ) =
∫ τ

0
dt σtot(t). The Cauchy–Schwartz inequal-

ity is used for the last inequality of Eq. (9). Hence, the
total EP is bounded in an integral form as

∆Stot(τ) ≥ 〈Θ(τ)〉2∫ τ
0
ds 〈ΛTBΛ〉q

≡∆SEB(Θ, τ).

(integral EB) (10)

Similarly, the EB in a rate form can also be obtained
from Eq. (8) as

σtot(t) ≥ 〈Θ̇(t)〉2

〈ΛTBΛ〉q
≡ σEB(Θ, t). (rate EB) (11)

The equality of the integral EB is satisfied when the
weight vector has the following form:

Λe(q, t) = c
B(q, t)−1J irr(q, t)

P (q, t)
(for the integral EB),

(12)

where c is an arbitrary constant that is independent of q
and t. This can be easily checked by inserting Eq. (12)
into Eq. (10). The weight vector in this case corresponds
to the observable current proportional to the total EP,

i.e., 〈Θ(τ)〉 = c∆Stot(τ). Similarly, we find the equality
condition for the rate EB as

Λe(q, t) = c(t)
B(q, t)−1J irr(q, t)

P (q, t)
(for the rate EB),

(13)

where c(t) is an arbitrary time-dependent function that
is independent of q. This weight vector corresponds to
the observable current rate as 〈Θ̇(t)〉 = c(t)σtot(t). Note
that c and c(t) can be arbitrary, and thus we may choose
c and c(t) freely in order to simplify the measurement of
an observable current. A relevant example is presented
in Sec. IV A.

B. Derivation of the integral and the rate MEB

With the knowledge of the functional form of Λe(q, t),
one may obtain the tight EP bound. However, except for
very simple examples, it is impossible to identify Λe(q, t)
without knowing all driving and interaction forces. In-
stead, we measure multiple observable currents to access
a tighter bound, thereby systematically approaching the
total EP. Our MEB method is analogous to the multi-
dimensional TUR [11] but is more general in the sense
that it can be applicable to wider classes of Langevin
dynamics.

In this method, a linear combination of multiple weight
vectors is adopted to approximate Λe(q, t). The linear
combination of ` weight vectors {Λi,1, · · · ,Λi,`} for the
i-th component is written as

Λ
(`)
i (q, t) =

∑̀
α=1

ki,αΛi,α(q, t), (14)

where ki,α is the coefficient for Λi,α(q, t) and is inde-
pendent of q and t. From now on, we will consider the
case Bij = Biδij for simplicity. Even when the diffusion
matrix has off-diagonal elements, we can always diago-
nalize the diffusion matrix by using a proper transfor-
mation of the coordinate if the full information of Bij is
given. Thus, we can still set Bij = Biδij on the trans-
formed coordinate. In cases where it is difficult to ob-
tain the information of Bij , and thus not possible to
find the proper transformation, we cannot use the fol-
lowing MEB in component-wise form. However, even in
such cases, we can still derive the MEB in “component-
combined” form as we show in Appendix C. The ob-
servable in Eq. (7) can be divided into the sum of its

components as 〈Θ(τ)〉 =
∑M
i=1〈Θi(τ)〉, where 〈Θi(τ)〉 =∫ τ

0
dt
∫
dq Λi(q, t)J

irr
i (q, t). With the i-th component

current 〈Θi(τ)〉, we derive the component-wise EB as

∆Si(τ) ≥ 〈Θi(τ)〉2∫ τ
0
dt 〈ΛiBiΛi〉q

. (i-th integral EB), (15)

where ∆Si(τ) =
∫ τ

0
dtσi(t) with the i-th component EP

rate σi(t) =
∫
dq Bi(q, t)

−1J irr
i (q, t)2/P (q, t). Thus,
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∆Stot(τ) =
∑
i ∆Si(τ) and σtot(t) =

∑
i σi(t). By sub-

stituting Eq. (14) into Eq. (15), we have

∆Si(τ) ≥

{
kTi 〈Θ

(`)
i (τ)〉

}2

kTi L
(`)
i (τ)ki

≡ ∆Ŝ
(`)
i (ki), (16)

where ki = (ki,1, · · · , ki,`)T, and the vector 〈Θ(`)
i (τ)〉 =

(〈Θi,1(τ)〉, · · · , 〈Θi,`(τ)〉)T and the `× ` matrix Li(τ) are
defined as

〈Θi,α(τ)〉 ≡
∫ τ

0

dt

∫
dq Λi,α(q, t)J irr

i (q, t) and

(17)(
L

(`)
i (τ)

)
α,β
≡
∫ τ

0

dt 〈Λi,α(q, t)Bi(q, t)Λi,β(q, t)〉q ,

(18)

respectively. Note that L
(`)
i (t) is a positive definite matrix

since zTL
(`)
i (τ)z =

∫ τ
0
dt
∫
dq〈
(∑

α

√
BiΛi,αzα

)2〉q > 0
for an arbitrary z.

The bound ∆Ŝ
(`)
i (ki) in Eq. (16) is a function of ki;

thus, the tightest bound can be written as ∆Ŝ
(`)
i (k∗i ),

where k∗i is the optimal vector maximizing the bound.
The optimal vector is obtained by solving the following
equation:

∂ki,α∆Ŝ
(`)
i (ki) = 0

=
2kTi 〈Θ

(`)
i 〉
{
kTi L

(`)
i ki · 〈Θi,α〉 − kTi 〈Θ

(`)
i 〉 · (L

(`)
i ki)α

}
(kTi L

(`)
i ki)

2
.

(19)

We can easily check that the numerator vanishes with

the choice of k∗i = (L
(`)
i )−1 · 〈Θ(`)

i (τ)〉. By plugging k∗i
into Eq. (16), we find the component-wise MEB as

∆Si(τ) ≥ 〈Θ(`)
i (τ)〉T(L

(`)
i (τ))−1〈Θ(`)

i (τ)〉 ≡ ∆S
MEB(`)
i (τ).

(20)

By summing over all components, we finally obtain our
main result, namely MEB in integral form, as follows:

∆Stot(τ) ≥
M∑
i=1

∆S
MEB(`)
i (τ)

≡ ∆SMEB(`)(τ). (integral MEB) (21)

We can also derive the MEB in rate form. The deriva-
tion of the rate MEB is essentially the same as that of
the integral MEB. It starts from the component-wise rate
EB as

σi(t) ≥
〈Θ̇i(t)〉2〈
ΛT
i BiΛi

〉
q

. (i-th rate EB) (22)

In this case, it is usually sufficient to choose a time-
independent basis as

Λ
(`)
i (q, t) =

∑̀
α=1

ki,α(t)Λi,α(q), (23)

where the time-dependence is encoded in the coefficients
instead of in Λi,α(q), as the equality condition in Eq. (13)
also allows a time-dependent overall multiplicative coef-
ficient. Following the same derivation procedure as in
Eqs. (16)−(21), we finally obtain

σtot(t) ≥
M∑
i=1

〈Θ̇(`)
i (t)〉T

(
L̇

(`)
i (t)

)−1

〈Θ̇(`)
i (t)〉

=

M∑
i=1

σ
MEB(`)
i (t)

≡σMEB(`)(t), (rate MEB) (24)

where the vector 〈Θ̇(`)
i (t)〉 = (〈Θ̇i,1(t)〉, · · · , 〈Θ̇i,`(t)〉)T

and the `× ` matrix L̇
(`)
i (τ) are defined as

〈Θ̇i,α(t)〉 ≡
∫
dq Λi,α(q)J irr

i (q, t) and (25)(
L̇

(`)
i (t)

)
α,β
≡〈Λi,α(q)Bi(q, t)Λi,β(q)〉q . (26)

The total EP during a finite time τ can be evaluated by
integrating σMEB(`)(t) over time.

The weight vectors for the rate MEB are not time-
dependent, so we need a lower number of weight vec-
tors to approximate Λe

i (q, t) compared to the integral
MEB where time-dependent weight vectors are necessary.
Practically, too many weight vectors can overfit all the
fluctuations originating from a finite number of trajecto-
ries, sometimes giving rise to an undesirable result. Thus,
the rate MEB is usually preferable in estimating the EP
for a system driven by a time-dependent protocol.

The MEBs in Eqs. (21) and (24) are the maximum
bounds for a given finite number of observables. If we
add one more observable to the existing ` observables,
the MEB becomes tighter, i.e.,

∆S
MEB(`+1)
i (τ)−∆S

MEB(`)
i (τ) ≥ 0,

σ
MEB(`+1)
i (t)− σMEB(`)

i (t) ≥ 0. (27)

The proof of Eq. (27) is basically the same as that pre-
sented in Ref. [48]. To be self-contained, we include the
proof in Appendix A. As we increase `, the MEB estima-
tor also increases and eventually saturates to the maxi-
mum value, i.e., ∆Si(τ) or σi(t). It can often saturate
even at finite ` = `sat for simple systems. Therefore,
by observing the saturation regime in a plot of the EP
estimator versus `, we can accurately estimate the total
EP (see Sec. IV) without resorting to a time-consuming
optimization procedure.
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There exists no limitation for choosing a set of ` weight
vectors as long as they are linearly independent of each
other. In this study, we adopt a Gaussian weight vec-
tor set [49] for numerical verification of the rate MEB
method in Sec. IV. The first weight vector is a Gaussian
function, the width of which corresponds to the differ-
ence between the maximum and minimum state values.
The second and third weight vectors are Gaussian func-
tions with a width half that of the first one, and so on.
This represents one way to add the Gaussian basis uni-
formly for a given state-variable range, which yields an
accurate and reliable EP estimation as shown in Sec. IV.
The mathematical expression for the weight vector set is
as follows:

{Λi,α} =
{
· · · , exp [−(qi − ai,α)2/2b2i,α], · · ·

}
. (28)

In Eq. (28), ai,α and bi,α are given as

{ai,α}α≤` ={1

2
qmin
i +

1

2
qmax
i ,

2

3
qmin
i +

1

3
qmax
i ,

1

3
qmin
i +

2

3
qmax
i ,

3

4
qmin
i +

1

4
qmax
i , ...},

{bi,α}α≤` ={∆qi,
1

2
∆qi,

1

2
∆qi,

1

3
∆qi,

1

3
∆qi,

1

3
∆qi, ...},

where qmax
i (qmin

i ) is the maximum (minimum) value of
qi in a given trajectory ensemble and ∆qi = qmax

i − qmin
i .

Explicit forms of ai,α and bi,α are given as ai,α = qmin
i +

(u(α) + 1)−1[α − u(α)(u(α)−1)
2 ]∆qi and bi,α = ∆qi/u(α)

for α ≥ 1 with u(n) = b 1+
√

8α−7
2 c. Here, bxc = m̃, where

m̃ is an integer satisfying m̃ ≤ x < m̃+ 1. We note that
the Gaussian weight vector set usually yields reliable es-
timation results compared to other sets. For example,
the polynomial basis set {qi, q2

i , · · · , q`i} typically overes-
timates the EP with large fluctuations when ` is large,
since the polynomial term with a large exponent is highly
sensitive to rare-event data.

C. EP estimation procedure via MEB

In this section, we describe how to estimate the EP
with the MEB from an ensemble of system trajecto-
ries. Here we consider both overdamped and under-
damped Langevin dynamics. For an overdamped sys-
tem, the system states consist of only position variables,
i.e., q(t) = x(t) = (x1, · · · , xM ), and the Langevin equa-
tion is written as

ẋi(t) =
1

γ
Fi(q(t), t) +

√
2Bi(q, t) • ξi(t), (29)

where Fi is a force applied to the xi component. The
reversible current J rev

i = 0, while the irreversible current
is given as

J irr
i (q, t) =

(
1

γ
Fi(q, t)− ∂xiBi(q, t)

)
P (q, t). (30)

In the case of underdamped dynamics, the system
states consist of both position and velocity variables,
i.e., q(t) = (x1, · · · , xN , v1, · · · , vN ) with M = 2N , and
the Langevin equation is written as

ẋi = vi

v̇i(t) =
1

m
Fi(q(t), t)− γ

m
v +

√
2Bi(q, t) • ξi(t). (31)

As done in Eq. (2), the external force Fi can be divided
into reversible and irreversible parts as Fi = F rev

i + F irr
i

with

F rev
i (q, t) ≡ 1

2

[
Fi(q, t) + F †i (ε� q, t)

]
,

F irr
i (q, t) ≡ 1

2

[
Fi(q, t)− F †i (ε� q, t)

]
. (32)

Then, the irreversible currents are given as

J irr
xi (q, t) = 0,

J irr
vi (q, t) =

(
1

m
F irr
i (q, t)− γ

m
vi − ∂viBi(q, t)

)
P (q, t) ,

(33)

while the reversible currents J rev
xi (q, t) = viP (q, t) and

J rev
vi (q, t) = 1

mF
rev
i (q, t)P (q, t).

We focus on the rate MEB in the following discussions,
but note that the procedure for the integral MEB is es-
sentially the same.

1. Determination of Bi and Li

For an overdamped dynamics described by Eq. (29),
the diffusivity Bi is determined from the average of short-
time mean square displacements as

Bi(q, t) = lim
δt→0

〈δxi(t)2〉(q,t)
δt

, (overdamped) (34)

where δxi(t) ≡ xi(t+δt)−xi(t) and 〈· · · 〉(q,t) denotes the
average over the trajectory ensemble at position q and
time t. When Bi is independent of position and time,
all short-time trajectories can be utilized for estimating
the diffusivity. For an underdamped dynamics, Bi can
be estimated from the ensemble of velocity trajectories
as

Bi(q, t) = lim
δt→0

〈δvi(t)2〉(q,t)
δt

, (underdamped) (35)

where δvi(t) ≡ vi(t+ δt)− vi(t). With these estimations

for Bi, we calculate (L̇
(`)

i (t))α,β from Eq. (26). Note that

limδt→0
〈δxi(t)2〉(q,t)

δt = 0 in the underdamped case. In the
case where the estimation of Bi(q, t) requires heavy com-
putation, instead of evaluating the diffusivity, we can di-

rectly estimate the
(
L̇

(`)
i (t)

)
α,β

matrix from the average
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of the products of two infinitesimal observable changes
as (

L̇
(`)
i (t)

)
α,β

= 〈Λi,α(q)Bi(q, t)Λi,β(q)〉q
≈ 〈Λi,α(q) ◦ δqi · Λi,β(q) ◦ δqi〉q/(2δt).

(36)

When the diffusion matrix has non-zero off-diagonal
terms, we first have to directly evaluate Bij =
limδt→0〈δqiδqj〉(q,t)/δt and find the proper transforma-
tion to diagonalize the matrix.

2. Measurement of an observable current

Now we describe how to measure the observable cur-
rent rate in Eq. (25) for both overdamped and under-
damped dynamics. First, in the overdamped dynam-
ics with q(t) = (x1, · · · , xM ), the i-th component of an
observable current rate can be measured by averaging
Λi,α(q(t))◦ ẋi(t) over the ensemble of system trajectories
as

〈Θ̇i,α(t)〉 = 〈Λi,α(q(t)) ◦ ẋi(t)〉(q,t), (37)

where ◦ denotes the Stratonovich product. This can
be checked from the fact that 〈H(q, t) ◦ ẋi〉(q,t) =∫
dq H(q, t)J irr

i (q, t) with an arbitrary function H(q, t).
For Λi,α(q) = 1, the observable current is the displace-
ment in the xi direction as Θi,α(τ) = xi(τ)− xi(0).

In the underdamped dynamics with q(t) =
(x1, · · · , xN , v1, · · · , vN ), by plugging Eq. (33) into
Eq. (25), we have

〈Θ̇i,α(t)〉 =− γ

m
〈Λi,α(q)vi〉q +

1

m
〈Λi,α(q)F irr

i (q, t)〉q

+Bi(q, t)〈∂viΛi,α(q)〉q . (38)

When F irr
i = 0 and Λi,α has no explicit velocity de-

pendence, the observable current is proportional to
〈Λi,α(q)vi〉q, similar to that of the overdamped system,
Eq. (37). However, extra information γ/m is required
to evaluate Eq. (38) in the underdamped case. This con-
stant can be determined experimentally by measuring the
velocity relaxation time [50]. Otherwise, when F irr

i = 0
and Λi,α has an explicit velocity dependence, extra cal-
culation of the last term in Eq. (38) is necessary. For
the most general case with F irr

i 6= 0 (velocity-dependent

force), 〈Θ̇i,α(t)〉 cannot be determined solely by system
trajectories, but rather concrete information on the force
is necessary.

3. EP Estimation

Utilizing numerical data for L̇
(`)

i and 〈Θ̇i,α(t)〉 ob-
tained in Secs. II C 1 and II C 2, one can evaluate
σMEB(`)(t) from Eq. (24) and then obtain ΣMEB(`)(τ) ≡

∫ τ
0
dt σMEB(`)(t) for each ` = 1, 2, 3, · · · . As proved

in Sec. II B, ΣMEB(`)(τ) is an increasing function of `
and saturates to the maximum value at some `sat. This
saturation indicates that Λ`

sat

i coincides with Λe
i (q, t),

thus satisfying the equality of the EB. Therefore, the
total EP corresponds to the MEB estimator at ` = `sat,

i.e., ∆Stot(τ) = ΣMEB(`sat)(τ).

III. RELATION BETWEEN MEB AND TUR

In this section, we discuss the relation between MEB
and TURs. We first consider a one-dimensional (1D)
overdamped Langevin dynamics in the steady state
(without a time-dependent protocol) as described by
Eq. (29). The total EP ∆Stot(t, t′) during a small time
segment between t and t′ = t+ δt and the corresponding
accumulated current Θ(t, t′) are written as

∆Stot(t, t′) := ∆Stot(t′)−∆Stot(t) =

∫ t′

t

dt σtot(t),

Θ(t, t′) := Θ(t′)−Θ(t) =

∫ t′

t

dt Λ(x(t), t) ◦ ẋ(t). (39)

Then, the TUR is given by

∆Stot(t, t′) ≥ 2〈Θ(t, t′)〉2

〈∆Θ(t, t′)2〉
, (40)

where 〈Θ(t, t′)〉 and ∆Θ(t, t′) are

〈Θ(t, t′)〉 =

∫ t′

t

dt

∫
dx Λ(x, t)J irr(x, t),

∆Θ(t, t′) = Θ(t, t′)− 〈Θ(t, t′)〉. (41)

In the short-time limit δt → 0, 〈Θ(t, t′)〉 = 〈Θ̇(t)〉δt and

〈∆Θ(t, t′)2〉 = 〈(Λ ◦ δx − 〈Θ̇(t)〉δt)2〉 = 2〈ΛBΛ〉xδt +
O(δt2). With these short-time forms, Eq. (40) be-
comes identical to the rate EB equation (11). There-
fore, the previous EP estimation methods using the mul-
tidimensional TUR [11, 49] are identical to our MEB
method for a 1D overdamped Langevin system in the
short-time limit. For a higher-dimensional process, it is
not possible to write the component-wise TUR, such as

∆Si(τ) ≥ 2 〈Θi(τ)〉2
〈∆Θi(τ)2〉 , and consequently we cannot obtain

the component-wise bound for the EP from the TUR. In
this sense, the MEB provides more detailed information
on the EP, compared to the TUR method.

We note that other modified TURs with an arbitrary
time-dependent protocol or an arbitrary initial state do
not approach the rate EB in the short-time limit even
in one dimension. As an example, consider a 1D over-
damped Langevin system driven by a time-dependent
protocol. The modified TUR for this process with an ar-
bitrary protocol was introduced by Koyuk and Seifert [13]
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as

∆Stot(t, t′) ≥
2
[
ĥ(t′)〈Θ(t, t′)〉

]2
〈∆Θ(t, t′)2〉

≡ ∆SKS(t, t′), (42)

where ĥ(t) = t∂t−ω∂ω and ω denotes the protocol speed.
In the δt→ 0 limit, the numerator of ∆SKS(t, t′) becomes

2{(1−ω∂ω)〈Θ̇(t)〉}2δt2, and thus this TUR is written as

σtot(t) ≥ 2{(1− ω∂ω)〈Θ̇(t)〉}2

〈ΛBΛ〉x
≡ σKS(t), (43)

which is different from the rate EB in general. Note that
we have to evaluate the sub-leading-order contribution
when the numerator vanishes in Eq. (43). Experimental
estimation of σKS(t) is a very laborious task since we
need a sufficiently large ensemble of trajectories, slightly
perturbed with respect to ω at time t for every single
t. Therefore, compared to this modified TUR method,
MEB is a much more efficient approach to correctly es-
timate the EP of a system driven by a time-dependent
protocol.

In addition, short-time TURs for underdamped dy-
namics do not correspond to the rate EB either. The
TUR for a 1D underdamped system with a time-
dependent protocol and the observable current 〈Θ̇(t)〉 =
〈Λ(x, t)v〉x can be written as [43]

∆Stot(t, t′) ≥
2
[
ĥu(t′)〈Θ(t, t′)〉

]2
〈∆Θ(t, t′)2〉

− I(t), (44)

where ĥu(t) = t∂t − s∂s − r∂r − ω∂ω and I(t) is the
initial-state dependent term, defined as I(t) = 2〈(1 +

ĥ′u lnP (x, t))2〉 with ĥ′u = x∂x − s∂s − r∂r − ω∂ω. Here,
s and r are scaling parameters for force and position,
respectively. In the δt → 0 limit, since Θ(t, t′) =

Λvδt, 〈∆Θ(t, t′)2〉 = 〈(Λv − 〈Θ̇(t)〉)2〉δt2, which is not
O(δt) [51]. Thus, in the δt→ 0 limit, Eq. (44) becomes

σtot(t)δt ≥
2
[
(1− s∂s − r∂r − ω∂ω)〈Θ̇(t)〉

]2
〈(Λv − 〈Θ̇(t)〉)2〉

− I(t),

(45)

which is also different from the rate EB. For evaluat-
ing Eq. (45) experimentally, slight scalings of all forces
and position variables are necessary, which demands full
knowledge and full controllability of all forces. Thus, it is
clear that the underdamped TUR is not practically use-
ful to estimate the EP for a complicated system, such as
complex biological systems where such detailed informa-
tion is not available.

We conclude that the MEB is a unified tool that en-
ables the efficient estimation of the EP from a trajectory
ensemble for an overdamped or underdamped Langevin
process without an irreversible force. Finally, it is inter-
esting to note that the integral MEB can be tight when
we choose the optimal observable current, a feature that
no finite-time TUR can achieve.

FIG. 1. Plot for the rate EP estimator σ̃ normalized with
respect to the total EP rate σtot(t) as a function of time t.
The green solid and red dotted line denote the MEB results
of the overdamped and underdamped dynamics, respectively.
The orange dashed line represents the result of the modified
TUR by Koyuk and Seifert, σKS(t)/σtot(t). The parameters
used for this plot are k = µ = ω = T = 1. The inset shows a
schematic of the Brownian particle dragged by optical tweez-
ers. Note that these plots are obtained from the analytic
expressions.

IV. NUMERICAL VERIFICATION OF MEB

In this section, we estimate the EP of three physi-
cal systems driven by time-dependent protocols via the
MEB method. All these systems can be realized exper-
imentally using optical tweezers. The first example is a
dragged Brownian particle, the second is a pulled har-
monic chain, and the last is an RNA unfolding process.
We also compare the MEB results to those of other well-
established EP measurement methods, namely the direct
method utilizing ∆Stot = ∆Ssys + Q/T and a machine
learning technique (NEEP) [33, 34, 37].

A. Brownian particle dragged by optical tweezers

We consider a 1D Brownian particle dragged by opti-
cal tweezers as illustrated in Fig. 1. The center of the
harmonic potential of the tweezers is initially (t ≤ 0) lo-
cated at the origin and moves with a constant speed ω
for t > 0. Then the corresponding overdamped Langevin
equation for the position x(t) is written as

ẋ(t) = −µk(x(t)− λ(t)) +
√

2Bξ(t), (46)

where λ(t) = ωt is a time-dependent protocol, µ is the
mobility, k is the spring constant of the harmonic poten-
tial, and B = µT with the environmental temperature T .
The initial state at t = 0 is set as the equilibrium state.
As the driving force is linear in position, we can solve the
equation of motion analytically. The procedure for de-
riving the analytic solutions is presented in Appendix B.
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FIG. 2. (a) Schematic of the harmonic chain pulled by optical tweezers. (b) Estimated EP via the MEB method (black) and
the NEEP method (green) as a function of time t. The inset shows the EP of the i-th bead. ©, ×, +, �, and ♦ represent
the estimated EPs for x1, x2, x3, x4, and x5 beads, respectively. Solid lines denote the analytic results. Four Gaussian weight
vectors are used for the MEB estimation. (c) Plot of ∆Stot at t = 1.0 against the number of weight vectors `. The green dashed
line represents the NEEP result, while the red solid lines in (b) and (c) denote the analytic results. The parameters used for
these plots are k = 5, µ = 1, ω = 5, and T = 1.

We measure the displacement of the particle, that is,
we take the weight vector Λ(x, t) = 1. With this ob-
servable current, we evaluate the rate MEB estimator
σMEB(t) for each time t analytically and plot the results
in Fig. 1. Note that the normalized estimator is defined
by σ̃ ≡ σMEB(t)/σtot(t), which turns out to be unity,
i.e., the estimated EP exactly matches the true EP. This
is a rather surprising result, as we use only one current
(displacement). In fact, one can analytically find the
tight weight factor Λe(x, t) in Eq. (13) with the help of
the exact solution in Eq. (B8) as

Λe(x, t) = c(t)
J irr(x, t)

BP (x, t)
= c(t)

ω

µT
(1− e−t/τµ), (47)

where τµ = 1/(µk). Note that Λe(x, t) is x-independent.
Thus, by choosing the arbitrary c(t) to cancel the t-
dependence exactly in Eq. (47), one can easily see that
the unity weight vector Λe = 1 also satisfies the equality
condition of the rate EB.

For the purpose of comparison, we also plot the ra-
tio of the modified TUR by Koyuk and Seifert [13] to
the EP rate in Fig. 1. For evaluating the ratio of this
example, the sub-leading-order terms that we neglected
for deriving Eq. (43) are necessary since the numera-
tor in Eq. (43) vanishes in this example, so we calculate
∆SKS(t+δt, t)/∆S(t+δt, t) with small δt = 0.001. This
approximated ratio coincides with the result in Ref. [13].
The modified TUR deviates largely from the correct one
for small t. This confirms that our MEB method outper-
forms the modified TUR method for this simple case.

We also consider the same process in the underdamped
version. The corresponding underdamped Langevin
equation is written as

ẋ(t) =v(t)

v̇(t) =− 1

mµ
v(t)− k

m
(x(t)− λ(t)) +

√
2Bξ(t), (48)

where λ(t) = ωt and B = T/(µm2). The initial state is
also set as the equilibrium state. The analytic solution
of this equation is also available via similar procedure
for solving Eq. (46). The derivation is presented in Ap-
pendix B. From Eq. (B14), the tight weight vector is
obtained as

Λe(x, v, t) = c(t)
J irr(x, v, t)

BP (x, v, t)
= c(t)

(
0

−m〈v(t)〉
T

)
, (49)

where 〈v(t)〉 is evaluated by taking the time derivative
of 〈x(t)〉 in Eq. (B12). We find that Λe(x, v, t) depends
only on time but not position, like in the overdamped
case. Therefore, the unit weight vector again provides the
EP exactly. The analytic result of σ̃ = σMEB(t)/σtot(t)
for this underdamped dynamics is also plotted in Fig. 1,
which confirms the exact estimation of the EP from the
rate MEB by measuring only the displacement.

B. Harmonic chain pulled by optical tweezers

The next example is an M -bead harmonic chain
dragged by optical tweezers as illustrated in Fig. 2(a).
The harmonic potential of the optical tweezers is exerted
on the rightmost particle of the chain, and the leftmost
spring clings to the wall. Here, we consider an over-
damped Langevin dynamics described by

ẋ(t) = −µKx(t) + µkλ(t) +
√

2Bξ(t), (50)

where Kij = 2kδi,j − k(δi+1,j + δi−1,j), λi = ωtδM,i, and
Bij = µTδi,j with i, j ∈ {1, ...,M}. We can solve Eq. (50)
in a similar way used for the dragged Brownian particle.
The derivation details are presented in Appendix B.

For validating the MEB estimator, we generate 105 tra-
jectories of τ = 1 by solving Eq. (50) numerically with
M = 5 and T = 1 via the 2nd-order stochastic differen-
tial equation integrator. We set the time resolution dt to
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FIG. 3. EP estimation results for the RNA unfolding process. (a) Histogram of the distance x between the two ends of P5GA
at initial time 0 ns (light blue) and final time 7.19 ns (orange). The inset shows a schematic of the RNA pulled by optical
tweezers. (b) EP estimated via MEB with four Gaussian weight vectors (black) and NEEP (green) as a function of time t. The
red solid line denotes the results obtained from Eq. (52). (c) Estimated EP via MEB at t = 7.19 ns as a function of the number
of weight vectors ` (black). The green dashed line and the red solid line denote the results of the NEEP and the EP obtained
from Eq. (52), respectively.

0.01. The initial state of the chain is in equilibrium, with
the center of the harmonic potential being located at the
origin. From the trajectories, we estimate ∆Si, the EP
for the i-th bead, by using the rate MEB estimator with
the ` = 4 Gaussian weight vector set. The estimated data
are plotted in the inset of Fig. 2(b). As the figure shows,
the estimated EP of each bead perfectly matches the an-
alytic result. We plot the total EP by adding all these
∆Si in Fig. 2(b). For comparison, we also estimate the
total EP with the NEEP machine learning technique [33],
which coincides with the MEB result precisely. The de-
tailed procedure for the NEEP calculation is explained
in Appendix E. Both methods exactly estimate the total
EP within 0.5% error.

Figure 2(c) is a plot of the total EP at t = 1 against the
number of weight vectors. Surprisingly, the EP estimated
by the MEB with only one weight vector is already very
close to the analytic result. This is due to the fact that
a constant weight vector results in the exact EP value
in this system, as explained Appendix B. As a Gaussian
function with a broad width can be approximated as a
constant, the EP can be approximately estimated solely
with the broadest Gaussian function. The EP for ` > 1
saturates to the analytic result as expected in Sec. II B. In
Fig. 2(c), we also plot the result of the NEEP calculation,
which is also close to the analytic result.

To test the performance of the MEB method for a
high-dimensional system, we perform the same simula-
tion with M = 100. The estimated EP from the MEB
method is 14.4, which is only 3.5% distant from the ana-
lytic result, 13.9. We note that this accurate estimation
is infeasible for the direct (plug-in) method for such a
high-dimensional system.

C. RNA unfolding process

The final example is an RNA unfolding process, which
involves a nonlinear potential and thus an analytic treat-

ment is not possible. A typical experimental setup con-
sists of a single RNA hairpin molecule whose terminals
are connected to DNA handles that are controlled by two
optical tweezers, as illustrated in Fig. 3(a). By moving
the center of the rightmost optical tweezers, a pulling
force is exerted on the rightmost particle and the RNA
is unfolded. For the RNA hairpin P5GA [52], a pulling
force that amounts to 14.7 pN yields equal probabilities
for folded and unfolded states. The governing equation
of motion in this case is

ẋ(t) = f14.7(x(t)) + ωt+
√

2Dξ(t), (51)

where x(t) is the distance between the two ends of the
RNA at time t. The force function f14.7 is estimated
from coarse-grained molecular dynamics simulation data
when the RNA is pulled by a 14.7 pN force [52], where
a polynomial function of degree 10 is employed to fit the
force. The reflection boundary condition is imposed at
xmin = 1.01 nm and xmax = 9.07 nm, as distances larger
than xmax and smaller than xmin were not found in the
simulation [52]. We set the initial condition as the equi-
librium state at room temperature 300 K, which is an
ordinary experimental setup. During the process time
τ = 7.19 ns, the pulling force linearly increases up to
19.7 pN with a constant rate ω = 5.0

7.19 pN/ns. We gen-

erate 105 trajectories from the simulations. The time
resolution dt is set to 79.1 ps. The initial and final dis-
tributions at t = 0 and τ are presented in Fig. 3(a),
respectively.

We estimate the total EP by evaluating the rate MEB
from the trajectory ensemble. Here we use the Gaussian
weight vector set from Eq. (28) for evaluating the rate
MEB estimator. Figure 3(b) shows a plot of the esti-
mated EP as a function of time for ` = 4. As the analytic
expression of the EP for this system is not available, we
evaluate the EP using other numerical methods to check
the validity of the MEB method. First, we employ the
NEEP using the same trajectory ensemble and present
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the result in Fig. 3(b). We find that the MEB and NEEP
results coincide with each other precisely. Second, we ap-
ply the direct method using the following equality:

∆Stot(τ) = ∆Ssys(τ) +
1

T

∫ τ

0

〈(f14.7(x) + ωt) ◦ ẋ〉 dt,

(52)

where ∆Ssys(τ) = 〈− ln p(x, τ) + ln p(x, 0)〉. The inte-
gration over the process time of the last term in Eq. (52)
denotes the dissipated heat during the process. The ini-
tial and the final PDFs can be estimated from the tra-
jectory ensemble. This task becomes much harder with
increasing system dimension. The estimated total EP
from the direct method is denoted as the red solid line
in Fig. 3(b), which matches the MEB and NEEP results
very well. We note that the computational cost of the
MEB method is lower than that of the NEEP method;
it takes 3 s for the MEB method with 4 weight vectors,
while it takes 60 s for the NEEP process including the
learning time [53]. Here, we do not take into account the
time required to find the proper hyperparameters for the
NEEP.

Figure 3(c) shows the way to determine the proper
number of weight vectors `. From a given trajectory en-
semble, we estimate the total EP by using the MEB esti-
mator; the estimated EP as a function of ` for this RNA
unfolding process is plotted in Fig. 3(c). For ` < 3, the
estimated EP increases as ` increases, which indicates
that no combinations of two Gaussian weight vectors,
Eq. (23), are sufficiently close to the optimal weight vec-
tor, Eq. (13). The estimated EP saturates to a certain
value for ` ≥ 3, which indicates that the estimator is now
sufficiently close to the optimal one. Thus, accurate EP
estimation can be obtained by choosing ` ≥ 3. We also
examine the dependence of the time resolution of an ex-
periment and a limited number of trajectories on the EP
in Appendix D.

V. CONCLUSION AND DISCUSSION

In this study, we suggested an EP estimator, named
MEB, by applying multidimensional observable currents
to the entropic bound. The MEB provides a unified
way to estimate the EP for both overdamped and under-
damped Langevin dynamics regardless of the time de-
pendence of the protocol. The MEB estimator can be
obtained in either integral or rate form. The tight EP
bound is always achievable for any finite-time processes
via both the integral and the rate MEBs, whereas it is
possible for TURs only in the short-time limit. From
numerical simulations, we confirmed that the MEB es-
timates the EP with high accuracy from an ensemble
of system trajectories of overdamped Langevin systems.
For an underdamped system with an irreversible force,
information about the force is additionally required to es-

timate the EP. Moreover, extra information on the relax-
ation time is necessary for underdamped systems. There-
fore, a precise estimation of the EP may be possible via
MEB even for various complicated physical processes, in
particular biological systems.

In future research, it will be interesting to develop a
method to estimate the stochastic EP at the level of a
single trajectory for general Langevin dynamics, rather
than the averaged EP over an ensemble of trajectories.
Moreover, the extension of the EP estimation to an open
quantum system will be another intriguing problem. The
quantum TUR recently proposed in Ref. [54] could be a
good candidate for an estimator of the EP of an open
quantum system, if one can measure the coherent-effect
term in the formulation. It is also worthwhile to mention
the recently proposed method for directly inferring the
stochastic differential equations from a given trajectory
ensemble [55, 56]. It would be interesting to compare the
accuracy and efficiency of EP estimation between MEB
and the inferring method.
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Appendix A: Derivation of Eq. (27)

Here, we focus on the derivation of the integral MEB.
The derivation for the rate MEB is essentially the same

as that of the integral MEB. L
(`+1)
i can be expressed as

the following block matrix form:

L
(`+1)
i =

[
L

(`)
i b
bT h

]
(A1)

where bT = [(Li)`+1,1, · · · , (Li)`+1,`] and h =
(Li)`+1,`+1 =

∫ τ
0
dt〈Λi,`+1BiΛi,`+1〉q. From the Schur

complement, the determinant of the block matrix L
(`+1)
i

in Eq. (A1) is given by

det(L
(`+1)
i ) = det(L

(`)
i )
[
h− bT(L

(`)
i )−1b

]
. (A2)

The determinant of L
(`)
i for any ` is positive since it is

a positive-definite matrix. This implies that the term
h − bT(L(l))−1b in Eq. (A2) is also positive. Moreover,
via the following inverse block matrix formula,
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[
A B
C D

]−1

=

[
A−1 + A−1B(D− CA−1B)−1CA−1 −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

]
, (A3)

the inverse matrix of L
(`+1)
i can be expressed as

(L
(`+1)
i )−1 =

[
(L

(`)
i )−1 0
0 0

]
+ (h− bT(L

(`)
i )−1b)−1ddT,

(A4)

where dT ≡ (−bT(L
(`)
i )−1, 1). Using Eq. (A4), we can

prove Eq. (27) as follows:

∆S
MEB(`+1)
i =〈Θ(`+1)

i 〉T(L
(`+1)
i )−1〈Θ(`+1)

i 〉

=∆S
MEB(`)
i + (h− bT(L

(`)
i )−1b)(dT〈Θ(`+1)

i 〉)2

≥∆S
MEB(`)
i . (A5)

The positiveness of h − bT(L
(`)
i )−1b is used for showing

the last inequality of Eq. (A5).

Appendix B: Analytic solutions of a dragged
Brownian particle and pulled harmonic chain by

optical tweezers

We consider a Brownian particle dragged by optical
tweezers of which dynamics is governed by the following
equation [13, 57]:

ẋ(t) = −µk(x(t)− λ(t)) +
√

2Bξ(t), (B1)

where B = µT and λ(t) is an arbitrary time-dependent
protocol with the condition λ(0) = 0. The initial state
is set as the equilibrium distribution of Eq. (B1) with
λ(0) = 0, and thus, 〈x(0)〉 = 0. To obtain the ana-
lytic solution of Eq. (B1), we decompose x(t) into the
deterministic part 〈x(t)〉 and the stochastic part X(t) ≡
x(t)−〈x(t)〉. Taking the average of both sides of Eq. (B1)
leads to an equation for the deterministic part as

〈ẋ(t)〉 = −µk(〈x(t)〉 − λ(t)). (B2)

Then, the solution of 〈x(t)〉 is given by

〈x(t)〉 =e−t/τµ〈x(0)〉+ τ−1
µ

∫ t

0

dt′e−(t−t′)/τµλ(t′)

=λ(t)−
∫ t

0

dt′e−(t−t′)/τµ λ̇(t′), (B3)

where τµ = (µk)−1 is a characteristic relaxation time.
The equation for the stochastic component X(t) can be
obtained by simply substituting X(t) + 〈x(t)〉 for x(t) in
Eq. (B1) as

Ẋ(t) = −τ−1
µ X(t) +

√
2Bξ(t). (B4)

Since the initial state is in equilibrium, the distribution of
X(t) does not change in time. Therefore, the distribution
for all time is given by the equilibrium distribution as

P (X, t) =

√
βk

2π
e−

k
2 βX

2

. (B5)

By substituting x− 〈x(t)〉 for X in Eq. (B5), we have

P (x, t) =

√
βk

2π
e−

k
2 β(x−〈x(t)〉)2

. (B6)

Using Eqs. (5) and (B3), the irreversible current is

J irr(x, t) = [−µk(x− λ(t))−B∂x]P (x, t)

=µk[λ(t)− 〈x(t)〉]P (x, t)

=µk

∫ t

0

dt′e−(t−t′)/τµ λ̇(t′)P (x, t). (B7)

When λ(t) = ωt as in Sec. IV A, the irreversible current
and EP rate are

J irr(x, t) =ω[1− e−t/τµ ]P (x, t), (B8)

σtot(t) =

∫
dx
J irr(x, t)2

BP (x, t)

=
ω2β

µ
(1− e−t/τµ)2. (B9)

The derivation procedure for the underdamped
Langevin equation (48) is essentially the same as that
of the overdamped equation. By decomposing x(t) into
〈x(t)〉 and X(t) = x(t) − 〈x(t)〉 and v(t) into 〈v(t)〉 and
V (t) = v(t)− 〈x(t)〉, we have

d2

dt2
〈x(t)〉 = − 1

mµ

d

dt
〈x(t)〉 − k

m
(〈x(t)〉 − ωt), (B10)

d

dt
V (t) = − 1

mµ
V (t)− k

m
X(t) +

√
2Bξ(t). (B11)

For this underdamped case, B = Tµ−1m−2. The
second-order differential equation (B10) can be solved
with the boundary conditions 〈x(0)〉 = 0 and 〈v(0)〉 =
d/dt〈x(t)〉|t=0 = 0. The result is

〈x(t)〉 = C+e
α+t + C−e

α−t + ωt− ω

µk
, (B12)

where α± = −1/(2mµ) ±
√

1/(2mµ)2 − k/m and C± =
∓ω(α∓/(µk) + 1)/(α+ − α−). As the initial state is
in equilibrium, the distribution of X(t) and V (t) in
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Eq. (B11) for all time is the following equilibrium dis-
tribution:

P (X,V, t) =

√
βk

2π

√
βm

2π
exp

[
−β

2
(kX2 +mV 2)

]
.

(B13)

Therefore, P (x, v, t) is given by substituting x − 〈x(t)〉
for X and v − 〈v(t)〉 for V in Eq. (B13), as was done in
Eq. (B6). From Eq. (5), the irreversible current is written
as

J irr
x (x, v, t) = 0, J irr

v (x, v, t) = −〈v(t)〉
mµ

P (x, v, t).

(B14)

Finally, the EP rate is evaluated as

σtot(t) =

∫
dx
J irr(x, v, t)2

BP (x, v, t)
=
〈v(t)〉2

µT
. (B15)

The analytic solution of Eq. (50) can be obtained in a
similar way. By decomposing xi(t) into Xi(t) = xi(t) −
〈xi(t)〉 and rearranging the terms of Eq. (50), we have

〈ẋ(t)〉 = −µK〈x(t)〉+ µkλ(t), (B16)

Ẋ(t) = −µKX(t) +
√

2Bξ(t). (B17)

The expression of 〈xi(t)〉 can be obtained by solving
Eq. (B16), and it is certain that 〈xi(t)〉 is a function
of time. Since the initial state is the equilibrium state
of Eq. (B17), the probability density function (PDF)
is given by the Boltzmann factor exp[−βU(X)], where
U(X) = 1

2X
TKX is the potential energy of the har-

monic chain. Thus, by substituting X = x − 〈x〉 into
the Boltzmann factor, the PDF is written as

P (x, t) =
e−

β
2 (x−〈x(t)〉)TK(x−〈x(t)〉)√

det(2πK−1/β)
, (B18)

J irr(x, t) =[µkλ(t)− µK〈x(t)〉]P (x, t). (B19)

The tight weight vector is then given by

Λe
i (x, t) = ci(t)

J irr
i (x, t)

µTP (x, t)

= ci(t)

µkλi(t)− µ∑
j

Kij〈xj(t)〉

 . (B20)

Note that J irr
i (x, t)/P (x, t) depends on time but not po-

sition. Thus, the MEB estimator evaluated by measuring
displacement, i.e., Λe

i (x, t) = 1, results in the correct EP.

Appendix C: Component-combined MEB

In this section, we present the derivation of the
component-combined MEB, which is useful when the dif-
fusion matrix has off-diagonal elements. To this end,
similar to Eq. (14), we consider the following linear com-
bination of weight vectors as

Λ(`)(q, t) =
∑̀
α=1

kαΛα(q, t). (C1)

After substituting Λ in Eq. (10) with Λ(`)(q, t) in
Eq. (C1), we have

∆Stot(t) ≥
[∫ τ

0
dt
∫
dqΛ(`)(q, t)TJ irr(q, t)

]2∫ τ
0
dt〈Λ(`)(q, t)TBΛ(`)(q, t)〉q

=
(kT〈Θ(`)(τ)〉)2

kTL(`)(τ)k
= ∆Ŝ(`)(k), (C2)

where the components of 〈Θ(`)(τ)〉 and L(`)(τ) are given
as

〈Θ(`)
α (τ)〉 =

∫ τ

0

dt

∫
dqΛα(q, t)TJ irr(q, t), (C3)

(L(`)(τ))α,β =

∫ τ

0

dt〈Λα(q, t)TBΛβ(q, t)〉q. (C4)

Note that L(`)(τ) is a positive definite matrix since
zL(`)(τ)z =

∫ τ
0
dt〈||

∑
α B

1/2Λα(q, t)zα||2〉q > 0 for an
arbitrary non-zero vector z, positive definite matrix B,
and non-zero vector Λα. Then, the optimal condition for
∆Ŝ(`)(k) can be written as

∇k∆Ŝ(`)(k) =
2(kT〈Θ(`)(τ)〉)[(kTL(`)(τ)k)〈Θ(`)(τ)〉 − (kT〈Θ(`)(τ)〉)(L(`)(τ)k)]

[kTL(`)(τ)k]2
= 0, (C5)

which is similar to Eq. (19). The solution of Eq. (C5)
is k∗ = (L(`)(τ))−1 · 〈Θ(`)(τ)〉. By plugging this k∗ into

Eq. (C2), we obtain the component-combined MEB as

∆Stot ≥∆Ŝ(`)(k∗) = 〈Θ(`)(τ)〉(L(`)(τ))−1〈Θ(`)(τ)〉.
(C6)
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This is the integral form of the component-combined
MEB. Following a similar way, we can derive the rate
form of the component-combined MEB as

σtot(t) ≥ 〈Θ̇(`)(τ)〉T(L̇(`)(τ))−1〈Θ̇(`)(τ)〉, (C7)

where the components of 〈Θ̇(`)(τ)〉 and L̇(`)(τ) are given
by

〈Θ̇(`)
α (t)〉 =

∫
dqΛα(q, t)TJ irr(q, t), (C8)

(L̇(`)(t))α,β =〈Λα(q, t)TBΛβ(q, t)〉q. (C9)

Similar to Eq. (36), in the case where the estimation of
the diffusion matrix requires a heavy computational cost,
we can directly obtain L̇(`)(t) by evaluating

(L̇(`)(t))α,β =〈Λα(q, t)TBΛβ(q, t)〉

= lim
δt→0

1

δt
〈[Λα(q, t)T ◦ δq)][Λβ(q, t)T ◦ δq]〉.

(C10)

Then, (L(`)(τ))α,β can be estimated by integrating
Eq. (C10) over time from t = 0 to t = τ .

Appendix D: Effect of limited samples or time
resolution on the EP estimation

1. Limited number of trajectories

Though we use 105 trajectories in our simulation in
Sec. IV C, only several thousand repetitions are usually
feasible in real experiments [58]. Thus, in this section
we examine the effect of a limited number of trajectories
on the estimated EP. To this end, we perform additional
simulations of the RNA unfolding process for various tra-
jectory numbers of 1000, 2000, 4000, 8000, and 10000 and
estimate the EP using both the MEB and NEEP meth-
ods. The results are plotted in Fig. 4. Open and filled
circles denote the MEB and NEEP results, respectively.
To plot the error bars, we first generated 5 independent
data sets for each number of samples, and then evaluated
the average and standard deviation for the 5 sets. The
red solid line is the estimated EP via the direct method,
which is the same line as in Fig. 3(c). The figure shows
the tendency that both MEB and NEEP overestimate the
EP for small sample sizes. In fact, we recommend using
both methods together to cross-check the reliability of
the estimated value.

2. Limited time resolution

The estimated EP depends on the time resolution dt
(time gap between two consecutive data points) of the
measurement. Since decreasing the time resolution (in-
creasing dt) causes a ‘coarse-graining’ of the trajectory

FIG. 4. Estimated EP of the RNA unfolding process as a
function of the number of trajectory samples. Open circles
represent the MEB results with 4 Gaussian bases (` = 4).
Green filled circles denote the NEEP results. The red solid
line is the estimated EP via the direct method, which is the
same line as in Fig. 3(c). The other parameters are the same
as those used to plot Fig. 3(c). The error bars represent the
standard deviation of the EP estimations from five different
trajectory sets.

FIG. 5. Estimated EP as a function of time resolution dt.
Open circles represent the MEB results with 4 Gaussian bases
(` = 4). Green circles and red crosses denote the results of
the NEEP and the direct method, respectively. The other
parameters are the same as those used to plot Fig. 3(c).

data, doing so typically leads to a lower value of the EP.
This can also be checked in our simulations; here, we sim-
ulate the RNA unfolding process presented in Sec. IV C
with various dt. Other parameters are the same as those
in the previous simulation. The results are plotted in
Fig. 5. The NEEP, the MEB, and the direct method
show the same decreasing behavior as dt increases. From
an extrapolation of the data, we can also estimate the
EP value in the dt → 0 limit. Accordingly, it is impor-
tant to specify the dt information in a given experiment
or simulation.
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Appendix E: NEEP algorithm

Here we explain the training details of the NEEP and
its architecture configurations [33]. We apply the NEEP
to one step from xt to xt+∆t. For brevity, we will use the
notation xt for x(t). The NEEP is designed to maximize
the following objective function:

C(θ) ≡
〈

∆Sθ(xt+∆t,xt, t)− e−∆Sθ(xt+∆t,xt,t)
〉

(E1)

where ∆Sθ is an antisymmetric function with respect to
the exchange of xt and xt+∆t as

∆Sθ(xt+∆t,xt, t) = hθ(xt,xt+∆t, t)− hθ(xt+∆t,xt, t).
(E2)

In Eq. (E2), the function hθ is the output of a multi-layer
perceptron (MLP) and θ denotes the trainable parame-
ters of the MLP. The MLP has a scalar output unit and
three hidden layers of 512 units with the rectified lin-
ear unit (ReLU) activation function. It is shown that
∆Sθ = ∆Stot with the optimized θ∗ in Ref. [33].

In order to employ the cross-validation method, we
split the trajectory data into 20% for the validation set

and 80% for the training set. We train the MLP hθ to
maximize Eq. (E1) by using the Adam optimizer [59] with
learning rate 10−4, batch size 4096, and weight decay
5 × 10−5. Before feeding the input (xt+∆t,xt, t) to the
MLP, we normalize each element of trajectory data x by
using the following equation:

x
(i)
t ← (x

(i)
t −mean[x(i)])/std[x(i)],

where x(i) indicates the i-th component of x, mean[x(i)]
is the mean of x(i), and std[x(i)] is the standard devi-
ation of x(i). We also normalize the time information
t = 0 . . . τ to be set as t = −0.5 . . . 0.5 so that mean of
the input vector (xt+∆t,xt, t) becomes a zero vector. The
total number of training iterations is 104, and we evalu-
ate C(θ) values from the validation set per every 500 (50)
training iterations for the pulled harmonic chain (RNA
unfolding process). The best trained parameter set θ? is
determined from the case where the NEEP produces the
maximum value of C during the training process. The
results presented in Sec. IV are those evaluated at the
best trained parameter θ? over the total trajectory data.
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